qed_init_fw_funcs.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075
  1. /* QLogic qed NIC Driver
  2. * Copyright (c) 2015-2017 QLogic Corporation
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and /or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/types.h>
  33. #include <linux/delay.h>
  34. #include <linux/kernel.h>
  35. #include <linux/slab.h>
  36. #include <linux/string.h>
  37. #include "qed_hsi.h"
  38. #include "qed_hw.h"
  39. #include "qed_init_ops.h"
  40. #include "qed_reg_addr.h"
  41. /* General constants */
  42. #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
  43. QM_PQ_ELEMENT_SIZE, \
  44. 0x1000) : 0)
  45. #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
  46. 0x100) - 1 : 0)
  47. #define QM_INVALID_PQ_ID 0xffff
  48. /* Feature enable */
  49. #define QM_BYPASS_EN 1
  50. #define QM_BYTE_CRD_EN 1
  51. /* Other PQ constants */
  52. #define QM_OTHER_PQS_PER_PF 4
  53. /* WFQ constants */
  54. #define QM_WFQ_UPPER_BOUND 62500000
  55. #define QM_WFQ_VP_PQ_VOQ_SHIFT 0
  56. #define QM_WFQ_VP_PQ_PF_SHIFT 5
  57. #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
  58. #define QM_WFQ_MAX_INC_VAL 43750000
  59. /* RL constants */
  60. #define QM_RL_UPPER_BOUND 62500000
  61. #define QM_RL_PERIOD 5 /* in us */
  62. #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
  63. #define QM_RL_MAX_INC_VAL 43750000
  64. #define QM_RL_INC_VAL(rate) max_t(u32, \
  65. (u32)(((rate ? rate : \
  66. 1000000) * \
  67. QM_RL_PERIOD * \
  68. 101) / (8 * 100)), 1)
  69. /* AFullOprtnstcCrdMask constants */
  70. #define QM_OPPOR_LINE_VOQ_DEF 1
  71. #define QM_OPPOR_FW_STOP_DEF 0
  72. #define QM_OPPOR_PQ_EMPTY_DEF 1
  73. /* Command Queue constants */
  74. #define PBF_CMDQ_PURE_LB_LINES 150
  75. #define PBF_CMDQ_LINES_RT_OFFSET(voq) ( \
  76. PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + voq * \
  77. (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
  78. PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
  79. #define PBF_BTB_GUARANTEED_RT_OFFSET(voq) ( \
  80. PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
  81. (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
  82. PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
  83. #define QM_VOQ_LINE_CRD(pbf_cmd_lines) ((((pbf_cmd_lines) - \
  84. 4) * \
  85. 2) | QM_LINE_CRD_REG_SIGN_BIT)
  86. /* BTB: blocks constants (block size = 256B) */
  87. #define BTB_JUMBO_PKT_BLOCKS 38
  88. #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
  89. #define BTB_PURE_LB_FACTOR 10
  90. #define BTB_PURE_LB_RATIO 7
  91. /* QM stop command constants */
  92. #define QM_STOP_PQ_MASK_WIDTH 32
  93. #define QM_STOP_CMD_ADDR 2
  94. #define QM_STOP_CMD_STRUCT_SIZE 2
  95. #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
  96. #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
  97. #define QM_STOP_CMD_PAUSE_MASK_MASK -1
  98. #define QM_STOP_CMD_GROUP_ID_OFFSET 1
  99. #define QM_STOP_CMD_GROUP_ID_SHIFT 16
  100. #define QM_STOP_CMD_GROUP_ID_MASK 15
  101. #define QM_STOP_CMD_PQ_TYPE_OFFSET 1
  102. #define QM_STOP_CMD_PQ_TYPE_SHIFT 24
  103. #define QM_STOP_CMD_PQ_TYPE_MASK 1
  104. #define QM_STOP_CMD_MAX_POLL_COUNT 100
  105. #define QM_STOP_CMD_POLL_PERIOD_US 500
  106. /* QM command macros */
  107. #define QM_CMD_STRUCT_SIZE(cmd) cmd ## \
  108. _STRUCT_SIZE
  109. #define QM_CMD_SET_FIELD(var, cmd, field, \
  110. value) SET_FIELD(var[cmd ## _ ## field ## \
  111. _OFFSET], \
  112. cmd ## _ ## field, \
  113. value)
  114. /* QM: VOQ macros */
  115. #define PHYS_VOQ(port, tc, max_phys_tcs_per_port) ((port) * \
  116. (max_phys_tcs_per_port) + \
  117. (tc))
  118. #define LB_VOQ(port) ( \
  119. MAX_PHYS_VOQS + (port))
  120. #define VOQ(port, tc, max_phy_tcs_pr_port) \
  121. ((tc) < \
  122. LB_TC ? PHYS_VOQ(port, \
  123. tc, \
  124. max_phy_tcs_pr_port) \
  125. : LB_VOQ(port))
  126. /******************** INTERNAL IMPLEMENTATION *********************/
  127. /* Prepare PF RL enable/disable runtime init values */
  128. static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
  129. {
  130. STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
  131. if (pf_rl_en) {
  132. /* Enable RLs for all VOQs */
  133. STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
  134. (1 << MAX_NUM_VOQS) - 1);
  135. /* Write RL period */
  136. STORE_RT_REG(p_hwfn,
