qla3xxx.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/kernel.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include <linux/prefetch.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.03.00-k5"
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. #define TIMED_OUT_MSG \
  43. "Timed out waiting for management port to get free before issuing command\n"
  44. MODULE_AUTHOR("QLogic Corporation");
  45. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  46. MODULE_LICENSE("GPL");
  47. MODULE_VERSION(DRV_VERSION);
  48. static const u32 default_msg
  49. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  50. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  51. static int debug = -1; /* defaults above */
  52. module_param(debug, int, 0);
  53. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  54. static int msi;
  55. module_param(msi, int, 0);
  56. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  57. static const struct pci_device_id ql3xxx_pci_tbl[] = {
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  59. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  60. /* required last entry */
  61. {0,}
  62. };
  63. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  64. /*
  65. * These are the known PHY's which are used
  66. */
  67. enum PHY_DEVICE_TYPE {
  68. PHY_TYPE_UNKNOWN = 0,
  69. PHY_VITESSE_VSC8211,
  70. PHY_AGERE_ET1011C,
  71. MAX_PHY_DEV_TYPES
  72. };
  73. struct PHY_DEVICE_INFO {
  74. const enum PHY_DEVICE_TYPE phyDevice;
  75. const u32 phyIdOUI;
  76. const u16 phyIdModel;
  77. const char *name;
  78. };
  79. static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
  80. {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  81. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  82. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  83. };
  84. /*
  85. * Caller must take hw_lock.
  86. */
  87. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  88. u32 sem_mask, u32 sem_bits)
  89. {
  90. struct ql3xxx_port_registers __iomem *port_regs =
  91. qdev->mem_map_registers;
  92. u32 value;
  93. unsigned int seconds = 3;
  94. do {
  95. writel((sem_mask | sem_bits),
  96. &port_regs->CommonRegs.semaphoreReg);
  97. value = readl(&port_regs->CommonRegs.semaphoreReg);
  98. if ((value & (sem_mask >> 16)) == sem_bits)
  99. return 0;
  100. ssleep(1);
  101. } while (--seconds);
  102. return -1;
  103. }
  104. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  105. {
  106. struct ql3xxx_port_registers __iomem *port_regs =
  107. qdev->mem_map_registers;
  108. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  109. readl(&port_regs->CommonRegs.semaphoreReg);
  110. }
  111. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  112. {
  113. struct ql3xxx_port_registers __iomem *port_regs =
  114. qdev->mem_map_registers;
  115. u32 value;
  116. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  117. value = readl(&port_regs->CommonRegs.semaphoreReg);
  118. return ((value & (sem_mask >> 16)) == sem_bits);
  119. }
  120. /*
  121. * Caller holds hw_lock.
  122. */
  123. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  124. {
  125. int i = 0;
  126. do {
  127. if (ql_sem_lock(qdev,
  128. QL_DRVR_SEM_MASK,
  129. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  130. * 2) << 1)) {
  131. netdev_printk(KERN_DEBUG, qdev->ndev,
  132. "driver lock acquired\n");
  133. return 1;
  134. }
  135. ssleep(1);
  136. } while (++i < 10);
  137. netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
  138. return 0;
  139. }
  140. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  141. {
  142. struct ql3xxx_port_registers __iomem *port_regs =
  143. qdev->mem_map_registers;
  144. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  145. &port_regs->CommonRegs.ispControlStatus);
  146. readl(&port_regs->CommonRegs.ispControlStatus);
  147. qdev->current_page = page;
  148. }
  149. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  150. {
  151. u32 value;
  152. unsigned long hw_flags;
  153. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  154. value = readl(reg);
  155. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  156. return value;
  157. }
  158. static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  159. {
  160. return readl(reg);
  161. }
  162. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  163. {
  164. u32 value;
  165. unsigned long hw_flags;
  166. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  167. if (qdev->current_page != 0)
  168. ql_set_register_page(qdev, 0);
  169. value = readl(reg);
  170. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  171. return value;
  172. }
  173. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  174. {
  175. if (qdev->current_page != 0)
  176. ql_set_register_page(qdev, 0);
  177. return readl(reg);
  178. }
  179. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  180. u32 __iomem *reg, u32 value)
  181. {
  182. unsigned long hw_flags;
  183. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  184. writel(value, reg);
  185. readl(reg);
  186. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  187. }
  188. static void ql_write_common_reg(struct ql3_adapter *qdev,
  189. u32 __iomem *reg, u32 value)
  190. {
  191. writel(value, reg);
  192. readl(reg);
  193. }
  194. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  195. u32 __iomem *reg, u32 value)
  196. {
  197. writel(value, reg);
  198. readl(reg);
  199. udelay(1);
  200. }
  201. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  202. u32 __iomem *reg, u32 value)
  203. {
  204. if (qdev->current_page != 0)
  205. ql_set_register_page(qdev, 0);
  206. writel(value, reg);
  207. readl(reg);
  208. }
  209. /*
  210. * Caller holds hw_lock. Only called during init.
  211. */
  212. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  213. u32 __iomem *reg, u32 value)
  214. {
  215. if (qdev->current_page != 1)
  216. ql_set_register_page(qdev, 1);
  217. writel(value, reg);
  218. readl(reg);
  219. }
  220. /*
  221. * Caller holds hw_lock. Only called during init.
  222. */
  223. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  224. u32 __iomem *reg, u32 value)
  225. {
  226. if (qdev->current_page != 2)
  227. ql_set_register_page(qdev, 2);
  228. writel(value, reg);
  229. readl(reg);
  230. }
  231. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  232. {
  233. struct ql3xxx_port_registers __iomem *port_regs =
  234. qdev->mem_map_registers;
  235. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  236. (ISP_IMR_ENABLE_INT << 16));
  237. }
  238. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  239. {
  240. struct ql3xxx_port_registers __iomem *port_regs =
  241. qdev->mem_map_registers;
  242. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  243. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  244. }
  245. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  246. struct ql_rcv_buf_cb *lrg_buf_cb)
  247. {
  248. dma_addr_t map;
  249. int err;
  250. lrg_buf_cb->next = NULL;
  251. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  252. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  253. } else {
  254. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  255. qdev->lrg_buf_free_tail = lrg_buf_cb;
  256. }
  257. if (!lrg_buf_cb->skb) {
  258. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  259. qdev->lrg_buffer_len);
  260. if (unlikely(!lrg_buf_cb->skb)) {
  261. qdev->lrg_buf_skb_check++;
  262. } else {
  263. /*
  264. * We save some space to copy the ethhdr from first
  265. * buffer
  266. */
  267. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  268. map = pci_map_single(qdev->pdev,
  269. lrg_buf_cb->skb->data,
  270. qdev->lrg_buffer_len -
  271. QL_HEADER_SPACE,
  272. PCI_DMA_FROMDEVICE);
  273. err = pci_dma_mapping_error(qdev->pdev, map);
  274. if (err) {
  275. netdev_err(qdev->ndev,
  276. "PCI mapping failed with error: %d\n",
  277. err);
  278. dev_kfree_skb(lrg_buf_cb->skb);
  279. lrg_buf_cb->skb = NULL;
  280. qdev->lrg_buf_skb_check++;
  281. return;
  282. }
  283. lrg_buf_cb->buf_phy_addr_low =
  284. cpu_to_le32(LS_64BITS(map));
  285. lrg_buf_cb->buf_phy_addr_high =
  286. cpu_to_le32(MS_64BITS(map));
  287. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  288. dma_unmap_len_set(lrg_buf_cb, maplen,
  289. qdev->lrg_buffer_len -
  290. QL_HEADER_SPACE);
  291. }
  292. }
  293. qdev->lrg_buf_free_count++;
  294. }
  295. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  296. *qdev)
  297. {
  298. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  299. if (lrg_buf_cb != NULL) {
  300. qdev->lrg_buf_free_head = lrg_buf_cb->next;
  301. if (qdev->lrg_buf_free_head == NULL)
  302. qdev->lrg_buf_free_tail = NULL;
  303. qdev->lrg_buf_free_count--;
  304. }
  305. return lrg_buf_cb;
  306. }
  307. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  308. static u32 dataBits = EEPROM_NO_DATA_BITS;
  309. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  310. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  311. unsigned short *value);
  312. /*
  313. * Caller holds hw_lock.
  314. */
  315. static void fm93c56a_select(struct ql3_adapter *qdev)
  316. {
  317. struct ql3xxx_port_registers __iomem *port_regs =
  318. qdev->mem_map_registers;
  319. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  320. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  321. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  322. ql_write_nvram_reg(qdev, spir,
  323. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  324. }
  325. /*
  326. * Caller holds hw_lock.
  327. */
  328. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  329. {
  330. int i;
  331. u32 mask;
  332. u32 dataBit;
  333. u32 previousBit;
  334. struct ql3xxx_port_registers __iomem *port_regs =
  335. qdev->mem_map_registers;
  336. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  337. /* Clock in a zero, then do the start bit */
  338. ql_write_nvram_reg(qdev, spir,
  339. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  340. AUBURN_EEPROM_DO_1));
  341. ql_write_nvram_reg(qdev, spir,
  342. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  343. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
  344. ql_write_nvram_reg(qdev, spir,
  345. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  346. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
  347. mask = 1 << (FM93C56A_CMD_BITS - 1);
  348. /* Force the previous data bit to be different */
  349. previousBit = 0xffff;
  350. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  351. dataBit = (cmd & mask)
  352. ? AUBURN_EEPROM_DO_1
  353. : AUBURN_EEPROM_DO_0;
  354. if (previousBit != dataBit) {
  355. /* If the bit changed, change the DO state to match */
  356. ql_write_nvram_reg(qdev, spir,
  357. (ISP_NVRAM_MASK |
  358. qdev->eeprom_cmd_data | dataBit));
  359. previousBit = dataBit;
  360. }
  361. ql_write_nvram_reg(qdev, spir,
  362. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  363. dataBit | AUBURN_EEPROM_CLK_RISE));
  364. ql_write_nvram_reg(qdev, spir,
  365. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  366. dataBit | AUBURN_EEPROM_CLK_FALL));
  367. cmd = cmd << 1;
  368. }
  369. mask = 1 << (addrBits - 1);
  370. /* Force the previous data bit to be different */
  371. previousBit = 0xffff;
  372. for (i = 0; i < addrBits; i++) {
  373. dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
  374. : AUBURN_EEPROM_DO_0;
  375. if (previousBit != dataBit) {
  376. /*
  377. * If the bit changed, then change the DO state to
  378. * match
  379. */
  380. ql_write_nvram_reg(qdev, spir,
  381. (ISP_NVRAM_MASK |
  382. qdev->eeprom_cmd_data | dataBit));
  383. previousBit = dataBit;
  384. }
  385. ql_write_nvram_reg(qdev, spir,
  386. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  387. dataBit | AUBURN_EEPROM_CLK_RISE));
  388. ql_write_nvram_reg(qdev, spir,
  389. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  390. dataBit | AUBURN_EEPROM_CLK_FALL));
  391. eepromAddr = eepromAddr << 1;
  392. }
  393. }
  394. /*
  395. * Caller holds hw_lock.
  396. */
  397. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  398. {
  399. struct ql3xxx_port_registers __iomem *port_regs =
  400. qdev->mem_map_registers;
  401. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  402. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  403. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  404. }
  405. /*
  406. * Caller holds hw_lock.
  407. */
  408. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  409. {
  410. int i;
  411. u32 data = 0;
  412. u32 dataBit;
  413. struct ql3xxx_port_registers __iomem *port_regs =
  414. qdev->mem_map_registers;
  415. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  416. /* Read the data bits */
  417. /* The first bit is a dummy. Clock right over it. */
  418. for (i = 0; i < dataBits; i++) {
  419. ql_write_nvram_reg(qdev, spir,
  420. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  421. AUBURN_EEPROM_CLK_RISE);
  422. ql_write_nvram_reg(qdev, spir,
  423. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  424. AUBURN_EEPROM_CLK_FALL);
  425. dataBit = (ql_read_common_reg(qdev, spir) &
  426. AUBURN_EEPROM_DI_1) ? 1 : 0;
  427. data = (data << 1) | dataBit;
  428. }
  429. *value = (u16)data;
  430. }
  431. /*
  432. * Caller holds hw_lock.
