s2io.c 238 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2010 Exar Corp.
  4. *
  5. * This software may be used and distributed according to the terms of
  6. * the GNU General Public License (GPL), incorporated herein by reference.
  7. * Drivers based on or derived from this code fall under the GPL and must
  8. * retain the authorship, copyright and license notice. This file is not
  9. * a complete program and may only be used when the entire operating
  10. * system is licensed under the GPL.
  11. * See the file COPYING in this distribution for more information.
  12. *
  13. * Credits:
  14. * Jeff Garzik : For pointing out the improper error condition
  15. * check in the s2io_xmit routine and also some
  16. * issues in the Tx watch dog function. Also for
  17. * patiently answering all those innumerable
  18. * questions regaring the 2.6 porting issues.
  19. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  20. * macros available only in 2.6 Kernel.
  21. * Francois Romieu : For pointing out all code part that were
  22. * deprecated and also styling related comments.
  23. * Grant Grundler : For helping me get rid of some Architecture
  24. * dependent code.
  25. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  26. *
  27. * The module loadable parameters that are supported by the driver and a brief
  28. * explanation of all the variables.
  29. *
  30. * rx_ring_num : This can be used to program the number of receive rings used
  31. * in the driver.
  32. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  33. * This is also an array of size 8.
  34. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  35. * values are 1, 2.
  36. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  37. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  38. * Tx descriptors that can be associated with each corresponding FIFO.
  39. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  40. * 2(MSI_X). Default value is '2(MSI_X)'
  41. * lro_max_pkts: This parameter defines maximum number of packets can be
  42. * aggregated as a single large packet
  43. * napi: This parameter used to enable/disable NAPI (polling Rx)
  44. * Possible values '1' for enable and '0' for disable. Default is '1'
  45. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  46. * Possible values '1' for enable , '0' for disable.
  47. * Default is '2' - which means disable in promisc mode
  48. * and enable in non-promiscuous mode.
  49. * multiq: This parameter used to enable/disable MULTIQUEUE support.
  50. * Possible values '1' for enable and '0' for disable. Default is '0'
  51. ************************************************************************/
  52. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/mdio.h>
  63. #include <linux/skbuff.h>
  64. #include <linux/init.h>
  65. #include <linux/delay.h>
  66. #include <linux/stddef.h>
  67. #include <linux/ioctl.h>
  68. #include <linux/timex.h>
  69. #include <linux/ethtool.h>
  70. #include <linux/workqueue.h>
  71. #include <linux/if_vlan.h>
  72. #include <linux/ip.h>
  73. #include <linux/tcp.h>
  74. #include <linux/uaccess.h>
  75. #include <linux/io.h>
  76. #include <linux/slab.h>
  77. #include <linux/prefetch.h>
  78. #include <net/tcp.h>
  79. #include <net/checksum.h>
  80. #include <asm/div64.h>
  81. #include <asm/irq.h>
  82. /* local include */
  83. #include "s2io.h"
  84. #include "s2io-regs.h"
  85. #define DRV_VERSION "2.0.26.28"
  86. /* S2io Driver name & version. */
  87. static const char s2io_driver_name[] = "Neterion";
  88. static const char s2io_driver_version[] = DRV_VERSION;
  89. static const int rxd_size[2] = {32, 48};
  90. static const int rxd_count[2] = {127, 85};
  91. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  92. {
  93. int ret;
  94. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  95. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  96. return ret;
  97. }
  98. /*
  99. * Cards with following subsystem_id have a link state indication
  100. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  101. * macro below identifies these cards given the subsystem_id.
  102. */
  103. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  104. (dev_type == XFRAME_I_DEVICE) ? \
  105. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  106. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  107. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  108. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  109. static inline int is_s2io_card_up(const struct s2io_nic *sp)
  110. {
  111. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  112. }
  113. /* Ethtool related variables and Macros. */
  114. static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
  115. "Register test\t(offline)",
  116. "Eeprom test\t(offline)",
  117. "Link test\t(online)",
  118. "RLDRAM test\t(offline)",
  119. "BIST Test\t(offline)"
  120. };
  121. static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  122. {"tmac_frms"},
  123. {"tmac_data_octets"},
  124. {"tmac_drop_frms"},
  125. {"tmac_mcst_frms"},
  126. {"tmac_bcst_frms"},
  127. {"tmac_pause_ctrl_frms"},
  128. {"tmac_ttl_octets"},
  129. {"tmac_ucst_frms"},
  130. {"tmac_nucst_frms"},
  131. {"tmac_any_err_frms"},
  132. {"tmac_ttl_less_fb_octets"},
  133. {"tmac_vld_ip_octets"},
  134. {"tmac_vld_ip"},
  135. {"tmac_drop_ip"},
  136. {"tmac_icmp"},
  137. {"tmac_rst_tcp"},
  138. {"tmac_tcp"},
  139. {"tmac_udp"},
  140. {"rmac_vld_frms"},
  141. {"rmac_data_octets"},
  142. {"rmac_fcs_err_frms"},
  143. {"rmac_drop_frms"},
  144. {"rmac_vld_mcst_frms"},
  145. {"rmac_vld_bcst_frms"},
  146. {"rmac_in_rng_len_err_frms"},
  147. {"rmac_out_rng_len_err_frms"},
  148. {"rmac_long_frms"},
  149. {"rmac_pause_ctrl_frms"},
  150. {"rmac_unsup_ctrl_frms"},
  151. {"rmac_ttl_octets"},
  152. {"rmac_accepted_ucst_frms"},
  153. {"rmac_accepted_nucst_frms"},
  154. {"rmac_discarded_frms"},
  155. {"rmac_drop_events"},
  156. {"rmac_ttl_less_fb_octets"},
  157. {"rmac_ttl_frms"},
  158. {"rmac_usized_frms"},
  159. {"rmac_osized_frms"},
  160. {"rmac_frag_frms"},
  161. {"rmac_jabber_frms"},
  162. {"rmac_ttl_64_frms"},
  163. {"rmac_ttl_65_127_frms"},
  164. {"rmac_ttl_128_255_frms"},
  165. {"rmac_ttl_256_511_frms"},
  166. {"rmac_ttl_512_1023_frms"},
  167. {"rmac_ttl_1024_1518_frms"},
  168. {"rmac_ip"},
  169. {"rmac_ip_octets"},
  170. {"rmac_hdr_err_ip"},
  171. {"rmac_drop_ip"},
  172. {"rmac_icmp"},
  173. {"rmac_tcp"},
  174. {"rmac_udp"},
  175. {"rmac_err_drp_udp"},
  176. {"rmac_xgmii_err_sym"},
  177. {"rmac_frms_q0"},
  178. {"rmac_frms_q1"},
  179. {"rmac_frms_q2"},
  180. {"rmac_frms_q3"},
  181. {"rmac_frms_q4"},
  182. {"rmac_frms_q5"},
  183. {"rmac_frms_q6"},
  184. {"rmac_frms_q7"},
  185. {"rmac_full_q0"},
  186. {"rmac_full_q1"},
  187. {"rmac_full_q2"},
  188. {"rmac_full_q3"},
  189. {"rmac_full_q4"},
  190. {"rmac_full_q5"},
  191. {"rmac_full_q6"},
  192. {"rmac_full_q7"},
  193. {"rmac_pause_cnt"},
  194. {"rmac_xgmii_data_err_cnt"},
  195. {"rmac_xgmii_ctrl_err_cnt"},
  196. {"rmac_accepted_ip"},
  197. {"rmac_err_tcp"},
  198. {"rd_req_cnt"},
  199. {"new_rd_req_cnt"},
  200. {"new_rd_req_rtry_cnt"},
  201. {"rd_rtry_cnt"},
  202. {"wr_rtry_rd_ack_cnt"},
  203. {"wr_req_cnt"},
  204. {"new_wr_req_cnt"},
  205. {"new_wr_req_rtry_cnt"},
  206. {"wr_rtry_cnt"},
  207. {"wr_disc_cnt"},
  208. {"rd_rtry_wr_ack_cnt"},
  209. {"txp_wr_cnt"},
  210. {"txd_rd_cnt"},
  211. {"txd_wr_cnt"},
  212. {"rxd_rd_cnt"},
  213. {"rxd_wr_cnt"},
  214. {"txf_rd_cnt"},
  215. {"rxf_wr_cnt"}
  216. };
  217. static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  218. {"rmac_ttl_1519_4095_frms"},
  219. {"rmac_ttl_4096_8191_frms"},
  220. {"rmac_ttl_8192_max_frms"},
  221. {"rmac_ttl_gt_max_frms"},
  222. {"rmac_osized_alt_frms"},
  223. {"rmac_jabber_alt_frms"},
  224. {"rmac_gt_max_alt_frms"},
  225. {"rmac_vlan_frms"},
  226. {"rmac_len_discard"},
  227. {"rmac_fcs_discard"},
  228. {"rmac_pf_discard"},
  229. {"rmac_da_discard"},
  230. {"rmac_red_discard"},
  231. {"rmac_rts_discard"},
  232. {"rmac_ingm_full_discard"},
  233. {"link_fault_cnt"}
  234. };
  235. static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  236. {"\n DRIVER STATISTICS"},
  237. {"single_bit_ecc_errs"},
  238. {"double_bit_ecc_errs"},
  239. {"parity_err_cnt"},
  240. {"serious_err_cnt"},
  241. {"soft_reset_cnt"},
  242. {"fifo_full_cnt"},
  243. {"ring_0_full_cnt"},
  244. {"ring_1_full_cnt"},
  245. {"ring_2_full_cnt"},
  246. {"ring_3_full_cnt"},
  247. {"ring_4_full_cnt"},
  248. {"ring_5_full_cnt"},
  249. {"ring_6_full_cnt"},
  250. {"ring_7_full_cnt"},
  251. {"alarm_transceiver_temp_high"},
  252. {"alarm_transceiver_temp_low"},
  253. {"alarm_laser_bias_current_high"},
  254. {"alarm_laser_bias_current_low"},
  255. {"alarm_laser_output_power_high"},
  256. {"alarm_laser_output_power_low"},
  257. {"warn_transceiver_temp_high"},
  258. {"warn_transceiver_temp_low"},
  259. {"warn_laser_bias_current_high"},
  260. {"warn_laser_bias_current_low"},
  261. {"warn_laser_output_power_high"},
  262. {"warn_laser_output_power_low"},
  263. {"lro_aggregated_pkts"},
  264. {"lro_flush_both_count"},
  265. {"lro_out_of_sequence_pkts"},
  266. {"lro_flush_due_to_max_pkts"},
  267. {"lro_avg_aggr_pkts"},
  268. {"mem_alloc_fail_cnt"},
  269. {"pci_map_fail_cnt"},
  270. {"watchdog_timer_cnt"},
  271. {"mem_allocated"},
  272. {"mem_freed"},
  273. {"link_up_cnt"},
  274. {"link_down_cnt"},
  275. {"link_up_time"},
  276. {"link_down_time"},
  277. {"tx_tcode_buf_abort_cnt"},
  278. {"tx_tcode_desc_abort_cnt"},
  279. {"tx_tcode_parity_err_cnt"},
  280. {"tx_tcode_link_loss_cnt"},
  281. {"tx_tcode_list_proc_err_cnt"},
  282. {"rx_tcode_parity_err_cnt"},
  283. {"rx_tcode_abort_cnt"},
  284. {"rx_tcode_parity_abort_cnt"},
  285. {"rx_tcode_rda_fail_cnt"},
  286. {"rx_tcode_unkn_prot_cnt"},
  287. {"rx_tcode_fcs_err_cnt"},
  288. {"rx_tcode_buf_size_err_cnt"},
  289. {"rx_tcode_rxd_corrupt_cnt"},
  290. {"rx_tcode_unkn_err_cnt"},
  291. {"tda_err_cnt"},
  292. {"pfc_err_cnt"},
  293. {"pcc_err_cnt"},
  294. {"tti_err_cnt"},
  295. {"tpa_err_cnt"},
  296. {"sm_err_cnt"},
  297. {"lso_err_cnt"},
  298. {"mac_tmac_err_cnt"},
  299. {"mac_rmac_err_cnt"},
  300. {"xgxs_txgxs_err_cnt"},
  301. {"xgxs_rxgxs_err_cnt"},
  302. {"rc_err_cnt"},
  303. {"prc_pcix_err_cnt"},
  304. {"rpa_err_cnt"},
  305. {"rda_err_cnt"},
  306. {"rti_err_cnt"},
  307. {"mc_err_cnt"}
  308. };
  309. #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
  310. #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
  311. #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
  312. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
  313. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
  314. #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
  315. #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
  316. #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
  317. #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
  318. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  319. init_timer(&timer); \
  320. timer.function = handle; \
  321. timer.data = (unsigned long)arg; \
  322. mod_timer(&timer, (jiffies + exp)) \
  323. /* copy mac addr to def_mac_addr array */
  324. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  325. {
  326. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  327. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  328. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  329. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  330. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  331. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  332. }
  333. /*
  334. * Constants to be programmed into the Xena's registers, to configure
  335. * the XAUI.
  336. */
  337. #define END_SIGN 0x0
  338. static const u64 herc_act_dtx_cfg[] = {
  339. /* Set address */
  340. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  341. /* Write data */
  342. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  343. /* Set address */
  344. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  345. /* Write data */
  346. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  347. /* Set address */
  348. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  349. /* Write data */
  350. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  351. /* Set address */
  352. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  353. /* Write data */
  354. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  355. /* Done */
  356. END_SIGN
  357. };
  358. static const u64 xena_dtx_cfg[] = {
  359. /* Set address */
  360. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  361. /* Write data */
  362. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  363. /* Set address */
  364. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  365. /* Write data */
  366. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  367. /* Set address */
  368. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  369. /* Write data */
  370. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  371. END_SIGN
  372. };
  373. /*
  374. * Constants for Fixing the MacAddress problem seen mostly on
  375. * Alpha machines.
  376. */
  377. static const u64 fix_mac[] = {
  378. 0x0060000000000000ULL, 0x0060600000000000ULL,
  379. 0x0040600000000000ULL, 0x0000600000000000ULL,
  380. 0x0020600000000000ULL, 0x0060600000000000ULL,
  381. 0x0020600000000000ULL, 0x0060600000000000ULL,
  382. 0x0020600000000000ULL, 0x0060600000000000ULL,
  383. 0x0020600000000000ULL, 0x0060600000000000ULL,
  384. 0x0020600000000000ULL, 0x0060600000000000ULL,
  385. 0x0020600000000000ULL, 0x0060600000000000ULL,
  386. 0x0020600000000000ULL, 0x0060600000000000ULL,
  387. 0x0020600000000000ULL, 0x0060600000000000ULL,
  388. 0x0020600000000000ULL, 0x0060600000000000ULL,
  389. 0x0020600000000000ULL, 0x0060600000000000ULL,
  390. 0x0020600000000000ULL, 0x0000600000000000ULL,
  391. 0x0040600000000000ULL, 0x0060600000000000ULL,
  392. END_SIGN
  393. };
  394. MODULE_LICENSE("GPL");
  395. MODULE_VERSION(DRV_VERSION);
  396. /* Module Loadable parameters. */
  397. S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
  398. S2IO_PARM_INT(rx_ring_num, 1);
  399. S2IO_PARM_INT(multiq, 0);
  400. S2IO_PARM_INT(rx_ring_mode, 1);
  401. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  402. S2IO_PARM_INT(rmac_pause_time, 0x100);
  403. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  404. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  405. S2IO_PARM_INT(shared_splits, 0);
  406. S2IO_PARM_INT(tmac_util_period, 5);
  407. S2IO_PARM_INT(rmac_util_period, 5);
  408. S2IO_PARM_INT(l3l4hdr_size, 128);
  409. /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
  410. S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
  411. /* Frequency of Rx desc syncs expressed as power of 2 */
  412. S2IO_PARM_INT(rxsync_frequency, 3);
  413. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  414. S2IO_PARM_INT(intr_type, 2);
  415. /* Large receive offload feature */
  416. /* Max pkts to be aggregated by LRO at one time. If not specified,
  417. * aggregation happens until we hit max IP pkt size(64K)
  418. */
  419. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  420. S2IO_PARM_INT(indicate_max_pkts, 0);
  421. S2IO_PARM_INT(napi, 1);
  422. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  423. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  424. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  425. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  426. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  427. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  428. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  429. module_param_array(tx_fifo_len, uint, NULL, 0);
  430. module_param_array(rx_ring_sz, uint, NULL, 0);
  431. module_param_array(rts_frm_len, uint, NULL, 0);
  432. /*
  433. * S2IO device table.
  434. * This table lists all the devices that this driver supports.
  435. */
  436. static const struct pci_device_id s2io_tbl[] = {
  437. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  438. PCI_ANY_ID, PCI_ANY_ID},
  439. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  440. PCI_ANY_ID, PCI_ANY_ID},
  441. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  442. PCI_ANY_ID, PCI_ANY_ID},
  443. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  444. PCI_ANY_ID, PCI_ANY_ID},
  445. {0,}
  446. };
  447. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  448. static const struct pci_error_handlers s2io_err_handler = {
  449. .error_detected = s2io_io_error_detected,
  450. .slot_reset = s2io_io_slot_reset,
  451. .resume = s2io_io_resume,
  452. };
  453. static struct pci_driver s2io_driver = {
  454. .name = "S2IO",
  455. .id_table = s2io_tbl,
  456. .probe = s2io_init_nic,
  457. .remove = s2io_rem_nic,
  458. .err_handler = &s2io_err_handler,
  459. };
  460. /* A simplifier macro used both by init and free shared_mem Fns(). */
  461. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  462. /* netqueue manipulation helper functions */
  463. static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
  464. {
  465. if (!sp->config.multiq) {
  466. int i;
  467. for (i = 0; i < sp->config.tx_fifo_num; i++)
  468. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
  469. }
  470. netif_tx_stop_all_queues(sp->dev);
  471. }
  472. static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
  473. {
  474. if (!sp->config.multiq)
  475. sp->mac_control.fifos[fifo_no].queue_state =
  476. FIFO_QUEUE_STOP;
  477. netif_tx_stop_all_queues(sp->dev);
  478. }
  479. static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
  480. {
  481. if (!sp->config.multiq) {
  482. int i;
  483. for (i = 0; i < sp->config.tx_fifo_num; i++)
  484. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  485. }
  486. netif_tx_start_all_queues(sp->dev);
  487. }
  488. static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
  489. {
  490. if (!sp->config.multiq) {
  491. int i;
  492. for (i = 0; i < sp->config.tx_fifo_num; i++)
  493. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  494. }
  495. netif_tx_wake_all_queues(sp->dev);
  496. }
  497. static inline void s2io_wake_tx_queue(
  498. struct fifo_info *fifo, int cnt, u8 multiq)
  499. {
  500. if (multiq) {
  501. if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
  502. netif_wake_subqueue(fifo->dev, fifo->fifo_no);
  503. } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
  504. if (netif_queue_stopped(fifo->dev)) {
  505. fifo->queue_state = FIFO_QUEUE_START;
  506. netif_wake_queue(fifo->dev);
  507. }
  508. }
  509. }
  510. /**
  511. * init_shared_mem - Allocation and Initialization of Memory
  512. * @nic: Device private variable.
  513. * Description: The function allocates all the memory areas shared
  514. * between the NIC and the driver. This includes Tx descriptors,
  515. * Rx descriptors and the statistics block.
  516. */
  517. static int init_shared_mem(struct s2io_nic *nic)
  518. {
  519. u32 size;
  520. void *tmp_v_addr, *tmp_v_addr_next;
  521. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  522. struct RxD_block *pre_rxd_blk = NULL;
  523. int i, j, blk_cnt;
  524. int lst_size, lst_per_page;
  525. struct net_device *dev = nic->dev;
  526. unsigned long tmp;
  527. struct buffAdd *ba;
  528. struct config_param *config = &nic->config;
  529. struct mac_info *mac_control = &nic->mac_control;
  530. unsigned long long mem_allocated = 0;
  531. /* Allocation and initialization of TXDLs in FIFOs */
  532. size = 0;
  533. for (i = 0; i < config->tx_fifo_num; i++) {
  534. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  535. size += tx_cfg->fifo_len;
  536. }
  537. if (size > MAX_AVAILABLE_TXDS) {
  538. DBG_PRINT(ERR_DBG,
  539. "Too many TxDs requested: %d, max supported: %d\n",
  540. size, MAX_AVAILABLE_TXDS);
  541. return -EINVAL;
  542. }
  543. size = 0;
  544. for (i = 0; i < config->tx_fifo_num; i++) {
  545. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  546. size = tx_cfg->fifo_len;
  547. /*
  548. * Legal values are from 2 to 8192
  549. */
  550. if (size < 2) {
  551. DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
  552. "Valid lengths are 2 through 8192\n",
  553. i, size);
  554. return -EINVAL;
  555. }
  556. }
  557. lst_size = (sizeof(struct TxD) * config->max_txds);
  558. lst_per_page = PAGE_SIZE / lst_size;
  559. for (i = 0; i < config->tx_fifo_num; i++) {
  560. struct fifo_info *fifo = &mac_control->fifos[i];
  561. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  562. int fifo_len = tx_cfg->fifo_len;
  563. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  564. fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
  565. if (!fifo->list_info) {
  566. DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
  567. return -ENOMEM;
  568. }
  569. mem_allocated += list_holder_size;
  570. }
  571. for (i = 0; i < config->tx_fifo_num; i++) {
  572. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  573. lst_per_page);
  574. struct fifo_info *fifo = &mac_control->fifos[i];
  575. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  576. fifo->tx_curr_put_info.offset = 0;
  577. fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
  578. fifo->tx_curr_get_info.offset = 0;
  579. fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
  580. fifo->fifo_no = i;
  581. fifo->nic = nic;
  582. fifo->max_txds = MAX_SKB_FRAGS + 2;
  583. fifo->dev = dev;
  584. for (j = 0; j < page_num; j++) {
  585. int k = 0;
  586. dma_addr_t tmp_p;
  587. void *tmp_v;
  588. tmp_v = pci_alloc_consistent(nic->pdev,
  589. PAGE_SIZE, &tmp_p);
  590. if (!tmp_v) {
  591. DBG_PRINT(INFO_DBG,
  592. "pci_alloc_consistent failed for TxDL\n");
  593. return -ENOMEM;
  594. }
  595. /* If we got a zero DMA address(can happen on
  596. * certain platforms like PPC), reallocate.
  597. * Store virtual address of page we don't want,
  598. * to be freed later.
  599. */
  600. if (!tmp_p) {
  601. mac_control->zerodma_virt_addr = tmp_v;
  602. DBG_PRINT(INIT_DBG,
  603. "%s: Zero DMA address for TxDL. "
  604. "Virtual address %p\n",
  605. dev->name, tmp_v);
  606. tmp_v = pci_alloc_consistent(nic->pdev,
  607. PAGE_SIZE, &tmp_p);
  608. if (!tmp_v) {
  609. DBG_PRINT(INFO_DBG,
  610. "pci_alloc_consistent failed for TxDL\n");
  611. return -ENOMEM;
  612. }
  613. mem_allocated += PAGE_SIZE;
  614. }
  615. while (k < lst_per_page) {
  616. int l = (j * lst_per_page) + k;
  617. if (l == tx_cfg->fifo_len)
  618. break;
  619. fifo->list_info[l].list_virt_addr =
  620. tmp_v + (k * lst_size);
  621. fifo->list_info[l].list_phy_addr =
  622. tmp_p + (k * lst_size);
  623. k++;
  624. }
  625. }
  626. }
  627. for (i = 0; i < config->tx_fifo_num; i++) {
  628. struct fifo_info *fifo = &mac_control->fifos[i];
  629. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  630. size = tx_cfg->fifo_len;
  631. fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  632. if (!fifo->ufo_in_band_v)
  633. return -ENOMEM;
  634. mem_allocated += (size * sizeof(u64));
  635. }
  636. /* Allocation and initialization of RXDs in Rings */
  637. size = 0;
  638. for (i = 0; i < config->rx_ring_num; i++) {
  639. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  640. struct ring_info *ring = &mac_control->rings[i];
  641. if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
  642. DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
  643. "multiple of RxDs per Block\n",
  644. dev->name, i);
  645. return FAILURE;
  646. }
  647. size += rx_cfg->num_rxd;
  648. ring->block_count = rx_cfg->num_rxd /
  649. (rxd_count[nic->rxd_mode] + 1);
  650. ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
  651. }
  652. if (nic->rxd_mode == RXD_MODE_1)
  653. size = (size * (sizeof(struct RxD1)));
  654. else
  655. size = (size * (sizeof(struct RxD3)));
  656. for (i = 0; i < config->rx_ring_num; i++) {
  657. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  658. struct ring_info *ring = &mac_control->rings[i];
  659. ring->rx_curr_get_info.block_index = 0;
  660. ring->rx_curr_get_info.offset = 0;
  661. ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
  662. ring->rx_curr_put_info.block_index = 0;
  663. ring->rx_curr_put_info.offset = 0;
  664. ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
  665. ring->nic = nic;
  666. ring->ring_no = i;
  667. blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
  668. /* Allocating all the Rx blocks */
  669. for (j = 0; j < blk_cnt; j++) {
  670. struct rx_block_info *rx_blocks;
  671. int l;
  672. rx_blocks = &ring->rx_blocks[j];
  673. size = SIZE_OF_BLOCK; /* size is always page size */
  674. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  675. &tmp_p_addr);
  676. if (tmp_v_addr == NULL) {
  677. /*
  678. * In case of failure, free_shared_mem()
  679. * is called, which should free any
  680. * memory that was alloced till the
  681. * failure happened.