  137. QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
  138. STORE_RT_REG(p_hwfn,
  139. QM_REG_RLPFPERIODTIMER_RT_OFFSET,
  140. QM_RL_PERIOD_CLK_25M);
  141. /* Set credit threshold for QM bypass flow */
  142. if (QM_BYPASS_EN)
  143. STORE_RT_REG(p_hwfn,
  144. QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
  145. QM_RL_UPPER_BOUND);
  146. }
  147. }
  148. /* Prepare PF WFQ enable/disable runtime init values */
  149. static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
  150. {
  151. STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
  152. /* Set credit threshold for QM bypass flow */
  153. if (pf_wfq_en && QM_BYPASS_EN)
  154. STORE_RT_REG(p_hwfn,
  155. QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
  156. QM_WFQ_UPPER_BOUND);
  157. }
  158. /* Prepare VPORT RL enable/disable runtime init values */
  159. static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
  160. {
  161. STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
  162. vport_rl_en ? 1 : 0);
  163. if (vport_rl_en) {
  164. /* Write RL period (use timer 0 only) */
  165. STORE_RT_REG(p_hwfn,
  166. QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
  167. QM_RL_PERIOD_CLK_25M);
  168. STORE_RT_REG(p_hwfn,
  169. QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
  170. QM_RL_PERIOD_CLK_25M);
  171. /* Set credit threshold for QM bypass flow */
  172. if (QM_BYPASS_EN)
  173. STORE_RT_REG(p_hwfn,
  174. QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
  175. QM_RL_UPPER_BOUND);
  176. }
  177. }
  178. /* Prepare VPORT WFQ enable/disable runtime init values */
  179. static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
  180. {
  181. STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
  182. vport_wfq_en ? 1 : 0);
  183. /* Set credit threshold for QM bypass flow */
  184. if (vport_wfq_en && QM_BYPASS_EN)
  185. STORE_RT_REG(p_hwfn,
  186. QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
  187. QM_WFQ_UPPER_BOUND);
  188. }
  189. /* Prepare runtime init values to allocate PBF command queue lines for
  190. * the specified VOQ.
  191. */
  192. static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
  193. u8 voq, u16 cmdq_lines)
  194. {
  195. u32 qm_line_crd;
  196. qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
  197. OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
  198. (u32)cmdq_lines);
  199. STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
  200. STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
  201. qm_line_crd);
  202. }
  203. /* Prepare runtime init values to allocate PBF command queue lines. */
  204. static void qed_cmdq_lines_rt_init(
  205. struct qed_hwfn *p_hwfn,
  206. u8 max_ports_per_engine,
  207. u8 max_phys_tcs_per_port,
  208. struct init_qm_port_params port_params[MAX_NUM_PORTS])
  209. {
  210. u8 tc, voq, port_id, num_tcs_in_port;
  211. /* Clear PBF lines for all VOQs */
  212. for (voq = 0; voq < MAX_NUM_VOQS; voq++)
  213. STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
  214. for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
  215. if (port_params[port_id].active) {
  216. u16 phys_lines, phys_lines_per_tc;
  217. /* find #lines to divide between active phys TCs */
  218. phys_lines = port_params[port_id].num_pbf_cmd_lines -
  219. PBF_CMDQ_PURE_LB_LINES;
  220. /* find #lines per active physical TC */
  221. num_tcs_in_port = 0;
  222. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  223. if (((port_params[port_id].active_phys_tcs >>
  224. tc) & 0x1) == 1)
  225. num_tcs_in_port++;
  226. }
  227. phys_lines_per_tc = phys_lines / num_tcs_in_port;
  228. /* init registers per active TC */
  229. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  230. if (((port_params[port_id].active_phys_tcs >>
  231. tc) & 0x1) != 1)
  232. continue;
  233. voq = PHYS_VOQ(port_id, tc,
  234. max_phys_tcs_per_port);
  235. qed_cmdq_lines_voq_rt_init(p_hwfn, voq,
  236. phys_lines_per_tc);
  237. }
  238. /* init registers for pure LB TC */
  239. qed_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
  240. PBF_CMDQ_PURE_LB_LINES);
  241. }
  242. }
  243. }
  244. static void qed_btb_blocks_rt_init(
  245. struct qed_hwfn *p_hwfn,
  246. u8 max_ports_per_engine,
  247. u8 max_phys_tcs_per_port,
  248. struct init_qm_port_params port_params[MAX_NUM_PORTS])
  249. {
  250. u32 usable_blocks, pure_lb_blocks, phys_blocks;