  433. */
  434. static void eeprom_readword(struct ql3_adapter *qdev,
  435. u32 eepromAddr, unsigned short *value)
  436. {
  437. fm93c56a_select(qdev);
  438. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  439. fm93c56a_datain(qdev, value);
  440. fm93c56a_deselect(qdev);
  441. }
  442. static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
  443. {
  444. __le16 *p = (__le16 *)ndev->dev_addr;
  445. p[0] = cpu_to_le16(addr[0]);
  446. p[1] = cpu_to_le16(addr[1]);
  447. p[2] = cpu_to_le16(addr[2]);
  448. }
  449. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  450. {
  451. u16 *pEEPROMData;
  452. u16 checksum = 0;
  453. u32 index;
  454. unsigned long hw_flags;
  455. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  456. pEEPROMData = (u16 *)&qdev->nvram_data;
  457. qdev->eeprom_cmd_data = 0;
  458. if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  459. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  460. 2) << 10)) {
  461. pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
  462. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  463. return -1;
  464. }
  465. for (index = 0; index < EEPROM_SIZE; index++) {
  466. eeprom_readword(qdev, index, pEEPROMData);
  467. checksum += *pEEPROMData;
  468. pEEPROMData++;
  469. }
  470. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  471. if (checksum != 0) {
  472. netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
  473. checksum);
  474. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  475. return -1;
  476. }
  477. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  478. return checksum;
  479. }
  480. static const u32 PHYAddr[2] = {
  481. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  482. };
  483. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  484. {
  485. struct ql3xxx_port_registers __iomem *port_regs =
  486. qdev->mem_map_registers;
  487. u32 temp;
  488. int count = 1000;
  489. while (count) {
  490. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  491. if (!(temp & MAC_MII_STATUS_BSY))
  492. return 0;
  493. udelay(10);
  494. count--;
  495. }
  496. return -1;
  497. }
  498. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  499. {
  500. struct ql3xxx_port_registers __iomem *port_regs =
  501. qdev->mem_map_registers;
  502. u32 scanControl;
  503. if (qdev->numPorts > 1) {
  504. /* Auto scan will cycle through multiple ports */
  505. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  506. } else {
  507. scanControl = MAC_MII_CONTROL_SC;
  508. }
  509. /*
  510. * Scan register 1 of PHY/PETBI,
  511. * Set up to scan both devices
  512. * The autoscan starts from the first register, completes
  513. * the last one before rolling over to the first
  514. */
  515. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  516. PHYAddr[0] | MII_SCAN_REGISTER);
  517. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  518. (scanControl) |
  519. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  520. }
  521. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  522. {
  523. u8 ret;
  524. struct ql3xxx_port_registers __iomem *port_regs =
  525. qdev->mem_map_registers;
  526. /* See if scan mode is enabled before we turn it off */
  527. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  528. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  529. /* Scan is enabled */
  530. ret = 1;
  531. } else {
  532. /* Scan is disabled */
  533. ret = 0;
  534. }
  535. /*
  536. * When disabling scan mode you must first change the MII register
  537. * address
  538. */
  539. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  540. PHYAddr[0] | MII_SCAN_REGISTER);
  541. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  542. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  543. MAC_MII_CONTROL_RC) << 16));
  544. return ret;
  545. }
  546. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  547. u16 regAddr, u16 value, u32 phyAddr)
  548. {
  549. struct ql3xxx_port_registers __iomem *port_regs =
  550. qdev->mem_map_registers;
  551. u8 scanWasEnabled;
  552. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  553. if (ql_wait_for_mii_ready(qdev)) {
  554. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  555. return -1;
  556. }
  557. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  558. phyAddr | regAddr);
  559. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  560. /* Wait for write to complete 9/10/04 SJP */
  561. if (ql_wait_for_mii_ready(qdev)) {
  562. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  563. return -1;
  564. }
  565. if (scanWasEnabled)
  566. ql_mii_enable_scan_mode(qdev);
  567. return 0;
  568. }
  569. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  570. u16 *value, u32 phyAddr)
  571. {
  572. struct ql3xxx_port_registers __iomem *port_regs =
  573. qdev->mem_map_registers;
  574. u8 scanWasEnabled;
  575. u32 temp;
  576. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  577. if (ql_wait_for_mii_ready(qdev)) {
  578. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  579. return -1;
  580. }
  581. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  582. phyAddr | regAddr);
  583. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  584. (MAC_MII_CONTROL_RC << 16));
  585. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  586. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  587. /* Wait for the read to complete */
  588. if (ql_wait_for_mii_ready(qdev)) {
  589. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  590. return -1;
  591. }
  592. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  593. *value = (u16) temp;
  594. if (scanWasEnabled)
  595. ql_mii_enable_scan_mode(qdev);
  596. return 0;
  597. }
  598. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  599. {
  600. struct ql3xxx_port_registers __iomem *port_regs =
  601. qdev->mem_map_registers;
  602. ql_mii_disable_scan_mode(qdev);
  603. if (ql_wait_for_mii_ready(qdev)) {
  604. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  605. return -1;
  606. }
  607. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  608. qdev->PHYAddr | regAddr);
  609. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  610. /* Wait for write to complete. */
  611. if (ql_wait_for_mii_ready(qdev)) {
  612. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  613. return -1;
  614. }
  615. ql_mii_enable_scan_mode(qdev);
  616. return 0;
  617. }
  618. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  619. {
  620. u32 temp;
  621. struct ql3xxx_port_registers __iomem *port_regs =
  622. qdev->mem_map_registers;
  623. ql_mii_disable_scan_mode(qdev);
  624. if (ql_wait_for_mii_ready(qdev)) {
  625. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  626. return -1;
  627. }
  628. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  629. qdev->PHYAddr | regAddr);
  630. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  631. (MAC_MII_CONTROL_RC << 16));
  632. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  633. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  634. /* Wait for the read to complete */
  635. if (ql_wait_for_mii_ready(qdev)) {
  636. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  637. return -1;
  638. }
  639. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  640. *value = (u16) temp;
  641. ql_mii_enable_scan_mode(qdev);
  642. return 0;
  643. }
  644. static void ql_petbi_reset(struct ql3_adapter *qdev)
  645. {
  646. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  647. }
  648. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  649. {
  650. u16 reg;
  651. /* Enable Auto-negotiation sense */
  652. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  653. reg |= PETBI_TBI_AUTO_SENSE;
  654. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  655. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  656. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  657. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  658. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  659. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  660. }
  661. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  662. {
  663. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  664. PHYAddr[qdev->mac_index]);
  665. }
  666. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  667. {
  668. u16 reg;
  669. /* Enable Auto-negotiation sense */
  670. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  671. PHYAddr[qdev->mac_index]);
  672. reg |= PETBI_TBI_AUTO_SENSE;
  673. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  674. PHYAddr[qdev->mac_index]);
  675. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  676. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  677. PHYAddr[qdev->mac_index]);
  678. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  679. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  680. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  681. PHYAddr[qdev->mac_index]);
  682. }
  683. static void ql_petbi_init(struct ql3_adapter *qdev)
  684. {
  685. ql_petbi_reset(qdev);
  686. ql_petbi_start_neg(qdev);
  687. }
  688. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  689. {
  690. ql_petbi_reset_ex(qdev);
  691. ql_petbi_start_neg_ex(qdev);
  692. }
  693. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  694. {
  695. u16 reg;
  696. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  697. return 0;
  698. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  699. }
  700. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  701. {
  702. netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
  703. /* power down device bit 11 = 1 */
  704. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  705. /* enable diagnostic mode bit 2 = 1 */
  706. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  707. /* 1000MB amplitude adjust (see Agere errata) */
  708. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  709. /* 1000MB amplitude adjust (see Agere errata) */
  710. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  711. /* 100MB amplitude adjust (see Agere errata) */
  712. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  713. /* 100MB amplitude adjust (see Agere errata) */
  714. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  715. /* 10MB amplitude adjust (see Agere errata) */
  716. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  717. /* 10MB amplitude adjust (see Agere errata) */
  718. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  719. /* point to hidden reg 0x2806 */
  720. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  721. /* Write new PHYAD w/bit 5 set */
  722. ql_mii_write_reg_ex(qdev, 0x11,
  723. 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  724. /*
  725. * Disable diagnostic mode bit 2 = 0
  726. * Power up device bit 11 = 0
  727. * Link up (on) and activity (blink)
  728. */
  729. ql_mii_write_reg(qdev, 0x12, 0x840a);
  730. ql_mii_write_reg(qdev, 0x00, 0x1140);
  731. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  732. }
  733. static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
  734. u16 phyIdReg0, u16 phyIdReg1)
  735. {
  736. enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
  737. u32 oui;
  738. u16 model;
  739. int i;
  740. if (phyIdReg0 == 0xffff)
  741. return result;
  742. if (phyIdReg1 == 0xffff)
  743. return result;
  744. /* oui is split between two registers */
  745. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  746. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  747. /* Scan table for this PHY */
  748. for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  749. if ((oui == PHY_DEVICES[i].phyIdOUI) &&
  750. (model == PHY_DEVICES[i].phyIdModel)) {
  751. netdev_info(qdev->ndev, "Phy: %s\n",
  752. PHY_DEVICES[i].name);
  753. result = PHY_DEVICES[i].phyDevice;
  754. break;
  755. }
  756. }
  757. return result;
  758. }
  759. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  760. {
  761. u16 reg;
  762. switch (qdev->phyType) {
  763. case PHY_AGERE_ET1011C: {
  764. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  765. return 0;
  766. reg = (reg >> 8) & 3;
  767. break;
  768. }
  769. default:
  770. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  771. return 0;
  772. reg = (((reg & 0x18) >> 3) & 3);
  773. }
  774. switch (reg) {
  775. case 2:
  776. return SPEED_1000;
  777. case 1:
  778. return SPEED_100;
  779. case 0:
  780. return SPEED_10;
  781. default:
  782. return -1;
  783. }
  784. }
  785. static int ql_is_full_dup(struct ql3_adapter *qdev)
  786. {
  787. u16 reg;
  788. switch (qdev->phyType) {
  789. case PHY_AGERE_ET1011C: {
  790. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  791. return 0;
  792. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  793. }
  794. case PHY_VITESSE_VSC8211:
  795. default: {
  796. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  797. return 0;
  798. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  799. }
  800. }
  801. }
  802. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  803. {
  804. u16 reg;
  805. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  806. return 0;
  807. return (reg & PHY_NEG_PAUSE) != 0;
  808. }
  809. static int PHY_Setup(struct ql3_adapter *qdev)
  810. {
  811. u16 reg1;
  812. u16 reg2;
  813. bool agereAddrChangeNeeded = false;
  814. u32 miiAddr = 0;
  815. int err;
  816. /* Determine the PHY we are using by reading the ID's */
  817. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  818. if (err != 0) {
  819. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
  820. return err;
  821. }
  822. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  823. if (err != 0) {
  824. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
  825. return err;
  826. }
  827. /* Check if we have a Agere PHY */
  828. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  829. /* Determine which MII address we should be using
  830. determined by the index of the card */
  831. if (qdev->mac_index == 0)
  832. miiAddr = MII_AGERE_ADDR_1;
  833. else
  834. miiAddr = MII_AGERE_ADDR_2;
  835. err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  836. if (err != 0) {
  837. netdev_err(qdev->ndev,
  838. "Could not read from reg PHY_ID_0_REG after Agere detected\n");
  839. return err;
  840. }
  841. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  842. if (err != 0) {
  843. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
  844. return err;
  845. }
  846. /* We need to remember to initialize the Agere PHY */
  847. agereAddrChangeNeeded = true;
  848. }
  849. /* Determine the particular PHY we have on board to apply
  850. PHY specific initializations */
  851. qdev->phyType = getPhyType(qdev, reg1, reg2);
  852. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  853. /* need this here so address gets changed */
  854. phyAgereSpecificInit(qdev, miiAddr);
  855. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  856. netdev_err(qdev->ndev, "PHY is unknown\n");
  857. return -EIO;
  858. }
  859. return 0;
  860. }
  861. /*
  862. * Caller holds hw_lock.
  863. */
  864. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  865. {
  866. struct ql3xxx_port_registers __iomem *port_regs =
  867. qdev->mem_map_registers;
  868. u32 value;
  869. if (enable)
  870. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  871. else
  872. value = (MAC_CONFIG_REG_PE << 16);
  873. if (qdev->mac_index)
  874. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  875. else
  876. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  877. }
  878. /*
  879. * Caller holds hw_lock.
  880. */
  881. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  882. {
  883. struct ql3xxx_port_registers __iomem *port_regs =
  884. qdev->mem_map_registers;
  885. u32 value;
  886. if (enable)
  887. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  888. else
  889. value = (MAC_CONFIG_REG_SR << 16);
  890. if (qdev->mac_index)
  891. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  892. else
  893. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  894. }
  895. /*
  896. * Caller holds hw_lock.
  897. */
  898. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  899. {
  900. struct ql3xxx_port_registers __iomem *port_regs =
  901. qdev->mem_map_registers;
  902. u32 value;
  903. if (enable)
  904. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  905. else
  906. value = (MAC_CONFIG_REG_GM << 16);
  907. if (qdev->mac_index)
  908. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  909. else
  910. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  911. }
  912. /*
  913. * Caller holds hw_lock.
  914. */
  915. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  916. {
  917. struct ql3xxx_port_registers __iomem *port_regs =
  918. qdev->mem_map_registers;
  919. u32 value;
  920. if (enable)
  921. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  922. else
  923. value = (MAC_CONFIG_REG_FD << 16);
  924. if (qdev->mac_index)
  925. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  926. else
  927. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  928. }
  929. /*
  930. * Caller holds hw_lock.
  931. */
  932. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  933. {
  934. struct ql3xxx_port_registers __iomem *port_regs =
  935. qdev->mem_map_registers;
  936. u32 value;
  937. if (enable)
  938. value =
  939. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  940. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  941. else
  942. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  943. if (qdev->mac_index)
  944. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  945. else
  946. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  947. }
  948. /*
  949. * Caller holds hw_lock.
  950. */
  951. static int ql_is_fiber(struct ql3_adapter *qdev)
  952. {
  953. struct ql3xxx_port_registers __iomem *port_regs =
  954. qdev->mem_map_registers;
  955. u32 bitToCheck = 0;
  956. u32 temp;
  957. switch (qdev->mac_index) {
  958. case 0:
  959. bitToCheck = PORT_STATUS_SM0;
  960. break;
  961. case 1:
  962. bitToCheck = PORT_STATUS_SM1;
  963. break;
  964. }
  965. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  966. return (temp & bitToCheck) != 0;
  967. }
  968. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  969. {
  970. u16 reg;
  971. ql_mii_read_reg(qdev, 0x00, &reg);
  972. return (reg & 0x1000) != 0;
  973. }
  974. /*
  975. * Caller holds hw_lock.