  682. */
  683. rx_blocks->block_virt_addr = tmp_v_addr;
  684. return -ENOMEM;
  685. }
  686. mem_allocated += size;
  687. memset(tmp_v_addr, 0, size);
  688. size = sizeof(struct rxd_info) *
  689. rxd_count[nic->rxd_mode];
  690. rx_blocks->block_virt_addr = tmp_v_addr;
  691. rx_blocks->block_dma_addr = tmp_p_addr;
  692. rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
  693. if (!rx_blocks->rxds)
  694. return -ENOMEM;
  695. mem_allocated += size;
  696. for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
  697. rx_blocks->rxds[l].virt_addr =
  698. rx_blocks->block_virt_addr +
  699. (rxd_size[nic->rxd_mode] * l);
  700. rx_blocks->rxds[l].dma_addr =
  701. rx_blocks->block_dma_addr +
  702. (rxd_size[nic->rxd_mode] * l);
  703. }
  704. }
  705. /* Interlinking all Rx Blocks */
  706. for (j = 0; j < blk_cnt; j++) {
  707. int next = (j + 1) % blk_cnt;
  708. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  709. tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
  710. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  711. tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
  712. pre_rxd_blk = tmp_v_addr;
  713. pre_rxd_blk->reserved_2_pNext_RxD_block =
  714. (unsigned long)tmp_v_addr_next;
  715. pre_rxd_blk->pNext_RxD_Blk_physical =
  716. (u64)tmp_p_addr_next;
  717. }
  718. }
  719. if (nic->rxd_mode == RXD_MODE_3B) {
  720. /*
  721. * Allocation of Storages for buffer addresses in 2BUFF mode
  722. * and the buffers as well.
  723. */
  724. for (i = 0; i < config->rx_ring_num; i++) {
  725. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  726. struct ring_info *ring = &mac_control->rings[i];
  727. blk_cnt = rx_cfg->num_rxd /
  728. (rxd_count[nic->rxd_mode] + 1);
  729. size = sizeof(struct buffAdd *) * blk_cnt;
  730. ring->ba = kmalloc(size, GFP_KERNEL);
  731. if (!ring->ba)
  732. return -ENOMEM;
  733. mem_allocated += size;
  734. for (j = 0; j < blk_cnt; j++) {
  735. int k = 0;
  736. size = sizeof(struct buffAdd) *
  737. (rxd_count[nic->rxd_mode] + 1);
  738. ring->ba[j] = kmalloc(size, GFP_KERNEL);
  739. if (!ring->ba[j])
  740. return -ENOMEM;
  741. mem_allocated += size;
  742. while (k != rxd_count[nic->rxd_mode]) {
  743. ba = &ring->ba[j][k];
  744. size = BUF0_LEN + ALIGN_SIZE;
  745. ba->ba_0_org = kmalloc(size, GFP_KERNEL);
  746. if (!ba->ba_0_org)
  747. return -ENOMEM;
  748. mem_allocated += size;
  749. tmp = (unsigned long)ba->ba_0_org;
  750. tmp += ALIGN_SIZE;
  751. tmp &= ~((unsigned long)ALIGN_SIZE);
  752. ba->ba_0 = (void *)tmp;
  753. size = BUF1_LEN + ALIGN_SIZE;
  754. ba->ba_1_org = kmalloc(size, GFP_KERNEL);
  755. if (!ba->ba_1_org)
  756. return -ENOMEM;
  757. mem_allocated += size;
  758. tmp = (unsigned long)ba->ba_1_org;
  759. tmp += ALIGN_SIZE;
  760. tmp &= ~((unsigned long)ALIGN_SIZE);
  761. ba->ba_1 = (void *)tmp;
  762. k++;
  763. }
  764. }
  765. }
  766. }
  767. /* Allocation and initialization of Statistics block */
  768. size = sizeof(struct stat_block);
  769. mac_control->stats_mem =
  770. pci_alloc_consistent(nic->pdev, size,
  771. &mac_control->stats_mem_phy);
  772. if (!mac_control->stats_mem) {
  773. /*
  774. * In case of failure, free_shared_mem() is called, which
  775. * should free any memory that was alloced till the
  776. * failure happened.
  777. */
  778. return -ENOMEM;
  779. }
  780. mem_allocated += size;
  781. mac_control->stats_mem_sz = size;
  782. tmp_v_addr = mac_control->stats_mem;
  783. mac_control->stats_info = tmp_v_addr;
  784. memset(tmp_v_addr, 0, size);
  785. DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
  786. dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
  787. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  788. return SUCCESS;
  789. }
  790. /**
  791. * free_shared_mem - Free the allocated Memory
  792. * @nic: Device private variable.
  793. * Description: This function is to free all memory locations allocated by
  794. * the init_shared_mem() function and return it to the kernel.
  795. */
  796. static void free_shared_mem(struct s2io_nic *nic)
  797. {
  798. int i, j, blk_cnt, size;
  799. void *tmp_v_addr;
  800. dma_addr_t tmp_p_addr;
  801. int lst_size, lst_per_page;
  802. struct net_device *dev;
  803. int page_num = 0;
  804. struct config_param *config;
  805. struct mac_info *mac_control;
  806. struct stat_block *stats;
  807. struct swStat *swstats;
  808. if (!nic)
  809. return;
  810. dev = nic->dev;
  811. config = &nic->config;
  812. mac_control = &nic->mac_control;
  813. stats = mac_control->stats_info;
  814. swstats = &stats->sw_stat;
  815. lst_size = sizeof(struct TxD) * config->max_txds;
  816. lst_per_page = PAGE_SIZE / lst_size;
  817. for (i = 0; i < config->tx_fifo_num; i++) {
  818. struct fifo_info *fifo = &mac_control->fifos[i];
  819. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  820. page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
  821. for (j = 0; j < page_num; j++) {
  822. int mem_blks = (j * lst_per_page);
  823. struct list_info_hold *fli;
  824. if (!fifo->list_info)
  825. return;
  826. fli = &fifo->list_info[mem_blks];
  827. if (!fli->list_virt_addr)
  828. break;
  829. pci_free_consistent(nic->pdev, PAGE_SIZE,
  830. fli->list_virt_addr,
  831. fli->list_phy_addr);
  832. swstats->mem_freed += PAGE_SIZE;
  833. }
  834. /* If we got a zero DMA address during allocation,
  835. * free the page now
  836. */
  837. if (mac_control->zerodma_virt_addr) {
  838. pci_free_consistent(nic->pdev, PAGE_SIZE,
  839. mac_control->zerodma_virt_addr,
  840. (dma_addr_t)0);
  841. DBG_PRINT(INIT_DBG,
  842. "%s: Freeing TxDL with zero DMA address. "
  843. "Virtual address %p\n",
  844. dev->name, mac_control->zerodma_virt_addr);
  845. swstats->mem_freed += PAGE_SIZE;
  846. }
  847. kfree(fifo->list_info);
  848. swstats->mem_freed += tx_cfg->fifo_len *
  849. sizeof(struct list_info_hold);
  850. }
  851. size = SIZE_OF_BLOCK;
  852. for (i = 0; i < config->rx_ring_num; i++) {
  853. struct ring_info *ring = &mac_control->rings[i];
  854. blk_cnt = ring->block_count;
  855. for (j = 0; j < blk_cnt; j++) {
  856. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  857. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  858. if (tmp_v_addr == NULL)
  859. break;
  860. pci_free_consistent(nic->pdev, size,
  861. tmp_v_addr, tmp_p_addr);
  862. swstats->mem_freed += size;
  863. kfree(ring->rx_blocks[j].rxds);
  864. swstats->mem_freed += sizeof(struct rxd_info) *
  865. rxd_count[nic->rxd_mode];
  866. }
  867. }
  868. if (nic->rxd_mode == RXD_MODE_3B) {
  869. /* Freeing buffer storage addresses in 2BUFF mode. */
  870. for (i = 0; i < config->rx_ring_num; i++) {
  871. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  872. struct ring_info *ring = &mac_control->rings[i];
  873. blk_cnt = rx_cfg->num_rxd /
  874. (rxd_count[nic->rxd_mode] + 1);
  875. for (j = 0; j < blk_cnt; j++) {
  876. int k = 0;
  877. if (!ring->ba[j])
  878. continue;
  879. while (k != rxd_count[nic->rxd_mode]) {
  880. struct buffAdd *ba = &ring->ba[j][k];
  881. kfree(ba->ba_0_org);
  882. swstats->mem_freed +=
  883. BUF0_LEN + ALIGN_SIZE;
  884. kfree(ba->ba_1_org);
  885. swstats->mem_freed +=
  886. BUF1_LEN + ALIGN_SIZE;
  887. k++;
  888. }
  889. kfree(ring->ba[j]);
  890. swstats->mem_freed += sizeof(struct buffAdd) *
  891. (rxd_count[nic->rxd_mode] + 1);
  892. }
  893. kfree(ring->ba);
  894. swstats->mem_freed += sizeof(struct buffAdd *) *
  895. blk_cnt;
  896. }
  897. }
  898. for (i = 0; i < nic->config.tx_fifo_num; i++) {
  899. struct fifo_info *fifo = &mac_control->fifos[i];
  900. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  901. if (fifo->ufo_in_band_v) {
  902. swstats->mem_freed += tx_cfg->fifo_len *
  903. sizeof(u64);
  904. kfree(fifo->ufo_in_band_v);
  905. }
  906. }
  907. if (mac_control->stats_mem) {
  908. swstats->mem_freed += mac_control->stats_mem_sz;
  909. pci_free_consistent(nic->pdev,
  910. mac_control->stats_mem_sz,
  911. mac_control->stats_mem,
  912. mac_control->stats_mem_phy);
  913. }
  914. }
  915. /**
  916. * s2io_verify_pci_mode -
  917. */
  918. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  919. {
  920. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  921. register u64 val64 = 0;
  922. int mode;
  923. val64 = readq(&bar0->pci_mode);
  924. mode = (u8)GET_PCI_MODE(val64);
  925. if (val64 & PCI_MODE_UNKNOWN_MODE)
  926. return -1; /* Unknown PCI mode */
  927. return mode;
  928. }
  929. #define NEC_VENID 0x1033
  930. #define NEC_DEVID 0x0125
  931. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  932. {
  933. struct pci_dev *tdev = NULL;
  934. for_each_pci_dev(tdev) {
  935. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  936. if (tdev->bus == s2io_pdev->bus->parent) {
  937. pci_dev_put(tdev);
  938. return 1;
  939. }
  940. }
  941. }
  942. return 0;
  943. }
  944. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  945. /**
  946. * s2io_print_pci_mode -
  947. */
  948. static int s2io_print_pci_mode(struct s2io_nic *nic)
  949. {
  950. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  951. register u64 val64 = 0;
  952. int mode;
  953. struct config_param *config = &nic->config;
  954. const char *pcimode;
  955. val64 = readq(&bar0->pci_mode);
  956. mode = (u8)GET_PCI_MODE(val64);
  957. if (val64 & PCI_MODE_UNKNOWN_MODE)
  958. return -1; /* Unknown PCI mode */
  959. config->bus_speed = bus_speed[mode];
  960. if (s2io_on_nec_bridge(nic->pdev)) {
  961. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  962. nic->dev->name);
  963. return mode;
  964. }
  965. switch (mode) {
  966. case PCI_MODE_PCI_33:
  967. pcimode = "33MHz PCI bus";
  968. break;
  969. case PCI_MODE_PCI_66:
  970. pcimode = "66MHz PCI bus";
  971. break;
  972. case PCI_MODE_PCIX_M1_66:
  973. pcimode = "66MHz PCIX(M1) bus";
  974. break;
  975. case PCI_MODE_PCIX_M1_100:
  976. pcimode = "100MHz PCIX(M1) bus";
  977. break;
  978. case PCI_MODE_PCIX_M1_133:
  979. pcimode = "133MHz PCIX(M1) bus";
  980. break;
  981. case PCI_MODE_PCIX_M2_66:
  982. pcimode = "133MHz PCIX(M2) bus";
  983. break;
  984. case PCI_MODE_PCIX_M2_100:
  985. pcimode = "200MHz PCIX(M2) bus";
  986. break;
  987. case PCI_MODE_PCIX_M2_133:
  988. pcimode = "266MHz PCIX(M2) bus";
  989. break;
  990. default:
  991. pcimode = "unsupported bus!";
  992. mode = -1;
  993. }
  994. DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
  995. nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
  996. return mode;
  997. }
  998. /**
  999. * init_tti - Initialization transmit traffic interrupt scheme
  1000. * @nic: device private variable
  1001. * @link: link status (UP/DOWN) used to enable/disable continuous
  1002. * transmit interrupts
  1003. * Description: The function configures transmit traffic interrupts
  1004. * Return Value: SUCCESS on success and
  1005. * '-1' on failure
  1006. */
  1007. static int init_tti(struct s2io_nic *nic, int link)
  1008. {
  1009. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1010. register u64 val64 = 0;
  1011. int i;
  1012. struct config_param *config = &nic->config;
  1013. for (i = 0; i < config->tx_fifo_num; i++) {
  1014. /*
  1015. * TTI Initialization. Default Tx timer gets us about
  1016. * 250 interrupts per sec. Continuous interrupts are enabled
  1017. * by default.
  1018. */
  1019. if (nic->device_type == XFRAME_II_DEVICE) {
  1020. int count = (nic->config.bus_speed * 125)/2;
  1021. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1022. } else
  1023. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1024. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1025. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1026. TTI_DATA1_MEM_TX_URNG_C(0x30) |
  1027. TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1028. if (i == 0)
  1029. if (use_continuous_tx_intrs && (link == LINK_UP))
  1030. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1031. writeq(val64, &bar0->tti_data1_mem);
  1032. if (nic->config.intr_type == MSI_X) {
  1033. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1034. TTI_DATA2_MEM_TX_UFC_B(0x100) |
  1035. TTI_DATA2_MEM_TX_UFC_C(0x200) |
  1036. TTI_DATA2_MEM_TX_UFC_D(0x300);
  1037. } else {
  1038. if ((nic->config.tx_steering_type ==
  1039. TX_DEFAULT_STEERING) &&
  1040. (config->tx_fifo_num > 1) &&
  1041. (i >= nic->udp_fifo_idx) &&
  1042. (i < (nic->udp_fifo_idx +
  1043. nic->total_udp_fifos)))
  1044. val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
  1045. TTI_DATA2_MEM_TX_UFC_B(0x80) |
  1046. TTI_DATA2_MEM_TX_UFC_C(0x100) |
  1047. TTI_DATA2_MEM_TX_UFC_D(0x120);
  1048. else
  1049. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1050. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1051. TTI_DATA2_MEM_TX_UFC_C(0x40) |
  1052. TTI_DATA2_MEM_TX_UFC_D(0x80);
  1053. }
  1054. writeq(val64, &bar0->tti_data2_mem);
  1055. val64 = TTI_CMD_MEM_WE |
  1056. TTI_CMD_MEM_STROBE_NEW_CMD |
  1057. TTI_CMD_MEM_OFFSET(i);
  1058. writeq(val64, &bar0->tti_command_mem);
  1059. if (wait_for_cmd_complete(&bar0->tti_command_mem,
  1060. TTI_CMD_MEM_STROBE_NEW_CMD,
  1061. S2IO_BIT_RESET) != SUCCESS)
  1062. return FAILURE;
  1063. }
  1064. return SUCCESS;
  1065. }
  1066. /**
  1067. * init_nic - Initialization of hardware
  1068. * @nic: device private variable
  1069. * Description: The function sequentially configures every block
  1070. * of the H/W from their reset values.
  1071. * Return Value: SUCCESS on success and
  1072. * '-1' on failure (endian settings incorrect).
  1073. */
  1074. static int init_nic(struct s2io_nic *nic)
  1075. {
  1076. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1077. struct net_device *dev = nic->dev;
  1078. register u64 val64 = 0;
  1079. void __iomem *add;
  1080. u32 time;
  1081. int i, j;
  1082. int dtx_cnt = 0;
  1083. unsigned long long mem_share;
  1084. int mem_size;
  1085. struct config_param *config = &nic->config;
  1086. struct mac_info *mac_control = &nic->mac_control;
  1087. /* to set the swapper controle on the card */
  1088. if (s2io_set_swapper(nic)) {
  1089. DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
  1090. return -EIO;
  1091. }
  1092. /*
  1093. * Herc requires EOI to be removed from reset before XGXS, so..
  1094. */
  1095. if (nic->device_type & XFRAME_II_DEVICE) {
  1096. val64 = 0xA500000000ULL;
  1097. writeq(val64, &bar0->sw_reset);
  1098. msleep(500);
  1099. val64 = readq(&bar0->sw_reset);
  1100. }
  1101. /* Remove XGXS from reset state */
  1102. val64 = 0;
  1103. writeq(val64, &bar0->sw_reset);
  1104. msleep(500);
  1105. val64 = readq(&bar0->sw_reset);
  1106. /* Ensure that it's safe to access registers by checking
  1107. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1108. */
  1109. if (nic->device_type == XFRAME_II_DEVICE) {
  1110. for (i = 0; i < 50; i++) {
  1111. val64 = readq(&bar0->adapter_status);
  1112. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1113. break;
  1114. msleep(10);
  1115. }
  1116. if (i == 50)
  1117. return -ENODEV;
  1118. }
  1119. /* Enable Receiving broadcasts */
  1120. add = &bar0->mac_cfg;
  1121. val64 = readq(&bar0->mac_cfg);
  1122. val64 |= MAC_RMAC_BCAST_ENABLE;
  1123. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1124. writel((u32)val64, add);
  1125. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1126. writel((u32) (val64 >> 32), (add + 4));
  1127. /* Read registers in all blocks */
  1128. val64 = readq(&bar0->mac_int_mask);
  1129. val64 = readq(&bar0->mc_int_mask);
  1130. val64 = readq(&bar0->xgxs_int_mask);
  1131. /* Set MTU */
  1132. val64 = dev->mtu;
  1133. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1134. if (nic->device_type & XFRAME_II_DEVICE) {
  1135. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1136. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1137. &bar0->dtx_control, UF);
  1138. if (dtx_cnt & 0x1)
  1139. msleep(1); /* Necessary!! */
  1140. dtx_cnt++;
  1141. }
  1142. } else {
  1143. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1144. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1145. &bar0->dtx_control, UF);
  1146. val64 = readq(&bar0->dtx_control);
  1147. dtx_cnt++;
  1148. }
  1149. }
  1150. /* Tx DMA Initialization */
  1151. val64 = 0;
  1152. writeq(val64, &bar0->tx_fifo_partition_0);
  1153. writeq(val64, &bar0->tx_fifo_partition_1);
  1154. writeq(val64, &bar0->tx_fifo_partition_2);
  1155. writeq(val64, &bar0->tx_fifo_partition_3);
  1156. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1157. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  1158. val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
  1159. vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
  1160. if (i == (config->tx_fifo_num - 1)) {
  1161. if (i % 2 == 0)
  1162. i++;
  1163. }
  1164. switch (i) {
  1165. case 1:
  1166. writeq(val64, &bar0->tx_fifo_partition_0);
  1167. val64 = 0;
  1168. j = 0;
  1169. break;
  1170. case 3:
  1171. writeq(val64, &bar0->tx_fifo_partition_1);
  1172. val64 = 0;
  1173. j = 0;
  1174. break;
  1175. case 5:
  1176. writeq(val64, &bar0->tx_fifo_partition_2);
  1177. val64 = 0;
  1178. j = 0;
  1179. break;
  1180. case 7:
  1181. writeq(val64, &bar0->tx_fifo_partition_3);
  1182. val64 = 0;
  1183. j = 0;
  1184. break;
  1185. default:
  1186. j++;
  1187. break;
  1188. }
  1189. }
  1190. /*
  1191. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1192. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1193. */
  1194. if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
  1195. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1196. val64 = readq(&bar0->tx_fifo_partition_0);
  1197. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1198. &bar0->tx_fifo_partition_0, (unsigned long long)val64);
  1199. /*
  1200. * Initialization of Tx_PA_CONFIG register to ignore packet
  1201. * integrity checking.
  1202. */
  1203. val64 = readq(&bar0->tx_pa_cfg);
  1204. val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
  1205. TX_PA_CFG_IGNORE_SNAP_OUI |
  1206. TX_PA_CFG_IGNORE_LLC_CTRL |
  1207. TX_PA_CFG_IGNORE_L2_ERR;
  1208. writeq(val64, &bar0->tx_pa_cfg);
  1209. /* Rx DMA initialization. */
  1210. val64 = 0;
  1211. for (i = 0; i < config->rx_ring_num; i++) {
  1212. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  1213. val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
  1214. }
  1215. writeq(val64, &bar0->rx_queue_priority);
  1216. /*
  1217. * Allocating equal share of memory to all the
  1218. * configured Rings.
  1219. */
  1220. val64 = 0;
  1221. if (nic->device_type & XFRAME_II_DEVICE)
  1222. mem_size = 32;
  1223. else
  1224. mem_size = 64;
  1225. for (i = 0; i < config->rx_ring_num; i++) {
  1226. switch (i) {
  1227. case 0:
  1228. mem_share = (mem_size / config->rx_ring_num +
  1229. mem_size % config->rx_ring_num);
  1230. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1231. continue;
  1232. case 1:
  1233. mem_share = (mem_size / config->rx_ring_num);
  1234. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1235. continue;
  1236. case 2:
  1237. mem_share = (mem_size / config->rx_ring_num);
  1238. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1239. continue;
  1240. case 3:
  1241. mem_share = (mem_size / config->rx_ring_num);
  1242. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1243. continue;
  1244. case 4:
  1245. mem_share = (mem_size / config->rx_ring_num);
  1246. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1247. continue;
  1248. case 5:
  1249. mem_share = (mem_size / config->rx_ring_num);
  1250. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1251. continue;
  1252. case 6:
  1253. mem_share = (mem_size / config->rx_ring_num);
  1254. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1255. continue;
  1256. case 7:
  1257. mem_share = (mem_size / config->rx_ring_num);
  1258. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1259. continue;
  1260. }
  1261. }
  1262. writeq(val64, &bar0->rx_queue_cfg);
  1263. /*
  1264. * Filling Tx round robin registers
  1265. * as per the number of FIFOs for equal scheduling priority
  1266. */
  1267. switch (config->tx_fifo_num) {
  1268. case 1:
  1269. val64 = 0x0;
  1270. writeq(val64, &bar0->tx_w_round_robin_0);
  1271. writeq(val64, &bar0->tx_w_round_robin_1);
  1272. writeq(val64, &bar0->tx_w_round_robin_2);
  1273. writeq(val64, &bar0->tx_w_round_robin_3);
  1274. writeq(val64, &bar0->tx_w_round_robin_4);
  1275. break;
  1276. case 2:
  1277. val64 = 0x0001000100010001ULL;
  1278. writeq(val64, &bar0->tx_w_round_robin_0);
  1279. writeq(val64, &bar0->tx_w_round_robin_1);
  1280. writeq(val64, &bar0->tx_w_round_robin_2);
  1281. writeq(val64, &bar0->tx_w_round_robin_3);
  1282. val64 = 0x0001000100000000ULL;
  1283. writeq(val64, &bar0->tx_w_round_robin_4);
  1284. break;
  1285. case 3:
  1286. val64 = 0x0001020001020001ULL;
  1287. writeq(val64, &bar0->tx_w_round_robin_0);
  1288. val64 = 0x0200010200010200ULL;
  1289. writeq(val64, &bar0->tx_w_round_robin_1);
  1290. val64 = 0x0102000102000102ULL;
  1291. writeq(val64, &bar0->tx_w_round_robin_2);
  1292. val64 = 0x0001020001020001ULL;
  1293. writeq(val64, &bar0->tx_w_round_robin_3);
  1294. val64 = 0x0200010200000000ULL;
  1295. writeq(val64, &bar0->tx_w_round_robin_4);
  1296. break;
  1297. case 4:
  1298. val64 = 0x0001020300010203ULL;
  1299. writeq(val64, &bar0->tx_w_round_robin_0);
  1300. writeq(val64, &bar0->tx_w_round_robin_1);
  1301. writeq(val64, &bar0->tx_w_round_robin_2);
  1302. writeq(val64, &bar0->tx_w_round_robin_3);
  1303. val64 = 0x0001020300000000ULL;
  1304. writeq(val64, &bar0->tx_w_round_robin_4);
  1305. break;
  1306. case 5:
  1307. val64 = 0x0001020304000102ULL;
  1308. writeq(val64, &bar0->tx_w_round_robin_0);
  1309. val64 = 0x0304000102030400ULL;
  1310. writeq(val64, &bar0->tx_w_round_robin_1);
  1311. val64 = 0x0102030400010203ULL;
  1312. writeq(val64, &bar0->tx_w_round_robin_2);
  1313. val64 = 0x0400010203040001ULL;
  1314. writeq(val64, &bar0->tx_w_round_robin_3);
  1315. val64 = 0x0203040000000000ULL;
  1316. writeq(val64, &bar0->tx_w_round_robin_4);
  1317. break;
  1318. case 6:
  1319. val64 = 0x0001020304050001ULL;
  1320. writeq(val64, &bar0->tx_w_round_robin_0);
  1321. val64 = 0x0203040500010203ULL;
  1322. writeq(val64, &bar0->tx_w_round_robin_1);
  1323. val64 = 0x0405000102030405ULL;
  1324. writeq(val64, &bar0->tx_w_round_robin_2);
  1325. val64 = 0x0001020304050001ULL;
  1326. writeq(val64, &bar0->tx_w_round_robin_3);
  1327. val64 = 0x0203040500000000ULL;
  1328. writeq(val64, &bar0->tx_w_round_robin_4);
  1329. break;
  1330. case 7:
  1331. val64 = 0x0001020304050600ULL;
  1332. writeq(val64, &bar0->tx_w_round_robin_0);
  1333. val64 = 0x0102030405060001ULL;
  1334. writeq(val64, &bar0->tx_w_round_robin_1);
  1335. val64 = 0x0203040506000102ULL;
  1336. writeq(val64, &bar0->tx_w_round_robin_2);
  1337. val64 = 0x0304050600010203ULL;
  1338. writeq(val64, &bar0->tx_w_round_robin_3);
  1339. val64 = 0x0405060000000000ULL;
  1340. writeq(val64, &bar0->tx_w_round_robin_4);
  1341. break;
  1342. case 8:
  1343. val64 = 0x0001020304050607ULL;
  1344. writeq(val64, &bar0->tx_w_round_robin_0);
  1345. writeq(val64, &bar0->tx_w_round_robin_1);
  1346. writeq(val64, &bar0->tx_w_round_robin_2);
  1347. writeq(val64, &bar0->tx_w_round_robin_3);
  1348. val64 = 0x0001020300000000ULL;
  1349. writeq(val64, &bar0->tx_w_round_robin_4);
  1350. break;
  1351. }
  1352. /* Enable all configured Tx FIFO partitions */
  1353. val64 = readq(&bar0->tx_fifo_partition_0);
  1354. val64 |= (TX_FIFO_PARTITION_EN);
  1355. writeq(val64, &bar0->tx_fifo_partition_0);
  1356. /* Filling the Rx round robin registers as per the
  1357. * number of Rings and steering based on QoS with
  1358. * equal priority.