  251. u8 tc, voq, port_id, num_tcs_in_port;
  252. for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
  253. u32 temp;
  254. if (!port_params[port_id].active)
  255. continue;
  256. /* Subtract headroom blocks */
  257. usable_blocks = port_params[port_id].num_btb_blocks -
  258. BTB_HEADROOM_BLOCKS;
  259. /* find blocks per physical TC */
  260. num_tcs_in_port = 0;
  261. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  262. if (((port_params[port_id].active_phys_tcs >>
  263. tc) & 0x1) == 1)
  264. num_tcs_in_port++;
  265. }
  266. pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
  267. (num_tcs_in_port * BTB_PURE_LB_FACTOR +
  268. BTB_PURE_LB_RATIO);
  269. pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
  270. pure_lb_blocks / BTB_PURE_LB_FACTOR);
  271. phys_blocks = (usable_blocks - pure_lb_blocks) /
  272. num_tcs_in_port;
  273. /* Init physical TCs */
  274. for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
  275. if (((port_params[port_id].active_phys_tcs >>
  276. tc) & 0x1) != 1)
  277. continue;
  278. voq = PHYS_VOQ(port_id, tc,
  279. max_phys_tcs_per_port);
  280. STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(voq),
  281. phys_blocks);
  282. }
  283. /* Init pure LB TC */
  284. temp = LB_VOQ(port_id);
  285. STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(temp),
  286. pure_lb_blocks);
  287. }
  288. }
  289. /* Prepare Tx PQ mapping runtime init values for the specified PF */
  290. static void qed_tx_pq_map_rt_init(
  291. struct qed_hwfn *p_hwfn,
  292. struct qed_ptt *p_ptt,
  293. struct qed_qm_pf_rt_init_params *p_params,
  294. u32 base_mem_addr_4kb)
  295. {
  296. struct init_qm_vport_params *vport_params = p_params->vport_params;
  297. u16 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
  298. u16 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
  299. u16 last_pq_group = (p_params->start_pq + num_pqs - 1) /
  300. QM_PF_QUEUE_GROUP_SIZE;
  301. u16 i, pq_id, pq_group;
  302. /* A bit per Tx PQ indicating if the PQ is associated with a VF */
  303. u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
  304. u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
  305. u32 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
  306. u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
  307. u32 mem_addr_4kb = base_mem_addr_4kb;
  308. /* Set mapping from PQ group to PF */
  309. for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
  310. STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
  311. (u32)(p_params->pf_id));
  312. /* Set PQ sizes */
  313. STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
  314. QM_PQ_SIZE_256B(p_params->num_pf_cids));
  315. STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
  316. QM_PQ_SIZE_256B(p_params->num_vf_cids));
  317. /* Go over all Tx PQs */
  318. for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
  319. u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
  320. p_params->max_phys_tcs_per_port);
  321. bool is_vf_pq = (i >= p_params->num_pf_pqs);
  322. struct qm_rf_pq_map tx_pq_map;
  323. bool rl_valid = p_params->pq_params[i].rl_valid &&
  324. (p_params->pq_params[i].vport_id <
  325. MAX_QM_GLOBAL_RLS);
  326. /* Update first Tx PQ of VPORT/TC */
  327. u8 vport_id_in_pf = p_params->pq_params[i].vport_id -
  328. p_params->start_vport;
  329. u16 *pq_ids = &vport_params[vport_id_in_pf].first_tx_pq_id[0];
  330. u16 first_tx_pq_id = pq_ids[p_params->pq_params[i].tc_id];
  331. if (first_tx_pq_id == QM_INVALID_PQ_ID) {
  332. /* Create new VP PQ */
  333. pq_ids[p_params->pq_params[i].tc_id] = pq_id;
  334. first_tx_pq_id = pq_id;
  335. /* Map VP PQ to VOQ and PF */
  336. STORE_RT_REG(p_hwfn,
  337. QM_REG_WFQVPMAP_RT_OFFSET +
  338. first_tx_pq_id,
  339. (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
  340. (p_params->pf_id <<
  341. QM_WFQ_VP_PQ_PF_SHIFT));
  342. }
  343. if (p_params->pq_params[i].rl_valid && !rl_valid)
  344. DP_NOTICE(p_hwfn,
  345. "Invalid VPORT ID for rate limiter configuration");
  346. /* Fill PQ map entry */
  347. memset(&tx_pq_map, 0, sizeof(tx_pq_map));
  348. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
  349. SET_FIELD(tx_pq_map.reg,
  350. QM_RF_PQ_MAP_RL_VALID, rl_valid ? 1 : 0);
  351. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
  352. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
  353. rl_valid ?