  976. */
  977. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  978. {
  979. struct ql3xxx_port_registers __iomem *port_regs =
  980. qdev->mem_map_registers;
  981. u32 bitToCheck = 0;
  982. u32 temp;
  983. switch (qdev->mac_index) {
  984. case 0:
  985. bitToCheck = PORT_STATUS_AC0;
  986. break;
  987. case 1:
  988. bitToCheck = PORT_STATUS_AC1;
  989. break;
  990. }
  991. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  992. if (temp & bitToCheck) {
  993. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
  994. return 1;
  995. }
  996. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
  997. return 0;
  998. }
  999. /*
  1000. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1001. */
  1002. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1003. {
  1004. if (ql_is_fiber(qdev))
  1005. return ql_is_petbi_neg_pause(qdev);
  1006. else
  1007. return ql_is_phy_neg_pause(qdev);
  1008. }
  1009. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1010. {
  1011. struct ql3xxx_port_registers __iomem *port_regs =
  1012. qdev->mem_map_registers;
  1013. u32 bitToCheck = 0;
  1014. u32 temp;
  1015. switch (qdev->mac_index) {
  1016. case 0:
  1017. bitToCheck = PORT_STATUS_AE0;
  1018. break;
  1019. case 1:
  1020. bitToCheck = PORT_STATUS_AE1;
  1021. break;
  1022. }
  1023. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1024. return (temp & bitToCheck) != 0;
  1025. }
  1026. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1027. {
  1028. if (ql_is_fiber(qdev))
  1029. return SPEED_1000;
  1030. else
  1031. return ql_phy_get_speed(qdev);
  1032. }
  1033. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1034. {
  1035. if (ql_is_fiber(qdev))
  1036. return 1;
  1037. else
  1038. return ql_is_full_dup(qdev);
  1039. }
  1040. /*
  1041. * Caller holds hw_lock.
  1042. */
  1043. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1044. {
  1045. struct ql3xxx_port_registers __iomem *port_regs =
  1046. qdev->mem_map_registers;
  1047. u32 bitToCheck = 0;
  1048. u32 temp;
  1049. switch (qdev->mac_index) {
  1050. case 0:
  1051. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1052. break;
  1053. case 1:
  1054. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1055. break;
  1056. }
  1057. temp =
  1058. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1059. return (temp & bitToCheck) != 0;
  1060. }
  1061. /*
  1062. * Caller holds hw_lock.
  1063. */
  1064. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1065. {
  1066. struct ql3xxx_port_registers __iomem *port_regs =
  1067. qdev->mem_map_registers;
  1068. switch (qdev->mac_index) {
  1069. case 0:
  1070. ql_write_common_reg(qdev,
  1071. &port_regs->CommonRegs.ispControlStatus,
  1072. (ISP_CONTROL_LINK_DN_0) |
  1073. (ISP_CONTROL_LINK_DN_0 << 16));
  1074. break;
  1075. case 1:
  1076. ql_write_common_reg(qdev,
  1077. &port_regs->CommonRegs.ispControlStatus,
  1078. (ISP_CONTROL_LINK_DN_1) |
  1079. (ISP_CONTROL_LINK_DN_1 << 16));
  1080. break;
  1081. default:
  1082. return 1;
  1083. }
  1084. return 0;
  1085. }
  1086. /*
  1087. * Caller holds hw_lock.
  1088. */
  1089. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1090. {
  1091. struct ql3xxx_port_registers __iomem *port_regs =
  1092. qdev->mem_map_registers;
  1093. u32 bitToCheck = 0;
  1094. u32 temp;
  1095. switch (qdev->mac_index) {
  1096. case 0:
  1097. bitToCheck = PORT_STATUS_F1_ENABLED;
  1098. break;
  1099. case 1:
  1100. bitToCheck = PORT_STATUS_F3_ENABLED;
  1101. break;
  1102. default:
  1103. break;
  1104. }
  1105. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1106. if (temp & bitToCheck) {
  1107. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1108. "not link master\n");
  1109. return 0;
  1110. }
  1111. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
  1112. return 1;
  1113. }
  1114. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1115. {
  1116. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1117. PHYAddr[qdev->mac_index]);
  1118. }
  1119. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1120. {
  1121. u16 reg;
  1122. u16 portConfiguration;
  1123. if (qdev->phyType == PHY_AGERE_ET1011C)
  1124. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1125. /* turn off external loopback */
  1126. if (qdev->mac_index == 0)
  1127. portConfiguration =
  1128. qdev->nvram_data.macCfg_port0.portConfiguration;
  1129. else
  1130. portConfiguration =
  1131. qdev->nvram_data.macCfg_port1.portConfiguration;
  1132. /* Some HBA's in the field are set to 0 and they need to
  1133. be reinterpreted with a default value */
  1134. if (portConfiguration == 0)
  1135. portConfiguration = PORT_CONFIG_DEFAULT;
  1136. /* Set the 1000 advertisements */
  1137. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1138. PHYAddr[qdev->mac_index]);
  1139. reg &= ~PHY_GIG_ALL_PARAMS;
  1140. if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1141. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1142. reg |= PHY_GIG_ADV_1000F;
  1143. else
  1144. reg |= PHY_GIG_ADV_1000H;
  1145. }
  1146. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1147. PHYAddr[qdev->mac_index]);
  1148. /* Set the 10/100 & pause negotiation advertisements */
  1149. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1150. PHYAddr[qdev->mac_index]);
  1151. reg &= ~PHY_NEG_ALL_PARAMS;
  1152. if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1153. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1154. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1155. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1156. reg |= PHY_NEG_ADV_100F;
  1157. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1158. reg |= PHY_NEG_ADV_10F;
  1159. }
  1160. if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1161. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1162. reg |= PHY_NEG_ADV_100H;
  1163. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1164. reg |= PHY_NEG_ADV_10H;
  1165. }
  1166. if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
  1167. reg |= 1;
  1168. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1169. PHYAddr[qdev->mac_index]);
  1170. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1171. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1172. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1173. PHYAddr[qdev->mac_index]);
  1174. }
  1175. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1176. {
  1177. ql_phy_reset_ex(qdev);
  1178. PHY_Setup(qdev);
  1179. ql_phy_start_neg_ex(qdev);
  1180. }
  1181. /*
  1182. * Caller holds hw_lock.
  1183. */
  1184. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1185. {
  1186. struct ql3xxx_port_registers __iomem *port_regs =
  1187. qdev->mem_map_registers;
  1188. u32 bitToCheck = 0;
  1189. u32 temp, linkState;
  1190. switch (qdev->mac_index) {
  1191. case 0:
  1192. bitToCheck = PORT_STATUS_UP0;
  1193. break;
  1194. case 1:
  1195. bitToCheck = PORT_STATUS_UP1;
  1196. break;
  1197. }
  1198. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1199. if (temp & bitToCheck)
  1200. linkState = LS_UP;
  1201. else
  1202. linkState = LS_DOWN;
  1203. return linkState;
  1204. }
  1205. static int ql_port_start(struct ql3_adapter *qdev)
  1206. {
  1207. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1208. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1209. 2) << 7)) {
  1210. netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
  1211. return -1;
  1212. }
  1213. if (ql_is_fiber(qdev)) {
  1214. ql_petbi_init(qdev);
  1215. } else {
  1216. /* Copper port */
  1217. ql_phy_init_ex(qdev);
  1218. }
  1219. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1220. return 0;
  1221. }
  1222. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1223. {
  1224. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1225. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1226. 2) << 7))
  1227. return -1;
  1228. if (!ql_auto_neg_error(qdev)) {
  1229. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1230. /* configure the MAC */
  1231. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1232. "Configuring link\n");
  1233. ql_mac_cfg_soft_reset(qdev, 1);
  1234. ql_mac_cfg_gig(qdev,
  1235. (ql_get_link_speed
  1236. (qdev) ==
  1237. SPEED_1000));
  1238. ql_mac_cfg_full_dup(qdev,
  1239. ql_is_link_full_dup
  1240. (qdev));
  1241. ql_mac_cfg_pause(qdev,
  1242. ql_is_neg_pause
  1243. (qdev));
  1244. ql_mac_cfg_soft_reset(qdev, 0);
  1245. /* enable the MAC */
  1246. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1247. "Enabling mac\n");
  1248. ql_mac_enable(qdev, 1);
  1249. }
  1250. qdev->port_link_state = LS_UP;
  1251. netif_start_queue(qdev->ndev);
  1252. netif_carrier_on(qdev->ndev);
  1253. netif_info(qdev, link, qdev->ndev,
  1254. "Link is up at %d Mbps, %s duplex\n",
  1255. ql_get_link_speed(qdev),
  1256. ql_is_link_full_dup(qdev) ? "full" : "half");
  1257. } else { /* Remote error detected */
  1258. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1259. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1260. "Remote error detected. Calling ql_port_start()\n");
  1261. /*
  1262. * ql_port_start() is shared code and needs
  1263. * to lock the PHY on it's own.
  1264. */
  1265. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1266. if (ql_port_start(qdev)) /* Restart port */
  1267. return -1;
  1268. return 0;
  1269. }
  1270. }
  1271. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1272. return 0;
  1273. }
  1274. static void ql_link_state_machine_work(struct work_struct *work)
  1275. {
  1276. struct ql3_adapter *qdev =
  1277. container_of(work, struct ql3_adapter, link_state_work.work);
  1278. u32 curr_link_state;
  1279. unsigned long hw_flags;
  1280. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1281. curr_link_state = ql_get_link_state(qdev);
  1282. if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
  1283. netif_info(qdev, link, qdev->ndev,
  1284. "Reset in progress, skip processing link state\n");
  1285. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1286. /* Restart timer on 2 second interval. */
  1287. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1288. return;
  1289. }
  1290. switch (qdev->port_link_state) {
  1291. default:
  1292. if (test_bit(QL_LINK_MASTER, &qdev->flags))
  1293. ql_port_start(qdev);
  1294. qdev->port_link_state = LS_DOWN;
  1295. /* Fall Through */
  1296. case LS_DOWN:
  1297. if (curr_link_state == LS_UP) {
  1298. netif_info(qdev, link, qdev->ndev, "Link is up\n");
  1299. if (ql_is_auto_neg_complete(qdev))
  1300. ql_finish_auto_neg(qdev);
  1301. if (qdev->port_link_state == LS_UP)
  1302. ql_link_down_detect_clear(qdev);
  1303. qdev->port_link_state = LS_UP;
  1304. }
  1305. break;
  1306. case LS_UP:
  1307. /*
  1308. * See if the link is currently down or went down and came
  1309. * back up
  1310. */
  1311. if (curr_link_state == LS_DOWN) {
  1312. netif_info(qdev, link, qdev->ndev, "Link is down\n");
  1313. qdev->port_link_state = LS_DOWN;
  1314. }
  1315. if (ql_link_down_detect(qdev))
  1316. qdev->port_link_state = LS_DOWN;
  1317. break;
  1318. }
  1319. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1320. /* Restart timer on 2 second interval. */
  1321. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1322. }
  1323. /*
  1324. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1325. */
  1326. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1327. {
  1328. if (ql_this_adapter_controls_port(qdev))
  1329. set_bit(QL_LINK_MASTER, &qdev->flags);
  1330. else
  1331. clear_bit(QL_LINK_MASTER, &qdev->flags);
  1332. }
  1333. /*
  1334. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1335. */
  1336. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1337. {
  1338. ql_mii_enable_scan_mode(qdev);
  1339. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1340. if (ql_this_adapter_controls_port(qdev))
  1341. ql_petbi_init_ex(qdev);
  1342. } else {
  1343. if (ql_this_adapter_controls_port(qdev))
  1344. ql_phy_init_ex(qdev);
  1345. }
  1346. }
  1347. /*
  1348. * MII_Setup needs to be called before taking the PHY out of reset
  1349. * so that the management interface clock speed can be set properly.
  1350. * It would be better if we had a way to disable MDC until after the
  1351. * PHY is out of reset, but we don't have that capability.