  1359. */
  1360. switch (config->rx_ring_num) {
  1361. case 1:
  1362. val64 = 0x0;
  1363. writeq(val64, &bar0->rx_w_round_robin_0);
  1364. writeq(val64, &bar0->rx_w_round_robin_1);
  1365. writeq(val64, &bar0->rx_w_round_robin_2);
  1366. writeq(val64, &bar0->rx_w_round_robin_3);
  1367. writeq(val64, &bar0->rx_w_round_robin_4);
  1368. val64 = 0x8080808080808080ULL;
  1369. writeq(val64, &bar0->rts_qos_steering);
  1370. break;
  1371. case 2:
  1372. val64 = 0x0001000100010001ULL;
  1373. writeq(val64, &bar0->rx_w_round_robin_0);
  1374. writeq(val64, &bar0->rx_w_round_robin_1);
  1375. writeq(val64, &bar0->rx_w_round_robin_2);
  1376. writeq(val64, &bar0->rx_w_round_robin_3);
  1377. val64 = 0x0001000100000000ULL;
  1378. writeq(val64, &bar0->rx_w_round_robin_4);
  1379. val64 = 0x8080808040404040ULL;
  1380. writeq(val64, &bar0->rts_qos_steering);
  1381. break;
  1382. case 3:
  1383. val64 = 0x0001020001020001ULL;
  1384. writeq(val64, &bar0->rx_w_round_robin_0);
  1385. val64 = 0x0200010200010200ULL;
  1386. writeq(val64, &bar0->rx_w_round_robin_1);
  1387. val64 = 0x0102000102000102ULL;
  1388. writeq(val64, &bar0->rx_w_round_robin_2);
  1389. val64 = 0x0001020001020001ULL;
  1390. writeq(val64, &bar0->rx_w_round_robin_3);
  1391. val64 = 0x0200010200000000ULL;
  1392. writeq(val64, &bar0->rx_w_round_robin_4);
  1393. val64 = 0x8080804040402020ULL;
  1394. writeq(val64, &bar0->rts_qos_steering);
  1395. break;
  1396. case 4:
  1397. val64 = 0x0001020300010203ULL;
  1398. writeq(val64, &bar0->rx_w_round_robin_0);
  1399. writeq(val64, &bar0->rx_w_round_robin_1);
  1400. writeq(val64, &bar0->rx_w_round_robin_2);
  1401. writeq(val64, &bar0->rx_w_round_robin_3);
  1402. val64 = 0x0001020300000000ULL;
  1403. writeq(val64, &bar0->rx_w_round_robin_4);
  1404. val64 = 0x8080404020201010ULL;
  1405. writeq(val64, &bar0->rts_qos_steering);
  1406. break;
  1407. case 5:
  1408. val64 = 0x0001020304000102ULL;
  1409. writeq(val64, &bar0->rx_w_round_robin_0);
  1410. val64 = 0x0304000102030400ULL;
  1411. writeq(val64, &bar0->rx_w_round_robin_1);
  1412. val64 = 0x0102030400010203ULL;
  1413. writeq(val64, &bar0->rx_w_round_robin_2);
  1414. val64 = 0x0400010203040001ULL;
  1415. writeq(val64, &bar0->rx_w_round_robin_3);
  1416. val64 = 0x0203040000000000ULL;
  1417. writeq(val64, &bar0->rx_w_round_robin_4);
  1418. val64 = 0x8080404020201008ULL;
  1419. writeq(val64, &bar0->rts_qos_steering);
  1420. break;
  1421. case 6:
  1422. val64 = 0x0001020304050001ULL;
  1423. writeq(val64, &bar0->rx_w_round_robin_0);
  1424. val64 = 0x0203040500010203ULL;
  1425. writeq(val64, &bar0->rx_w_round_robin_1);
  1426. val64 = 0x0405000102030405ULL;
  1427. writeq(val64, &bar0->rx_w_round_robin_2);
  1428. val64 = 0x0001020304050001ULL;
  1429. writeq(val64, &bar0->rx_w_round_robin_3);
  1430. val64 = 0x0203040500000000ULL;
  1431. writeq(val64, &bar0->rx_w_round_robin_4);
  1432. val64 = 0x8080404020100804ULL;
  1433. writeq(val64, &bar0->rts_qos_steering);
  1434. break;
  1435. case 7:
  1436. val64 = 0x0001020304050600ULL;
  1437. writeq(val64, &bar0->rx_w_round_robin_0);
  1438. val64 = 0x0102030405060001ULL;
  1439. writeq(val64, &bar0->rx_w_round_robin_1);
  1440. val64 = 0x0203040506000102ULL;
  1441. writeq(val64, &bar0->rx_w_round_robin_2);
  1442. val64 = 0x0304050600010203ULL;
  1443. writeq(val64, &bar0->rx_w_round_robin_3);
  1444. val64 = 0x0405060000000000ULL;
  1445. writeq(val64, &bar0->rx_w_round_robin_4);
  1446. val64 = 0x8080402010080402ULL;
  1447. writeq(val64, &bar0->rts_qos_steering);
  1448. break;
  1449. case 8:
  1450. val64 = 0x0001020304050607ULL;
  1451. writeq(val64, &bar0->rx_w_round_robin_0);
  1452. writeq(val64, &bar0->rx_w_round_robin_1);
  1453. writeq(val64, &bar0->rx_w_round_robin_2);
  1454. writeq(val64, &bar0->rx_w_round_robin_3);
  1455. val64 = 0x0001020300000000ULL;
  1456. writeq(val64, &bar0->rx_w_round_robin_4);
  1457. val64 = 0x8040201008040201ULL;
  1458. writeq(val64, &bar0->rts_qos_steering);
  1459. break;
  1460. }
  1461. /* UDP Fix */
  1462. val64 = 0;
  1463. for (i = 0; i < 8; i++)
  1464. writeq(val64, &bar0->rts_frm_len_n[i]);
  1465. /* Set the default rts frame length for the rings configured */
  1466. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1467. for (i = 0 ; i < config->rx_ring_num ; i++)
  1468. writeq(val64, &bar0->rts_frm_len_n[i]);
  1469. /* Set the frame length for the configured rings
  1470. * desired by the user
  1471. */
  1472. for (i = 0; i < config->rx_ring_num; i++) {
  1473. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1474. * specified frame length steering.
  1475. * If the user provides the frame length then program
  1476. * the rts_frm_len register for those values or else
  1477. * leave it as it is.
  1478. */
  1479. if (rts_frm_len[i] != 0) {
  1480. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1481. &bar0->rts_frm_len_n[i]);
  1482. }
  1483. }
  1484. /* Disable differentiated services steering logic */
  1485. for (i = 0; i < 64; i++) {
  1486. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1487. DBG_PRINT(ERR_DBG,
  1488. "%s: rts_ds_steer failed on codepoint %d\n",
  1489. dev->name, i);
  1490. return -ENODEV;
  1491. }
  1492. }
  1493. /* Program statistics memory */
  1494. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1495. if (nic->device_type == XFRAME_II_DEVICE) {
  1496. val64 = STAT_BC(0x320);
  1497. writeq(val64, &bar0->stat_byte_cnt);
  1498. }
  1499. /*
  1500. * Initializing the sampling rate for the device to calculate the
  1501. * bandwidth utilization.
  1502. */
  1503. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1504. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1505. writeq(val64, &bar0->mac_link_util);
  1506. /*
  1507. * Initializing the Transmit and Receive Traffic Interrupt
  1508. * Scheme.
  1509. */
  1510. /* Initialize TTI */
  1511. if (SUCCESS != init_tti(nic, nic->last_link_state))
  1512. return -ENODEV;
  1513. /* RTI Initialization */
  1514. if (nic->device_type == XFRAME_II_DEVICE) {
  1515. /*
  1516. * Programmed to generate Apprx 500 Intrs per
  1517. * second
  1518. */
  1519. int count = (nic->config.bus_speed * 125)/4;
  1520. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1521. } else
  1522. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1523. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1524. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1525. RTI_DATA1_MEM_RX_URNG_C(0x30) |
  1526. RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1527. writeq(val64, &bar0->rti_data1_mem);
  1528. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1529. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1530. if (nic->config.intr_type == MSI_X)
  1531. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
  1532. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1533. else
  1534. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
  1535. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1536. writeq(val64, &bar0->rti_data2_mem);
  1537. for (i = 0; i < config->rx_ring_num; i++) {
  1538. val64 = RTI_CMD_MEM_WE |
  1539. RTI_CMD_MEM_STROBE_NEW_CMD |
  1540. RTI_CMD_MEM_OFFSET(i);
  1541. writeq(val64, &bar0->rti_command_mem);
  1542. /*
  1543. * Once the operation completes, the Strobe bit of the
  1544. * command register will be reset. We poll for this
  1545. * particular condition. We wait for a maximum of 500ms
  1546. * for the operation to complete, if it's not complete
  1547. * by then we return error.
  1548. */
  1549. time = 0;
  1550. while (true) {
  1551. val64 = readq(&bar0->rti_command_mem);
  1552. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1553. break;
  1554. if (time > 10) {
  1555. DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
  1556. dev->name);
  1557. return -ENODEV;
  1558. }
  1559. time++;
  1560. msleep(50);
  1561. }
  1562. }
  1563. /*
  1564. * Initializing proper values as Pause threshold into all
  1565. * the 8 Queues on Rx side.
  1566. */
  1567. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1568. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1569. /* Disable RMAC PAD STRIPPING */
  1570. add = &bar0->mac_cfg;
  1571. val64 = readq(&bar0->mac_cfg);
  1572. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1573. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1574. writel((u32) (val64), add);
  1575. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1576. writel((u32) (val64 >> 32), (add + 4));
  1577. val64 = readq(&bar0->mac_cfg);
  1578. /* Enable FCS stripping by adapter */
  1579. add = &bar0->mac_cfg;
  1580. val64 = readq(&bar0->mac_cfg);
  1581. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1582. if (nic->device_type == XFRAME_II_DEVICE)
  1583. writeq(val64, &bar0->mac_cfg);
  1584. else {
  1585. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1586. writel((u32) (val64), add);
  1587. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1588. writel((u32) (val64 >> 32), (add + 4));
  1589. }
  1590. /*
  1591. * Set the time value to be inserted in the pause frame
  1592. * generated by xena.
  1593. */
  1594. val64 = readq(&bar0->rmac_pause_cfg);
  1595. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1596. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1597. writeq(val64, &bar0->rmac_pause_cfg);
  1598. /*
  1599. * Set the Threshold Limit for Generating the pause frame
  1600. * If the amount of data in any Queue exceeds ratio of
  1601. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1602. * pause frame is generated
  1603. */
  1604. val64 = 0;
  1605. for (i = 0; i < 4; i++) {
  1606. val64 |= (((u64)0xFF00 |
  1607. nic->mac_control.mc_pause_threshold_q0q3)
  1608. << (i * 2 * 8));
  1609. }
  1610. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1611. val64 = 0;
  1612. for (i = 0; i < 4; i++) {
  1613. val64 |= (((u64)0xFF00 |
  1614. nic->mac_control.mc_pause_threshold_q4q7)
  1615. << (i * 2 * 8));
  1616. }
  1617. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1618. /*
  1619. * TxDMA will stop Read request if the number of read split has
  1620. * exceeded the limit pointed by shared_splits
  1621. */
  1622. val64 = readq(&bar0->pic_control);
  1623. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1624. writeq(val64, &bar0->pic_control);
  1625. if (nic->config.bus_speed == 266) {
  1626. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1627. writeq(0x0, &bar0->read_retry_delay);
  1628. writeq(0x0, &bar0->write_retry_delay);
  1629. }
  1630. /*
  1631. * Programming the Herc to split every write transaction
  1632. * that does not start on an ADB to reduce disconnects.
  1633. */
  1634. if (nic->device_type == XFRAME_II_DEVICE) {
  1635. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1636. MISC_LINK_STABILITY_PRD(3);
  1637. writeq(val64, &bar0->misc_control);
  1638. val64 = readq(&bar0->pic_control2);
  1639. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1640. writeq(val64, &bar0->pic_control2);
  1641. }
  1642. if (strstr(nic->product_name, "CX4")) {
  1643. val64 = TMAC_AVG_IPG(0x17);
  1644. writeq(val64, &bar0->tmac_avg_ipg);
  1645. }
  1646. return SUCCESS;
  1647. }
  1648. #define LINK_UP_DOWN_INTERRUPT 1
  1649. #define MAC_RMAC_ERR_TIMER 2
  1650. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1651. {
  1652. if (nic->device_type == XFRAME_II_DEVICE)
  1653. return LINK_UP_DOWN_INTERRUPT;
  1654. else
  1655. return MAC_RMAC_ERR_TIMER;
  1656. }
  1657. /**
  1658. * do_s2io_write_bits - update alarm bits in alarm register
  1659. * @value: alarm bits
  1660. * @flag: interrupt status
  1661. * @addr: address value
  1662. * Description: update alarm bits in alarm register
  1663. * Return Value:
  1664. * NONE.
  1665. */
  1666. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1667. {
  1668. u64 temp64;
  1669. temp64 = readq(addr);
  1670. if (flag == ENABLE_INTRS)
  1671. temp64 &= ~((u64)value);
  1672. else
  1673. temp64 |= ((u64)value);
  1674. writeq(temp64, addr);
  1675. }
  1676. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1677. {
  1678. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1679. register u64 gen_int_mask = 0;
  1680. u64 interruptible;
  1681. writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
  1682. if (mask & TX_DMA_INTR) {
  1683. gen_int_mask |= TXDMA_INT_M;
  1684. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1685. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1686. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1687. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1688. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1689. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1690. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1691. &bar0->pfc_err_mask);
  1692. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1693. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1694. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1695. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1696. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1697. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1698. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1699. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1700. PCC_TXB_ECC_SG_ERR,
  1701. flag, &bar0->pcc_err_mask);
  1702. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1703. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1704. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1705. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1706. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1707. flag, &bar0->lso_err_mask);
  1708. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1709. flag, &bar0->tpa_err_mask);
  1710. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1711. }
  1712. if (mask & TX_MAC_INTR) {
  1713. gen_int_mask |= TXMAC_INT_M;
  1714. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1715. &bar0->mac_int_mask);
  1716. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1717. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1718. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1719. flag, &bar0->mac_tmac_err_mask);
  1720. }
  1721. if (mask & TX_XGXS_INTR) {
  1722. gen_int_mask |= TXXGXS_INT_M;
  1723. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1724. &bar0->xgxs_int_mask);
  1725. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1726. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1727. flag, &bar0->xgxs_txgxs_err_mask);
  1728. }
  1729. if (mask & RX_DMA_INTR) {
  1730. gen_int_mask |= RXDMA_INT_M;
  1731. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1732. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1733. flag, &bar0->rxdma_int_mask);
  1734. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1735. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1736. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1737. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1738. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1739. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1740. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1741. &bar0->prc_pcix_err_mask);
  1742. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1743. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1744. &bar0->rpa_err_mask);
  1745. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1746. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1747. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1748. RDA_FRM_ECC_SG_ERR |
  1749. RDA_MISC_ERR|RDA_PCIX_ERR,
  1750. flag, &bar0->rda_err_mask);
  1751. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1752. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1753. flag, &bar0->rti_err_mask);
  1754. }
  1755. if (mask & RX_MAC_INTR) {
  1756. gen_int_mask |= RXMAC_INT_M;
  1757. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1758. &bar0->mac_int_mask);
  1759. interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1760. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1761. RMAC_DOUBLE_ECC_ERR);
  1762. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
  1763. interruptible |= RMAC_LINK_STATE_CHANGE_INT;
  1764. do_s2io_write_bits(interruptible,
  1765. flag, &bar0->mac_rmac_err_mask);
  1766. }
  1767. if (mask & RX_XGXS_INTR) {
  1768. gen_int_mask |= RXXGXS_INT_M;
  1769. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1770. &bar0->xgxs_int_mask);
  1771. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1772. &bar0->xgxs_rxgxs_err_mask);
  1773. }
  1774. if (mask & MC_INTR) {
  1775. gen_int_mask |= MC_INT_M;
  1776. do_s2io_write_bits(MC_INT_MASK_MC_INT,
  1777. flag, &bar0->mc_int_mask);
  1778. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1779. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1780. &bar0->mc_err_mask);
  1781. }
  1782. nic->general_int_mask = gen_int_mask;
  1783. /* Remove this line when alarm interrupts are enabled */
  1784. nic->general_int_mask = 0;
  1785. }
  1786. /**
  1787. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1788. * @nic: device private variable,
  1789. * @mask: A mask indicating which Intr block must be modified and,
  1790. * @flag: A flag indicating whether to enable or disable the Intrs.
  1791. * Description: This function will either disable or enable the interrupts
  1792. * depending on the flag argument. The mask argument can be used to
  1793. * enable/disable any Intr block.
  1794. * Return Value: NONE.
  1795. */
  1796. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1797. {
  1798. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1799. register u64 temp64 = 0, intr_mask = 0;
  1800. intr_mask = nic->general_int_mask;
  1801. /* Top level interrupt classification */
  1802. /* PIC Interrupts */
  1803. if (mask & TX_PIC_INTR) {
  1804. /* Enable PIC Intrs in the general intr mask register */
  1805. intr_mask |= TXPIC_INT_M;
  1806. if (flag == ENABLE_INTRS) {
  1807. /*
  1808. * If Hercules adapter enable GPIO otherwise
  1809. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1810. * interrupts for now.
  1811. * TODO
  1812. */
  1813. if (s2io_link_fault_indication(nic) ==
  1814. LINK_UP_DOWN_INTERRUPT) {
  1815. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1816. &bar0->pic_int_mask);
  1817. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1818. &bar0->gpio_int_mask);
  1819. } else
  1820. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1821. } else if (flag == DISABLE_INTRS) {
  1822. /*
  1823. * Disable PIC Intrs in the general
  1824. * intr mask register
  1825. */
  1826. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1827. }
  1828. }
  1829. /* Tx traffic interrupts */
  1830. if (mask & TX_TRAFFIC_INTR) {
  1831. intr_mask |= TXTRAFFIC_INT_M;
  1832. if (flag == ENABLE_INTRS) {
  1833. /*
  1834. * Enable all the Tx side interrupts
  1835. * writing 0 Enables all 64 TX interrupt levels
  1836. */
  1837. writeq(0x0, &bar0->tx_traffic_mask);
  1838. } else if (flag == DISABLE_INTRS) {
  1839. /*
  1840. * Disable Tx Traffic Intrs in the general intr mask
  1841. * register.
  1842. */
  1843. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1844. }
  1845. }
  1846. /* Rx traffic interrupts */
  1847. if (mask & RX_TRAFFIC_INTR) {
  1848. intr_mask |= RXTRAFFIC_INT_M;
  1849. if (flag == ENABLE_INTRS) {
  1850. /* writing 0 Enables all 8 RX interrupt levels */
  1851. writeq(0x0, &bar0->rx_traffic_mask);
  1852. } else if (flag == DISABLE_INTRS) {
  1853. /*
  1854. * Disable Rx Traffic Intrs in the general intr mask
  1855. * register.
  1856. */
  1857. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1858. }
  1859. }
  1860. temp64 = readq(&bar0->general_int_mask);
  1861. if (flag == ENABLE_INTRS)
  1862. temp64 &= ~((u64)intr_mask);
  1863. else
  1864. temp64 = DISABLE_ALL_INTRS;
  1865. writeq(temp64, &bar0->general_int_mask);
  1866. nic->general_int_mask = readq(&bar0->general_int_mask);
  1867. }
  1868. /**
  1869. * verify_pcc_quiescent- Checks for PCC quiescent state
  1870. * Return: 1 If PCC is quiescence
  1871. * 0 If PCC is not quiescence
  1872. */
  1873. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1874. {
  1875. int ret = 0, herc;
  1876. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1877. u64 val64 = readq(&bar0->adapter_status);
  1878. herc = (sp->device_type == XFRAME_II_DEVICE);
  1879. if (flag == false) {
  1880. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1881. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1882. ret = 1;
  1883. } else {
  1884. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1885. ret = 1;
  1886. }
  1887. } else {
  1888. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1889. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1890. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1891. ret = 1;
  1892. } else {
  1893. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1894. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1895. ret = 1;
  1896. }
  1897. }
  1898. return ret;
  1899. }
  1900. /**
  1901. * verify_xena_quiescence - Checks whether the H/W is ready
  1902. * Description: Returns whether the H/W is ready to go or not. Depending
  1903. * on whether adapter enable bit was written or not the comparison
  1904. * differs and the calling function passes the input argument flag to
  1905. * indicate this.
  1906. * Return: 1 If xena is quiescence
  1907. * 0 If Xena is not quiescence
  1908. */
  1909. static int verify_xena_quiescence(struct s2io_nic *sp)
  1910. {
  1911. int mode;
  1912. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1913. u64 val64 = readq(&bar0->adapter_status);
  1914. mode = s2io_verify_pci_mode(sp);
  1915. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1916. DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
  1917. return 0;
  1918. }
  1919. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1920. DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
  1921. return 0;
  1922. }
  1923. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1924. DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
  1925. return 0;
  1926. }
  1927. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1928. DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
  1929. return 0;
  1930. }
  1931. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1932. DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
  1933. return 0;
  1934. }
  1935. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1936. DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
  1937. return 0;
  1938. }
  1939. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1940. DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
  1941. return 0;
  1942. }
  1943. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1944. DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
  1945. return 0;
  1946. }
  1947. /*
  1948. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1949. * the the P_PLL_LOCK bit in the adapter_status register will
  1950. * not be asserted.
  1951. */
  1952. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1953. sp->device_type == XFRAME_II_DEVICE &&
  1954. mode != PCI_MODE_PCI_33) {
  1955. DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
  1956. return 0;
  1957. }
  1958. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1959. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1960. DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
  1961. return 0;
  1962. }
  1963. return 1;
  1964. }
  1965. /**
  1966. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1967. * @sp: Pointer to device specifc structure
  1968. * Description :
  1969. * New procedure to clear mac address reading problems on Alpha platforms
  1970. *
  1971. */
  1972. static void fix_mac_address(struct s2io_nic *sp)
  1973. {
  1974. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1975. int i = 0;
  1976. while (fix_mac[i] != END_SIGN) {
  1977. writeq(fix_mac[i++], &bar0->gpio_control);
  1978. udelay(10);
  1979. (void) readq(&bar0->gpio_control);
  1980. }
  1981. }
  1982. /**
  1983. * start_nic - Turns the device on
  1984. * @nic : device private variable.
  1985. * Description:
  1986. * This function actually turns the device on. Before this function is
  1987. * called,all Registers are configured from their reset states
  1988. * and shared memory is allocated but the NIC is still quiescent. On
  1989. * calling this function, the device interrupts are cleared and the NIC is
  1990. * literally switched on by writing into the adapter control register.
  1991. * Return Value:
  1992. * SUCCESS on success and -1 on failure.