  354. p_params->pq_params[i].vport_id : 0);
  355. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
  356. SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
  357. p_params->pq_params[i].wrr_group);
  358. /* Write PQ map entry to CAM */
  359. STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
  360. *((u32 *)&tx_pq_map));
  361. /* Set base address */
  362. STORE_RT_REG(p_hwfn,
  363. QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
  364. mem_addr_4kb);
  365. /* If VF PQ, add indication to PQ VF mask */
  366. if (is_vf_pq) {
  367. tx_pq_vf_mask[pq_id /
  368. QM_PF_QUEUE_GROUP_SIZE] |=
  369. BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
  370. mem_addr_4kb += vport_pq_mem_4kb;
  371. } else {
  372. mem_addr_4kb += pq_mem_4kb;
  373. }
  374. }
  375. /* Store Tx PQ VF mask to size select register */
  376. for (i = 0; i < num_tx_pq_vf_masks; i++)
  377. if (tx_pq_vf_mask[i])
  378. STORE_RT_REG(p_hwfn,
  379. QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
  380. tx_pq_vf_mask[i]);
  381. }
  382. /* Prepare Other PQ mapping runtime init values for the specified PF */
  383. static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
  384. u8 port_id,
  385. u8 pf_id,
  386. u32 num_pf_cids,
  387. u32 num_tids, u32 base_mem_addr_4kb)
  388. {
  389. u32 pq_size, pq_mem_4kb, mem_addr_4kb;
  390. u16 i, pq_id, pq_group;
  391. /* a single other PQ group is used in each PF,
  392. * where PQ group i is used in PF i.
  393. */
  394. pq_group = pf_id;
  395. pq_size = num_pf_cids + num_tids;
  396. pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
  397. mem_addr_4kb = base_mem_addr_4kb;
  398. /* Map PQ group to PF */
  399. STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
  400. (u32)(pf_id));
  401. /* Set PQ sizes */
  402. STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
  403. QM_PQ_SIZE_256B(pq_size));
  404. /* Set base address */
  405. for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
  406. i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
  407. STORE_RT_REG(p_hwfn,
  408. QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
  409. mem_addr_4kb);
  410. mem_addr_4kb += pq_mem_4kb;
  411. }
  412. }
  413. /* Prepare PF WFQ runtime init values for the specified PF.
  414. * Return -1 on error.
  415. */
  416. static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
  417. struct qed_qm_pf_rt_init_params *p_params)
  418. {
  419. u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
  420. u32 crd_reg_offset;
  421. u32 inc_val;
  422. u16 i;
  423. if (p_params->pf_id < MAX_NUM_PFS_BB)
  424. crd_reg_offset = QM_REG_WFQPFCRD_RT_OFFSET;
  425. else
  426. crd_reg_offset = QM_REG_WFQPFCRD_MSB_RT_OFFSET;
  427. crd_reg_offset += p_params->pf_id % MAX_NUM_PFS_BB;
  428. inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
  429. if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  430. DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
  431. return -1;
  432. }
  433. for (i = 0; i < num_tx_pqs; i++) {
  434. u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
  435. p_params->max_phys_tcs_per_port);
  436. OVERWRITE_RT_REG(p_hwfn,
  437. crd_reg_offset + voq * MAX_NUM_PFS_BB,
  438. QM_WFQ_CRD_REG_SIGN_BIT);
  439. }
  440. STORE_RT_REG(p_hwfn,
  441. QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
  442. QM_WFQ_UPPER_BOUND | QM_WFQ_CRD_REG_SIGN_BIT);
  443. STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
  444. inc_val);
  445. return 0;
  446. }
  447. /* Prepare PF RL runtime init values for the specified PF.