  1352. */
  1353. static int ql_mii_setup(struct ql3_adapter *qdev)
  1354. {
  1355. u32 reg;
  1356. struct ql3xxx_port_registers __iomem *port_regs =
  1357. qdev->mem_map_registers;
  1358. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1359. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1360. 2) << 7))
  1361. return -1;
  1362. if (qdev->device_id == QL3032_DEVICE_ID)
  1363. ql_write_page0_reg(qdev,
  1364. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1365. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1366. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1367. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1368. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1369. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1370. return 0;
  1371. }
  1372. #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
  1373. SUPPORTED_FIBRE | \
  1374. SUPPORTED_Autoneg)
  1375. #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
  1376. SUPPORTED_10baseT_Full | \
  1377. SUPPORTED_100baseT_Half | \
  1378. SUPPORTED_100baseT_Full | \
  1379. SUPPORTED_1000baseT_Half | \
  1380. SUPPORTED_1000baseT_Full | \
  1381. SUPPORTED_Autoneg | \
  1382. SUPPORTED_TP) \
  1383. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1384. {
  1385. if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
  1386. return SUPPORTED_OPTICAL_MODES;
  1387. return SUPPORTED_TP_MODES;
  1388. }
  1389. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1390. {
  1391. int status;
  1392. unsigned long hw_flags;
  1393. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1394. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1395. (QL_RESOURCE_BITS_BASE_CODE |
  1396. (qdev->mac_index) * 2) << 7)) {
  1397. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1398. return 0;
  1399. }
  1400. status = ql_is_auto_cfg(qdev);
  1401. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1402. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1403. return status;
  1404. }
  1405. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1406. {
  1407. u32 status;
  1408. unsigned long hw_flags;
  1409. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1410. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1411. (QL_RESOURCE_BITS_BASE_CODE |
  1412. (qdev->mac_index) * 2) << 7)) {
  1413. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1414. return 0;
  1415. }
  1416. status = ql_get_link_speed(qdev);
  1417. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1418. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1419. return status;
  1420. }
  1421. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1422. {
  1423. int status;
  1424. unsigned long hw_flags;
  1425. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1426. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1427. (QL_RESOURCE_BITS_BASE_CODE |
  1428. (qdev->mac_index) * 2) << 7)) {
  1429. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1430. return 0;
  1431. }
  1432. status = ql_is_link_full_dup(qdev);
  1433. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1434. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1435. return status;
  1436. }
  1437. static int ql_get_link_ksettings(struct net_device *ndev,
  1438. struct ethtool_link_ksettings *cmd)
  1439. {
  1440. struct ql3_adapter *qdev = netdev_priv(ndev);
  1441. u32 supported, advertising;
  1442. supported = ql_supported_modes(qdev);
  1443. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1444. cmd->base.port = PORT_FIBRE;
  1445. } else {
  1446. cmd->base.port = PORT_TP;
  1447. cmd->base.phy_address = qdev->PHYAddr;
  1448. }
  1449. advertising = ql_supported_modes(qdev);
  1450. cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
  1451. cmd->base.speed = ql_get_speed(qdev);
  1452. cmd->base.duplex = ql_get_full_dup(qdev);
  1453. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  1454. supported);
  1455. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  1456. advertising);
  1457. return 0;
  1458. }
  1459. static void ql_get_drvinfo(struct net_device *ndev,
  1460. struct ethtool_drvinfo *drvinfo)
  1461. {
  1462. struct ql3_adapter *qdev = netdev_priv(ndev);
  1463. strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
  1464. strlcpy(drvinfo->version, ql3xxx_driver_version,
  1465. sizeof(drvinfo->version));
  1466. strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
  1467. sizeof(drvinfo->bus_info));
  1468. }
  1469. static u32 ql_get_msglevel(struct net_device *ndev)
  1470. {
  1471. struct ql3_adapter *qdev = netdev_priv(ndev);
  1472. return qdev->msg_enable;
  1473. }
  1474. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1475. {
  1476. struct ql3_adapter *qdev = netdev_priv(ndev);
  1477. qdev->msg_enable = value;
  1478. }
  1479. static void ql_get_pauseparam(struct net_device *ndev,
  1480. struct ethtool_pauseparam *pause)
  1481. {
  1482. struct ql3_adapter *qdev = netdev_priv(ndev);
  1483. struct ql3xxx_port_registers __iomem *port_regs =
  1484. qdev->mem_map_registers;
  1485. u32 reg;
  1486. if (qdev->mac_index == 0)
  1487. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1488. else
  1489. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1490. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1491. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1492. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1493. }
  1494. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1495. .get_drvinfo = ql_get_drvinfo,
  1496. .get_link = ethtool_op_get_link,
  1497. .get_msglevel = ql_get_msglevel,
  1498. .set_msglevel = ql_set_msglevel,
  1499. .get_pauseparam = ql_get_pauseparam,
  1500. .get_link_ksettings = ql_get_link_ksettings,
  1501. };
  1502. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1503. {
  1504. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1505. dma_addr_t map;
  1506. int err;
  1507. while (lrg_buf_cb) {
  1508. if (!lrg_buf_cb->skb) {
  1509. lrg_buf_cb->skb =
  1510. netdev_alloc_skb(qdev->ndev,
  1511. qdev->lrg_buffer_len);
  1512. if (unlikely(!lrg_buf_cb->skb)) {
  1513. netdev_printk(KERN_DEBUG, qdev->ndev,
  1514. "Failed netdev_alloc_skb()\n");
  1515. break;
  1516. } else {
  1517. /*
  1518. * We save some space to copy the ethhdr from
  1519. * first buffer
  1520. */
  1521. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1522. map = pci_map_single(qdev->pdev,
  1523. lrg_buf_cb->skb->data,
  1524. qdev->lrg_buffer_len -
  1525. QL_HEADER_SPACE,
  1526. PCI_DMA_FROMDEVICE);
  1527. err = pci_dma_mapping_error(qdev->pdev, map);
  1528. if (err) {
  1529. netdev_err(qdev->ndev,
  1530. "PCI mapping failed with error: %d\n",
  1531. err);
  1532. dev_kfree_skb(lrg_buf_cb->skb);
  1533. lrg_buf_cb->skb = NULL;
  1534. break;
  1535. }
  1536. lrg_buf_cb->buf_phy_addr_low =
  1537. cpu_to_le32(LS_64BITS(map));
  1538. lrg_buf_cb->buf_phy_addr_high =
  1539. cpu_to_le32(MS_64BITS(map));
  1540. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1541. dma_unmap_len_set(lrg_buf_cb, maplen,
  1542. qdev->lrg_buffer_len -
  1543. QL_HEADER_SPACE);
  1544. --qdev->lrg_buf_skb_check;
  1545. if (!qdev->lrg_buf_skb_check)
  1546. return 1;
  1547. }
  1548. }
  1549. lrg_buf_cb = lrg_buf_cb->next;
  1550. }
  1551. return 0;
  1552. }
  1553. /*
  1554. * Caller holds hw_lock.
  1555. */
  1556. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1557. {
  1558. struct ql3xxx_port_registers __iomem *port_regs =
  1559. qdev->mem_map_registers;
  1560. if (qdev->small_buf_release_cnt >= 16) {
  1561. while (qdev->small_buf_release_cnt >= 16) {
  1562. qdev->small_buf_q_producer_index++;
  1563. if (qdev->small_buf_q_producer_index ==
  1564. NUM_SBUFQ_ENTRIES)
  1565. qdev->small_buf_q_producer_index = 0;
  1566. qdev->small_buf_release_cnt -= 8;
  1567. }
  1568. wmb();
  1569. writel(qdev->small_buf_q_producer_index,
  1570. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1571. }
  1572. }
  1573. /*
  1574. * Caller holds hw_lock.
  1575. */
  1576. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1577. {
  1578. struct bufq_addr_element *lrg_buf_q_ele;
  1579. int i;
  1580. struct ql_rcv_buf_cb *lrg_buf_cb;
  1581. struct ql3xxx_port_registers __iomem *port_regs =
  1582. qdev->mem_map_registers;
  1583. if ((qdev->lrg_buf_free_count >= 8) &&
  1584. (qdev->lrg_buf_release_cnt >= 16)) {
  1585. if (qdev->lrg_buf_skb_check)
  1586. if (!ql_populate_free_queue(qdev))
  1587. return;
  1588. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1589. while ((qdev->lrg_buf_release_cnt >= 16) &&
  1590. (qdev->lrg_buf_free_count >= 8)) {
  1591. for (i = 0; i < 8; i++) {
  1592. lrg_buf_cb =
  1593. ql_get_from_lrg_buf_free_list(qdev);
  1594. lrg_buf_q_ele->addr_high =
  1595. lrg_buf_cb->buf_phy_addr_high;
  1596. lrg_buf_q_ele->addr_low =
  1597. lrg_buf_cb->buf_phy_addr_low;
  1598. lrg_buf_q_ele++;
  1599. qdev->lrg_buf_release_cnt--;
  1600. }
  1601. qdev->lrg_buf_q_producer_index++;
  1602. if (qdev->lrg_buf_q_producer_index ==
  1603. qdev->num_lbufq_entries)
  1604. qdev->lrg_buf_q_producer_index = 0;
  1605. if (qdev->lrg_buf_q_producer_index ==
  1606. (qdev->num_lbufq_entries - 1)) {
  1607. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1608. }
  1609. }
  1610. wmb();
  1611. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1612. writel(qdev->lrg_buf_q_producer_index,
  1613. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1614. }
  1615. }
  1616. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1617. struct ob_mac_iocb_rsp *mac_rsp)
  1618. {
  1619. struct ql_tx_buf_cb *tx_cb;
  1620. int i;
  1621. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1622. netdev_warn(qdev->ndev,
  1623. "Frame too short but it was padded and sent\n");
  1624. }
  1625. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1626. /* Check the transmit response flags for any errors */
  1627. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1628. netdev_err(qdev->ndev,
  1629. "Frame too short to be legal, frame not sent\n");
  1630. qdev->ndev->stats.tx_errors++;
  1631. goto frame_not_sent;
  1632. }
  1633. if (tx_cb->seg_count == 0) {
  1634. netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
  1635. mac_rsp->transaction_id);
  1636. qdev->ndev->stats.tx_errors++;
  1637. goto invalid_seg_count;
  1638. }
  1639. pci_unmap_single(qdev->pdev,
  1640. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  1641. dma_unmap_len(&tx_cb->map[0], maplen),
  1642. PCI_DMA_TODEVICE);
  1643. tx_cb->seg_count--;
  1644. if (tx_cb->seg_count) {
  1645. for (i = 1; i < tx_cb->seg_count; i++) {
  1646. pci_unmap_page(qdev->pdev,
  1647. dma_unmap_addr(&tx_cb->map[i],
  1648. mapaddr),
  1649. dma_unmap_len(&tx_cb->map[i], maplen),
  1650. PCI_DMA_TODEVICE);
  1651. }
  1652. }
  1653. qdev->ndev->stats.tx_packets++;
  1654. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1655. frame_not_sent:
  1656. dev_kfree_skb_irq(tx_cb->skb);
  1657. tx_cb->skb = NULL;
  1658. invalid_seg_count:
  1659. atomic_inc(&qdev->tx_count);
  1660. }
  1661. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1662. {
  1663. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1664. qdev->small_buf_index = 0;
  1665. qdev->small_buf_release_cnt++;
  1666. }
  1667. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1668. {
  1669. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1670. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1671. qdev->lrg_buf_release_cnt++;
  1672. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1673. qdev->lrg_buf_index = 0;
  1674. return lrg_buf_cb;
  1675. }
  1676. /*
  1677. * The difference between 3022 and 3032 for inbound completions:
  1678. * 3022 uses two buffers per completion. The first buffer contains
  1679. * (some) header info, the second the remainder of the headers plus
  1680. * the data. For this chip we reserve some space at the top of the
  1681. * receive buffer so that the header info in buffer one can be
  1682. * prepended to the buffer two. Buffer two is the sent up while
  1683. * buffer one is returned to the hardware to be reused.
  1684. * 3032 receives all of it's data and headers in one buffer for a
  1685. * simpler process. 3032 also supports checksum verification as
  1686. * can be seen in ql_process_macip_rx_intr().
  1687. */
  1688. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1689. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1690. {
  1691. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1692. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1693. struct sk_buff *skb;
  1694. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1695. /*
  1696. * Get the inbound address list (small buffer).
  1697. */
  1698. ql_get_sbuf(qdev);
  1699. if (qdev->device_id == QL3022_DEVICE_ID)
  1700. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1701. /* start of second buffer */
  1702. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1703. skb = lrg_buf_cb2->skb;
  1704. qdev->ndev->stats.rx_packets++;
  1705. qdev->ndev->stats.rx_bytes += length;
  1706. skb_put(skb, length);
  1707. pci_unmap_single(qdev->pdev,
  1708. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1709. dma_unmap_len(lrg_buf_cb2, maplen),
  1710. PCI_DMA_FROMDEVICE);
  1711. prefetch(skb->data);
  1712. skb_checksum_none_assert(skb);
  1713. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1714. napi_gro_receive(&qdev->napi, skb);
  1715. lrg_buf_cb2->skb = NULL;
  1716. if (qdev->device_id == QL3022_DEVICE_ID)
  1717. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1718. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1719. }
  1720. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1721. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1722. {
  1723. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1724. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1725. struct sk_buff *skb1 = NULL, *skb2;
  1726. struct net_device *ndev = qdev->ndev;
  1727. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1728. u16 size = 0;
  1729. /*
  1730. * Get the inbound address list (small buffer).
  1731. */
  1732. ql_get_sbuf(qdev);
  1733. if (qdev->device_id == QL3022_DEVICE_ID) {
  1734. /* start of first buffer on 3022 */
  1735. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1736. skb1 = lrg_buf_cb1->skb;
  1737. size = ETH_HLEN;
  1738. if (*((u16 *) skb1->data) != 0xFFFF)
  1739. size += VLAN_ETH_HLEN - ETH_HLEN;
  1740. }
  1741. /* start of second buffer */
  1742. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1743. skb2 = lrg_buf_cb2->skb;
  1744. skb_put(skb2, length); /* Just the second buffer length here. */
  1745. pci_unmap_single(qdev->pdev,
  1746. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1747. dma_unmap_len(lrg_buf_cb2, maplen),
  1748. PCI_DMA_FROMDEVICE);
  1749. prefetch(skb2->data);
  1750. skb_checksum_none_assert(skb2);
  1751. if (qdev->device_id == QL3022_DEVICE_ID) {
  1752. /*
  1753. * Copy the ethhdr from first buffer to second. This
  1754. * is necessary for 3022 IP completions.
  1755. */
  1756. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1757. skb_push(skb2, size), size);
  1758. } else {
  1759. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1760. if (checksum &
  1761. (IB_IP_IOCB_RSP_3032_ICE |
  1762. IB_IP_IOCB_RSP_3032_CE)) {
  1763. netdev_err(ndev,
  1764. "%s: Bad checksum for this %s packet, checksum = %x\n",
  1765. __func__,
  1766. ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
  1767. "TCP" : "UDP"), checksum);
  1768. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1769. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1770. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1771. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1772. }
  1773. }
  1774. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1775. napi_gro_receive(&qdev->napi, skb2);
  1776. ndev->stats.rx_packets++;
  1777. ndev->stats.rx_bytes += length;
  1778. lrg_buf_cb2->skb = NULL;
  1779. if (qdev->device_id == QL3022_DEVICE_ID)
  1780. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1781. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1782. }
  1783. static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
  1784. {
  1785. struct net_rsp_iocb *net_rsp;
  1786. struct net_device *ndev = qdev->ndev;
  1787. int work_done = 0;
  1788. /* While there are entries in the completion queue. */
  1789. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1790. qdev->rsp_consumer_index) && (work_done < budget)) {
  1791. net_rsp = qdev->rsp_current;
  1792. rmb();
  1793. /*
  1794. * Fix 4032 chip's undocumented "feature" where bit-8 is set
  1795. * if the inbound completion is for a VLAN.