  1993. */
  1994. static int start_nic(struct s2io_nic *nic)
  1995. {
  1996. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1997. struct net_device *dev = nic->dev;
  1998. register u64 val64 = 0;
  1999. u16 subid, i;
  2000. struct config_param *config = &nic->config;
  2001. struct mac_info *mac_control = &nic->mac_control;
  2002. /* PRC Initialization and configuration */
  2003. for (i = 0; i < config->rx_ring_num; i++) {
  2004. struct ring_info *ring = &mac_control->rings[i];
  2005. writeq((u64)ring->rx_blocks[0].block_dma_addr,
  2006. &bar0->prc_rxd0_n[i]);
  2007. val64 = readq(&bar0->prc_ctrl_n[i]);
  2008. if (nic->rxd_mode == RXD_MODE_1)
  2009. val64 |= PRC_CTRL_RC_ENABLED;
  2010. else
  2011. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  2012. if (nic->device_type == XFRAME_II_DEVICE)
  2013. val64 |= PRC_CTRL_GROUP_READS;
  2014. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  2015. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  2016. writeq(val64, &bar0->prc_ctrl_n[i]);
  2017. }
  2018. if (nic->rxd_mode == RXD_MODE_3B) {
  2019. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  2020. val64 = readq(&bar0->rx_pa_cfg);
  2021. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  2022. writeq(val64, &bar0->rx_pa_cfg);
  2023. }
  2024. if (vlan_tag_strip == 0) {
  2025. val64 = readq(&bar0->rx_pa_cfg);
  2026. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  2027. writeq(val64, &bar0->rx_pa_cfg);
  2028. nic->vlan_strip_flag = 0;
  2029. }
  2030. /*
  2031. * Enabling MC-RLDRAM. After enabling the device, we timeout
  2032. * for around 100ms, which is approximately the time required
  2033. * for the device to be ready for operation.
  2034. */
  2035. val64 = readq(&bar0->mc_rldram_mrs);
  2036. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  2037. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  2038. val64 = readq(&bar0->mc_rldram_mrs);
  2039. msleep(100); /* Delay by around 100 ms. */
  2040. /* Enabling ECC Protection. */
  2041. val64 = readq(&bar0->adapter_control);
  2042. val64 &= ~ADAPTER_ECC_EN;
  2043. writeq(val64, &bar0->adapter_control);
  2044. /*
  2045. * Verify if the device is ready to be enabled, if so enable
  2046. * it.
  2047. */
  2048. val64 = readq(&bar0->adapter_status);
  2049. if (!verify_xena_quiescence(nic)) {
  2050. DBG_PRINT(ERR_DBG, "%s: device is not ready, "
  2051. "Adapter status reads: 0x%llx\n",
  2052. dev->name, (unsigned long long)val64);
  2053. return FAILURE;
  2054. }
  2055. /*
  2056. * With some switches, link might be already up at this point.
  2057. * Because of this weird behavior, when we enable laser,
  2058. * we may not get link. We need to handle this. We cannot
  2059. * figure out which switch is misbehaving. So we are forced to
  2060. * make a global change.
  2061. */
  2062. /* Enabling Laser. */
  2063. val64 = readq(&bar0->adapter_control);
  2064. val64 |= ADAPTER_EOI_TX_ON;
  2065. writeq(val64, &bar0->adapter_control);
  2066. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2067. /*
  2068. * Dont see link state interrupts initially on some switches,
  2069. * so directly scheduling the link state task here.
  2070. */
  2071. schedule_work(&nic->set_link_task);
  2072. }
  2073. /* SXE-002: Initialize link and activity LED */
  2074. subid = nic->pdev->subsystem_device;
  2075. if (((subid & 0xFF) >= 0x07) &&
  2076. (nic->device_type == XFRAME_I_DEVICE)) {
  2077. val64 = readq(&bar0->gpio_control);
  2078. val64 |= 0x0000800000000000ULL;
  2079. writeq(val64, &bar0->gpio_control);
  2080. val64 = 0x0411040400000000ULL;
  2081. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2082. }
  2083. return SUCCESS;
  2084. }
  2085. /**
  2086. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2087. */
  2088. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
  2089. struct TxD *txdlp, int get_off)
  2090. {
  2091. struct s2io_nic *nic = fifo_data->nic;
  2092. struct sk_buff *skb;
  2093. struct TxD *txds;
  2094. u16 j, frg_cnt;
  2095. txds = txdlp;
  2096. if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
  2097. pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
  2098. sizeof(u64), PCI_DMA_TODEVICE);
  2099. txds++;
  2100. }
  2101. skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
  2102. if (!skb) {
  2103. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2104. return NULL;
  2105. }
  2106. pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
  2107. skb_headlen(skb), PCI_DMA_TODEVICE);
  2108. frg_cnt = skb_shinfo(skb)->nr_frags;
  2109. if (frg_cnt) {
  2110. txds++;
  2111. for (j = 0; j < frg_cnt; j++, txds++) {
  2112. const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2113. if (!txds->Buffer_Pointer)
  2114. break;
  2115. pci_unmap_page(nic->pdev,
  2116. (dma_addr_t)txds->Buffer_Pointer,
  2117. skb_frag_size(frag), PCI_DMA_TODEVICE);
  2118. }
  2119. }
  2120. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2121. return skb;
  2122. }
  2123. /**
  2124. * free_tx_buffers - Free all queued Tx buffers
  2125. * @nic : device private variable.
  2126. * Description:
  2127. * Free all queued Tx buffers.
  2128. * Return Value: void
  2129. */
  2130. static void free_tx_buffers(struct s2io_nic *nic)
  2131. {
  2132. struct net_device *dev = nic->dev;
  2133. struct sk_buff *skb;
  2134. struct TxD *txdp;
  2135. int i, j;
  2136. int cnt = 0;
  2137. struct config_param *config = &nic->config;
  2138. struct mac_info *mac_control = &nic->mac_control;
  2139. struct stat_block *stats = mac_control->stats_info;
  2140. struct swStat *swstats = &stats->sw_stat;
  2141. for (i = 0; i < config->tx_fifo_num; i++) {
  2142. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  2143. struct fifo_info *fifo = &mac_control->fifos[i];
  2144. unsigned long flags;
  2145. spin_lock_irqsave(&fifo->tx_lock, flags);
  2146. for (j = 0; j < tx_cfg->fifo_len; j++) {
  2147. txdp = fifo->list_info[j].list_virt_addr;
  2148. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2149. if (skb) {
  2150. swstats->mem_freed += skb->truesize;
  2151. dev_kfree_skb(skb);
  2152. cnt++;
  2153. }
  2154. }
  2155. DBG_PRINT(INTR_DBG,
  2156. "%s: forcibly freeing %d skbs on FIFO%d\n",
  2157. dev->name, cnt, i);
  2158. fifo->tx_curr_get_info.offset = 0;
  2159. fifo->tx_curr_put_info.offset = 0;
  2160. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  2161. }
  2162. }
  2163. /**
  2164. * stop_nic - To stop the nic
  2165. * @nic ; device private variable.
  2166. * Description:
  2167. * This function does exactly the opposite of what the start_nic()
  2168. * function does. This function is called to stop the device.
  2169. * Return Value:
  2170. * void.
  2171. */
  2172. static void stop_nic(struct s2io_nic *nic)
  2173. {
  2174. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2175. register u64 val64 = 0;
  2176. u16 interruptible;
  2177. /* Disable all interrupts */
  2178. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2179. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2180. interruptible |= TX_PIC_INTR;
  2181. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2182. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2183. val64 = readq(&bar0->adapter_control);
  2184. val64 &= ~(ADAPTER_CNTL_EN);
  2185. writeq(val64, &bar0->adapter_control);
  2186. }
  2187. /**
  2188. * fill_rx_buffers - Allocates the Rx side skbs
  2189. * @ring_info: per ring structure
  2190. * @from_card_up: If this is true, we will map the buffer to get
  2191. * the dma address for buf0 and buf1 to give it to the card.
  2192. * Else we will sync the already mapped buffer to give it to the card.
  2193. * Description:
  2194. * The function allocates Rx side skbs and puts the physical
  2195. * address of these buffers into the RxD buffer pointers, so that the NIC
  2196. * can DMA the received frame into these locations.
  2197. * The NIC supports 3 receive modes, viz
  2198. * 1. single buffer,
  2199. * 2. three buffer and
  2200. * 3. Five buffer modes.
  2201. * Each mode defines how many fragments the received frame will be split
  2202. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2203. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2204. * is split into 3 fragments. As of now only single buffer mode is
  2205. * supported.
  2206. * Return Value:
  2207. * SUCCESS on success or an appropriate -ve value on failure.
  2208. */
  2209. static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
  2210. int from_card_up)
  2211. {
  2212. struct sk_buff *skb;
  2213. struct RxD_t *rxdp;
  2214. int off, size, block_no, block_no1;
  2215. u32 alloc_tab = 0;
  2216. u32 alloc_cnt;
  2217. u64 tmp;
  2218. struct buffAdd *ba;
  2219. struct RxD_t *first_rxdp = NULL;
  2220. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2221. struct RxD1 *rxdp1;
  2222. struct RxD3 *rxdp3;
  2223. struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
  2224. alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
  2225. block_no1 = ring->rx_curr_get_info.block_index;
  2226. while (alloc_tab < alloc_cnt) {
  2227. block_no = ring->rx_curr_put_info.block_index;
  2228. off = ring->rx_curr_put_info.offset;
  2229. rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
  2230. if ((block_no == block_no1) &&
  2231. (off == ring->rx_curr_get_info.offset) &&
  2232. (rxdp->Host_Control)) {
  2233. DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
  2234. ring->dev->name);
  2235. goto end;
  2236. }
  2237. if (off && (off == ring->rxd_count)) {
  2238. ring->rx_curr_put_info.block_index++;
  2239. if (ring->rx_curr_put_info.block_index ==
  2240. ring->block_count)
  2241. ring->rx_curr_put_info.block_index = 0;
  2242. block_no = ring->rx_curr_put_info.block_index;
  2243. off = 0;
  2244. ring->rx_curr_put_info.offset = off;
  2245. rxdp = ring->rx_blocks[block_no].block_virt_addr;
  2246. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2247. ring->dev->name, rxdp);
  2248. }
  2249. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2250. ((ring->rxd_mode == RXD_MODE_3B) &&
  2251. (rxdp->Control_2 & s2BIT(0)))) {
  2252. ring->rx_curr_put_info.offset = off;
  2253. goto end;
  2254. }
  2255. /* calculate size of skb based on ring mode */
  2256. size = ring->mtu +
  2257. HEADER_ETHERNET_II_802_3_SIZE +
  2258. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2259. if (ring->rxd_mode == RXD_MODE_1)
  2260. size += NET_IP_ALIGN;
  2261. else
  2262. size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2263. /* allocate skb */
  2264. skb = netdev_alloc_skb(nic->dev, size);
  2265. if (!skb) {
  2266. DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
  2267. ring->dev->name);
  2268. if (first_rxdp) {
  2269. dma_wmb();
  2270. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2271. }
  2272. swstats->mem_alloc_fail_cnt++;
  2273. return -ENOMEM ;
  2274. }
  2275. swstats->mem_allocated += skb->truesize;
  2276. if (ring->rxd_mode == RXD_MODE_1) {
  2277. /* 1 buffer mode - normal operation mode */
  2278. rxdp1 = (struct RxD1 *)rxdp;
  2279. memset(rxdp, 0, sizeof(struct RxD1));
  2280. skb_reserve(skb, NET_IP_ALIGN);
  2281. rxdp1->Buffer0_ptr =
  2282. pci_map_single(ring->pdev, skb->data,
  2283. size - NET_IP_ALIGN,
  2284. PCI_DMA_FROMDEVICE);
  2285. if (pci_dma_mapping_error(nic->pdev,
  2286. rxdp1->Buffer0_ptr))
  2287. goto pci_map_failed;
  2288. rxdp->Control_2 =
  2289. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2290. rxdp->Host_Control = (unsigned long)skb;
  2291. } else if (ring->rxd_mode == RXD_MODE_3B) {
  2292. /*
  2293. * 2 buffer mode -
  2294. * 2 buffer mode provides 128
  2295. * byte aligned receive buffers.
  2296. */
  2297. rxdp3 = (struct RxD3 *)rxdp;
  2298. /* save buffer pointers to avoid frequent dma mapping */
  2299. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2300. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2301. memset(rxdp, 0, sizeof(struct RxD3));
  2302. /* restore the buffer pointers for dma sync*/
  2303. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2304. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2305. ba = &ring->ba[block_no][off];
  2306. skb_reserve(skb, BUF0_LEN);
  2307. tmp = (u64)(unsigned long)skb->data;
  2308. tmp += ALIGN_SIZE;
  2309. tmp &= ~ALIGN_SIZE;
  2310. skb->data = (void *) (unsigned long)tmp;
  2311. skb_reset_tail_pointer(skb);
  2312. if (from_card_up) {
  2313. rxdp3->Buffer0_ptr =
  2314. pci_map_single(ring->pdev, ba->ba_0,
  2315. BUF0_LEN,
  2316. PCI_DMA_FROMDEVICE);
  2317. if (pci_dma_mapping_error(nic->pdev,
  2318. rxdp3->Buffer0_ptr))
  2319. goto pci_map_failed;
  2320. } else
  2321. pci_dma_sync_single_for_device(ring->pdev,
  2322. (dma_addr_t)rxdp3->Buffer0_ptr,
  2323. BUF0_LEN,
  2324. PCI_DMA_FROMDEVICE);
  2325. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2326. if (ring->rxd_mode == RXD_MODE_3B) {
  2327. /* Two buffer mode */
  2328. /*
  2329. * Buffer2 will have L3/L4 header plus
  2330. * L4 payload
  2331. */
  2332. rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
  2333. skb->data,
  2334. ring->mtu + 4,
  2335. PCI_DMA_FROMDEVICE);
  2336. if (pci_dma_mapping_error(nic->pdev,
  2337. rxdp3->Buffer2_ptr))
  2338. goto pci_map_failed;
  2339. if (from_card_up) {
  2340. rxdp3->Buffer1_ptr =
  2341. pci_map_single(ring->pdev,
  2342. ba->ba_1,
  2343. BUF1_LEN,
  2344. PCI_DMA_FROMDEVICE);
  2345. if (pci_dma_mapping_error(nic->pdev,
  2346. rxdp3->Buffer1_ptr)) {
  2347. pci_unmap_single(ring->pdev,
  2348. (dma_addr_t)(unsigned long)
  2349. skb->data,
  2350. ring->mtu + 4,
  2351. PCI_DMA_FROMDEVICE);
  2352. goto pci_map_failed;
  2353. }
  2354. }
  2355. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2356. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2357. (ring->mtu + 4);
  2358. }
  2359. rxdp->Control_2 |= s2BIT(0);
  2360. rxdp->Host_Control = (unsigned long) (skb);
  2361. }
  2362. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2363. rxdp->Control_1 |= RXD_OWN_XENA;
  2364. off++;
  2365. if (off == (ring->rxd_count + 1))
  2366. off = 0;
  2367. ring->rx_curr_put_info.offset = off;
  2368. rxdp->Control_2 |= SET_RXD_MARKER;
  2369. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2370. if (first_rxdp) {
  2371. dma_wmb();
  2372. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2373. }
  2374. first_rxdp = rxdp;
  2375. }
  2376. ring->rx_bufs_left += 1;
  2377. alloc_tab++;
  2378. }
  2379. end:
  2380. /* Transfer ownership of first descriptor to adapter just before
  2381. * exiting. Before that, use memory barrier so that ownership
  2382. * and other fields are seen by adapter correctly.
  2383. */
  2384. if (first_rxdp) {
  2385. dma_wmb();
  2386. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2387. }
  2388. return SUCCESS;
  2389. pci_map_failed:
  2390. swstats->pci_map_fail_cnt++;
  2391. swstats->mem_freed += skb->truesize;
  2392. dev_kfree_skb_irq(skb);
  2393. return -ENOMEM;
  2394. }
  2395. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2396. {
  2397. struct net_device *dev = sp->dev;
  2398. int j;
  2399. struct sk_buff *skb;
  2400. struct RxD_t *rxdp;
  2401. struct RxD1 *rxdp1;
  2402. struct RxD3 *rxdp3;
  2403. struct mac_info *mac_control = &sp->mac_control;
  2404. struct stat_block *stats = mac_control->stats_info;
  2405. struct swStat *swstats = &stats->sw_stat;
  2406. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2407. rxdp = mac_control->rings[ring_no].
  2408. rx_blocks[blk].rxds[j].virt_addr;
  2409. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2410. if (!skb)
  2411. continue;
  2412. if (sp->rxd_mode == RXD_MODE_1) {
  2413. rxdp1 = (struct RxD1 *)rxdp;
  2414. pci_unmap_single(sp->pdev,
  2415. (dma_addr_t)rxdp1->Buffer0_ptr,
  2416. dev->mtu +
  2417. HEADER_ETHERNET_II_802_3_SIZE +
  2418. HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
  2419. PCI_DMA_FROMDEVICE);
  2420. memset(rxdp, 0, sizeof(struct RxD1));
  2421. } else if (sp->rxd_mode == RXD_MODE_3B) {
  2422. rxdp3 = (struct RxD3 *)rxdp;
  2423. pci_unmap_single(sp->pdev,
  2424. (dma_addr_t)rxdp3->Buffer0_ptr,
  2425. BUF0_LEN,
  2426. PCI_DMA_FROMDEVICE);
  2427. pci_unmap_single(sp->pdev,
  2428. (dma_addr_t)rxdp3->Buffer1_ptr,
  2429. BUF1_LEN,
  2430. PCI_DMA_FROMDEVICE);
  2431. pci_unmap_single(sp->pdev,
  2432. (dma_addr_t)rxdp3->Buffer2_ptr,
  2433. dev->mtu + 4,
  2434. PCI_DMA_FROMDEVICE);
  2435. memset(rxdp, 0, sizeof(struct RxD3));
  2436. }
  2437. swstats->mem_freed += skb->truesize;
  2438. dev_kfree_skb(skb);
  2439. mac_control->rings[ring_no].rx_bufs_left -= 1;
  2440. }
  2441. }
  2442. /**
  2443. * free_rx_buffers - Frees all Rx buffers
  2444. * @sp: device private variable.
  2445. * Description:
  2446. * This function will free all Rx buffers allocated by host.
  2447. * Return Value:
  2448. * NONE.
  2449. */
  2450. static void free_rx_buffers(struct s2io_nic *sp)
  2451. {
  2452. struct net_device *dev = sp->dev;
  2453. int i, blk = 0, buf_cnt = 0;
  2454. struct config_param *config = &sp->config;
  2455. struct mac_info *mac_control = &sp->mac_control;
  2456. for (i = 0; i < config->rx_ring_num; i++) {
  2457. struct ring_info *ring = &mac_control->rings[i];
  2458. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2459. free_rxd_blk(sp, i, blk);
  2460. ring->rx_curr_put_info.block_index = 0;
  2461. ring->rx_curr_get_info.block_index = 0;
  2462. ring->rx_curr_put_info.offset = 0;
  2463. ring->rx_curr_get_info.offset = 0;
  2464. ring->rx_bufs_left = 0;
  2465. DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
  2466. dev->name, buf_cnt, i);
  2467. }
  2468. }
  2469. static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
  2470. {
  2471. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2472. DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
  2473. ring->dev->name);
  2474. }
  2475. return 0;
  2476. }
  2477. /**
  2478. * s2io_poll - Rx interrupt handler for NAPI support
  2479. * @napi : pointer to the napi structure.
  2480. * @budget : The number of packets that were budgeted to be processed
  2481. * during one pass through the 'Poll" function.
  2482. * Description:
  2483. * Comes into picture only if NAPI support has been incorporated. It does
  2484. * the same thing that rx_intr_handler does, but not in a interrupt context
  2485. * also It will process only a given number of packets.
  2486. * Return value:
  2487. * 0 on success and 1 if there are No Rx packets to be processed.
  2488. */
  2489. static int s2io_poll_msix(struct napi_struct *napi, int budget)
  2490. {
  2491. struct ring_info *ring = container_of(napi, struct ring_info, napi);
  2492. struct net_device *dev = ring->dev;
  2493. int pkts_processed = 0;
  2494. u8 __iomem *addr = NULL;
  2495. u8 val8 = 0;
  2496. struct s2io_nic *nic = netdev_priv(dev);
  2497. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2498. int budget_org = budget;
  2499. if (unlikely(!is_s2io_card_up(nic)))
  2500. return 0;
  2501. pkts_processed = rx_intr_handler(ring, budget);
  2502. s2io_chk_rx_buffers(nic, ring);
  2503. if (pkts_processed < budget_org) {
  2504. napi_complete_done(napi, pkts_processed);
  2505. /*Re Enable MSI-Rx Vector*/
  2506. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  2507. addr += 7 - ring->ring_no;
  2508. val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
  2509. writeb(val8, addr);
  2510. val8 = readb(addr);
  2511. }
  2512. return pkts_processed;
  2513. }
  2514. static int s2io_poll_inta(struct napi_struct *napi, int budget)
  2515. {
  2516. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2517. int pkts_processed = 0;
  2518. int ring_pkts_processed, i;
  2519. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2520. int budget_org = budget;
  2521. struct config_param *config = &nic->config;
  2522. struct mac_info *mac_control = &nic->mac_control;
  2523. if (unlikely(!is_s2io_card_up(nic)))
  2524. return 0;
  2525. for (i = 0; i < config->rx_ring_num; i++) {
  2526. struct ring_info *ring = &mac_control->rings[i];
  2527. ring_pkts_processed = rx_intr_handler(ring, budget);
  2528. s2io_chk_rx_buffers(nic, ring);
  2529. pkts_processed += ring_pkts_processed;
  2530. budget -= ring_pkts_processed;
  2531. if (budget <= 0)
  2532. break;
  2533. }
  2534. if (pkts_processed < budget_org) {
  2535. napi_complete_done(napi, pkts_processed);
  2536. /* Re enable the Rx interrupts for the ring */
  2537. writeq(0, &bar0->rx_traffic_mask);
  2538. readl(&bar0->rx_traffic_mask);
  2539. }
  2540. return pkts_processed;
  2541. }
  2542. #ifdef CONFIG_NET_POLL_CONTROLLER
  2543. /**
  2544. * s2io_netpoll - netpoll event handler entry point
  2545. * @dev : pointer to the device structure.
  2546. * Description:
  2547. * This function will be called by upper layer to check for events on the
  2548. * interface in situations where interrupts are disabled. It is used for
  2549. * specific in-kernel networking tasks, such as remote consoles and kernel
  2550. * debugging over the network (example netdump in RedHat).
  2551. */
  2552. static void s2io_netpoll(struct net_device *dev)
  2553. {
  2554. struct s2io_nic *nic = netdev_priv(dev);
  2555. const int irq = nic->pdev->irq;
  2556. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2557. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2558. int i;
  2559. struct config_param *config = &nic->config;
  2560. struct mac_info *mac_control = &nic->mac_control;
  2561. if (pci_channel_offline(nic->pdev))
  2562. return;
  2563. disable_irq(irq);
  2564. writeq(val64, &bar0->rx_traffic_int);
  2565. writeq(val64, &bar0->tx_traffic_int);
  2566. /* we need to free up the transmitted skbufs or else netpoll will
  2567. * run out of skbs and will fail and eventually netpoll application such
  2568. * as netdump will fail.
  2569. */
  2570. for (i = 0; i < config->tx_fifo_num; i++)
  2571. tx_intr_handler(&mac_control->fifos[i]);
  2572. /* check for received packet and indicate up to network */
  2573. for (i = 0; i < config->rx_ring_num; i++) {
  2574. struct ring_info *ring = &mac_control->rings[i];
  2575. rx_intr_handler(ring, 0);
  2576. }
  2577. for (i = 0; i < config->rx_ring_num; i++) {
  2578. struct ring_info *ring = &mac_control->rings[i];
  2579. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2580. DBG_PRINT(INFO_DBG,
  2581. "%s: Out of memory in Rx Netpoll!!\n",
  2582. dev->name);
  2583. break;
  2584. }
  2585. }
  2586. enable_irq(irq);
  2587. }
  2588. #endif
  2589. /**
  2590. * rx_intr_handler - Rx interrupt handler
  2591. * @ring_info: per ring structure.
  2592. * @budget: budget for napi processing.
  2593. * Description:
  2594. * If the interrupt is because of a received frame or if the
  2595. * receive ring contains fresh as yet un-processed frames,this function is
  2596. * called. It picks out the RxD at which place the last Rx processing had
  2597. * stopped and sends the skb to the OSM's Rx handler and then increments
  2598. * the offset.
  2599. * Return Value:
  2600. * No. of napi packets processed.