  448. * Return -1 on error.
  449. */
  450. static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
  451. {
  452. u32 inc_val = QM_RL_INC_VAL(pf_rl);
  453. if (inc_val > QM_RL_MAX_INC_VAL) {
  454. DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
  455. return -1;
  456. }
  457. STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
  458. QM_RL_CRD_REG_SIGN_BIT);
  459. STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
  460. QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
  461. STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
  462. return 0;
  463. }
  464. /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
  465. * Return -1 on error.
  466. */
  467. static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
  468. u8 num_vports,
  469. struct init_qm_vport_params *vport_params)
  470. {
  471. u32 inc_val;
  472. u8 tc, i;
  473. /* Go over all PF VPORTs */
  474. for (i = 0; i < num_vports; i++) {
  475. if (!vport_params[i].vport_wfq)
  476. continue;
  477. inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
  478. if (inc_val > QM_WFQ_MAX_INC_VAL) {
  479. DP_NOTICE(p_hwfn,
  480. "Invalid VPORT WFQ weight configuration\n");
  481. return -1;
  482. }
  483. /* each VPORT can have several VPORT PQ IDs for
  484. * different TCs
  485. */
  486. for (tc = 0; tc < NUM_OF_TCS; tc++) {
  487. u16 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
  488. if (vport_pq_id != QM_INVALID_PQ_ID) {
  489. STORE_RT_REG(p_hwfn,
  490. QM_REG_WFQVPCRD_RT_OFFSET +
  491. vport_pq_id,
  492. QM_WFQ_CRD_REG_SIGN_BIT);
  493. STORE_RT_REG(p_hwfn,
  494. QM_REG_WFQVPWEIGHT_RT_OFFSET +
  495. vport_pq_id, inc_val);
  496. }
  497. }
  498. }
  499. return 0;
  500. }
  501. static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
  502. u8 start_vport,
  503. u8 num_vports,
  504. struct init_qm_vport_params *vport_params)
  505. {
  506. u8 i, vport_id;
  507. if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
  508. DP_NOTICE(p_hwfn,
  509. "Invalid VPORT ID for rate limiter configuration\n");
  510. return -1;
  511. }
  512. /* Go over all PF VPORTs */
  513. for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
  514. u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
  515. if (inc_val > QM_RL_MAX_INC_VAL) {
  516. DP_NOTICE(p_hwfn,
  517. "Invalid VPORT rate-limit configuration\n");
  518. return -1;
  519. }
  520. STORE_RT_REG(p_hwfn,
  521. QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
  522. QM_RL_CRD_REG_SIGN_BIT);
  523. STORE_RT_REG(p_hwfn,
  524. QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
  525. QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
  526. STORE_RT_REG(p_hwfn,
  527. QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
  528. inc_val);
  529. }
  530. return 0;
  531. }
  532. static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
  533. struct qed_ptt *p_ptt)
  534. {
  535. u32 reg_val, i;
  536. for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
  537. i++) {
  538. udelay(QM_STOP_CMD_POLL_PERIOD_US);
  539. reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
  540. }
  541. /* Check if timeout while waiting for SDM command ready */
  542. if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
  543. DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
  544. "Timeout when waiting for QM SDM command ready signal\n");
  545. return false;
  546. }
  547. return true;
  548. }
  549. static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
  550. struct qed_ptt *p_ptt,
  551. u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
  552. {
  553. if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
  554. return false;
  555. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
  556. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
  557. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
  558. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
  559. qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
  560. return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
  561. }
  562. /******************** INTERFACE IMPLEMENTATION *********************/
  563. u32 qed_qm_pf_mem_size(u8 pf_id,
  564. u32 num_pf_cids,
  565. u32 num_vf_cids,
  566. u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
  567. {
  568. return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
  569. QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
  570. QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
  571. }
  572. int qed_qm_common_rt_init(
  573. struct qed_hwfn *p_hwfn,
  574. struct qed_qm_common_rt_init_params *p_params)
  575. {
  576. /* init AFullOprtnstcCrdMask */
  577. u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
  578. QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
  579. (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
  580. (p_params->pf_wfq_en <<