  1796. */
  1797. if (qdev->device_id == QL3032_DEVICE_ID)
  1798. net_rsp->opcode &= 0x7f;
  1799. switch (net_rsp->opcode) {
  1800. case OPCODE_OB_MAC_IOCB_FN0:
  1801. case OPCODE_OB_MAC_IOCB_FN2:
  1802. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1803. net_rsp);
  1804. break;
  1805. case OPCODE_IB_MAC_IOCB:
  1806. case OPCODE_IB_3032_MAC_IOCB:
  1807. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1808. net_rsp);
  1809. work_done++;
  1810. break;
  1811. case OPCODE_IB_IP_IOCB:
  1812. case OPCODE_IB_3032_IP_IOCB:
  1813. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1814. net_rsp);
  1815. work_done++;
  1816. break;
  1817. default: {
  1818. u32 *tmp = (u32 *)net_rsp;
  1819. netdev_err(ndev,
  1820. "Hit default case, not handled!\n"
  1821. " dropping the packet, opcode = %x\n"
  1822. "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
  1823. net_rsp->opcode,
  1824. (unsigned long int)tmp[0],
  1825. (unsigned long int)tmp[1],
  1826. (unsigned long int)tmp[2],
  1827. (unsigned long int)tmp[3]);
  1828. }
  1829. }
  1830. qdev->rsp_consumer_index++;
  1831. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1832. qdev->rsp_consumer_index = 0;
  1833. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1834. } else {
  1835. qdev->rsp_current++;
  1836. }
  1837. }
  1838. return work_done;
  1839. }
  1840. static int ql_poll(struct napi_struct *napi, int budget)
  1841. {
  1842. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1843. struct ql3xxx_port_registers __iomem *port_regs =
  1844. qdev->mem_map_registers;
  1845. int work_done;
  1846. work_done = ql_tx_rx_clean(qdev, budget);
  1847. if (work_done < budget && napi_complete_done(napi, work_done)) {
  1848. unsigned long flags;
  1849. spin_lock_irqsave(&qdev->hw_lock, flags);
  1850. ql_update_small_bufq_prod_index(qdev);
  1851. ql_update_lrg_bufq_prod_index(qdev);
  1852. writel(qdev->rsp_consumer_index,
  1853. &port_regs->CommonRegs.rspQConsumerIndex);
  1854. spin_unlock_irqrestore(&qdev->hw_lock, flags);
  1855. ql_enable_interrupts(qdev);
  1856. }
  1857. return work_done;
  1858. }
  1859. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1860. {
  1861. struct net_device *ndev = dev_id;
  1862. struct ql3_adapter *qdev = netdev_priv(ndev);
  1863. struct ql3xxx_port_registers __iomem *port_regs =
  1864. qdev->mem_map_registers;
  1865. u32 value;
  1866. int handled = 1;
  1867. u32 var;
  1868. value = ql_read_common_reg_l(qdev,
  1869. &port_regs->CommonRegs.ispControlStatus);
  1870. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1871. spin_lock(&qdev->adapter_lock);
  1872. netif_stop_queue(qdev->ndev);
  1873. netif_carrier_off(qdev->ndev);
  1874. ql_disable_interrupts(qdev);
  1875. qdev->port_link_state = LS_DOWN;
  1876. set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
  1877. if (value & ISP_CONTROL_FE) {
  1878. /*
  1879. * Chip Fatal Error.
  1880. */
  1881. var =
  1882. ql_read_page0_reg_l(qdev,
  1883. &port_regs->PortFatalErrStatus);
  1884. netdev_warn(ndev,
  1885. "Resetting chip. PortFatalErrStatus register = 0x%x\n",
  1886. var);
  1887. set_bit(QL_RESET_START, &qdev->flags) ;
  1888. } else {
  1889. /*
  1890. * Soft Reset Requested.
  1891. */
  1892. set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
  1893. netdev_err(ndev,
  1894. "Another function issued a reset to the chip. ISR value = %x\n",
  1895. value);
  1896. }
  1897. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1898. spin_unlock(&qdev->adapter_lock);
  1899. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1900. ql_disable_interrupts(qdev);
  1901. if (likely(napi_schedule_prep(&qdev->napi)))
  1902. __napi_schedule(&qdev->napi);
  1903. } else
  1904. return IRQ_NONE;
  1905. return IRQ_RETVAL(handled);
  1906. }
  1907. /*
  1908. * Get the total number of segments needed for the given number of fragments.
  1909. * This is necessary because outbound address lists (OAL) will be used when
  1910. * more than two frags are given. Each address list has 5 addr/len pairs.
  1911. * The 5th pair in each OAL is used to point to the next OAL if more frags
  1912. * are coming. That is why the frags:segment count ratio is not linear.
  1913. */
  1914. static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
  1915. {
  1916. if (qdev->device_id == QL3022_DEVICE_ID)
  1917. return 1;
  1918. if (frags <= 2)
  1919. return frags + 1;
  1920. else if (frags <= 6)
  1921. return frags + 2;
  1922. else if (frags <= 10)
  1923. return frags + 3;
  1924. else if (frags <= 14)
  1925. return frags + 4;
  1926. else if (frags <= 18)
  1927. return frags + 5;
  1928. return -1;
  1929. }
  1930. static void ql_hw_csum_setup(const struct sk_buff *skb,
  1931. struct ob_mac_iocb_req *mac_iocb_ptr)
  1932. {
  1933. const struct iphdr *ip = ip_hdr(skb);
  1934. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  1935. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1936. if (ip->protocol == IPPROTO_TCP) {
  1937. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1938. OB_3032MAC_IOCB_REQ_IC;
  1939. } else {
  1940. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1941. OB_3032MAC_IOCB_REQ_IC;
  1942. }
  1943. }
  1944. /*
  1945. * Map the buffers for this transmit.
  1946. * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1947. */
  1948. static int ql_send_map(struct ql3_adapter *qdev,
  1949. struct ob_mac_iocb_req *mac_iocb_ptr,
  1950. struct ql_tx_buf_cb *tx_cb,
  1951. struct sk_buff *skb)
  1952. {
  1953. struct oal *oal;
  1954. struct oal_entry *oal_entry;
  1955. int len = skb_headlen(skb);
  1956. dma_addr_t map;
  1957. int err;
  1958. int completed_segs, i;
  1959. int seg_cnt, seg = 0;
  1960. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1961. seg_cnt = tx_cb->seg_count;
  1962. /*
  1963. * Map the skb buffer first.
  1964. */
  1965. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1966. err = pci_dma_mapping_error(qdev->pdev, map);
  1967. if (err) {
  1968. netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
  1969. err);
  1970. return NETDEV_TX_BUSY;
  1971. }
  1972. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1973. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1974. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1975. oal_entry->len = cpu_to_le32(len);
  1976. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1977. dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1978. seg++;
  1979. if (seg_cnt == 1) {
  1980. /* Terminate the last segment. */
  1981. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  1982. return NETDEV_TX_OK;
  1983. }
  1984. oal = tx_cb->oal;
  1985. for (completed_segs = 0;
  1986. completed_segs < frag_cnt;
  1987. completed_segs++, seg++) {
  1988. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1989. oal_entry++;
  1990. /*
  1991. * Check for continuation requirements.
  1992. * It's strange but necessary.
  1993. * Continuation entry points to outbound address list.
  1994. */
  1995. if ((seg == 2 && seg_cnt > 3) ||
  1996. (seg == 7 && seg_cnt > 8) ||
  1997. (seg == 12 && seg_cnt > 13) ||
  1998. (seg == 17 && seg_cnt > 18)) {
  1999. map = pci_map_single(qdev->pdev, oal,
  2000. sizeof(struct oal),
  2001. PCI_DMA_TODEVICE);
  2002. err = pci_dma_mapping_error(qdev->pdev, map);
  2003. if (err) {
  2004. netdev_err(qdev->ndev,
  2005. "PCI mapping outbound address list with error: %d\n",
  2006. err);
  2007. goto map_error;
  2008. }
  2009. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2010. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2011. oal_entry->len = cpu_to_le32(sizeof(struct oal) |
  2012. OAL_CONT_ENTRY);
  2013. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2014. dma_unmap_len_set(&tx_cb->map[seg], maplen,
  2015. sizeof(struct oal));
  2016. oal_entry = (struct oal_entry *)oal;
  2017. oal++;
  2018. seg++;
  2019. }
  2020. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  2021. DMA_TO_DEVICE);
  2022. err = dma_mapping_error(&qdev->pdev->dev, map);
  2023. if (err) {
  2024. netdev_err(qdev->ndev,
  2025. "PCI mapping frags failed with error: %d\n",
  2026. err);
  2027. goto map_error;
  2028. }
  2029. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2030. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2031. oal_entry->len = cpu_to_le32(skb_frag_size(frag));
  2032. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2033. dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
  2034. }
  2035. /* Terminate the last segment. */
  2036. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  2037. return NETDEV_TX_OK;
  2038. map_error:
  2039. /* A PCI mapping failed and now we will need to back out
  2040. * We need to traverse through the oal's and associated pages which
  2041. * have been mapped and now we must unmap them to clean up properly
  2042. */
  2043. seg = 1;
  2044. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2045. oal = tx_cb->oal;
  2046. for (i = 0; i < completed_segs; i++, seg++) {
  2047. oal_entry++;
  2048. /*
  2049. * Check for continuation requirements.
  2050. * It's strange but necessary.
  2051. */
  2052. if ((seg == 2 && seg_cnt > 3) ||
  2053. (seg == 7 && seg_cnt > 8) ||
  2054. (seg == 12 && seg_cnt > 13) ||
  2055. (seg == 17 && seg_cnt > 18)) {
  2056. pci_unmap_single(qdev->pdev,
  2057. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2058. dma_unmap_len(&tx_cb->map[seg], maplen),
  2059. PCI_DMA_TODEVICE);
  2060. oal++;
  2061. seg++;
  2062. }
  2063. pci_unmap_page(qdev->pdev,
  2064. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2065. dma_unmap_len(&tx_cb->map[seg], maplen),
  2066. PCI_DMA_TODEVICE);
  2067. }
  2068. pci_unmap_single(qdev->pdev,
  2069. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  2070. dma_unmap_addr(&tx_cb->map[0], maplen),
  2071. PCI_DMA_TODEVICE);
  2072. return NETDEV_TX_BUSY;
  2073. }
  2074. /*
  2075. * The difference between 3022 and 3032 sends:
  2076. * 3022 only supports a simple single segment transmission.
  2077. * 3032 supports checksumming and scatter/gather lists (fragments).
  2078. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2079. * in the IOCB plus a chain of outbound address lists (OAL) that
  2080. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2081. * will be used to point to an OAL when more ALP entries are required.
  2082. * The IOCB is always the top of the chain followed by one or more
  2083. * OALs (when necessary).
  2084. */
  2085. static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
  2086. struct net_device *ndev)
  2087. {
  2088. struct ql3_adapter *qdev = netdev_priv(ndev);
  2089. struct ql3xxx_port_registers __iomem *port_regs =
  2090. qdev->mem_map_registers;
  2091. struct ql_tx_buf_cb *tx_cb;
  2092. u32 tot_len = skb->len;
  2093. struct ob_mac_iocb_req *mac_iocb_ptr;
  2094. if (unlikely(atomic_read(&qdev->tx_count) < 2))
  2095. return NETDEV_TX_BUSY;
  2096. tx_cb = &qdev->tx_buf[qdev->req_producer_index];
  2097. tx_cb->seg_count = ql_get_seg_count(qdev,
  2098. skb_shinfo(skb)->nr_frags);
  2099. if (tx_cb->seg_count == -1) {
  2100. netdev_err(ndev, "%s: invalid segment count!\n", __func__);
  2101. return NETDEV_TX_OK;
  2102. }
  2103. mac_iocb_ptr = tx_cb->queue_entry;
  2104. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2105. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2106. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2107. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2108. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2109. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2110. tx_cb->skb = skb;
  2111. if (qdev->device_id == QL3032_DEVICE_ID &&
  2112. skb->ip_summed == CHECKSUM_PARTIAL)
  2113. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2114. if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
  2115. netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
  2116. return NETDEV_TX_BUSY;
  2117. }
  2118. wmb();
  2119. qdev->req_producer_index++;
  2120. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2121. qdev->req_producer_index = 0;
  2122. wmb();
  2123. ql_write_common_reg_l(qdev,
  2124. &port_regs->CommonRegs.reqQProducerIndex,
  2125. qdev->req_producer_index);
  2126. netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
  2127. "tx queued, slot %d, len %d\n",
  2128. qdev->req_producer_index, skb->len);
  2129. atomic_dec(&qdev->tx_count);
  2130. return NETDEV_TX_OK;
  2131. }
  2132. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2133. {
  2134. qdev->req_q_size =
  2135. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2136. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2137. /* The barrier is required to ensure request and response queue
  2138. * addr writes to the registers.