  2601. */
  2602. static int rx_intr_handler(struct ring_info *ring_data, int budget)
  2603. {
  2604. int get_block, put_block;
  2605. struct rx_curr_get_info get_info, put_info;
  2606. struct RxD_t *rxdp;
  2607. struct sk_buff *skb;
  2608. int pkt_cnt = 0, napi_pkts = 0;
  2609. int i;
  2610. struct RxD1 *rxdp1;
  2611. struct RxD3 *rxdp3;
  2612. if (budget <= 0)
  2613. return napi_pkts;
  2614. get_info = ring_data->rx_curr_get_info;
  2615. get_block = get_info.block_index;
  2616. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2617. put_block = put_info.block_index;
  2618. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2619. while (RXD_IS_UP2DT(rxdp)) {
  2620. /*
  2621. * If your are next to put index then it's
  2622. * FIFO full condition
  2623. */
  2624. if ((get_block == put_block) &&
  2625. (get_info.offset + 1) == put_info.offset) {
  2626. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
  2627. ring_data->dev->name);
  2628. break;
  2629. }
  2630. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2631. if (skb == NULL) {
  2632. DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
  2633. ring_data->dev->name);
  2634. return 0;
  2635. }
  2636. if (ring_data->rxd_mode == RXD_MODE_1) {
  2637. rxdp1 = (struct RxD1 *)rxdp;
  2638. pci_unmap_single(ring_data->pdev, (dma_addr_t)
  2639. rxdp1->Buffer0_ptr,
  2640. ring_data->mtu +
  2641. HEADER_ETHERNET_II_802_3_SIZE +
  2642. HEADER_802_2_SIZE +
  2643. HEADER_SNAP_SIZE,
  2644. PCI_DMA_FROMDEVICE);
  2645. } else if (ring_data->rxd_mode == RXD_MODE_3B) {
  2646. rxdp3 = (struct RxD3 *)rxdp;
  2647. pci_dma_sync_single_for_cpu(ring_data->pdev,
  2648. (dma_addr_t)rxdp3->Buffer0_ptr,
  2649. BUF0_LEN,
  2650. PCI_DMA_FROMDEVICE);
  2651. pci_unmap_single(ring_data->pdev,
  2652. (dma_addr_t)rxdp3->Buffer2_ptr,
  2653. ring_data->mtu + 4,
  2654. PCI_DMA_FROMDEVICE);
  2655. }
  2656. prefetch(skb->data);
  2657. rx_osm_handler(ring_data, rxdp);
  2658. get_info.offset++;
  2659. ring_data->rx_curr_get_info.offset = get_info.offset;
  2660. rxdp = ring_data->rx_blocks[get_block].
  2661. rxds[get_info.offset].virt_addr;
  2662. if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
  2663. get_info.offset = 0;
  2664. ring_data->rx_curr_get_info.offset = get_info.offset;
  2665. get_block++;
  2666. if (get_block == ring_data->block_count)
  2667. get_block = 0;
  2668. ring_data->rx_curr_get_info.block_index = get_block;
  2669. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2670. }
  2671. if (ring_data->nic->config.napi) {
  2672. budget--;
  2673. napi_pkts++;
  2674. if (!budget)
  2675. break;
  2676. }
  2677. pkt_cnt++;
  2678. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2679. break;
  2680. }
  2681. if (ring_data->lro) {
  2682. /* Clear all LRO sessions before exiting */
  2683. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  2684. struct lro *lro = &ring_data->lro0_n[i];
  2685. if (lro->in_use) {
  2686. update_L3L4_header(ring_data->nic, lro);
  2687. queue_rx_frame(lro->parent, lro->vlan_tag);
  2688. clear_lro_session(lro);
  2689. }
  2690. }
  2691. }
  2692. return napi_pkts;
  2693. }
  2694. /**
  2695. * tx_intr_handler - Transmit interrupt handler
  2696. * @nic : device private variable
  2697. * Description:
  2698. * If an interrupt was raised to indicate DMA complete of the
  2699. * Tx packet, this function is called. It identifies the last TxD
  2700. * whose buffer was freed and frees all skbs whose data have already
  2701. * DMA'ed into the NICs internal memory.
  2702. * Return Value:
  2703. * NONE
  2704. */
  2705. static void tx_intr_handler(struct fifo_info *fifo_data)
  2706. {
  2707. struct s2io_nic *nic = fifo_data->nic;
  2708. struct tx_curr_get_info get_info, put_info;
  2709. struct sk_buff *skb = NULL;
  2710. struct TxD *txdlp;
  2711. int pkt_cnt = 0;
  2712. unsigned long flags = 0;
  2713. u8 err_mask;
  2714. struct stat_block *stats = nic->mac_control.stats_info;
  2715. struct swStat *swstats = &stats->sw_stat;
  2716. if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
  2717. return;
  2718. get_info = fifo_data->tx_curr_get_info;
  2719. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2720. txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
  2721. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2722. (get_info.offset != put_info.offset) &&
  2723. (txdlp->Host_Control)) {
  2724. /* Check for TxD errors */
  2725. if (txdlp->Control_1 & TXD_T_CODE) {
  2726. unsigned long long err;
  2727. err = txdlp->Control_1 & TXD_T_CODE;
  2728. if (err & 0x1) {
  2729. swstats->parity_err_cnt++;
  2730. }
  2731. /* update t_code statistics */
  2732. err_mask = err >> 48;
  2733. switch (err_mask) {
  2734. case 2:
  2735. swstats->tx_buf_abort_cnt++;
  2736. break;
  2737. case 3:
  2738. swstats->tx_desc_abort_cnt++;
  2739. break;
  2740. case 7:
  2741. swstats->tx_parity_err_cnt++;
  2742. break;
  2743. case 10:
  2744. swstats->tx_link_loss_cnt++;
  2745. break;
  2746. case 15:
  2747. swstats->tx_list_proc_err_cnt++;
  2748. break;
  2749. }
  2750. }
  2751. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2752. if (skb == NULL) {
  2753. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2754. DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
  2755. __func__);
  2756. return;
  2757. }
  2758. pkt_cnt++;
  2759. /* Updating the statistics block */
  2760. swstats->mem_freed += skb->truesize;
  2761. dev_kfree_skb_irq(skb);
  2762. get_info.offset++;
  2763. if (get_info.offset == get_info.fifo_len + 1)
  2764. get_info.offset = 0;
  2765. txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
  2766. fifo_data->tx_curr_get_info.offset = get_info.offset;
  2767. }
  2768. s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
  2769. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2770. }
  2771. /**
  2772. * s2io_mdio_write - Function to write in to MDIO registers
  2773. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2774. * @addr : address value
  2775. * @value : data value
  2776. * @dev : pointer to net_device structure
  2777. * Description:
  2778. * This function is used to write values to the MDIO registers
  2779. * NONE
  2780. */
  2781. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
  2782. struct net_device *dev)
  2783. {
  2784. u64 val64;
  2785. struct s2io_nic *sp = netdev_priv(dev);
  2786. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2787. /* address transaction */
  2788. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2789. MDIO_MMD_DEV_ADDR(mmd_type) |
  2790. MDIO_MMS_PRT_ADDR(0x0);
  2791. writeq(val64, &bar0->mdio_control);
  2792. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2793. writeq(val64, &bar0->mdio_control);
  2794. udelay(100);
  2795. /* Data transaction */
  2796. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2797. MDIO_MMD_DEV_ADDR(mmd_type) |
  2798. MDIO_MMS_PRT_ADDR(0x0) |
  2799. MDIO_MDIO_DATA(value) |
  2800. MDIO_OP(MDIO_OP_WRITE_TRANS);
  2801. writeq(val64, &bar0->mdio_control);
  2802. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2803. writeq(val64, &bar0->mdio_control);
  2804. udelay(100);
  2805. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2806. MDIO_MMD_DEV_ADDR(mmd_type) |
  2807. MDIO_MMS_PRT_ADDR(0x0) |
  2808. MDIO_OP(MDIO_OP_READ_TRANS);
  2809. writeq(val64, &bar0->mdio_control);
  2810. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2811. writeq(val64, &bar0->mdio_control);
  2812. udelay(100);
  2813. }
  2814. /**
  2815. * s2io_mdio_read - Function to write in to MDIO registers
  2816. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2817. * @addr : address value
  2818. * @dev : pointer to net_device structure
  2819. * Description:
  2820. * This function is used to read values to the MDIO registers
  2821. * NONE
  2822. */
  2823. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2824. {
  2825. u64 val64 = 0x0;
  2826. u64 rval64 = 0x0;
  2827. struct s2io_nic *sp = netdev_priv(dev);
  2828. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2829. /* address transaction */
  2830. val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
  2831. | MDIO_MMD_DEV_ADDR(mmd_type)
  2832. | MDIO_MMS_PRT_ADDR(0x0));
  2833. writeq(val64, &bar0->mdio_control);
  2834. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2835. writeq(val64, &bar0->mdio_control);
  2836. udelay(100);
  2837. /* Data transaction */
  2838. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2839. MDIO_MMD_DEV_ADDR(mmd_type) |
  2840. MDIO_MMS_PRT_ADDR(0x0) |
  2841. MDIO_OP(MDIO_OP_READ_TRANS);
  2842. writeq(val64, &bar0->mdio_control);
  2843. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2844. writeq(val64, &bar0->mdio_control);
  2845. udelay(100);
  2846. /* Read the value from regs */
  2847. rval64 = readq(&bar0->mdio_control);
  2848. rval64 = rval64 & 0xFFFF0000;
  2849. rval64 = rval64 >> 16;
  2850. return rval64;
  2851. }
  2852. /**
  2853. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2854. * @counter : counter value to be updated
  2855. * @flag : flag to indicate the status
  2856. * @type : counter type
  2857. * Description:
  2858. * This function is to check the status of the xpak counters value
  2859. * NONE
  2860. */
  2861. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
  2862. u16 flag, u16 type)
  2863. {
  2864. u64 mask = 0x3;
  2865. u64 val64;
  2866. int i;
  2867. for (i = 0; i < index; i++)
  2868. mask = mask << 0x2;
  2869. if (flag > 0) {
  2870. *counter = *counter + 1;
  2871. val64 = *regs_stat & mask;
  2872. val64 = val64 >> (index * 0x2);
  2873. val64 = val64 + 1;
  2874. if (val64 == 3) {
  2875. switch (type) {
  2876. case 1:
  2877. DBG_PRINT(ERR_DBG,
  2878. "Take Xframe NIC out of service.\n");
  2879. DBG_PRINT(ERR_DBG,
  2880. "Excessive temperatures may result in premature transceiver failure.\n");
  2881. break;
  2882. case 2:
  2883. DBG_PRINT(ERR_DBG,
  2884. "Take Xframe NIC out of service.\n");
  2885. DBG_PRINT(ERR_DBG,
  2886. "Excessive bias currents may indicate imminent laser diode failure.\n");
  2887. break;
  2888. case 3:
  2889. DBG_PRINT(ERR_DBG,
  2890. "Take Xframe NIC out of service.\n");
  2891. DBG_PRINT(ERR_DBG,
  2892. "Excessive laser output power may saturate far-end receiver.\n");
  2893. break;
  2894. default:
  2895. DBG_PRINT(ERR_DBG,
  2896. "Incorrect XPAK Alarm type\n");
  2897. }
  2898. val64 = 0x0;
  2899. }
  2900. val64 = val64 << (index * 0x2);
  2901. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2902. } else {
  2903. *regs_stat = *regs_stat & (~mask);
  2904. }
  2905. }
  2906. /**
  2907. * s2io_updt_xpak_counter - Function to update the xpak counters
  2908. * @dev : pointer to net_device struct
  2909. * Description:
  2910. * This function is to upate the status of the xpak counters value
  2911. * NONE
  2912. */
  2913. static void s2io_updt_xpak_counter(struct net_device *dev)
  2914. {
  2915. u16 flag = 0x0;
  2916. u16 type = 0x0;
  2917. u16 val16 = 0x0;
  2918. u64 val64 = 0x0;
  2919. u64 addr = 0x0;
  2920. struct s2io_nic *sp = netdev_priv(dev);
  2921. struct stat_block *stats = sp->mac_control.stats_info;
  2922. struct xpakStat *xstats = &stats->xpak_stat;
  2923. /* Check the communication with the MDIO slave */
  2924. addr = MDIO_CTRL1;
  2925. val64 = 0x0;
  2926. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2927. if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
  2928. DBG_PRINT(ERR_DBG,
  2929. "ERR: MDIO slave access failed - Returned %llx\n",
  2930. (unsigned long long)val64);
  2931. return;
  2932. }
  2933. /* Check for the expected value of control reg 1 */
  2934. if (val64 != MDIO_CTRL1_SPEED10G) {
  2935. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
  2936. "Returned: %llx- Expected: 0x%x\n",
  2937. (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
  2938. return;
  2939. }
  2940. /* Loading the DOM register to MDIO register */
  2941. addr = 0xA100;
  2942. s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
  2943. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2944. /* Reading the Alarm flags */
  2945. addr = 0xA070;
  2946. val64 = 0x0;
  2947. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2948. flag = CHECKBIT(val64, 0x7);
  2949. type = 1;
  2950. s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
  2951. &xstats->xpak_regs_stat,
  2952. 0x0, flag, type);
  2953. if (CHECKBIT(val64, 0x6))
  2954. xstats->alarm_transceiver_temp_low++;
  2955. flag = CHECKBIT(val64, 0x3);
  2956. type = 2;
  2957. s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
  2958. &xstats->xpak_regs_stat,
  2959. 0x2, flag, type);
  2960. if (CHECKBIT(val64, 0x2))
  2961. xstats->alarm_laser_bias_current_low++;
  2962. flag = CHECKBIT(val64, 0x1);
  2963. type = 3;
  2964. s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
  2965. &xstats->xpak_regs_stat,
  2966. 0x4, flag, type);
  2967. if (CHECKBIT(val64, 0x0))
  2968. xstats->alarm_laser_output_power_low++;
  2969. /* Reading the Warning flags */
  2970. addr = 0xA074;
  2971. val64 = 0x0;
  2972. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2973. if (CHECKBIT(val64, 0x7))
  2974. xstats->warn_transceiver_temp_high++;
  2975. if (CHECKBIT(val64, 0x6))
  2976. xstats->warn_transceiver_temp_low++;
  2977. if (CHECKBIT(val64, 0x3))
  2978. xstats->warn_laser_bias_current_high++;
  2979. if (CHECKBIT(val64, 0x2))
  2980. xstats->warn_laser_bias_current_low++;
  2981. if (CHECKBIT(val64, 0x1))
  2982. xstats->warn_laser_output_power_high++;
  2983. if (CHECKBIT(val64, 0x0))
  2984. xstats->warn_laser_output_power_low++;
  2985. }
  2986. /**
  2987. * wait_for_cmd_complete - waits for a command to complete.
  2988. * @sp : private member of the device structure, which is a pointer to the
  2989. * s2io_nic structure.
  2990. * Description: Function that waits for a command to Write into RMAC
  2991. * ADDR DATA registers to be completed and returns either success or
  2992. * error depending on whether the command was complete or not.
  2993. * Return value:
  2994. * SUCCESS on success and FAILURE on failure.
  2995. */
  2996. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2997. int bit_state)
  2998. {
  2999. int ret = FAILURE, cnt = 0, delay = 1;
  3000. u64 val64;
  3001. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3002. return FAILURE;
  3003. do {
  3004. val64 = readq(addr);
  3005. if (bit_state == S2IO_BIT_RESET) {
  3006. if (!(val64 & busy_bit)) {
  3007. ret = SUCCESS;
  3008. break;
  3009. }
  3010. } else {
  3011. if (val64 & busy_bit) {
  3012. ret = SUCCESS;
  3013. break;
  3014. }
  3015. }
  3016. if (in_interrupt())
  3017. mdelay(delay);
  3018. else
  3019. msleep(delay);
  3020. if (++cnt >= 10)
  3021. delay = 50;
  3022. } while (cnt < 20);
  3023. return ret;
  3024. }
  3025. /**
  3026. * check_pci_device_id - Checks if the device id is supported
  3027. * @id : device id
  3028. * Description: Function to check if the pci device id is supported by driver.
  3029. * Return value: Actual device id if supported else PCI_ANY_ID
  3030. */
  3031. static u16 check_pci_device_id(u16 id)
  3032. {
  3033. switch (id) {
  3034. case PCI_DEVICE_ID_HERC_WIN:
  3035. case PCI_DEVICE_ID_HERC_UNI:
  3036. return XFRAME_II_DEVICE;
  3037. case PCI_DEVICE_ID_S2IO_UNI:
  3038. case PCI_DEVICE_ID_S2IO_WIN:
  3039. return XFRAME_I_DEVICE;
  3040. default:
  3041. return PCI_ANY_ID;
  3042. }
  3043. }
  3044. /**
  3045. * s2io_reset - Resets the card.
  3046. * @sp : private member of the device structure.
  3047. * Description: Function to Reset the card. This function then also
  3048. * restores the previously saved PCI configuration space registers as
  3049. * the card reset also resets the configuration space.
  3050. * Return value:
  3051. * void.
  3052. */
  3053. static void s2io_reset(struct s2io_nic *sp)
  3054. {
  3055. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3056. u64 val64;
  3057. u16 subid, pci_cmd;
  3058. int i;
  3059. u16 val16;
  3060. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3061. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3062. struct stat_block *stats;
  3063. struct swStat *swstats;
  3064. DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
  3065. __func__, pci_name(sp->pdev));
  3066. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3067. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3068. val64 = SW_RESET_ALL;
  3069. writeq(val64, &bar0->sw_reset);
  3070. if (strstr(sp->product_name, "CX4"))
  3071. msleep(750);
  3072. msleep(250);
  3073. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3074. /* Restore the PCI state saved during initialization. */
  3075. pci_restore_state(sp->pdev);
  3076. pci_save_state(sp->pdev);
  3077. pci_read_config_word(sp->pdev, 0x2, &val16);
  3078. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3079. break;
  3080. msleep(200);
  3081. }
  3082. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
  3083. DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
  3084. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3085. s2io_init_pci(sp);
  3086. /* Set swapper to enable I/O register access */
  3087. s2io_set_swapper(sp);
  3088. /* restore mac_addr entries */
  3089. do_s2io_restore_unicast_mc(sp);
  3090. /* Restore the MSIX table entries from local variables */
  3091. restore_xmsi_data(sp);
  3092. /* Clear certain PCI/PCI-X fields after reset */
  3093. if (sp->device_type == XFRAME_II_DEVICE) {
  3094. /* Clear "detected parity error" bit */
  3095. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3096. /* Clearing PCIX Ecc status register */
  3097. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3098. /* Clearing PCI_STATUS error reflected here */
  3099. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3100. }
  3101. /* Reset device statistics maintained by OS */
  3102. memset(&sp->stats, 0, sizeof(struct net_device_stats));
  3103. stats = sp->mac_control.stats_info;
  3104. swstats = &stats->sw_stat;
  3105. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3106. up_cnt = swstats->link_up_cnt;
  3107. down_cnt = swstats->link_down_cnt;
  3108. up_time = swstats->link_up_time;
  3109. down_time = swstats->link_down_time;
  3110. reset_cnt = swstats->soft_reset_cnt;
  3111. mem_alloc_cnt = swstats->mem_allocated;
  3112. mem_free_cnt = swstats->mem_freed;
  3113. watchdog_cnt = swstats->watchdog_timer_cnt;
  3114. memset(stats, 0, sizeof(struct stat_block));
  3115. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3116. swstats->link_up_cnt = up_cnt;
  3117. swstats->link_down_cnt = down_cnt;
  3118. swstats->link_up_time = up_time;
  3119. swstats->link_down_time = down_time;
  3120. swstats->soft_reset_cnt = reset_cnt;
  3121. swstats->mem_allocated = mem_alloc_cnt;
  3122. swstats->mem_freed = mem_free_cnt;
  3123. swstats->watchdog_timer_cnt = watchdog_cnt;
  3124. /* SXE-002: Configure link and activity LED to turn it off */
  3125. subid = sp->pdev->subsystem_device;
  3126. if (((subid & 0xFF) >= 0x07) &&
  3127. (sp->device_type == XFRAME_I_DEVICE)) {
  3128. val64 = readq(&bar0->gpio_control);
  3129. val64 |= 0x0000800000000000ULL;
  3130. writeq(val64, &bar0->gpio_control);
  3131. val64 = 0x0411040400000000ULL;
  3132. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3133. }
  3134. /*
  3135. * Clear spurious ECC interrupts that would have occurred on
  3136. * XFRAME II cards after reset.
  3137. */
  3138. if (sp->device_type == XFRAME_II_DEVICE) {
  3139. val64 = readq(&bar0->pcc_err_reg);
  3140. writeq(val64, &bar0->pcc_err_reg);
  3141. }
  3142. sp->device_enabled_once = false;
  3143. }
  3144. /**
  3145. * s2io_set_swapper - to set the swapper controle on the card
  3146. * @sp : private member of the device structure,
  3147. * pointer to the s2io_nic structure.
  3148. * Description: Function to set the swapper control on the card
  3149. * correctly depending on the 'endianness' of the system.
  3150. * Return value:
  3151. * SUCCESS on success and FAILURE on failure.
  3152. */
  3153. static int s2io_set_swapper(struct s2io_nic *sp)
  3154. {
  3155. struct net_device *dev = sp->dev;
  3156. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3157. u64 val64, valt, valr;
  3158. /*
  3159. * Set proper endian settings and verify the same by reading
  3160. * the PIF Feed-back register.
  3161. */
  3162. val64 = readq(&bar0->pif_rd_swapper_fb);
  3163. if (val64 != 0x0123456789ABCDEFULL) {
  3164. int i = 0;
  3165. static const u64 value[] = {
  3166. 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3167. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3168. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3169. 0 /* FE=0, SE=0 */
  3170. };
  3171. while (i < 4) {
  3172. writeq(value[i], &bar0->swapper_ctrl);
  3173. val64 = readq(&bar0->pif_rd_swapper_fb);
  3174. if (val64 == 0x0123456789ABCDEFULL)
  3175. break;
  3176. i++;
  3177. }
  3178. if (i == 4) {
  3179. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
  3180. "feedback read %llx\n",
  3181. dev->name, (unsigned long long)val64);
  3182. return FAILURE;
  3183. }
  3184. valr = value[i];
  3185. } else {
  3186. valr = readq(&bar0->swapper_ctrl);
  3187. }
  3188. valt = 0x0123456789ABCDEFULL;
  3189. writeq(valt, &bar0->xmsi_address);
  3190. val64 = readq(&bar0->xmsi_address);
  3191. if (val64 != valt) {
  3192. int i = 0;
  3193. static const u64 value[] = {
  3194. 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3195. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3196. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3197. 0 /* FE=0, SE=0 */
  3198. };
  3199. while (i < 4) {
  3200. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3201. writeq(valt, &bar0->xmsi_address);
  3202. val64 = readq(&bar0->xmsi_address);
  3203. if (val64 == valt)
  3204. break;
  3205. i++;
  3206. }
  3207. if (i == 4) {
  3208. unsigned long long x = val64;
  3209. DBG_PRINT(ERR_DBG,
  3210. "Write failed, Xmsi_addr reads:0x%llx\n", x);
  3211. return FAILURE;
  3212. }
  3213. }
  3214. val64 = readq(&bar0->swapper_ctrl);
  3215. val64 &= 0xFFFF000000000000ULL;
  3216. #ifdef __BIG_ENDIAN
  3217. /*
  3218. * The device by default set to a big endian format, so a
  3219. * big endian driver need not set anything.
  3220. */
  3221. val64 |= (SWAPPER_CTRL_TXP_FE |
  3222. SWAPPER_CTRL_TXP_SE |
  3223. SWAPPER_CTRL_TXD_R_FE |
  3224. SWAPPER_CTRL_TXD_W_FE |
  3225. SWAPPER_CTRL_TXF_R_FE |
  3226. SWAPPER_CTRL_RXD_R_FE |
  3227. SWAPPER_CTRL_RXD_W_FE |
  3228. SWAPPER_CTRL_RXF_W_FE |
  3229. SWAPPER_CTRL_XMSI_FE |
  3230. SWAPPER_CTRL_STATS_FE |
  3231. SWAPPER_CTRL_STATS_SE);
  3232. if (sp->config.intr_type == INTA)
  3233. val64 |= SWAPPER_CTRL_XMSI_SE;
  3234. writeq(val64, &bar0->swapper_ctrl);
  3235. #else
  3236. /*
  3237. * Initially we enable all bits to make it accessible by the
  3238. * driver, then we selectively enable only those bits that
  3239. * we want to set.
  3240. */
  3241. val64 |= (SWAPPER_CTRL_TXP_FE |
  3242. SWAPPER_CTRL_TXP_SE |
  3243. SWAPPER_CTRL_TXD_R_FE |
  3244. SWAPPER_CTRL_TXD_R_SE |
  3245. SWAPPER_CTRL_TXD_W_FE |
  3246. SWAPPER_CTRL_TXD_W_SE |
  3247. SWAPPER_CTRL_TXF_R_FE |
  3248. SWAPPER_CTRL_RXD_R_FE |
  3249. SWAPPER_CTRL_RXD_R_SE |
  3250. SWAPPER_CTRL_RXD_W_FE |
  3251. SWAPPER_CTRL_RXD_W_SE |
  3252. SWAPPER_CTRL_RXF_W_FE |
  3253. SWAPPER_CTRL_XMSI_FE |
  3254. SWAPPER_CTRL_STATS_FE |
  3255. SWAPPER_CTRL_STATS_SE);
  3256. if (sp->config.intr_type == INTA)
  3257. val64 |= SWAPPER_CTRL_XMSI_SE;
  3258. writeq(val64, &bar0->swapper_ctrl);
  3259. #endif
  3260. val64 = readq(&bar0->swapper_ctrl);
  3261. /*
  3262. * Verifying if endian settings are accurate by reading a
  3263. * feedback register.