  581. QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
  582. (p_params->vport_wfq_en <<
  583. QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
  584. (p_params->pf_rl_en <<
  585. QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
  586. (p_params->vport_rl_en <<
  587. QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
  588. (QM_OPPOR_FW_STOP_DEF <<
  589. QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
  590. (QM_OPPOR_PQ_EMPTY_DEF <<
  591. QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
  592. STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
  593. qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
  594. qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
  595. qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
  596. qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
  597. qed_cmdq_lines_rt_init(p_hwfn,
  598. p_params->max_ports_per_engine,
  599. p_params->max_phys_tcs_per_port,
  600. p_params->port_params);
  601. qed_btb_blocks_rt_init(p_hwfn,
  602. p_params->max_ports_per_engine,
  603. p_params->max_phys_tcs_per_port,
  604. p_params->port_params);
  605. return 0;
  606. }
  607. int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
  608. struct qed_ptt *p_ptt,
  609. struct qed_qm_pf_rt_init_params *p_params)
  610. {
  611. struct init_qm_vport_params *vport_params = p_params->vport_params;
  612. u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
  613. p_params->num_tids) *
  614. QM_OTHER_PQS_PER_PF;
  615. u8 tc, i;
  616. /* Clear first Tx PQ ID array for each VPORT */
  617. for (i = 0; i < p_params->num_vports; i++)
  618. for (tc = 0; tc < NUM_OF_TCS; tc++)
  619. vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
  620. /* Map Other PQs (if any) */
  621. qed_other_pq_map_rt_init(p_hwfn, p_params->port_id, p_params->pf_id,
  622. p_params->num_pf_cids, p_params->num_tids, 0);
  623. /* Map Tx PQs */
  624. qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
  625. if (p_params->pf_wfq)
  626. if (qed_pf_wfq_rt_init(p_hwfn, p_params))
  627. return -1;
  628. if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
  629. return -1;
  630. if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
  631. return -1;
  632. if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
  633. p_params->num_vports, vport_params))
  634. return -1;
  635. return 0;
  636. }
  637. int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
  638. struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
  639. {
  640. u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
  641. if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  642. DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
  643. return -1;
  644. }
  645. qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
  646. return 0;
  647. }
  648. int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
  649. struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
  650. {
  651. u32 inc_val = QM_RL_INC_VAL(pf_rl);
  652. if (inc_val > QM_RL_MAX_INC_VAL) {
  653. DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
  654. return -1;
  655. }
  656. qed_wr(p_hwfn, p_ptt,
  657. QM_REG_RLPFCRD + pf_id * 4,
  658. QM_RL_CRD_REG_SIGN_BIT);
  659. qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
  660. return 0;
  661. }
  662. int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
  663. struct qed_ptt *p_ptt,
  664. u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
  665. {
  666. u16 vport_pq_id;
  667. u32 inc_val;
  668. u8 tc;
  669. inc_val = QM_WFQ_INC_VAL(vport_wfq);
  670. if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
  671. DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration\n");
  672. return -1;
  673. }
  674. for (tc = 0; tc < NUM_OF_TCS; tc++) {
  675. vport_pq_id = first_tx_pq_id[tc];
  676. if (vport_pq_id != QM_INVALID_PQ_ID)
  677. qed_wr(p_hwfn, p_ptt,
  678. QM_REG_WFQVPWEIGHT + vport_pq_id * 4,
  679. inc_val);
  680. }
  681. return 0;
  682. }
  683. int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
  684. struct qed_ptt *p_ptt, u8 vport_id, u32 vport_rl)
  685. {
  686. u32 inc_val = QM_RL_INC_VAL(vport_rl);
  687. if (vport_id >= MAX_QM_GLOBAL_RLS) {
  688. DP_NOTICE(p_hwfn,
  689. "Invalid VPORT ID for rate limiter configuration\n");
  690. return -1;
  691. }
  692. if (inc_val > QM_RL_MAX_INC_VAL) {
  693. DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration\n");
  694. return -1;
  695. }
  696. qed_wr(p_hwfn, p_ptt,
  697. QM_REG_RLGLBLCRD + vport_id * 4,
  698. QM_RL_CRD_REG_SIGN_BIT);
  699. qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
  700. return 0;
  701. }
  702. bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
  703. struct qed_ptt *p_ptt,
  704. bool is_release_cmd,
  705. bool is_tx_pq, u16 start_pq, u16 num_pqs)
  706. {
  707. u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