  2139. */
  2140. wmb();
  2141. qdev->req_q_virt_addr =
  2142. pci_alloc_consistent(qdev->pdev,
  2143. (size_t) qdev->req_q_size,
  2144. &qdev->req_q_phy_addr);
  2145. if ((qdev->req_q_virt_addr == NULL) ||
  2146. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2147. netdev_err(qdev->ndev, "reqQ failed\n");
  2148. return -ENOMEM;
  2149. }
  2150. qdev->rsp_q_virt_addr =
  2151. pci_alloc_consistent(qdev->pdev,
  2152. (size_t) qdev->rsp_q_size,
  2153. &qdev->rsp_q_phy_addr);
  2154. if ((qdev->rsp_q_virt_addr == NULL) ||
  2155. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2156. netdev_err(qdev->ndev, "rspQ allocation failed\n");
  2157. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2158. qdev->req_q_virt_addr,
  2159. qdev->req_q_phy_addr);
  2160. return -ENOMEM;
  2161. }
  2162. set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2163. return 0;
  2164. }
  2165. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2166. {
  2167. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
  2168. netdev_info(qdev->ndev, "Already done\n");
  2169. return;
  2170. }
  2171. pci_free_consistent(qdev->pdev,
  2172. qdev->req_q_size,
  2173. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2174. qdev->req_q_virt_addr = NULL;
  2175. pci_free_consistent(qdev->pdev,
  2176. qdev->rsp_q_size,
  2177. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2178. qdev->rsp_q_virt_addr = NULL;
  2179. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2180. }
  2181. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2182. {
  2183. /* Create Large Buffer Queue */
  2184. qdev->lrg_buf_q_size =
  2185. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2186. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2187. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2188. else
  2189. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2190. qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
  2191. sizeof(struct ql_rcv_buf_cb),
  2192. GFP_KERNEL);
  2193. if (qdev->lrg_buf == NULL)
  2194. return -ENOMEM;
  2195. qdev->lrg_buf_q_alloc_virt_addr =
  2196. pci_alloc_consistent(qdev->pdev,
  2197. qdev->lrg_buf_q_alloc_size,
  2198. &qdev->lrg_buf_q_alloc_phy_addr);
  2199. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2200. netdev_err(qdev->ndev, "lBufQ failed\n");
  2201. return -ENOMEM;
  2202. }
  2203. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2204. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2205. /* Create Small Buffer Queue */
  2206. qdev->small_buf_q_size =
  2207. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2208. if (qdev->small_buf_q_size < PAGE_SIZE)
  2209. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2210. else
  2211. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2212. qdev->small_buf_q_alloc_virt_addr =
  2213. pci_alloc_consistent(qdev->pdev,
  2214. qdev->small_buf_q_alloc_size,
  2215. &qdev->small_buf_q_alloc_phy_addr);
  2216. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2217. netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
  2218. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2219. qdev->lrg_buf_q_alloc_virt_addr,
  2220. qdev->lrg_buf_q_alloc_phy_addr);
  2221. return -ENOMEM;
  2222. }
  2223. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2224. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2225. set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2226. return 0;
  2227. }
  2228. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2229. {
  2230. if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
  2231. netdev_info(qdev->ndev, "Already done\n");
  2232. return;
  2233. }
  2234. kfree(qdev->lrg_buf);
  2235. pci_free_consistent(qdev->pdev,
  2236. qdev->lrg_buf_q_alloc_size,
  2237. qdev->lrg_buf_q_alloc_virt_addr,
  2238. qdev->lrg_buf_q_alloc_phy_addr);
  2239. qdev->lrg_buf_q_virt_addr = NULL;
  2240. pci_free_consistent(qdev->pdev,
  2241. qdev->small_buf_q_alloc_size,
  2242. qdev->small_buf_q_alloc_virt_addr,
  2243. qdev->small_buf_q_alloc_phy_addr);
  2244. qdev->small_buf_q_virt_addr = NULL;
  2245. clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2246. }
  2247. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2248. {
  2249. int i;
  2250. struct bufq_addr_element *small_buf_q_entry;
  2251. /* Currently we allocate on one of memory and use it for smallbuffers */
  2252. qdev->small_buf_total_size =
  2253. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2254. QL_SMALL_BUFFER_SIZE);
  2255. qdev->small_buf_virt_addr =
  2256. pci_alloc_consistent(qdev->pdev,
  2257. qdev->small_buf_total_size,
  2258. &qdev->small_buf_phy_addr);
  2259. if (qdev->small_buf_virt_addr == NULL) {
  2260. netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
  2261. return -ENOMEM;
  2262. }
  2263. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2264. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2265. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2266. /* Initialize the small buffer queue. */
  2267. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2268. small_buf_q_entry->addr_high =
  2269. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2270. small_buf_q_entry->addr_low =
  2271. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2272. (i * QL_SMALL_BUFFER_SIZE));
  2273. small_buf_q_entry++;
  2274. }
  2275. qdev->small_buf_index = 0;
  2276. set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
  2277. return 0;
  2278. }
  2279. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2280. {
  2281. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
  2282. netdev_info(qdev->ndev, "Already done\n");
  2283. return;
  2284. }
  2285. if (qdev->small_buf_virt_addr != NULL) {
  2286. pci_free_consistent(qdev->pdev,
  2287. qdev->small_buf_total_size,
  2288. qdev->small_buf_virt_addr,
  2289. qdev->small_buf_phy_addr);
  2290. qdev->small_buf_virt_addr = NULL;
  2291. }
  2292. }
  2293. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2294. {
  2295. int i = 0;
  2296. struct ql_rcv_buf_cb *lrg_buf_cb;
  2297. for (i = 0; i < qdev->num_large_buffers; i++) {
  2298. lrg_buf_cb = &qdev->lrg_buf[i];
  2299. if (lrg_buf_cb->skb) {
  2300. dev_kfree_skb(lrg_buf_cb->skb);
  2301. pci_unmap_single(qdev->pdev,
  2302. dma_unmap_addr(lrg_buf_cb, mapaddr),
  2303. dma_unmap_len(lrg_buf_cb, maplen),
  2304. PCI_DMA_FROMDEVICE);
  2305. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2306. } else {
  2307. break;
  2308. }
  2309. }
  2310. }
  2311. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2312. {
  2313. int i;
  2314. struct ql_rcv_buf_cb *lrg_buf_cb;
  2315. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2316. for (i = 0; i < qdev->num_large_buffers; i++) {
  2317. lrg_buf_cb = &qdev->lrg_buf[i];
  2318. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2319. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2320. buf_addr_ele++;
  2321. }
  2322. qdev->lrg_buf_index = 0;
  2323. qdev->lrg_buf_skb_check = 0;
  2324. }
  2325. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2326. {
  2327. int i;
  2328. struct ql_rcv_buf_cb *lrg_buf_cb;
  2329. struct sk_buff *skb;
  2330. dma_addr_t map;
  2331. int err;
  2332. for (i = 0; i < qdev->num_large_buffers; i++) {
  2333. skb = netdev_alloc_skb(qdev->ndev,
  2334. qdev->lrg_buffer_len);
  2335. if (unlikely(!skb)) {
  2336. /* Better luck next round */
  2337. netdev_err(qdev->ndev,
  2338. "large buff alloc failed for %d bytes at index %d\n",
  2339. qdev->lrg_buffer_len * 2, i);
  2340. ql_free_large_buffers(qdev);
  2341. return -ENOMEM;
  2342. } else {
  2343. lrg_buf_cb = &qdev->lrg_buf[i];
  2344. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2345. lrg_buf_cb->index = i;
  2346. lrg_buf_cb->skb = skb;
  2347. /*
  2348. * We save some space to copy the ethhdr from first
  2349. * buffer
  2350. */
  2351. skb_reserve(skb, QL_HEADER_SPACE);
  2352. map = pci_map_single(qdev->pdev,
  2353. skb->data,
  2354. qdev->lrg_buffer_len -
  2355. QL_HEADER_SPACE,
  2356. PCI_DMA_FROMDEVICE);
  2357. err = pci_dma_mapping_error(qdev->pdev, map);
  2358. if (err) {
  2359. netdev_err(qdev->ndev,
  2360. "PCI mapping failed with error: %d\n",
  2361. err);
  2362. ql_free_large_buffers(qdev);
  2363. return -ENOMEM;
  2364. }
  2365. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2366. dma_unmap_len_set(lrg_buf_cb, maplen,
  2367. qdev->lrg_buffer_len -
  2368. QL_HEADER_SPACE);
  2369. lrg_buf_cb->buf_phy_addr_low =
  2370. cpu_to_le32(LS_64BITS(map));
  2371. lrg_buf_cb->buf_phy_addr_high =
  2372. cpu_to_le32(MS_64BITS(map));
  2373. }
  2374. }
  2375. return 0;
  2376. }
  2377. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2378. {
  2379. struct ql_tx_buf_cb *tx_cb;
  2380. int i;
  2381. tx_cb = &qdev->tx_buf[0];
  2382. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2383. kfree(tx_cb->oal);
  2384. tx_cb->oal = NULL;
  2385. tx_cb++;
  2386. }
  2387. }
  2388. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2389. {
  2390. struct ql_tx_buf_cb *tx_cb;
  2391. int i;
  2392. struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
  2393. /* Create free list of transmit buffers */
  2394. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2395. tx_cb = &qdev->tx_buf[i];
  2396. tx_cb->skb = NULL;
  2397. tx_cb->queue_entry = req_q_curr;
  2398. req_q_curr++;
  2399. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2400. if (tx_cb->oal == NULL)
  2401. return -ENOMEM;
  2402. }
  2403. return 0;
  2404. }
  2405. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2406. {
  2407. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2408. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2409. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2410. } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2411. /*
  2412. * Bigger buffers, so less of them.
  2413. */
  2414. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2415. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2416. } else {
  2417. netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
  2418. qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
  2419. return -ENOMEM;
  2420. }
  2421. qdev->num_large_buffers =
  2422. qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2423. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2424. qdev->max_frame_size =
  2425. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2426. /*
  2427. * First allocate a page of shared memory and use it for shadow
  2428. * locations of Network Request Queue Consumer Address Register and
  2429. * Network Completion Queue Producer Index Register
  2430. */
  2431. qdev->shadow_reg_virt_addr =
  2432. pci_alloc_consistent(qdev->pdev,
  2433. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2434. if (qdev->shadow_reg_virt_addr != NULL) {
  2435. qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
  2436. qdev->req_consumer_index_phy_addr_high =
  2437. MS_64BITS(qdev->shadow_reg_phy_addr);
  2438. qdev->req_consumer_index_phy_addr_low =
  2439. LS_64BITS(qdev->shadow_reg_phy_addr);
  2440. qdev->prsp_producer_index =
  2441. (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2442. qdev->rsp_producer_index_phy_addr_high =
  2443. qdev->req_consumer_index_phy_addr_high;
  2444. qdev->rsp_producer_index_phy_addr_low =
  2445. qdev->req_consumer_index_phy_addr_low + 8;
  2446. } else {
  2447. netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
  2448. return -ENOMEM;
  2449. }
  2450. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2451. netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
  2452. goto err_req_rsp;
  2453. }
  2454. if (ql_alloc_buffer_queues(qdev) != 0) {
  2455. netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
  2456. goto err_buffer_queues;
  2457. }
  2458. if (ql_alloc_small_buffers(qdev) != 0) {
  2459. netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
  2460. goto err_small_buffers;
  2461. }
  2462. if (ql_alloc_large_buffers(qdev) != 0) {
  2463. netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
  2464. goto err_small_buffers;
  2465. }
  2466. /* Initialize the large buffer queue. */
  2467. ql_init_large_buffers(qdev);
  2468. if (ql_create_send_free_list(qdev))
  2469. goto err_free_list;
  2470. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2471. return 0;
  2472. err_free_list:
  2473. ql_free_send_free_list(qdev);
  2474. err_small_buffers:
  2475. ql_free_buffer_queues(qdev);
  2476. err_buffer_queues:
  2477. ql_free_net_req_rsp_queues(qdev);
  2478. err_req_rsp:
  2479. pci_free_consistent(qdev->pdev,
  2480. PAGE_SIZE,
  2481. qdev->shadow_reg_virt_addr,
  2482. qdev->shadow_reg_phy_addr);
  2483. return -ENOMEM;
  2484. }
  2485. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2486. {
  2487. ql_free_send_free_list(qdev);
  2488. ql_free_large_buffers(qdev);
  2489. ql_free_small_buffers(qdev);
  2490. ql_free_buffer_queues(qdev);
  2491. ql_free_net_req_rsp_queues(qdev);
  2492. if (qdev->shadow_reg_virt_addr != NULL) {
  2493. pci_free_consistent(qdev->pdev,
  2494. PAGE_SIZE,
  2495. qdev->shadow_reg_virt_addr,
  2496. qdev->shadow_reg_phy_addr);
  2497. qdev->shadow_reg_virt_addr = NULL;
  2498. }
  2499. }
  2500. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2501. {
  2502. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2503. (void __iomem *)qdev->mem_map_registers;
  2504. if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2505. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2506. 2) << 4))
  2507. return -1;
  2508. ql_write_page2_reg(qdev,
  2509. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2510. ql_write_page2_reg(qdev,
  2511. &local_ram->maxBufletCount,
  2512. qdev->nvram_data.bufletCount);
  2513. ql_write_page2_reg(qdev,
  2514. &local_ram->freeBufletThresholdLow,
  2515. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2516. (qdev->nvram_data.tcpWindowThreshold0));
  2517. ql_write_page2_reg(qdev,
  2518. &local_ram->freeBufletThresholdHigh,
  2519. qdev->nvram_data.tcpWindowThreshold50);
  2520. ql_write_page2_reg(qdev,
  2521. &local_ram->ipHashTableBase,
  2522. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2523. qdev->nvram_data.ipHashTableBaseLo);
  2524. ql_write_page2_reg(qdev,
  2525. &local_ram->ipHashTableCount,
  2526. qdev->nvram_data.ipHashTableSize);
  2527. ql_write_page2_reg(qdev,
  2528. &local_ram->tcpHashTableBase,
  2529. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2530. qdev->nvram_data.tcpHashTableBaseLo);
  2531. ql_write_page2_reg(qdev,
  2532. &local_ram->tcpHashTableCount,
  2533. qdev->nvram_data.tcpHashTableSize);
  2534. ql_write_page2_reg(qdev,
  2535. &local_ram->ncbBase,
  2536. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2537. qdev->nvram_data.ncbTableBaseLo);
  2538. ql_write_page2_reg(qdev,
  2539. &local_ram->maxNcbCount,
  2540. qdev->nvram_data.ncbTableSize);
  2541. ql_write_page2_reg(qdev,
  2542. &local_ram->drbBase,
  2543. (qdev->nvram_data.drbTableBaseHi << 16) |
  2544. qdev->nvram_data.drbTableBaseLo);
  2545. ql_write_page2_reg(qdev,
  2546. &local_ram->maxDrbCount,
  2547. qdev->nvram_data.drbTableSize);
  2548. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2549. return 0;
  2550. }
  2551. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2552. {
  2553. u32 value;
  2554. struct ql3xxx_port_registers __iomem *port_regs =
  2555. qdev->mem_map_registers;
  2556. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  2557. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2558. (void __iomem *)port_regs;
  2559. u32 delay = 10;
  2560. int status = 0;
  2561. if (ql_mii_setup(qdev))
  2562. return -1;
  2563. /* Bring out PHY out of reset */
  2564. ql_write_common_reg(qdev, spir,
  2565. (ISP_SERIAL_PORT_IF_WE |
  2566. (ISP_SERIAL_PORT_IF_WE << 16)));
  2567. /* Give the PHY time to come out of reset. */
  2568. mdelay(100);
  2569. qdev->port_link_state = LS_DOWN;
  2570. netif_carrier_off(qdev->ndev);
  2571. /* V2 chip fix for ARS-39168. */
  2572. ql_write_common_reg(qdev, spir,
  2573. (ISP_SERIAL_PORT_IF_SDE |
  2574. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2575. /* Request Queue Registers */
  2576. *((u32 *)(qdev->preq_consumer_index)) = 0;
  2577. atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
  2578. qdev->req_producer_index = 0;
  2579. ql_write_page1_reg(qdev,
  2580. &hmem_regs->reqConsumerIndexAddrHigh,
  2581. qdev->req_consumer_index_phy_addr_high);
  2582. ql_write_page1_reg(qdev,
  2583. &hmem_regs->reqConsumerIndexAddrLow,
  2584. qdev->req_consumer_index_phy_addr_low);
  2585. ql_write_page1_reg(qdev,
  2586. &hmem_regs->reqBaseAddrHigh,
  2587. MS_64BITS(qdev->req_q_phy_addr));
  2588. ql_write_page1_reg(qdev,
  2589. &hmem_regs->reqBaseAddrLow,
  2590. LS_64BITS(qdev->req_q_phy_addr));
  2591. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2592. /* Response Queue Registers */
  2593. *((__le16 *) (qdev->prsp_producer_index)) = 0;
  2594. qdev->rsp_consumer_index = 0;
  2595. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2596. ql_write_page1_reg(qdev,
  2597. &hmem_regs->rspProducerIndexAddrHigh,
  2598. qdev->rsp_producer_index_phy_addr_high);
  2599. ql_write_page1_reg(qdev,
  2600. &hmem_regs->rspProducerIndexAddrLow,
  2601. qdev->rsp_producer_index_phy_addr_low);
  2602. ql_write_page1_reg(qdev,
  2603. &hmem_regs->rspBaseAddrHigh,
  2604. MS_64BITS(qdev->rsp_q_phy_addr));
  2605. ql_write_page1_reg(qdev,
  2606. &hmem_regs->rspBaseAddrLow,
  2607. LS_64BITS(qdev->rsp_q_phy_addr));
  2608. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2609. /* Large Buffer Queue */
  2610. ql_write_page1_reg(qdev,
  2611. &hmem_regs->rxLargeQBaseAddrHigh,
  2612. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2613. ql_write_page1_reg(qdev,
  2614. &hmem_regs->rxLargeQBaseAddrLow,
  2615. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2616. ql_write_page1_reg(qdev,
  2617. &hmem_regs->rxLargeQLength,
  2618. qdev->num_lbufq_entries);
  2619. ql_write_page1_reg(qdev,
  2620. &hmem_regs->rxLargeBufferLength,
  2621. qdev->lrg_buffer_len);
  2622. /* Small Buffer Queue */
  2623. ql_write_page1_reg(qdev,
  2624. &hmem_regs->rxSmallQBaseAddrHigh,
  2625. MS_64BITS(qdev->small_buf_q_phy_addr));
  2626. ql_write_page1_reg(qdev,
  2627. &hmem_regs->rxSmallQBaseAddrLow,
  2628. LS_64BITS(qdev->small_buf_q_phy_addr));
  2629. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2630. ql_write_page1_reg(qdev,
  2631. &hmem_regs->rxSmallBufferLength,
  2632. QL_SMALL_BUFFER_SIZE);
  2633. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2634. qdev->small_buf_release_cnt = 8;
  2635. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2636. qdev->lrg_buf_release_cnt = 8;
  2637. qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
  2638. qdev->small_buf_index = 0;
  2639. qdev->lrg_buf_index = 0;
  2640. qdev->lrg_buf_free_count = 0;
  2641. qdev->lrg_buf_free_head = NULL;
  2642. qdev->lrg_buf_free_tail = NULL;
  2643. ql_write_common_reg(qdev,
  2644. &port_regs->CommonRegs.