  3264. */
  3265. val64 = readq(&bar0->pif_rd_swapper_fb);
  3266. if (val64 != 0x0123456789ABCDEFULL) {
  3267. /* Endian settings are incorrect, calls for another dekko. */
  3268. DBG_PRINT(ERR_DBG,
  3269. "%s: Endian settings are wrong, feedback read %llx\n",
  3270. dev->name, (unsigned long long)val64);
  3271. return FAILURE;
  3272. }
  3273. return SUCCESS;
  3274. }
  3275. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3276. {
  3277. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3278. u64 val64;
  3279. int ret = 0, cnt = 0;
  3280. do {
  3281. val64 = readq(&bar0->xmsi_access);
  3282. if (!(val64 & s2BIT(15)))
  3283. break;
  3284. mdelay(1);
  3285. cnt++;
  3286. } while (cnt < 5);
  3287. if (cnt == 5) {
  3288. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3289. ret = 1;
  3290. }
  3291. return ret;
  3292. }
  3293. static void restore_xmsi_data(struct s2io_nic *nic)
  3294. {
  3295. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3296. u64 val64;
  3297. int i, msix_index;
  3298. if (nic->device_type == XFRAME_I_DEVICE)
  3299. return;
  3300. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3301. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3302. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3303. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3304. val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
  3305. writeq(val64, &bar0->xmsi_access);
  3306. if (wait_for_msix_trans(nic, msix_index)) {
  3307. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3308. __func__, msix_index);
  3309. continue;
  3310. }
  3311. }
  3312. }
  3313. static void store_xmsi_data(struct s2io_nic *nic)
  3314. {
  3315. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3316. u64 val64, addr, data;
  3317. int i, msix_index;
  3318. if (nic->device_type == XFRAME_I_DEVICE)
  3319. return;
  3320. /* Store and display */
  3321. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3322. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3323. val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
  3324. writeq(val64, &bar0->xmsi_access);
  3325. if (wait_for_msix_trans(nic, msix_index)) {
  3326. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3327. __func__, msix_index);
  3328. continue;
  3329. }
  3330. addr = readq(&bar0->xmsi_address);
  3331. data = readq(&bar0->xmsi_data);
  3332. if (addr && data) {
  3333. nic->msix_info[i].addr = addr;
  3334. nic->msix_info[i].data = data;
  3335. }
  3336. }
  3337. }
  3338. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3339. {
  3340. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3341. u64 rx_mat;
  3342. u16 msi_control; /* Temp variable */
  3343. int ret, i, j, msix_indx = 1;
  3344. int size;
  3345. struct stat_block *stats = nic->mac_control.stats_info;
  3346. struct swStat *swstats = &stats->sw_stat;
  3347. size = nic->num_entries * sizeof(struct msix_entry);
  3348. nic->entries = kzalloc(size, GFP_KERNEL);
  3349. if (!nic->entries) {
  3350. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3351. __func__);
  3352. swstats->mem_alloc_fail_cnt++;
  3353. return -ENOMEM;
  3354. }
  3355. swstats->mem_allocated += size;
  3356. size = nic->num_entries * sizeof(struct s2io_msix_entry);
  3357. nic->s2io_entries = kzalloc(size, GFP_KERNEL);
  3358. if (!nic->s2io_entries) {
  3359. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3360. __func__);
  3361. swstats->mem_alloc_fail_cnt++;
  3362. kfree(nic->entries);
  3363. swstats->mem_freed
  3364. += (nic->num_entries * sizeof(struct msix_entry));
  3365. return -ENOMEM;
  3366. }
  3367. swstats->mem_allocated += size;
  3368. nic->entries[0].entry = 0;
  3369. nic->s2io_entries[0].entry = 0;
  3370. nic->s2io_entries[0].in_use = MSIX_FLG;
  3371. nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
  3372. nic->s2io_entries[0].arg = &nic->mac_control.fifos;
  3373. for (i = 1; i < nic->num_entries; i++) {
  3374. nic->entries[i].entry = ((i - 1) * 8) + 1;
  3375. nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
  3376. nic->s2io_entries[i].arg = NULL;
  3377. nic->s2io_entries[i].in_use = 0;
  3378. }
  3379. rx_mat = readq(&bar0->rx_mat);
  3380. for (j = 0; j < nic->config.rx_ring_num; j++) {
  3381. rx_mat |= RX_MAT_SET(j, msix_indx);
  3382. nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
  3383. nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
  3384. nic->s2io_entries[j+1].in_use = MSIX_FLG;
  3385. msix_indx += 8;
  3386. }
  3387. writeq(rx_mat, &bar0->rx_mat);
  3388. readq(&bar0->rx_mat);
  3389. ret = pci_enable_msix_range(nic->pdev, nic->entries,
  3390. nic->num_entries, nic->num_entries);
  3391. /* We fail init if error or we get less vectors than min required */
  3392. if (ret < 0) {
  3393. DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
  3394. kfree(nic->entries);
  3395. swstats->mem_freed += nic->num_entries *
  3396. sizeof(struct msix_entry);
  3397. kfree(nic->s2io_entries);
  3398. swstats->mem_freed += nic->num_entries *
  3399. sizeof(struct s2io_msix_entry);
  3400. nic->entries = NULL;
  3401. nic->s2io_entries = NULL;
  3402. return -ENOMEM;
  3403. }
  3404. /*
  3405. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3406. * in the herc NIC. (Temp change, needs to be removed later)
  3407. */
  3408. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3409. msi_control |= 0x1; /* Enable MSI */
  3410. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3411. return 0;
  3412. }
  3413. /* Handle software interrupt used during MSI(X) test */
  3414. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3415. {
  3416. struct s2io_nic *sp = dev_id;
  3417. sp->msi_detected = 1;
  3418. wake_up(&sp->msi_wait);
  3419. return IRQ_HANDLED;
  3420. }
  3421. /* Test interrupt path by forcing a a software IRQ */
  3422. static int s2io_test_msi(struct s2io_nic *sp)
  3423. {
  3424. struct pci_dev *pdev = sp->pdev;
  3425. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3426. int err;
  3427. u64 val64, saved64;
  3428. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3429. sp->name, sp);
  3430. if (err) {
  3431. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3432. sp->dev->name, pci_name(pdev), pdev->irq);
  3433. return err;
  3434. }
  3435. init_waitqueue_head(&sp->msi_wait);
  3436. sp->msi_detected = 0;
  3437. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3438. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3439. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3440. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3441. writeq(val64, &bar0->scheduled_int_ctrl);
  3442. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3443. if (!sp->msi_detected) {
  3444. /* MSI(X) test failed, go back to INTx mode */
  3445. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
  3446. "using MSI(X) during test\n",
  3447. sp->dev->name, pci_name(pdev));
  3448. err = -EOPNOTSUPP;
  3449. }
  3450. free_irq(sp->entries[1].vector, sp);
  3451. writeq(saved64, &bar0->scheduled_int_ctrl);
  3452. return err;
  3453. }
  3454. static void remove_msix_isr(struct s2io_nic *sp)
  3455. {
  3456. int i;
  3457. u16 msi_control;
  3458. for (i = 0; i < sp->num_entries; i++) {
  3459. if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
  3460. int vector = sp->entries[i].vector;
  3461. void *arg = sp->s2io_entries[i].arg;
  3462. free_irq(vector, arg);
  3463. }
  3464. }
  3465. kfree(sp->entries);
  3466. kfree(sp->s2io_entries);
  3467. sp->entries = NULL;
  3468. sp->s2io_entries = NULL;
  3469. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3470. msi_control &= 0xFFFE; /* Disable MSI */
  3471. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3472. pci_disable_msix(sp->pdev);
  3473. }
  3474. static void remove_inta_isr(struct s2io_nic *sp)
  3475. {
  3476. free_irq(sp->pdev->irq, sp->dev);
  3477. }
  3478. /* ********************************************************* *
  3479. * Functions defined below concern the OS part of the driver *
  3480. * ********************************************************* */
  3481. /**
  3482. * s2io_open - open entry point of the driver
  3483. * @dev : pointer to the device structure.
  3484. * Description:
  3485. * This function is the open entry point of the driver. It mainly calls a
  3486. * function to allocate Rx buffers and inserts them into the buffer
  3487. * descriptors and then enables the Rx part of the NIC.
  3488. * Return value:
  3489. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3490. * file on failure.
  3491. */
  3492. static int s2io_open(struct net_device *dev)
  3493. {
  3494. struct s2io_nic *sp = netdev_priv(dev);
  3495. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  3496. int err = 0;
  3497. /*
  3498. * Make sure you have link off by default every time
  3499. * Nic is initialized
  3500. */
  3501. netif_carrier_off(dev);
  3502. sp->last_link_state = 0;
  3503. /* Initialize H/W and enable interrupts */
  3504. err = s2io_card_up(sp);
  3505. if (err) {
  3506. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3507. dev->name);
  3508. goto hw_init_failed;
  3509. }
  3510. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3511. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3512. s2io_card_down(sp);
  3513. err = -ENODEV;
  3514. goto hw_init_failed;
  3515. }
  3516. s2io_start_all_tx_queue(sp);
  3517. return 0;
  3518. hw_init_failed:
  3519. if (sp->config.intr_type == MSI_X) {
  3520. if (sp->entries) {
  3521. kfree(sp->entries);
  3522. swstats->mem_freed += sp->num_entries *
  3523. sizeof(struct msix_entry);
  3524. }
  3525. if (sp->s2io_entries) {
  3526. kfree(sp->s2io_entries);
  3527. swstats->mem_freed += sp->num_entries *
  3528. sizeof(struct s2io_msix_entry);
  3529. }
  3530. }
  3531. return err;
  3532. }
  3533. /**
  3534. * s2io_close -close entry point of the driver
  3535. * @dev : device pointer.
  3536. * Description:
  3537. * This is the stop entry point of the driver. It needs to undo exactly
  3538. * whatever was done by the open entry point,thus it's usually referred to
  3539. * as the close function.Among other things this function mainly stops the
  3540. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3541. * Return value:
  3542. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3543. * file on failure.
  3544. */
  3545. static int s2io_close(struct net_device *dev)
  3546. {
  3547. struct s2io_nic *sp = netdev_priv(dev);
  3548. struct config_param *config = &sp->config;
  3549. u64 tmp64;
  3550. int offset;
  3551. /* Return if the device is already closed *
  3552. * Can happen when s2io_card_up failed in change_mtu *
  3553. */
  3554. if (!is_s2io_card_up(sp))
  3555. return 0;
  3556. s2io_stop_all_tx_queue(sp);
  3557. /* delete all populated mac entries */
  3558. for (offset = 1; offset < config->max_mc_addr; offset++) {
  3559. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  3560. if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
  3561. do_s2io_delete_unicast_mc(sp, tmp64);
  3562. }
  3563. s2io_card_down(sp);
  3564. return 0;
  3565. }
  3566. /**
  3567. * s2io_xmit - Tx entry point of te driver
  3568. * @skb : the socket buffer containing the Tx data.
  3569. * @dev : device pointer.
  3570. * Description :
  3571. * This function is the Tx entry point of the driver. S2IO NIC supports
  3572. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3573. * NOTE: when device can't queue the pkt,just the trans_start variable will
  3574. * not be upadted.
  3575. * Return value:
  3576. * 0 on success & 1 on failure.
  3577. */
  3578. static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3579. {
  3580. struct s2io_nic *sp = netdev_priv(dev);
  3581. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3582. register u64 val64;
  3583. struct TxD *txdp;
  3584. struct TxFIFO_element __iomem *tx_fifo;
  3585. unsigned long flags = 0;
  3586. u16 vlan_tag = 0;
  3587. struct fifo_info *fifo = NULL;
  3588. int offload_type;
  3589. int enable_per_list_interrupt = 0;
  3590. struct config_param *config = &sp->config;
  3591. struct mac_info *mac_control = &sp->mac_control;
  3592. struct stat_block *stats = mac_control->stats_info;
  3593. struct swStat *swstats = &stats->sw_stat;
  3594. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3595. if (unlikely(skb->len <= 0)) {
  3596. DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
  3597. dev_kfree_skb_any(skb);
  3598. return NETDEV_TX_OK;
  3599. }
  3600. if (!is_s2io_card_up(sp)) {
  3601. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3602. dev->name);
  3603. dev_kfree_skb_any(skb);
  3604. return NETDEV_TX_OK;
  3605. }
  3606. queue = 0;
  3607. if (skb_vlan_tag_present(skb))
  3608. vlan_tag = skb_vlan_tag_get(skb);
  3609. if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
  3610. if (skb->protocol == htons(ETH_P_IP)) {
  3611. struct iphdr *ip;
  3612. struct tcphdr *th;
  3613. ip = ip_hdr(skb);
  3614. if (!ip_is_fragment(ip)) {
  3615. th = (struct tcphdr *)(((unsigned char *)ip) +
  3616. ip->ihl*4);
  3617. if (ip->protocol == IPPROTO_TCP) {
  3618. queue_len = sp->total_tcp_fifos;
  3619. queue = (ntohs(th->source) +
  3620. ntohs(th->dest)) &
  3621. sp->fifo_selector[queue_len - 1];
  3622. if (queue >= queue_len)
  3623. queue = queue_len - 1;
  3624. } else if (ip->protocol == IPPROTO_UDP) {
  3625. queue_len = sp->total_udp_fifos;
  3626. queue = (ntohs(th->source) +
  3627. ntohs(th->dest)) &
  3628. sp->fifo_selector[queue_len - 1];
  3629. if (queue >= queue_len)
  3630. queue = queue_len - 1;
  3631. queue += sp->udp_fifo_idx;
  3632. if (skb->len > 1024)
  3633. enable_per_list_interrupt = 1;
  3634. }
  3635. }
  3636. }
  3637. } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
  3638. /* get fifo number based on skb->priority value */
  3639. queue = config->fifo_mapping
  3640. [skb->priority & (MAX_TX_FIFOS - 1)];
  3641. fifo = &mac_control->fifos[queue];
  3642. spin_lock_irqsave(&fifo->tx_lock, flags);
  3643. if (sp->config.multiq) {
  3644. if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
  3645. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3646. return NETDEV_TX_BUSY;
  3647. }
  3648. } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
  3649. if (netif_queue_stopped(dev)) {
  3650. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3651. return NETDEV_TX_BUSY;
  3652. }
  3653. }
  3654. put_off = (u16)fifo->tx_curr_put_info.offset;
  3655. get_off = (u16)fifo->tx_curr_get_info.offset;
  3656. txdp = fifo->list_info[put_off].list_virt_addr;
  3657. queue_len = fifo->tx_curr_put_info.fifo_len + 1;
  3658. /* Avoid "put" pointer going beyond "get" pointer */
  3659. if (txdp->Host_Control ||
  3660. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3661. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3662. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3663. dev_kfree_skb_any(skb);
  3664. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3665. return NETDEV_TX_OK;
  3666. }
  3667. offload_type = s2io_offload_type(skb);
  3668. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3669. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3670. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3671. }
  3672. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3673. txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
  3674. TXD_TX_CKO_TCP_EN |
  3675. TXD_TX_CKO_UDP_EN);
  3676. }
  3677. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3678. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3679. txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
  3680. if (enable_per_list_interrupt)
  3681. if (put_off & (queue_len >> 5))
  3682. txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
  3683. if (vlan_tag) {
  3684. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3685. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3686. }
  3687. frg_len = skb_headlen(skb);
  3688. txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
  3689. frg_len, PCI_DMA_TODEVICE);
  3690. if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
  3691. goto pci_map_failed;
  3692. txdp->Host_Control = (unsigned long)skb;
  3693. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3694. frg_cnt = skb_shinfo(skb)->nr_frags;
  3695. /* For fragmented SKB. */
  3696. for (i = 0; i < frg_cnt; i++) {
  3697. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3698. /* A '0' length fragment will be ignored */
  3699. if (!skb_frag_size(frag))
  3700. continue;
  3701. txdp++;
  3702. txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
  3703. frag, 0,
  3704. skb_frag_size(frag),
  3705. DMA_TO_DEVICE);
  3706. txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
  3707. }
  3708. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3709. tx_fifo = mac_control->tx_FIFO_start[queue];
  3710. val64 = fifo->list_info[put_off].list_phy_addr;
  3711. writeq(val64, &tx_fifo->TxDL_Pointer);
  3712. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3713. TX_FIFO_LAST_LIST);
  3714. if (offload_type)
  3715. val64 |= TX_FIFO_SPECIAL_FUNC;
  3716. writeq(val64, &tx_fifo->List_Control);
  3717. mmiowb();
  3718. put_off++;
  3719. if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
  3720. put_off = 0;
  3721. fifo->tx_curr_put_info.offset = put_off;
  3722. /* Avoid "put" pointer going beyond "get" pointer */
  3723. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3724. swstats->fifo_full_cnt++;
  3725. DBG_PRINT(TX_DBG,
  3726. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3727. put_off, get_off);
  3728. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3729. }
  3730. swstats->mem_allocated += skb->truesize;
  3731. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3732. if (sp->config.intr_type == MSI_X)
  3733. tx_intr_handler(fifo);
  3734. return NETDEV_TX_OK;
  3735. pci_map_failed:
  3736. swstats->pci_map_fail_cnt++;
  3737. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3738. swstats->mem_freed += skb->truesize;
  3739. dev_kfree_skb_any(skb);
  3740. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3741. return NETDEV_TX_OK;
  3742. }
  3743. static void
  3744. s2io_alarm_handle(unsigned long data)
  3745. {
  3746. struct s2io_nic *sp = (struct s2io_nic *)data;
  3747. struct net_device *dev = sp->dev;
  3748. s2io_handle_errors(dev);
  3749. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3750. }
  3751. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3752. {
  3753. struct ring_info *ring = (struct ring_info *)dev_id;
  3754. struct s2io_nic *sp = ring->nic;
  3755. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3756. if (unlikely(!is_s2io_card_up(sp)))
  3757. return IRQ_HANDLED;
  3758. if (sp->config.napi) {
  3759. u8 __iomem *addr = NULL;
  3760. u8 val8 = 0;
  3761. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  3762. addr += (7 - ring->ring_no);
  3763. val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
  3764. writeb(val8, addr);
  3765. val8 = readb(addr);
  3766. napi_schedule(&ring->napi);
  3767. } else {
  3768. rx_intr_handler(ring, 0);
  3769. s2io_chk_rx_buffers(sp, ring);
  3770. }
  3771. return IRQ_HANDLED;
  3772. }
  3773. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3774. {
  3775. int i;
  3776. struct fifo_info *fifos = (struct fifo_info *)dev_id;
  3777. struct s2io_nic *sp = fifos->nic;
  3778. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3779. struct config_param *config = &sp->config;
  3780. u64 reason;
  3781. if (unlikely(!is_s2io_card_up(sp)))
  3782. return IRQ_NONE;
  3783. reason = readq(&bar0->general_int_status);
  3784. if (unlikely(reason == S2IO_MINUS_ONE))
  3785. /* Nothing much can be done. Get out */
  3786. return IRQ_HANDLED;
  3787. if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
  3788. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  3789. if (reason & GEN_INTR_TXPIC)
  3790. s2io_txpic_intr_handle(sp);
  3791. if (reason & GEN_INTR_TXTRAFFIC)
  3792. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  3793. for (i = 0; i < config->tx_fifo_num; i++)
  3794. tx_intr_handler(&fifos[i]);
  3795. writeq(sp->general_int_mask, &bar0->general_int_mask);
  3796. readl(&bar0->general_int_status);
  3797. return IRQ_HANDLED;
  3798. }
  3799. /* The interrupt was not raised by us */
  3800. return IRQ_NONE;
  3801. }
  3802. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3803. {
  3804. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3805. u64 val64;
  3806. val64 = readq(&bar0->pic_int_status);
  3807. if (val64 & PIC_INT_GPIO) {
  3808. val64 = readq(&bar0->gpio_int_reg);
  3809. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3810. (val64 & GPIO_INT_REG_LINK_UP)) {
  3811. /*
  3812. * This is unstable state so clear both up/down
  3813. * interrupt and adapter to re-evaluate the link state.
  3814. */
  3815. val64 |= GPIO_INT_REG_LINK_DOWN;
  3816. val64 |= GPIO_INT_REG_LINK_UP;
  3817. writeq(val64, &bar0->gpio_int_reg);
  3818. val64 = readq(&bar0->gpio_int_mask);
  3819. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3820. GPIO_INT_MASK_LINK_DOWN);
  3821. writeq(val64, &bar0->gpio_int_mask);
  3822. } else if (val64 & GPIO_INT_REG_LINK_UP) {
  3823. val64 = readq(&bar0->adapter_status);
  3824. /* Enable Adapter */
  3825. val64 = readq(&bar0->adapter_control);
  3826. val64 |= ADAPTER_CNTL_EN;
  3827. writeq(val64, &bar0->adapter_control);
  3828. val64 |= ADAPTER_LED_ON;
  3829. writeq(val64, &bar0->adapter_control);
  3830. if (!sp->device_enabled_once)
  3831. sp->device_enabled_once = 1;
  3832. s2io_link(sp, LINK_UP);
  3833. /*
  3834. * unmask link down interrupt and mask link-up
  3835. * intr
  3836. */
  3837. val64 = readq(&bar0->gpio_int_mask);
  3838. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3839. val64 |= GPIO_INT_MASK_LINK_UP;
  3840. writeq(val64, &bar0->gpio_int_mask);
  3841. } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3842. val64 = readq(&bar0->adapter_status);
  3843. s2io_link(sp, LINK_DOWN);
  3844. /* Link is down so unmaks link up interrupt */
  3845. val64 = readq(&bar0->gpio_int_mask);
  3846. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3847. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3848. writeq(val64, &bar0->gpio_int_mask);
  3849. /* turn off LED */
  3850. val64 = readq(&bar0->adapter_control);
  3851. val64 = val64 & (~ADAPTER_LED_ON);
  3852. writeq(val64, &bar0->adapter_control);
  3853. }
  3854. }
  3855. val64 = readq(&bar0->gpio_int_mask);
  3856. }
  3857. /**
  3858. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3859. * @value: alarm bits
  3860. * @addr: address value
  3861. * @cnt: counter variable
  3862. * Description: Check for alarm and increment the counter
  3863. * Return Value:
  3864. * 1 - if alarm bit set
  3865. * 0 - if alarm bit is not set
  3866. */
  3867. static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
  3868. unsigned long long *cnt)
  3869. {
  3870. u64 val64;
  3871. val64 = readq(addr);
  3872. if (val64 & value) {
  3873. writeq(val64, addr);
  3874. (*cnt)++;
  3875. return 1;
  3876. }
  3877. return 0;
  3878. }
  3879. /**
  3880. * s2io_handle_errors - Xframe error indication handler
  3881. * @nic: device private variable
  3882. * Description: Handle alarms such as loss of link, single or
  3883. * double ECC errors, critical and serious errors.