  708. u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
  709. /* Set command's PQ type */
  710. QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
  711. for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
  712. /* Set PQ bit in mask (stop command only) */
  713. if (!is_release_cmd)
  714. pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
  715. /* If last PQ or end of PQ mask, write command */
  716. if ((pq_id == last_pq) ||
  717. (pq_id % QM_STOP_PQ_MASK_WIDTH ==
  718. (QM_STOP_PQ_MASK_WIDTH - 1))) {
  719. QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
  720. PAUSE_MASK, pq_mask);
  721. QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
  722. GROUP_ID,
  723. pq_id / QM_STOP_PQ_MASK_WIDTH);
  724. if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
  725. cmd_arr[0], cmd_arr[1]))
  726. return false;
  727. pq_mask = 0;
  728. }
  729. }
  730. return true;
  731. }
  732. static void
  733. qed_set_tunnel_type_enable_bit(unsigned long *var, int bit, bool enable)
  734. {
  735. if (enable)
  736. set_bit(bit, var);
  737. else
  738. clear_bit(bit, var);
  739. }
  740. #define PRS_ETH_TUNN_FIC_FORMAT -188897008
  741. void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
  742. struct qed_ptt *p_ptt, u16 dest_port)
  743. {
  744. qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
  745. qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
  746. qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
  747. }
  748. void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
  749. struct qed_ptt *p_ptt, bool vxlan_enable)
  750. {
  751. unsigned long reg_val = 0;
  752. u8 shift;
  753. reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
  754. shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
  755. qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
  756. qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
  757. if (reg_val)
  758. qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
  759. PRS_ETH_TUNN_FIC_FORMAT);
  760. reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
  761. shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
  762. qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
  763. qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
  764. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
  765. vxlan_enable ? 1 : 0);
  766. }
  767. void qed_set_gre_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
  768. bool eth_gre_enable, bool ip_gre_enable)
  769. {
  770. unsigned long reg_val = 0;
  771. u8 shift;
  772. reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
  773. shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
  774. qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
  775. shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
  776. qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
  777. qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
  778. if (reg_val)
  779. qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
  780. PRS_ETH_TUNN_FIC_FORMAT);
  781. reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
  782. shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
  783. qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
  784. shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
  785. qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
  786. qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
  787. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
  788. eth_gre_enable ? 1 : 0);
  789. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
  790. ip_gre_enable ? 1 : 0);
  791. }
  792. void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
  793. struct qed_ptt *p_ptt, u16 dest_port)
  794. {
  795. qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
  796. qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
  797. qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
  798. }
  799. void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
  800. struct qed_ptt *p_ptt,
  801. bool eth_geneve_enable, bool ip_geneve_enable)
  802. {
  803. unsigned long reg_val = 0;
  804. u8 shift;
  805. reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
  806. shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
  807. qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_geneve_enable);
  808. shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
  809. qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_geneve_enable);
  810. qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
  811. if (reg_val)
  812. qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
  813. PRS_ETH_TUNN_FIC_FORMAT);
  814. qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
  815. eth_geneve_enable ? 1 : 0);
  816. qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
  817. /* EDPM with geneve tunnel not supported in BB_B0 */
  818. if (QED_IS_BB_B0(p_hwfn->cdev))