  2645. rxSmallQProducerIndex,
  2646. qdev->small_buf_q_producer_index);
  2647. ql_write_common_reg(qdev,
  2648. &port_regs->CommonRegs.
  2649. rxLargeQProducerIndex,
  2650. qdev->lrg_buf_q_producer_index);
  2651. /*
  2652. * Find out if the chip has already been initialized. If it has, then
  2653. * we skip some of the initialization.
  2654. */
  2655. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2656. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2657. if ((value & PORT_STATUS_IC) == 0) {
  2658. /* Chip has not been configured yet, so let it rip. */
  2659. if (ql_init_misc_registers(qdev)) {
  2660. status = -1;
  2661. goto out;
  2662. }
  2663. value = qdev->nvram_data.tcpMaxWindowSize;
  2664. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2665. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2666. if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2667. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2668. * 2) << 13)) {
  2669. status = -1;
  2670. goto out;
  2671. }
  2672. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2673. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2674. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2675. 16) | (INTERNAL_CHIP_SD |
  2676. INTERNAL_CHIP_WE)));
  2677. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2678. }
  2679. if (qdev->mac_index)
  2680. ql_write_page0_reg(qdev,
  2681. &port_regs->mac1MaxFrameLengthReg,
  2682. qdev->max_frame_size);
  2683. else
  2684. ql_write_page0_reg(qdev,
  2685. &port_regs->mac0MaxFrameLengthReg,
  2686. qdev->max_frame_size);
  2687. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2688. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2689. 2) << 7)) {
  2690. status = -1;
  2691. goto out;
  2692. }
  2693. PHY_Setup(qdev);
  2694. ql_init_scan_mode(qdev);
  2695. ql_get_phy_owner(qdev);
  2696. /* Load the MAC Configuration */
  2697. /* Program lower 32 bits of the MAC address */
  2698. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2699. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2700. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2701. ((qdev->ndev->dev_addr[2] << 24)
  2702. | (qdev->ndev->dev_addr[3] << 16)
  2703. | (qdev->ndev->dev_addr[4] << 8)
  2704. | qdev->ndev->dev_addr[5]));
  2705. /* Program top 16 bits of the MAC address */
  2706. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2707. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2708. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2709. ((qdev->ndev->dev_addr[0] << 8)
  2710. | qdev->ndev->dev_addr[1]));
  2711. /* Enable Primary MAC */
  2712. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2713. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2714. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2715. /* Clear Primary and Secondary IP addresses */
  2716. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2717. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2718. (qdev->mac_index << 2)));
  2719. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2720. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2721. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2722. ((qdev->mac_index << 2) + 1)));
  2723. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2724. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2725. /* Indicate Configuration Complete */
  2726. ql_write_page0_reg(qdev,
  2727. &port_regs->portControl,
  2728. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2729. do {
  2730. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2731. if (value & PORT_STATUS_IC)
  2732. break;
  2733. spin_unlock_irq(&qdev->hw_lock);
  2734. msleep(500);
  2735. spin_lock_irq(&qdev->hw_lock);
  2736. } while (--delay);
  2737. if (delay == 0) {
  2738. netdev_err(qdev->ndev, "Hw Initialization timeout\n");
  2739. status = -1;
  2740. goto out;
  2741. }
  2742. /* Enable Ethernet Function */
  2743. if (qdev->device_id == QL3032_DEVICE_ID) {
  2744. value =
  2745. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2746. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2747. QL3032_PORT_CONTROL_ET);
  2748. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2749. ((value << 16) | value));
  2750. } else {
  2751. value =
  2752. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2753. PORT_CONTROL_HH);
  2754. ql_write_page0_reg(qdev, &port_regs->portControl,
  2755. ((value << 16) | value));
  2756. }
  2757. out:
  2758. return status;
  2759. }
  2760. /*
  2761. * Caller holds hw_lock.
  2762. */
  2763. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2764. {
  2765. struct ql3xxx_port_registers __iomem *port_regs =
  2766. qdev->mem_map_registers;
  2767. int status = 0;
  2768. u16 value;
  2769. int max_wait_time;
  2770. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2771. clear_bit(QL_RESET_DONE, &qdev->flags);
  2772. /*
  2773. * Issue soft reset to chip.
  2774. */
  2775. netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
  2776. ql_write_common_reg(qdev,
  2777. &port_regs->CommonRegs.ispControlStatus,
  2778. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2779. /* Wait 3 seconds for reset to complete. */
  2780. netdev_printk(KERN_DEBUG, qdev->ndev,
  2781. "Wait 10 milliseconds for reset to complete\n");
  2782. /* Wait until the firmware tells us the Soft Reset is done */
  2783. max_wait_time = 5;
  2784. do {
  2785. value =
  2786. ql_read_common_reg(qdev,
  2787. &port_regs->CommonRegs.ispControlStatus);
  2788. if ((value & ISP_CONTROL_SR) == 0)
  2789. break;
  2790. ssleep(1);
  2791. } while ((--max_wait_time));
  2792. /*
  2793. * Also, make sure that the Network Reset Interrupt bit has been
  2794. * cleared after the soft reset has taken place.
  2795. */
  2796. value =
  2797. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2798. if (value & ISP_CONTROL_RI) {
  2799. netdev_printk(KERN_DEBUG, qdev->ndev,
  2800. "clearing RI after reset\n");
  2801. ql_write_common_reg(qdev,
  2802. &port_regs->CommonRegs.
  2803. ispControlStatus,
  2804. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2805. }
  2806. if (max_wait_time == 0) {
  2807. /* Issue Force Soft Reset */
  2808. ql_write_common_reg(qdev,
  2809. &port_regs->CommonRegs.
  2810. ispControlStatus,
  2811. ((ISP_CONTROL_FSR << 16) |
  2812. ISP_CONTROL_FSR));
  2813. /*
  2814. * Wait until the firmware tells us the Force Soft Reset is
  2815. * done
  2816. */
  2817. max_wait_time = 5;
  2818. do {
  2819. value = ql_read_common_reg(qdev,
  2820. &port_regs->CommonRegs.
  2821. ispControlStatus);
  2822. if ((value & ISP_CONTROL_FSR) == 0)
  2823. break;
  2824. ssleep(1);
  2825. } while ((--max_wait_time));
  2826. }
  2827. if (max_wait_time == 0)
  2828. status = 1;
  2829. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2830. set_bit(QL_RESET_DONE, &qdev->flags);
  2831. return status;
  2832. }
  2833. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2834. {
  2835. struct ql3xxx_port_registers __iomem *port_regs =
  2836. qdev->mem_map_registers;
  2837. u32 value, port_status;
  2838. u8 func_number;
  2839. /* Get the function number */
  2840. value =
  2841. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2842. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2843. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2844. switch (value & ISP_CONTROL_FN_MASK) {
  2845. case ISP_CONTROL_FN0_NET:
  2846. qdev->mac_index = 0;
  2847. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2848. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2849. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2850. if (port_status & PORT_STATUS_SM0)
  2851. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2852. else
  2853. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2854. break;
  2855. case ISP_CONTROL_FN1_NET:
  2856. qdev->mac_index = 1;
  2857. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2858. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2859. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2860. if (port_status & PORT_STATUS_SM1)
  2861. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2862. else
  2863. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2864. break;
  2865. case ISP_CONTROL_FN0_SCSI:
  2866. case ISP_CONTROL_FN1_SCSI:
  2867. default:
  2868. netdev_printk(KERN_DEBUG, qdev->ndev,
  2869. "Invalid function number, ispControlStatus = 0x%x\n",
  2870. value);
  2871. break;
  2872. }
  2873. qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
  2874. }
  2875. static void ql_display_dev_info(struct net_device *ndev)
  2876. {
  2877. struct ql3_adapter *qdev = netdev_priv(ndev);
  2878. struct pci_dev *pdev = qdev->pdev;
  2879. netdev_info(ndev,
  2880. "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
  2881. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2882. qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
  2883. qdev->pci_slot);
  2884. netdev_info(ndev, "%s Interface\n",
  2885. test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
  2886. /*
  2887. * Print PCI bus width/type.
  2888. */
  2889. netdev_info(ndev, "Bus interface is %s %s\n",
  2890. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2891. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2892. netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
  2893. qdev->mem_map_registers);
  2894. netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
  2895. netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
  2896. }
  2897. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2898. {
  2899. struct net_device *ndev = qdev->ndev;
  2900. int retval = 0;
  2901. netif_stop_queue(ndev);
  2902. netif_carrier_off(ndev);
  2903. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2904. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2905. ql_disable_interrupts(qdev);
  2906. free_irq(qdev->pdev->irq, ndev);
  2907. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2908. netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
  2909. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2910. pci_disable_msi(qdev->pdev);
  2911. }
  2912. del_timer_sync(&qdev->adapter_timer);
  2913. napi_disable(&qdev->napi);
  2914. if (do_reset) {
  2915. int soft_reset;
  2916. unsigned long hw_flags;
  2917. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2918. if (ql_wait_for_drvr_lock(qdev)) {
  2919. soft_reset = ql_adapter_reset(qdev);
  2920. if (soft_reset) {
  2921. netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
  2922. qdev->index);
  2923. }
  2924. netdev_err(ndev,
  2925. "Releasing driver lock via chip reset\n");
  2926. } else {
  2927. netdev_err(ndev,
  2928. "Could not acquire driver lock to do reset!\n");
  2929. retval = -1;
  2930. }
  2931. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2932. }
  2933. ql_free_mem_resources(qdev);
  2934. return retval;
  2935. }
  2936. static int ql_adapter_up(struct ql3_adapter *qdev)
  2937. {
  2938. struct net_device *ndev = qdev->ndev;
  2939. int err;
  2940. unsigned long irq_flags = IRQF_SHARED;
  2941. unsigned long hw_flags;
  2942. if (ql_alloc_mem_resources(qdev)) {
  2943. netdev_err(ndev, "Unable to allocate buffers\n");
  2944. return -ENOMEM;
  2945. }
  2946. if (qdev->msi) {
  2947. if (pci_enable_msi(qdev->pdev)) {
  2948. netdev_err(ndev,
  2949. "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
  2950. qdev->msi = 0;
  2951. } else {
  2952. netdev_info(ndev, "MSI Enabled...\n");
  2953. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2954. irq_flags &= ~IRQF_SHARED;
  2955. }
  2956. }
  2957. err = request_irq(qdev->pdev->irq, ql3xxx_isr,
  2958. irq_flags, ndev->name, ndev);
  2959. if (err) {
  2960. netdev_err(ndev,
  2961. "Failed to reserve interrupt %d - already in use\n",
  2962. qdev->pdev->irq);
  2963. goto err_irq;
  2964. }
  2965. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2966. err = ql_wait_for_drvr_lock(qdev);
  2967. if (err) {
  2968. err = ql_adapter_initialize(qdev);
  2969. if (err) {
  2970. netdev_err(ndev, "Unable to initialize adapter\n");
  2971. goto err_init;
  2972. }
  2973. netdev_err(ndev, "Releasing driver lock\n");
  2974. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2975. } else {
  2976. netdev_err(ndev, "Could not acquire driver lock\n");
  2977. goto err_lock;
  2978. }
  2979. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2980. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2981. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2982. napi_enable(&qdev->napi);
  2983. ql_enable_interrupts(qdev);
  2984. return 0;
  2985. err_init:
  2986. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2987. err_lock:
  2988. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2989. free_irq(qdev->pdev->irq, ndev);
  2990. err_irq:
  2991. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2992. netdev_info(ndev, "calling pci_disable_msi()\n");
  2993. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2994. pci_disable_msi(qdev->pdev);
  2995. }
  2996. return err;
  2997. }
  2998. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  2999. {
  3000. if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
  3001. netdev_err(qdev->ndev,
  3002. "Driver up/down cycle failed, closing device\n");
  3003. rtnl_lock();
  3004. dev_close(qdev->ndev);
  3005. rtnl_unlock();
  3006. return -1;
  3007. }
  3008. return 0;
  3009. }
  3010. static int ql3xxx_close(struct net_device *ndev)
  3011. {
  3012. struct ql3_adapter *qdev = netdev_priv(ndev);
  3013. /*
  3014. * Wait for device to recover from a reset.