  3884. * Return Value:
  3885. * NONE
  3886. */
  3887. static void s2io_handle_errors(void *dev_id)
  3888. {
  3889. struct net_device *dev = (struct net_device *)dev_id;
  3890. struct s2io_nic *sp = netdev_priv(dev);
  3891. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3892. u64 temp64 = 0, val64 = 0;
  3893. int i = 0;
  3894. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3895. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3896. if (!is_s2io_card_up(sp))
  3897. return;
  3898. if (pci_channel_offline(sp->pdev))
  3899. return;
  3900. memset(&sw_stat->ring_full_cnt, 0,
  3901. sizeof(sw_stat->ring_full_cnt));
  3902. /* Handling the XPAK counters update */
  3903. if (stats->xpak_timer_count < 72000) {
  3904. /* waiting for an hour */
  3905. stats->xpak_timer_count++;
  3906. } else {
  3907. s2io_updt_xpak_counter(dev);
  3908. /* reset the count to zero */
  3909. stats->xpak_timer_count = 0;
  3910. }
  3911. /* Handling link status change error Intr */
  3912. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3913. val64 = readq(&bar0->mac_rmac_err_reg);
  3914. writeq(val64, &bar0->mac_rmac_err_reg);
  3915. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3916. schedule_work(&sp->set_link_task);
  3917. }
  3918. /* In case of a serious error, the device will be Reset. */
  3919. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3920. &sw_stat->serious_err_cnt))
  3921. goto reset;
  3922. /* Check for data parity error */
  3923. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3924. &sw_stat->parity_err_cnt))
  3925. goto reset;
  3926. /* Check for ring full counter */
  3927. if (sp->device_type == XFRAME_II_DEVICE) {
  3928. val64 = readq(&bar0->ring_bump_counter1);
  3929. for (i = 0; i < 4; i++) {
  3930. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  3931. temp64 >>= 64 - ((i+1)*16);
  3932. sw_stat->ring_full_cnt[i] += temp64;
  3933. }
  3934. val64 = readq(&bar0->ring_bump_counter2);
  3935. for (i = 0; i < 4; i++) {
  3936. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  3937. temp64 >>= 64 - ((i+1)*16);
  3938. sw_stat->ring_full_cnt[i+4] += temp64;
  3939. }
  3940. }
  3941. val64 = readq(&bar0->txdma_int_status);
  3942. /*check for pfc_err*/
  3943. if (val64 & TXDMA_PFC_INT) {
  3944. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  3945. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  3946. PFC_PCIX_ERR,
  3947. &bar0->pfc_err_reg,
  3948. &sw_stat->pfc_err_cnt))
  3949. goto reset;
  3950. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
  3951. &bar0->pfc_err_reg,
  3952. &sw_stat->pfc_err_cnt);
  3953. }
  3954. /*check for tda_err*/
  3955. if (val64 & TXDMA_TDA_INT) {
  3956. if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
  3957. TDA_SM0_ERR_ALARM |
  3958. TDA_SM1_ERR_ALARM,
  3959. &bar0->tda_err_reg,
  3960. &sw_stat->tda_err_cnt))
  3961. goto reset;
  3962. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3963. &bar0->tda_err_reg,
  3964. &sw_stat->tda_err_cnt);
  3965. }
  3966. /*check for pcc_err*/
  3967. if (val64 & TXDMA_PCC_INT) {
  3968. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  3969. PCC_N_SERR | PCC_6_COF_OV_ERR |
  3970. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  3971. PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
  3972. PCC_TXB_ECC_DB_ERR,
  3973. &bar0->pcc_err_reg,
  3974. &sw_stat->pcc_err_cnt))
  3975. goto reset;
  3976. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3977. &bar0->pcc_err_reg,
  3978. &sw_stat->pcc_err_cnt);
  3979. }
  3980. /*check for tti_err*/
  3981. if (val64 & TXDMA_TTI_INT) {
  3982. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
  3983. &bar0->tti_err_reg,
  3984. &sw_stat->tti_err_cnt))
  3985. goto reset;
  3986. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3987. &bar0->tti_err_reg,
  3988. &sw_stat->tti_err_cnt);
  3989. }
  3990. /*check for lso_err*/
  3991. if (val64 & TXDMA_LSO_INT) {
  3992. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
  3993. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3994. &bar0->lso_err_reg,
  3995. &sw_stat->lso_err_cnt))
  3996. goto reset;
  3997. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3998. &bar0->lso_err_reg,
  3999. &sw_stat->lso_err_cnt);
  4000. }
  4001. /*check for tpa_err*/
  4002. if (val64 & TXDMA_TPA_INT) {
  4003. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
  4004. &bar0->tpa_err_reg,
  4005. &sw_stat->tpa_err_cnt))
  4006. goto reset;
  4007. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
  4008. &bar0->tpa_err_reg,
  4009. &sw_stat->tpa_err_cnt);
  4010. }
  4011. /*check for sm_err*/
  4012. if (val64 & TXDMA_SM_INT) {
  4013. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
  4014. &bar0->sm_err_reg,
  4015. &sw_stat->sm_err_cnt))
  4016. goto reset;
  4017. }
  4018. val64 = readq(&bar0->mac_int_status);
  4019. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  4020. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  4021. &bar0->mac_tmac_err_reg,
  4022. &sw_stat->mac_tmac_err_cnt))
  4023. goto reset;
  4024. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  4025. TMAC_DESC_ECC_SG_ERR |
  4026. TMAC_DESC_ECC_DB_ERR,
  4027. &bar0->mac_tmac_err_reg,
  4028. &sw_stat->mac_tmac_err_cnt);
  4029. }
  4030. val64 = readq(&bar0->xgxs_int_status);
  4031. if (val64 & XGXS_INT_STATUS_TXGXS) {
  4032. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  4033. &bar0->xgxs_txgxs_err_reg,
  4034. &sw_stat->xgxs_txgxs_err_cnt))
  4035. goto reset;
  4036. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  4037. &bar0->xgxs_txgxs_err_reg,
  4038. &sw_stat->xgxs_txgxs_err_cnt);
  4039. }
  4040. val64 = readq(&bar0->rxdma_int_status);
  4041. if (val64 & RXDMA_INT_RC_INT_M) {
  4042. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
  4043. RC_FTC_ECC_DB_ERR |
  4044. RC_PRCn_SM_ERR_ALARM |
  4045. RC_FTC_SM_ERR_ALARM,
  4046. &bar0->rc_err_reg,
  4047. &sw_stat->rc_err_cnt))
  4048. goto reset;
  4049. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
  4050. RC_FTC_ECC_SG_ERR |
  4051. RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4052. &sw_stat->rc_err_cnt);
  4053. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
  4054. PRC_PCI_AB_WR_Rn |
  4055. PRC_PCI_AB_F_WR_Rn,
  4056. &bar0->prc_pcix_err_reg,
  4057. &sw_stat->prc_pcix_err_cnt))
  4058. goto reset;
  4059. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
  4060. PRC_PCI_DP_WR_Rn |
  4061. PRC_PCI_DP_F_WR_Rn,
  4062. &bar0->prc_pcix_err_reg,
  4063. &sw_stat->prc_pcix_err_cnt);
  4064. }
  4065. if (val64 & RXDMA_INT_RPA_INT_M) {
  4066. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4067. &bar0->rpa_err_reg,
  4068. &sw_stat->rpa_err_cnt))
  4069. goto reset;
  4070. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4071. &bar0->rpa_err_reg,
  4072. &sw_stat->rpa_err_cnt);
  4073. }
  4074. if (val64 & RXDMA_INT_RDA_INT_M) {
  4075. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
  4076. RDA_FRM_ECC_DB_N_AERR |
  4077. RDA_SM1_ERR_ALARM |
  4078. RDA_SM0_ERR_ALARM |
  4079. RDA_RXD_ECC_DB_SERR,
  4080. &bar0->rda_err_reg,
  4081. &sw_stat->rda_err_cnt))
  4082. goto reset;
  4083. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
  4084. RDA_FRM_ECC_SG_ERR |
  4085. RDA_MISC_ERR |
  4086. RDA_PCIX_ERR,
  4087. &bar0->rda_err_reg,
  4088. &sw_stat->rda_err_cnt);
  4089. }
  4090. if (val64 & RXDMA_INT_RTI_INT_M) {
  4091. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
  4092. &bar0->rti_err_reg,
  4093. &sw_stat->rti_err_cnt))
  4094. goto reset;
  4095. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4096. &bar0->rti_err_reg,
  4097. &sw_stat->rti_err_cnt);
  4098. }
  4099. val64 = readq(&bar0->mac_int_status);
  4100. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4101. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4102. &bar0->mac_rmac_err_reg,
  4103. &sw_stat->mac_rmac_err_cnt))
  4104. goto reset;
  4105. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
  4106. RMAC_SINGLE_ECC_ERR |
  4107. RMAC_DOUBLE_ECC_ERR,
  4108. &bar0->mac_rmac_err_reg,
  4109. &sw_stat->mac_rmac_err_cnt);
  4110. }
  4111. val64 = readq(&bar0->xgxs_int_status);
  4112. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4113. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4114. &bar0->xgxs_rxgxs_err_reg,
  4115. &sw_stat->xgxs_rxgxs_err_cnt))
  4116. goto reset;
  4117. }
  4118. val64 = readq(&bar0->mc_int_status);
  4119. if (val64 & MC_INT_STATUS_MC_INT) {
  4120. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
  4121. &bar0->mc_err_reg,
  4122. &sw_stat->mc_err_cnt))
  4123. goto reset;
  4124. /* Handling Ecc errors */
  4125. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4126. writeq(val64, &bar0->mc_err_reg);
  4127. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4128. sw_stat->double_ecc_errs++;
  4129. if (sp->device_type != XFRAME_II_DEVICE) {
  4130. /*
  4131. * Reset XframeI only if critical error
  4132. */
  4133. if (val64 &
  4134. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4135. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4136. goto reset;
  4137. }
  4138. } else
  4139. sw_stat->single_ecc_errs++;
  4140. }
  4141. }
  4142. return;
  4143. reset:
  4144. s2io_stop_all_tx_queue(sp);
  4145. schedule_work(&sp->rst_timer_task);
  4146. sw_stat->soft_reset_cnt++;
  4147. }
  4148. /**
  4149. * s2io_isr - ISR handler of the device .
  4150. * @irq: the irq of the device.
  4151. * @dev_id: a void pointer to the dev structure of the NIC.
  4152. * Description: This function is the ISR handler of the device. It
  4153. * identifies the reason for the interrupt and calls the relevant
  4154. * service routines. As a contongency measure, this ISR allocates the
  4155. * recv buffers, if their numbers are below the panic value which is
  4156. * presently set to 25% of the original number of rcv buffers allocated.
  4157. * Return value:
  4158. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4159. * IRQ_NONE: will be returned if interrupt is not from our device
  4160. */
  4161. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4162. {
  4163. struct net_device *dev = (struct net_device *)dev_id;
  4164. struct s2io_nic *sp = netdev_priv(dev);
  4165. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4166. int i;
  4167. u64 reason = 0;
  4168. struct mac_info *mac_control;
  4169. struct config_param *config;
  4170. /* Pretend we handled any irq's from a disconnected card */
  4171. if (pci_channel_offline(sp->pdev))
  4172. return IRQ_NONE;
  4173. if (!is_s2io_card_up(sp))
  4174. return IRQ_NONE;
  4175. config = &sp->config;
  4176. mac_control = &sp->mac_control;
  4177. /*
  4178. * Identify the cause for interrupt and call the appropriate
  4179. * interrupt handler. Causes for the interrupt could be;
  4180. * 1. Rx of packet.
  4181. * 2. Tx complete.
  4182. * 3. Link down.
  4183. */
  4184. reason = readq(&bar0->general_int_status);
  4185. if (unlikely(reason == S2IO_MINUS_ONE))
  4186. return IRQ_HANDLED; /* Nothing much can be done. Get out */
  4187. if (reason &
  4188. (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
  4189. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4190. if (config->napi) {
  4191. if (reason & GEN_INTR_RXTRAFFIC) {
  4192. napi_schedule(&sp->napi);
  4193. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
  4194. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4195. readl(&bar0->rx_traffic_int);
  4196. }
  4197. } else {
  4198. /*
  4199. * rx_traffic_int reg is an R1 register, writing all 1's
  4200. * will ensure that the actual interrupt causing bit
  4201. * get's cleared and hence a read can be avoided.
  4202. */
  4203. if (reason & GEN_INTR_RXTRAFFIC)
  4204. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4205. for (i = 0; i < config->rx_ring_num; i++) {
  4206. struct ring_info *ring = &mac_control->rings[i];
  4207. rx_intr_handler(ring, 0);
  4208. }
  4209. }
  4210. /*
  4211. * tx_traffic_int reg is an R1 register, writing all 1's
  4212. * will ensure that the actual interrupt causing bit get's
  4213. * cleared and hence a read can be avoided.
  4214. */
  4215. if (reason & GEN_INTR_TXTRAFFIC)
  4216. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4217. for (i = 0; i < config->tx_fifo_num; i++)
  4218. tx_intr_handler(&mac_control->fifos[i]);
  4219. if (reason & GEN_INTR_TXPIC)
  4220. s2io_txpic_intr_handle(sp);
  4221. /*
  4222. * Reallocate the buffers from the interrupt handler itself.
  4223. */
  4224. if (!config->napi) {
  4225. for (i = 0; i < config->rx_ring_num; i++) {
  4226. struct ring_info *ring = &mac_control->rings[i];
  4227. s2io_chk_rx_buffers(sp, ring);
  4228. }
  4229. }
  4230. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4231. readl(&bar0->general_int_status);
  4232. return IRQ_HANDLED;
  4233. } else if (!reason) {
  4234. /* The interrupt was not raised by us */
  4235. return IRQ_NONE;
  4236. }
  4237. return IRQ_HANDLED;
  4238. }
  4239. /**
  4240. * s2io_updt_stats -
  4241. */
  4242. static void s2io_updt_stats(struct s2io_nic *sp)
  4243. {
  4244. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4245. u64 val64;
  4246. int cnt = 0;
  4247. if (is_s2io_card_up(sp)) {
  4248. /* Apprx 30us on a 133 MHz bus */
  4249. val64 = SET_UPDT_CLICKS(10) |
  4250. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4251. writeq(val64, &bar0->stat_cfg);
  4252. do {
  4253. udelay(100);
  4254. val64 = readq(&bar0->stat_cfg);
  4255. if (!(val64 & s2BIT(0)))
  4256. break;
  4257. cnt++;
  4258. if (cnt == 5)
  4259. break; /* Updt failed */
  4260. } while (1);
  4261. }
  4262. }
  4263. /**
  4264. * s2io_get_stats - Updates the device statistics structure.
  4265. * @dev : pointer to the device structure.
  4266. * Description:
  4267. * This function updates the device statistics structure in the s2io_nic
  4268. * structure and returns a pointer to the same.
  4269. * Return value:
  4270. * pointer to the updated net_device_stats structure.
  4271. */
  4272. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4273. {
  4274. struct s2io_nic *sp = netdev_priv(dev);
  4275. struct mac_info *mac_control = &sp->mac_control;
  4276. struct stat_block *stats = mac_control->stats_info;
  4277. u64 delta;
  4278. /* Configure Stats for immediate updt */
  4279. s2io_updt_stats(sp);
  4280. /* A device reset will cause the on-adapter statistics to be zero'ed.
  4281. * This can be done while running by changing the MTU. To prevent the
  4282. * system from having the stats zero'ed, the driver keeps a copy of the
  4283. * last update to the system (which is also zero'ed on reset). This
  4284. * enables the driver to accurately know the delta between the last
  4285. * update and the current update.
  4286. */
  4287. delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
  4288. le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
  4289. sp->stats.rx_packets += delta;
  4290. dev->stats.rx_packets += delta;
  4291. delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
  4292. le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
  4293. sp->stats.tx_packets += delta;
  4294. dev->stats.tx_packets += delta;
  4295. delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
  4296. le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
  4297. sp->stats.rx_bytes += delta;
  4298. dev->stats.rx_bytes += delta;
  4299. delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
  4300. le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
  4301. sp->stats.tx_bytes += delta;
  4302. dev->stats.tx_bytes += delta;
  4303. delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
  4304. sp->stats.rx_errors += delta;
  4305. dev->stats.rx_errors += delta;
  4306. delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
  4307. le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
  4308. sp->stats.tx_errors += delta;
  4309. dev->stats.tx_errors += delta;
  4310. delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
  4311. sp->stats.rx_dropped += delta;
  4312. dev->stats.rx_dropped += delta;
  4313. delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
  4314. sp->stats.tx_dropped += delta;
  4315. dev->stats.tx_dropped += delta;
  4316. /* The adapter MAC interprets pause frames as multicast packets, but
  4317. * does not pass them up. This erroneously increases the multicast
  4318. * packet count and needs to be deducted when the multicast frame count
  4319. * is queried.
  4320. */
  4321. delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
  4322. le32_to_cpu(stats->rmac_vld_mcst_frms);
  4323. delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
  4324. delta -= sp->stats.multicast;
  4325. sp->stats.multicast += delta;
  4326. dev->stats.multicast += delta;
  4327. delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
  4328. le32_to_cpu(stats->rmac_usized_frms)) +
  4329. le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
  4330. sp->stats.rx_length_errors += delta;
  4331. dev->stats.rx_length_errors += delta;
  4332. delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
  4333. sp->stats.rx_crc_errors += delta;
  4334. dev->stats.rx_crc_errors += delta;
  4335. return &dev->stats;
  4336. }
  4337. /**
  4338. * s2io_set_multicast - entry point for multicast address enable/disable.
  4339. * @dev : pointer to the device structure
  4340. * Description:
  4341. * This function is a driver entry point which gets called by the kernel
  4342. * whenever multicast addresses must be enabled/disabled. This also gets
  4343. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4344. * determine, if multicast address must be enabled or if promiscuous mode
  4345. * is to be disabled etc.
  4346. * Return value:
  4347. * void.
  4348. */
  4349. static void s2io_set_multicast(struct net_device *dev)
  4350. {
  4351. int i, j, prev_cnt;
  4352. struct netdev_hw_addr *ha;
  4353. struct s2io_nic *sp = netdev_priv(dev);
  4354. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4355. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4356. 0xfeffffffffffULL;
  4357. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
  4358. void __iomem *add;
  4359. struct config_param *config = &sp->config;
  4360. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4361. /* Enable all Multicast addresses */
  4362. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4363. &bar0->rmac_addr_data0_mem);
  4364. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4365. &bar0->rmac_addr_data1_mem);
  4366. val64 = RMAC_ADDR_CMD_MEM_WE |
  4367. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4368. RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
  4369. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4370. /* Wait till command completes */
  4371. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4372. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4373. S2IO_BIT_RESET);
  4374. sp->m_cast_flg = 1;
  4375. sp->all_multi_pos = config->max_mc_addr - 1;
  4376. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4377. /* Disable all Multicast addresses */
  4378. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4379. &bar0->rmac_addr_data0_mem);
  4380. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4381. &bar0->rmac_addr_data1_mem);
  4382. val64 = RMAC_ADDR_CMD_MEM_WE |
  4383. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4384. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4385. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4386. /* Wait till command completes */
  4387. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4388. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4389. S2IO_BIT_RESET);
  4390. sp->m_cast_flg = 0;
  4391. sp->all_multi_pos = 0;
  4392. }
  4393. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4394. /* Put the NIC into promiscuous mode */
  4395. add = &bar0->mac_cfg;
  4396. val64 = readq(&bar0->mac_cfg);
  4397. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4398. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4399. writel((u32)val64, add);
  4400. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4401. writel((u32) (val64 >> 32), (add + 4));
  4402. if (vlan_tag_strip != 1) {
  4403. val64 = readq(&bar0->rx_pa_cfg);
  4404. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4405. writeq(val64, &bar0->rx_pa_cfg);
  4406. sp->vlan_strip_flag = 0;
  4407. }
  4408. val64 = readq(&bar0->mac_cfg);
  4409. sp->promisc_flg = 1;
  4410. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4411. dev->name);
  4412. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4413. /* Remove the NIC from promiscuous mode */
  4414. add = &bar0->mac_cfg;
  4415. val64 = readq(&bar0->mac_cfg);
  4416. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4417. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4418. writel((u32)val64, add);
  4419. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4420. writel((u32) (val64 >> 32), (add + 4));
  4421. if (vlan_tag_strip != 0) {
  4422. val64 = readq(&bar0->rx_pa_cfg);
  4423. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4424. writeq(val64, &bar0->rx_pa_cfg);
  4425. sp->vlan_strip_flag = 1;
  4426. }
  4427. val64 = readq(&bar0->mac_cfg);
  4428. sp->promisc_flg = 0;
  4429. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
  4430. }
  4431. /* Update individual M_CAST address list */
  4432. if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
  4433. if (netdev_mc_count(dev) >
  4434. (config->max_mc_addr - config->max_mac_addr)) {
  4435. DBG_PRINT(ERR_DBG,
  4436. "%s: No more Rx filters can be added - "
  4437. "please enable ALL_MULTI instead\n",
  4438. dev->name);
  4439. return;
  4440. }
  4441. prev_cnt = sp->mc_addr_count;
  4442. sp->mc_addr_count = netdev_mc_count(dev);
  4443. /* Clear out the previous list of Mc in the H/W. */
  4444. for (i = 0; i < prev_cnt; i++) {
  4445. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4446. &bar0->rmac_addr_data0_mem);
  4447. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4448. &bar0->rmac_addr_data1_mem);
  4449. val64 = RMAC_ADDR_CMD_MEM_WE |
  4450. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4451. RMAC_ADDR_CMD_MEM_OFFSET
  4452. (config->mc_start_offset + i);
  4453. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4454. /* Wait for command completes */
  4455. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4456. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4457. S2IO_BIT_RESET)) {
  4458. DBG_PRINT(ERR_DBG,
  4459. "%s: Adding Multicasts failed\n",
  4460. dev->name);
  4461. return;
  4462. }
  4463. }
  4464. /* Create the new Rx filter list and update the same in H/W. */
  4465. i = 0;
  4466. netdev_for_each_mc_addr(ha, dev) {
  4467. mac_addr = 0;
  4468. for (j = 0; j < ETH_ALEN; j++) {
  4469. mac_addr |= ha->addr[j];
  4470. mac_addr <<= 8;
  4471. }
  4472. mac_addr >>= 8;
  4473. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4474. &bar0->rmac_addr_data0_mem);
  4475. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4476. &bar0->rmac_addr_data1_mem);
  4477. val64 = RMAC_ADDR_CMD_MEM_WE |
  4478. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4479. RMAC_ADDR_CMD_MEM_OFFSET
  4480. (i + config->mc_start_offset);
  4481. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4482. /* Wait for command completes */
  4483. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4484. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4485. S2IO_BIT_RESET)) {
  4486. DBG_PRINT(ERR_DBG,
  4487. "%s: Adding Multicasts failed\n",
  4488. dev->name);
  4489. return;
  4490. }
  4491. i++;
  4492. }
  4493. }
  4494. }
  4495. /* read from CAM unicast & multicast addresses and store it in
  4496. * def_mac_addr structure
  4497. */
  4498. static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
  4499. {
  4500. int offset;
  4501. u64 mac_addr = 0x0;
  4502. struct config_param *config = &sp->config;
  4503. /* store unicast & multicast mac addresses */
  4504. for (offset = 0; offset < config->max_mc_addr; offset++) {
  4505. mac_addr = do_s2io_read_unicast_mc(sp, offset);
  4506. /* if read fails disable the entry */
  4507. if (mac_addr == FAILURE)
  4508. mac_addr = S2IO_DISABLE_MAC_ENTRY;
  4509. do_s2io_copy_mac_addr(sp, offset, mac_addr);
  4510. }
  4511. }
  4512. /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
  4513. static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
  4514. {
  4515. int offset;
  4516. struct config_param *config = &sp->config;
  4517. /* restore unicast mac address */
  4518. for (offset = 0; offset < config->max_mac_addr; offset++)
  4519. do_s2io_prog_unicast(sp->dev,
  4520. sp->def_mac_addr[offset].mac_addr);
  4521. /* restore multicast mac address */
  4522. for (offset = config->mc_start_offset;
  4523. offset < config->max_mc_addr; offset++)
  4524. do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
  4525. }
  4526. /* add a multicast MAC address to CAM */
  4527. static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
  4528. {
  4529. int i;
  4530. u64 mac_addr = 0;
  4531. struct config_param *config = &sp->config;
  4532. for (i = 0; i < ETH_ALEN; i++) {
  4533. mac_addr <<= 8;
  4534. mac_addr |= addr[i];
  4535. }
  4536. if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
  4537. return SUCCESS;
  4538. /* check if the multicast mac already preset in CAM */
  4539. for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
  4540. u64 tmp64;
  4541. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4542. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4543. break;
  4544. if (tmp64 == mac_addr)
  4545. return SUCCESS;
  4546. }
  4547. if (i == config->max_mc_addr) {
  4548. DBG_PRINT(ERR_DBG,
  4549. "CAM full no space left for multicast MAC\n");
  4550. return FAILURE;
  4551. }
  4552. /* Update the internal structure with this new mac address */
  4553. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4554. return do_s2io_add_mac(sp, mac_addr, i);
  4555. }
  4556. /* add MAC address to CAM */
  4557. static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
  4558. {
  4559. u64 val64;
  4560. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4561. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4562. &bar0->rmac_addr_data0_mem);
  4563. val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4564. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4565. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4566. /* Wait till command completes */
  4567. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4568. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4569. S2IO_BIT_RESET)) {
  4570. DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
  4571. return FAILURE;
  4572. }
  4573. return SUCCESS;
  4574. }
  4575. /* deletes a specified unicast/multicast mac entry from CAM */
  4576. static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
  4577. {
  4578. int offset;
  4579. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
  4580. struct config_param *config = &sp->config;
  4581. for (offset = 1;
  4582. offset < config->max_mc_addr; offset++) {
  4583. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  4584. if (tmp64 == addr) {
  4585. /* disable the entry by writing 0xffffffffffffULL */
  4586. if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
  4587. return FAILURE;
  4588. /* store the new mac list from CAM */
  4589. do_s2io_store_unicast_mc(sp);
  4590. return SUCCESS;
  4591. }
  4592. }
  4593. DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
  4594. (unsigned long long)addr);
  4595. return FAILURE;
  4596. }
  4597. /* read mac entries from CAM */
  4598. static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
  4599. {
  4600. u64 tmp64 = 0xffffffffffff0000ULL, val64;
  4601. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4602. /* read mac addr */
  4603. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4604. RMAC_ADDR_CMD_MEM_OFFSET(offset);
  4605. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4606. /* Wait till command completes */
  4607. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4608. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4609. S2IO_BIT_RESET)) {
  4610. DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
  4611. return FAILURE;
  4612. }
  4613. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  4614. return tmp64 >> 16;
  4615. }
  4616. /**
  4617. * s2io_set_mac_addr - driver entry point
  4618. */
  4619. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4620. {
  4621. struct sockaddr *addr = p;
  4622. if (!is_valid_ether_addr(addr->sa_data))
  4623. return -EADDRNOTAVAIL;
  4624. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4625. /* store the MAC address in CAM */
  4626. return do_s2io_prog_unicast(dev, dev->dev_addr);
  4627. }
  4628. /**
  4629. * do_s2io_prog_unicast - Programs the Xframe mac address
  4630. * @dev : pointer to the device structure.
  4631. * @addr: a uchar pointer to the new mac address which is to be set.
  4632. * Description : This procedure will program the Xframe to receive
  4633. * frames with new Mac Address
  4634. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4635. * as defined in errno.h file on failure.