  819. return;
  820. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN,
  821. eth_geneve_enable ? 1 : 0);
  822. qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN,
  823. ip_geneve_enable ? 1 : 0);
  824. }
  825. #define T_ETH_PACKET_ACTION_GFT_EVENTID 23
  826. #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
  827. #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
  828. #define PARSER_ETH_CONN_CM_HDR 0
  829. #define CAM_LINE_SIZE sizeof(u32)
  830. #define RAM_LINE_SIZE sizeof(u64)
  831. #define REG_SIZE sizeof(u32)
  832. void qed_set_rfs_mode_disable(struct qed_hwfn *p_hwfn,
  833. struct qed_ptt *p_ptt, u16 pf_id)
  834. {
  835. u32 hw_addr = PRS_REG_GFT_PROFILE_MASK_RAM +
  836. pf_id * RAM_LINE_SIZE;
  837. /*stop using gft logic */
  838. qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
  839. qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, 0x0);
  840. qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
  841. qed_wr(p_hwfn, p_ptt, hw_addr, 0);
  842. qed_wr(p_hwfn, p_ptt, hw_addr + 4, 0);
  843. }
  844. void qed_set_rfs_mode_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
  845. u16 pf_id, bool tcp, bool udp,
  846. bool ipv4, bool ipv6)
  847. {
  848. union gft_cam_line_union camline;
  849. struct gft_ram_line ramline;
  850. u32 rfs_cm_hdr_event_id;
  851. rfs_cm_hdr_event_id = qed_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
  852. if (!ipv6 && !ipv4)
  853. DP_NOTICE(p_hwfn,
  854. "set_rfs_mode_enable: must accept at least on of - ipv4 or ipv6");
  855. if (!tcp && !udp)
  856. DP_NOTICE(p_hwfn,
  857. "set_rfs_mode_enable: must accept at least on of - udp or tcp");
  858. rfs_cm_hdr_event_id |= T_ETH_PACKET_MATCH_RFS_EVENTID <<
  859. PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
  860. rfs_cm_hdr_event_id |= PARSER_ETH_CONN_CM_HDR <<
  861. PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
  862. qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
  863. /* Configure Registers for RFS mode */
  864. qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
  865. qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
  866. camline.cam_line_mapped.camline = 0;
  867. /* Cam line is now valid!! */
  868. SET_FIELD(camline.cam_line_mapped.camline,
  869. GFT_CAM_LINE_MAPPED_VALID, 1);
  870. /* filters are per PF!! */
  871. SET_FIELD(camline.cam_line_mapped.camline,
  872. GFT_CAM_LINE_MAPPED_PF_ID_MASK,
  873. GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
  874. SET_FIELD(camline.cam_line_mapped.camline,
  875. GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
  876. if (!(tcp && udp)) {
  877. SET_FIELD(camline.cam_line_mapped.camline,
  878. GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
  879. GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
  880. if (tcp)
  881. SET_FIELD(camline.cam_line_mapped.camline,
  882. GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
  883. GFT_PROFILE_TCP_PROTOCOL);
  884. else
  885. SET_FIELD(camline.cam_line_mapped.camline,
  886. GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
  887. GFT_PROFILE_UDP_PROTOCOL);
  888. }
  889. if (!(ipv4 && ipv6)) {
  890. SET_FIELD(camline.cam_line_mapped.camline,
  891. GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
  892. if (ipv4)
  893. SET_FIELD(camline.cam_line_mapped.camline,
  894. GFT_CAM_LINE_MAPPED_IP_VERSION,
  895. GFT_PROFILE_IPV4);
  896. else
  897. SET_FIELD(camline.cam_line_mapped.camline,
  898. GFT_CAM_LINE_MAPPED_IP_VERSION,
  899. GFT_PROFILE_IPV6);
  900. }
  901. /* Write characteristics to cam */
  902. qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
  903. camline.cam_line_mapped.camline);
  904. camline.cam_line_mapped.camline = qed_rd(p_hwfn, p_ptt,
  905. PRS_REG_GFT_CAM +
  906. CAM_LINE_SIZE * pf_id);
  907. /* Write line to RAM - compare to filter 4 tuple */
  908. ramline.lo = 0;
  909. ramline.hi = 0;
  910. SET_FIELD(ramline.hi, GFT_RAM_LINE_DST_IP, 1);
  911. SET_FIELD(ramline.hi, GFT_RAM_LINE_SRC_IP, 1);
  912. SET_FIELD(ramline.hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
  913. SET_FIELD(ramline.lo, GFT_RAM_LINE_ETHERTYPE, 1);
  914. SET_FIELD(ramline.lo, GFT_RAM_LINE_SRC_PORT, 1);
  915. SET_FIELD(ramline.lo, GFT_RAM_LINE_DST_PORT, 1);
  916. /* Each iteration write to reg */
  917. qed_wr(p_hwfn, p_ptt,
  918. PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
  919. ramline.lo);
  920. qed_wr(p_hwfn, p_ptt,
  921. PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + 4,
  922. ramline.hi);
  923. /* Set default profile so that no filter match will happen */
  924. qed_wr(p_hwfn, p_ptt,
  925. PRS_REG_GFT_PROFILE_MASK_RAM +
  926. RAM_LINE_SIZE * PRS_GFT_CAM_LINES_NO_MATCH,
  927. ramline.lo);
  928. qed_wr(p_hwfn, p_ptt,
  929. PRS_REG_GFT_PROFILE_MASK_RAM +
  930. RAM_LINE_SIZE * PRS_GFT_CAM_LINES_NO_MATCH + 4,
  931. ramline.hi);
  932. }