  3015. * (Rarely happens, but possible.)
  3016. */
  3017. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3018. msleep(50);
  3019. ql_adapter_down(qdev, QL_DO_RESET);
  3020. return 0;
  3021. }
  3022. static int ql3xxx_open(struct net_device *ndev)
  3023. {
  3024. struct ql3_adapter *qdev = netdev_priv(ndev);
  3025. return ql_adapter_up(qdev);
  3026. }
  3027. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3028. {
  3029. struct ql3_adapter *qdev = netdev_priv(ndev);
  3030. struct ql3xxx_port_registers __iomem *port_regs =
  3031. qdev->mem_map_registers;
  3032. struct sockaddr *addr = p;
  3033. unsigned long hw_flags;
  3034. if (netif_running(ndev))
  3035. return -EBUSY;
  3036. if (!is_valid_ether_addr(addr->sa_data))
  3037. return -EADDRNOTAVAIL;
  3038. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3039. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3040. /* Program lower 32 bits of the MAC address */
  3041. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3042. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3043. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3044. ((ndev->dev_addr[2] << 24) | (ndev->
  3045. dev_addr[3] << 16) |
  3046. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3047. /* Program top 16 bits of the MAC address */
  3048. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3049. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3050. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3051. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3052. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3053. return 0;
  3054. }
  3055. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3056. {
  3057. struct ql3_adapter *qdev = netdev_priv(ndev);
  3058. netdev_err(ndev, "Resetting...\n");
  3059. /*
  3060. * Stop the queues, we've got a problem.
  3061. */
  3062. netif_stop_queue(ndev);
  3063. /*
  3064. * Wake up the worker to process this event.
  3065. */
  3066. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3067. }
  3068. static void ql_reset_work(struct work_struct *work)
  3069. {
  3070. struct ql3_adapter *qdev =
  3071. container_of(work, struct ql3_adapter, reset_work.work);
  3072. struct net_device *ndev = qdev->ndev;
  3073. u32 value;
  3074. struct ql_tx_buf_cb *tx_cb;
  3075. int max_wait_time, i;
  3076. struct ql3xxx_port_registers __iomem *port_regs =
  3077. qdev->mem_map_registers;
  3078. unsigned long hw_flags;
  3079. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
  3080. clear_bit(QL_LINK_MASTER, &qdev->flags);
  3081. /*
  3082. * Loop through the active list and return the skb.
  3083. */
  3084. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3085. int j;
  3086. tx_cb = &qdev->tx_buf[i];
  3087. if (tx_cb->skb) {
  3088. netdev_printk(KERN_DEBUG, ndev,
  3089. "Freeing lost SKB\n");
  3090. pci_unmap_single(qdev->pdev,
  3091. dma_unmap_addr(&tx_cb->map[0],
  3092. mapaddr),
  3093. dma_unmap_len(&tx_cb->map[0], maplen),
  3094. PCI_DMA_TODEVICE);
  3095. for (j = 1; j < tx_cb->seg_count; j++) {
  3096. pci_unmap_page(qdev->pdev,
  3097. dma_unmap_addr(&tx_cb->map[j],
  3098. mapaddr),
  3099. dma_unmap_len(&tx_cb->map[j],
  3100. maplen),
  3101. PCI_DMA_TODEVICE);
  3102. }
  3103. dev_kfree_skb(tx_cb->skb);
  3104. tx_cb->skb = NULL;
  3105. }
  3106. }
  3107. netdev_err(ndev, "Clearing NRI after reset\n");
  3108. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3109. ql_write_common_reg(qdev,
  3110. &port_regs->CommonRegs.
  3111. ispControlStatus,
  3112. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3113. /*
  3114. * Wait the for Soft Reset to Complete.
  3115. */
  3116. max_wait_time = 10;
  3117. do {
  3118. value = ql_read_common_reg(qdev,
  3119. &port_regs->CommonRegs.
  3120. ispControlStatus);
  3121. if ((value & ISP_CONTROL_SR) == 0) {
  3122. netdev_printk(KERN_DEBUG, ndev,
  3123. "reset completed\n");
  3124. break;
  3125. }
  3126. if (value & ISP_CONTROL_RI) {
  3127. netdev_printk(KERN_DEBUG, ndev,
  3128. "clearing NRI after reset\n");
  3129. ql_write_common_reg(qdev,
  3130. &port_regs->
  3131. CommonRegs.
  3132. ispControlStatus,
  3133. ((ISP_CONTROL_RI <<
  3134. 16) | ISP_CONTROL_RI));
  3135. }
  3136. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3137. ssleep(1);
  3138. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3139. } while (--max_wait_time);
  3140. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3141. if (value & ISP_CONTROL_SR) {
  3142. /*
  3143. * Set the reset flags and clear the board again.
  3144. * Nothing else to do...
  3145. */
  3146. netdev_err(ndev,
  3147. "Timed out waiting for reset to complete\n");
  3148. netdev_err(ndev, "Do a reset\n");
  3149. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3150. clear_bit(QL_RESET_START, &qdev->flags);
  3151. ql_cycle_adapter(qdev, QL_DO_RESET);
  3152. return;
  3153. }
  3154. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3155. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3156. clear_bit(QL_RESET_START, &qdev->flags);
  3157. ql_cycle_adapter(qdev, QL_NO_RESET);
  3158. }
  3159. }
  3160. static void ql_tx_timeout_work(struct work_struct *work)
  3161. {
  3162. struct ql3_adapter *qdev =
  3163. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3164. ql_cycle_adapter(qdev, QL_DO_RESET);
  3165. }
  3166. static void ql_get_board_info(struct ql3_adapter *qdev)
  3167. {
  3168. struct ql3xxx_port_registers __iomem *port_regs =
  3169. qdev->mem_map_registers;
  3170. u32 value;
  3171. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3172. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3173. if (value & PORT_STATUS_64)
  3174. qdev->pci_width = 64;
  3175. else
  3176. qdev->pci_width = 32;
  3177. if (value & PORT_STATUS_X)
  3178. qdev->pci_x = 1;
  3179. else
  3180. qdev->pci_x = 0;
  3181. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3182. }
  3183. static void ql3xxx_timer(unsigned long ptr)
  3184. {
  3185. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3186. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3187. }
  3188. static const struct net_device_ops ql3xxx_netdev_ops = {
  3189. .ndo_open = ql3xxx_open,
  3190. .ndo_start_xmit = ql3xxx_send,
  3191. .ndo_stop = ql3xxx_close,
  3192. .ndo_validate_addr = eth_validate_addr,
  3193. .ndo_set_mac_address = ql3xxx_set_mac_address,
  3194. .ndo_tx_timeout = ql3xxx_tx_timeout,
  3195. };
  3196. static int ql3xxx_probe(struct pci_dev *pdev,
  3197. const struct pci_device_id *pci_entry)
  3198. {
  3199. struct net_device *ndev = NULL;
  3200. struct ql3_adapter *qdev = NULL;
  3201. static int cards_found;
  3202. int uninitialized_var(pci_using_dac), err;
  3203. err = pci_enable_device(pdev);
  3204. if (err) {
  3205. pr_err("%s cannot enable PCI device\n", pci_name(pdev));
  3206. goto err_out;
  3207. }
  3208. err = pci_request_regions(pdev, DRV_NAME);
  3209. if (err) {
  3210. pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
  3211. goto err_out_disable_pdev;
  3212. }
  3213. pci_set_master(pdev);
  3214. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3215. pci_using_dac = 1;
  3216. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3217. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3218. pci_using_dac = 0;
  3219. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3220. }
  3221. if (err) {
  3222. pr_err("%s no usable DMA configuration\n", pci_name(pdev));
  3223. goto err_out_free_regions;
  3224. }
  3225. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3226. if (!ndev) {
  3227. err = -ENOMEM;
  3228. goto err_out_free_regions;
  3229. }
  3230. SET_NETDEV_DEV(ndev, &pdev->dev);
  3231. pci_set_drvdata(pdev, ndev);
  3232. qdev = netdev_priv(ndev);
  3233. qdev->index = cards_found;
  3234. qdev->ndev = ndev;
  3235. qdev->pdev = pdev;
  3236. qdev->device_id = pci_entry->device;
  3237. qdev->port_link_state = LS_DOWN;
  3238. if (msi)
  3239. qdev->msi = 1;
  3240. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3241. if (pci_using_dac)
  3242. ndev->features |= NETIF_F_HIGHDMA;
  3243. if (qdev->device_id == QL3032_DEVICE_ID)
  3244. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3245. qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
  3246. if (!qdev->mem_map_registers) {
  3247. pr_err("%s: cannot map device registers\n", pci_name(pdev));
  3248. err = -EIO;
  3249. goto err_out_free_ndev;
  3250. }
  3251. spin_lock_init(&qdev->adapter_lock);
  3252. spin_lock_init(&qdev->hw_lock);
  3253. /* Set driver entry points */
  3254. ndev->netdev_ops = &ql3xxx_netdev_ops;
  3255. ndev->ethtool_ops = &ql3xxx_ethtool_ops;
  3256. ndev->watchdog_timeo = 5 * HZ;
  3257. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3258. ndev->irq = pdev->irq;
  3259. /* make sure the EEPROM is good */
  3260. if (ql_get_nvram_params(qdev)) {
  3261. pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
  3262. __func__, qdev->index);
  3263. err = -EIO;
  3264. goto err_out_iounmap;
  3265. }
  3266. ql_set_mac_info(qdev);
  3267. /* Validate and set parameters */
  3268. if (qdev->mac_index) {
  3269. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3270. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
  3271. } else {
  3272. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3273. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
  3274. }
  3275. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3276. /* Record PCI bus information. */
  3277. ql_get_board_info(qdev);
  3278. /*
  3279. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3280. * jumbo frames.
  3281. */
  3282. if (qdev->pci_x)
  3283. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3284. err = register_netdev(ndev);
  3285. if (err) {
  3286. pr_err("%s: cannot register net device\n", pci_name(pdev));
  3287. goto err_out_iounmap;
  3288. }
  3289. /* we're going to reset, so assume we have no link for now */
  3290. netif_carrier_off(ndev);
  3291. netif_stop_queue(ndev);
  3292. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3293. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3294. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3295. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3296. init_timer(&qdev->adapter_timer);
  3297. qdev->adapter_timer.function = ql3xxx_timer;
  3298. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3299. qdev->adapter_timer.data = (unsigned long)qdev;
  3300. if (!cards_found) {
  3301. pr_alert("%s\n", DRV_STRING);
  3302. pr_alert("Driver name: %s, Version: %s\n",
  3303. DRV_NAME, DRV_VERSION);
  3304. }
  3305. ql_display_dev_info(ndev);
  3306. cards_found++;
  3307. return 0;
  3308. err_out_iounmap:
  3309. iounmap(qdev->mem_map_registers);
  3310. err_out_free_ndev:
  3311. free_netdev(ndev);
  3312. err_out_free_regions:
  3313. pci_release_regions(pdev);
  3314. err_out_disable_pdev:
  3315. pci_disable_device(pdev);
  3316. err_out:
  3317. return err;
  3318. }
  3319. static void ql3xxx_remove(struct pci_dev *pdev)
  3320. {
  3321. struct net_device *ndev = pci_get_drvdata(pdev);
  3322. struct ql3_adapter *qdev = netdev_priv(ndev);
  3323. unregister_netdev(ndev);
  3324. ql_disable_interrupts(qdev);
  3325. if (qdev->workqueue) {
  3326. cancel_delayed_work(&qdev->reset_work);
  3327. cancel_delayed_work(&qdev->tx_timeout_work);
  3328. destroy_workqueue(qdev->workqueue);
  3329. qdev->workqueue = NULL;
  3330. }
  3331. iounmap(qdev->mem_map_registers);
  3332. pci_release_regions(pdev);
  3333. free_netdev(ndev);
  3334. }
  3335. static struct pci_driver ql3xxx_driver = {
  3336. .name = DRV_NAME,
  3337. .id_table = ql3xxx_pci_tbl,
  3338. .probe = ql3xxx_probe,
  3339. .remove = ql3xxx_remove,
  3340. };
  3341. module_pci_driver(ql3xxx_driver);