  4636. */
  4637. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4638. {
  4639. struct s2io_nic *sp = netdev_priv(dev);
  4640. register u64 mac_addr = 0, perm_addr = 0;
  4641. int i;
  4642. u64 tmp64;
  4643. struct config_param *config = &sp->config;
  4644. /*
  4645. * Set the new MAC address as the new unicast filter and reflect this
  4646. * change on the device address registered with the OS. It will be
  4647. * at offset 0.
  4648. */
  4649. for (i = 0; i < ETH_ALEN; i++) {
  4650. mac_addr <<= 8;
  4651. mac_addr |= addr[i];
  4652. perm_addr <<= 8;
  4653. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4654. }
  4655. /* check if the dev_addr is different than perm_addr */
  4656. if (mac_addr == perm_addr)
  4657. return SUCCESS;
  4658. /* check if the mac already preset in CAM */
  4659. for (i = 1; i < config->max_mac_addr; i++) {
  4660. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4661. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4662. break;
  4663. if (tmp64 == mac_addr) {
  4664. DBG_PRINT(INFO_DBG,
  4665. "MAC addr:0x%llx already present in CAM\n",
  4666. (unsigned long long)mac_addr);
  4667. return SUCCESS;
  4668. }
  4669. }
  4670. if (i == config->max_mac_addr) {
  4671. DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
  4672. return FAILURE;
  4673. }
  4674. /* Update the internal structure with this new mac address */
  4675. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4676. return do_s2io_add_mac(sp, mac_addr, i);
  4677. }
  4678. /**
  4679. * s2io_ethtool_set_link_ksettings - Sets different link parameters.
  4680. * @sp : private member of the device structure, which is a pointer to the
  4681. * s2io_nic structure.
  4682. * @cmd: pointer to the structure with parameters given by ethtool to set
  4683. * link information.
  4684. * Description:
  4685. * The function sets different link parameters provided by the user onto
  4686. * the NIC.
  4687. * Return value:
  4688. * 0 on success.
  4689. */
  4690. static int
  4691. s2io_ethtool_set_link_ksettings(struct net_device *dev,
  4692. const struct ethtool_link_ksettings *cmd)
  4693. {
  4694. struct s2io_nic *sp = netdev_priv(dev);
  4695. if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
  4696. (cmd->base.speed != SPEED_10000) ||
  4697. (cmd->base.duplex != DUPLEX_FULL))
  4698. return -EINVAL;
  4699. else {
  4700. s2io_close(sp->dev);
  4701. s2io_open(sp->dev);
  4702. }
  4703. return 0;
  4704. }
  4705. /**
  4706. * s2io_ethtol_get_link_ksettings - Return link specific information.
  4707. * @sp : private member of the device structure, pointer to the
  4708. * s2io_nic structure.
  4709. * @cmd : pointer to the structure with parameters given by ethtool
  4710. * to return link information.
  4711. * Description:
  4712. * Returns link specific information like speed, duplex etc.. to ethtool.
  4713. * Return value :
  4714. * return 0 on success.
  4715. */
  4716. static int
  4717. s2io_ethtool_get_link_ksettings(struct net_device *dev,
  4718. struct ethtool_link_ksettings *cmd)
  4719. {
  4720. struct s2io_nic *sp = netdev_priv(dev);
  4721. ethtool_link_ksettings_zero_link_mode(cmd, supported);
  4722. ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
  4723. ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
  4724. ethtool_link_ksettings_zero_link_mode(cmd, advertising);
  4725. ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
  4726. ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
  4727. cmd->base.port = PORT_FIBRE;
  4728. if (netif_carrier_ok(sp->dev)) {
  4729. cmd->base.speed = SPEED_10000;
  4730. cmd->base.duplex = DUPLEX_FULL;
  4731. } else {
  4732. cmd->base.speed = SPEED_UNKNOWN;
  4733. cmd->base.duplex = DUPLEX_UNKNOWN;
  4734. }
  4735. cmd->base.autoneg = AUTONEG_DISABLE;
  4736. return 0;
  4737. }
  4738. /**
  4739. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4740. * @sp : private member of the device structure, which is a pointer to the
  4741. * s2io_nic structure.
  4742. * @info : pointer to the structure with parameters given by ethtool to
  4743. * return driver information.
  4744. * Description:
  4745. * Returns driver specefic information like name, version etc.. to ethtool.
  4746. * Return value:
  4747. * void
  4748. */
  4749. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4750. struct ethtool_drvinfo *info)
  4751. {
  4752. struct s2io_nic *sp = netdev_priv(dev);
  4753. strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4754. strlcpy(info->version, s2io_driver_version, sizeof(info->version));
  4755. strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4756. }
  4757. /**
  4758. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4759. * @sp: private member of the device structure, which is a pointer to the
  4760. * s2io_nic structure.
  4761. * @regs : pointer to the structure with parameters given by ethtool for
  4762. * dumping the registers.
  4763. * @reg_space: The input argument into which all the registers are dumped.
  4764. * Description:
  4765. * Dumps the entire register space of xFrame NIC into the user given
  4766. * buffer area.
  4767. * Return value :
  4768. * void .
  4769. */
  4770. static void s2io_ethtool_gregs(struct net_device *dev,
  4771. struct ethtool_regs *regs, void *space)
  4772. {
  4773. int i;
  4774. u64 reg;
  4775. u8 *reg_space = (u8 *)space;
  4776. struct s2io_nic *sp = netdev_priv(dev);
  4777. regs->len = XENA_REG_SPACE;
  4778. regs->version = sp->pdev->subsystem_device;
  4779. for (i = 0; i < regs->len; i += 8) {
  4780. reg = readq(sp->bar0 + i);
  4781. memcpy((reg_space + i), &reg, 8);
  4782. }
  4783. }
  4784. /*
  4785. * s2io_set_led - control NIC led
  4786. */
  4787. static void s2io_set_led(struct s2io_nic *sp, bool on)
  4788. {
  4789. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4790. u16 subid = sp->pdev->subsystem_device;
  4791. u64 val64;
  4792. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4793. ((subid & 0xFF) >= 0x07)) {
  4794. val64 = readq(&bar0->gpio_control);
  4795. if (on)
  4796. val64 |= GPIO_CTRL_GPIO_0;
  4797. else
  4798. val64 &= ~GPIO_CTRL_GPIO_0;
  4799. writeq(val64, &bar0->gpio_control);
  4800. } else {
  4801. val64 = readq(&bar0->adapter_control);
  4802. if (on)
  4803. val64 |= ADAPTER_LED_ON;
  4804. else
  4805. val64 &= ~ADAPTER_LED_ON;
  4806. writeq(val64, &bar0->adapter_control);
  4807. }
  4808. }
  4809. /**
  4810. * s2io_ethtool_set_led - To physically identify the nic on the system.
  4811. * @dev : network device
  4812. * @state: led setting
  4813. *
  4814. * Description: Used to physically identify the NIC on the system.
  4815. * The Link LED will blink for a time specified by the user for
  4816. * identification.
  4817. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4818. * identification is possible only if it's link is up.
  4819. */
  4820. static int s2io_ethtool_set_led(struct net_device *dev,
  4821. enum ethtool_phys_id_state state)
  4822. {
  4823. struct s2io_nic *sp = netdev_priv(dev);
  4824. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4825. u16 subid = sp->pdev->subsystem_device;
  4826. if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
  4827. u64 val64 = readq(&bar0->adapter_control);
  4828. if (!(val64 & ADAPTER_CNTL_EN)) {
  4829. pr_err("Adapter Link down, cannot blink LED\n");
  4830. return -EAGAIN;
  4831. }
  4832. }
  4833. switch (state) {
  4834. case ETHTOOL_ID_ACTIVE:
  4835. sp->adapt_ctrl_org = readq(&bar0->gpio_control);
  4836. return 1; /* cycle on/off once per second */
  4837. case ETHTOOL_ID_ON:
  4838. s2io_set_led(sp, true);
  4839. break;
  4840. case ETHTOOL_ID_OFF:
  4841. s2io_set_led(sp, false);
  4842. break;
  4843. case ETHTOOL_ID_INACTIVE:
  4844. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
  4845. writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
  4846. }
  4847. return 0;
  4848. }
  4849. static void s2io_ethtool_gringparam(struct net_device *dev,
  4850. struct ethtool_ringparam *ering)
  4851. {
  4852. struct s2io_nic *sp = netdev_priv(dev);
  4853. int i, tx_desc_count = 0, rx_desc_count = 0;
  4854. if (sp->rxd_mode == RXD_MODE_1) {
  4855. ering->rx_max_pending = MAX_RX_DESC_1;
  4856. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4857. } else {
  4858. ering->rx_max_pending = MAX_RX_DESC_2;
  4859. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4860. }
  4861. ering->tx_max_pending = MAX_TX_DESC;
  4862. for (i = 0; i < sp->config.rx_ring_num; i++)
  4863. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4864. ering->rx_pending = rx_desc_count;
  4865. ering->rx_jumbo_pending = rx_desc_count;
  4866. for (i = 0; i < sp->config.tx_fifo_num; i++)
  4867. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4868. ering->tx_pending = tx_desc_count;
  4869. DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
  4870. }
  4871. /**
  4872. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4873. * @sp : private member of the device structure, which is a pointer to the
  4874. * s2io_nic structure.
  4875. * @ep : pointer to the structure with pause parameters given by ethtool.
  4876. * Description:
  4877. * Returns the Pause frame generation and reception capability of the NIC.
  4878. * Return value:
  4879. * void
  4880. */
  4881. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4882. struct ethtool_pauseparam *ep)
  4883. {
  4884. u64 val64;
  4885. struct s2io_nic *sp = netdev_priv(dev);
  4886. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4887. val64 = readq(&bar0->rmac_pause_cfg);
  4888. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4889. ep->tx_pause = true;
  4890. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4891. ep->rx_pause = true;
  4892. ep->autoneg = false;
  4893. }
  4894. /**
  4895. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4896. * @sp : private member of the device structure, which is a pointer to the
  4897. * s2io_nic structure.
  4898. * @ep : pointer to the structure with pause parameters given by ethtool.
  4899. * Description:
  4900. * It can be used to set or reset Pause frame generation or reception
  4901. * support of the NIC.
  4902. * Return value:
  4903. * int, returns 0 on Success
  4904. */
  4905. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4906. struct ethtool_pauseparam *ep)
  4907. {
  4908. u64 val64;
  4909. struct s2io_nic *sp = netdev_priv(dev);
  4910. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4911. val64 = readq(&bar0->rmac_pause_cfg);
  4912. if (ep->tx_pause)
  4913. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4914. else
  4915. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4916. if (ep->rx_pause)
  4917. val64 |= RMAC_PAUSE_RX_ENABLE;
  4918. else
  4919. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4920. writeq(val64, &bar0->rmac_pause_cfg);
  4921. return 0;
  4922. }
  4923. /**
  4924. * read_eeprom - reads 4 bytes of data from user given offset.
  4925. * @sp : private member of the device structure, which is a pointer to the
  4926. * s2io_nic structure.
  4927. * @off : offset at which the data must be written
  4928. * @data : Its an output parameter where the data read at the given
  4929. * offset is stored.
  4930. * Description:
  4931. * Will read 4 bytes of data from the user given offset and return the
  4932. * read data.
  4933. * NOTE: Will allow to read only part of the EEPROM visible through the
  4934. * I2C bus.
  4935. * Return value:
  4936. * -1 on failure and 0 on success.
  4937. */
  4938. #define S2IO_DEV_ID 5
  4939. static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
  4940. {
  4941. int ret = -1;
  4942. u32 exit_cnt = 0;
  4943. u64 val64;
  4944. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4945. if (sp->device_type == XFRAME_I_DEVICE) {
  4946. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  4947. I2C_CONTROL_ADDR(off) |
  4948. I2C_CONTROL_BYTE_CNT(0x3) |
  4949. I2C_CONTROL_READ |
  4950. I2C_CONTROL_CNTL_START;
  4951. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4952. while (exit_cnt < 5) {
  4953. val64 = readq(&bar0->i2c_control);
  4954. if (I2C_CONTROL_CNTL_END(val64)) {
  4955. *data = I2C_CONTROL_GET_DATA(val64);
  4956. ret = 0;
  4957. break;
  4958. }
  4959. msleep(50);
  4960. exit_cnt++;
  4961. }
  4962. }
  4963. if (sp->device_type == XFRAME_II_DEVICE) {
  4964. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4965. SPI_CONTROL_BYTECNT(0x3) |
  4966. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4967. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4968. val64 |= SPI_CONTROL_REQ;
  4969. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4970. while (exit_cnt < 5) {
  4971. val64 = readq(&bar0->spi_control);
  4972. if (val64 & SPI_CONTROL_NACK) {
  4973. ret = 1;
  4974. break;
  4975. } else if (val64 & SPI_CONTROL_DONE) {
  4976. *data = readq(&bar0->spi_data);
  4977. *data &= 0xffffff;
  4978. ret = 0;
  4979. break;
  4980. }
  4981. msleep(50);
  4982. exit_cnt++;
  4983. }
  4984. }
  4985. return ret;
  4986. }
  4987. /**
  4988. * write_eeprom - actually writes the relevant part of the data value.
  4989. * @sp : private member of the device structure, which is a pointer to the
  4990. * s2io_nic structure.
  4991. * @off : offset at which the data must be written
  4992. * @data : The data that is to be written
  4993. * @cnt : Number of bytes of the data that are actually to be written into
  4994. * the Eeprom. (max of 3)
  4995. * Description:
  4996. * Actually writes the relevant part of the data value into the Eeprom
  4997. * through the I2C bus.
  4998. * Return value:
  4999. * 0 on success, -1 on failure.
  5000. */
  5001. static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
  5002. {
  5003. int exit_cnt = 0, ret = -1;
  5004. u64 val64;
  5005. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5006. if (sp->device_type == XFRAME_I_DEVICE) {
  5007. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  5008. I2C_CONTROL_ADDR(off) |
  5009. I2C_CONTROL_BYTE_CNT(cnt) |
  5010. I2C_CONTROL_SET_DATA((u32)data) |
  5011. I2C_CONTROL_CNTL_START;
  5012. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5013. while (exit_cnt < 5) {
  5014. val64 = readq(&bar0->i2c_control);
  5015. if (I2C_CONTROL_CNTL_END(val64)) {
  5016. if (!(val64 & I2C_CONTROL_NACK))
  5017. ret = 0;
  5018. break;
  5019. }
  5020. msleep(50);
  5021. exit_cnt++;
  5022. }
  5023. }
  5024. if (sp->device_type == XFRAME_II_DEVICE) {
  5025. int write_cnt = (cnt == 8) ? 0 : cnt;
  5026. writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
  5027. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5028. SPI_CONTROL_BYTECNT(write_cnt) |
  5029. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  5030. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5031. val64 |= SPI_CONTROL_REQ;
  5032. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5033. while (exit_cnt < 5) {
  5034. val64 = readq(&bar0->spi_control);
  5035. if (val64 & SPI_CONTROL_NACK) {
  5036. ret = 1;
  5037. break;
  5038. } else if (val64 & SPI_CONTROL_DONE) {
  5039. ret = 0;
  5040. break;
  5041. }
  5042. msleep(50);
  5043. exit_cnt++;
  5044. }
  5045. }
  5046. return ret;
  5047. }
  5048. static void s2io_vpd_read(struct s2io_nic *nic)
  5049. {
  5050. u8 *vpd_data;
  5051. u8 data;
  5052. int i = 0, cnt, len, fail = 0;
  5053. int vpd_addr = 0x80;
  5054. struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
  5055. if (nic->device_type == XFRAME_II_DEVICE) {
  5056. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  5057. vpd_addr = 0x80;
  5058. } else {
  5059. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  5060. vpd_addr = 0x50;
  5061. }
  5062. strcpy(nic->serial_num, "NOT AVAILABLE");
  5063. vpd_data = kmalloc(256, GFP_KERNEL);
  5064. if (!vpd_data) {
  5065. swstats->mem_alloc_fail_cnt++;
  5066. return;
  5067. }
  5068. swstats->mem_allocated += 256;
  5069. for (i = 0; i < 256; i += 4) {
  5070. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  5071. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  5072. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  5073. for (cnt = 0; cnt < 5; cnt++) {
  5074. msleep(2);
  5075. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  5076. if (data == 0x80)
  5077. break;
  5078. }
  5079. if (cnt >= 5) {
  5080. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  5081. fail = 1;
  5082. break;
  5083. }
  5084. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  5085. (u32 *)&vpd_data[i]);
  5086. }
  5087. if (!fail) {
  5088. /* read serial number of adapter */
  5089. for (cnt = 0; cnt < 252; cnt++) {
  5090. if ((vpd_data[cnt] == 'S') &&
  5091. (vpd_data[cnt+1] == 'N')) {
  5092. len = vpd_data[cnt+2];
  5093. if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
  5094. memcpy(nic->serial_num,
  5095. &vpd_data[cnt + 3],
  5096. len);
  5097. memset(nic->serial_num+len,
  5098. 0,
  5099. VPD_STRING_LEN-len);
  5100. break;
  5101. }
  5102. }
  5103. }
  5104. }
  5105. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  5106. len = vpd_data[1];
  5107. memcpy(nic->product_name, &vpd_data[3], len);
  5108. nic->product_name[len] = 0;
  5109. }
  5110. kfree(vpd_data);
  5111. swstats->mem_freed += 256;
  5112. }
  5113. /**
  5114. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  5115. * @sp : private member of the device structure, which is a pointer to the
  5116. * s2io_nic structure.
  5117. * @eeprom : pointer to the user level structure provided by ethtool,
  5118. * containing all relevant information.
  5119. * @data_buf : user defined value to be written into Eeprom.
  5120. * Description: Reads the values stored in the Eeprom at given offset
  5121. * for a given length. Stores these values int the input argument data
  5122. * buffer 'data_buf' and returns these to the caller (ethtool.)
  5123. * Return value:
  5124. * int 0 on success
  5125. */
  5126. static int s2io_ethtool_geeprom(struct net_device *dev,
  5127. struct ethtool_eeprom *eeprom, u8 * data_buf)
  5128. {
  5129. u32 i, valid;
  5130. u64 data;
  5131. struct s2io_nic *sp = netdev_priv(dev);
  5132. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  5133. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  5134. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  5135. for (i = 0; i < eeprom->len; i += 4) {
  5136. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  5137. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  5138. return -EFAULT;
  5139. }
  5140. valid = INV(data);
  5141. memcpy((data_buf + i), &valid, 4);
  5142. }
  5143. return 0;
  5144. }
  5145. /**
  5146. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  5147. * @sp : private member of the device structure, which is a pointer to the
  5148. * s2io_nic structure.
  5149. * @eeprom : pointer to the user level structure provided by ethtool,
  5150. * containing all relevant information.
  5151. * @data_buf ; user defined value to be written into Eeprom.
  5152. * Description:
  5153. * Tries to write the user provided value in the Eeprom, at the offset
  5154. * given by the user.
  5155. * Return value:
  5156. * 0 on success, -EFAULT on failure.
  5157. */
  5158. static int s2io_ethtool_seeprom(struct net_device *dev,
  5159. struct ethtool_eeprom *eeprom,
  5160. u8 *data_buf)
  5161. {
  5162. int len = eeprom->len, cnt = 0;
  5163. u64 valid = 0, data;
  5164. struct s2io_nic *sp = netdev_priv(dev);
  5165. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  5166. DBG_PRINT(ERR_DBG,
  5167. "ETHTOOL_WRITE_EEPROM Err: "
  5168. "Magic value is wrong, it is 0x%x should be 0x%x\n",
  5169. (sp->pdev->vendor | (sp->pdev->device << 16)),
  5170. eeprom->magic);
  5171. return -EFAULT;
  5172. }
  5173. while (len) {
  5174. data = (u32)data_buf[cnt] & 0x000000FF;
  5175. if (data)
  5176. valid = (u32)(data << 24);
  5177. else
  5178. valid = data;
  5179. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  5180. DBG_PRINT(ERR_DBG,
  5181. "ETHTOOL_WRITE_EEPROM Err: "
  5182. "Cannot write into the specified offset\n");
  5183. return -EFAULT;
  5184. }
  5185. cnt++;
  5186. len--;
  5187. }
  5188. return 0;
  5189. }
  5190. /**
  5191. * s2io_register_test - reads and writes into all clock domains.
  5192. * @sp : private member of the device structure, which is a pointer to the
  5193. * s2io_nic structure.
  5194. * @data : variable that returns the result of each of the test conducted b
  5195. * by the driver.
  5196. * Description:
  5197. * Read and write into all clock domains. The NIC has 3 clock domains,
  5198. * see that registers in all the three regions are accessible.
  5199. * Return value:
  5200. * 0 on success.
  5201. */
  5202. static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
  5203. {
  5204. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5205. u64 val64 = 0, exp_val;
  5206. int fail = 0;
  5207. val64 = readq(&bar0->pif_rd_swapper_fb);
  5208. if (val64 != 0x123456789abcdefULL) {
  5209. fail = 1;
  5210. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
  5211. }
  5212. val64 = readq(&bar0->rmac_pause_cfg);
  5213. if (val64 != 0xc000ffff00000000ULL) {
  5214. fail = 1;
  5215. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
  5216. }
  5217. val64 = readq(&bar0->rx_queue_cfg);
  5218. if (sp->device_type == XFRAME_II_DEVICE)
  5219. exp_val = 0x0404040404040404ULL;
  5220. else
  5221. exp_val = 0x0808080808080808ULL;
  5222. if (val64 != exp_val) {
  5223. fail = 1;
  5224. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
  5225. }
  5226. val64 = readq(&bar0->xgxs_efifo_cfg);
  5227. if (val64 != 0x000000001923141EULL) {
  5228. fail = 1;
  5229. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
  5230. }
  5231. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5232. writeq(val64, &bar0->xmsi_data);
  5233. val64 = readq(&bar0->xmsi_data);
  5234. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5235. fail = 1;
  5236. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
  5237. }
  5238. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5239. writeq(val64, &bar0->xmsi_data);
  5240. val64 = readq(&bar0->xmsi_data);
  5241. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5242. fail = 1;
  5243. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
  5244. }
  5245. *data = fail;
  5246. return fail;
  5247. }
  5248. /**
  5249. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5250. * @sp : private member of the device structure, which is a pointer to the
  5251. * s2io_nic structure.
  5252. * @data:variable that returns the result of each of the test conducted by
  5253. * the driver.
  5254. * Description:
  5255. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5256. * register.
  5257. * Return value:
  5258. * 0 on success.
  5259. */
  5260. static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
  5261. {
  5262. int fail = 0;
  5263. u64 ret_data, org_4F0, org_7F0;
  5264. u8 saved_4F0 = 0, saved_7F0 = 0;
  5265. struct net_device *dev = sp->dev;
  5266. /* Test Write Error at offset 0 */
  5267. /* Note that SPI interface allows write access to all areas
  5268. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5269. */
  5270. if (sp->device_type == XFRAME_I_DEVICE)
  5271. if (!write_eeprom(sp, 0, 0, 3))
  5272. fail = 1;
  5273. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5274. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5275. saved_4F0 = 1;
  5276. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5277. saved_7F0 = 1;
  5278. /* Test Write at offset 4f0 */
  5279. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5280. fail = 1;
  5281. if (read_eeprom(sp, 0x4F0, &ret_data))
  5282. fail = 1;
  5283. if (ret_data != 0x012345) {
  5284. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5285. "Data written %llx Data read %llx\n",
  5286. dev->name, (unsigned long long)0x12345,
  5287. (unsigned long long)ret_data);
  5288. fail = 1;
  5289. }
  5290. /* Reset the EEPROM data go FFFF */
  5291. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5292. /* Test Write Request Error at offset 0x7c */
  5293. if (sp->device_type == XFRAME_I_DEVICE)
  5294. if (!write_eeprom(sp, 0x07C, 0, 3))
  5295. fail = 1;
  5296. /* Test Write Request at offset 0x7f0 */
  5297. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5298. fail = 1;
  5299. if (read_eeprom(sp, 0x7F0, &ret_data))
  5300. fail = 1;
  5301. if (ret_data != 0x012345) {
  5302. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5303. "Data written %llx Data read %llx\n",
  5304. dev->name, (unsigned long long)0x12345,
  5305. (unsigned long long)ret_data);
  5306. fail = 1;
  5307. }
  5308. /* Reset the EEPROM data go FFFF */
  5309. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5310. if (sp->device_type == XFRAME_I_DEVICE) {
  5311. /* Test Write Error at offset 0x80 */
  5312. if (!write_eeprom(sp, 0x080, 0, 3))
  5313. fail = 1;
  5314. /* Test Write Error at offset 0xfc */
  5315. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5316. fail = 1;
  5317. /* Test Write Error at offset 0x100 */
  5318. if (!write_eeprom(sp, 0x100, 0, 3))
  5319. fail = 1;
  5320. /* Test Write Error at offset 4ec */
  5321. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5322. fail = 1;
  5323. }
  5324. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5325. if (saved_4F0)
  5326. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5327. if (saved_7F0)
  5328. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5329. *data = fail;
  5330. return fail;
  5331. }
  5332. /**
  5333. * s2io_bist_test - invokes the MemBist test of the card .
  5334. * @sp : private member of the device structure, which is a pointer to the
  5335. * s2io_nic structure.
  5336. * @data:variable that returns the result of each of the test conducted by
  5337. * the driver.
  5338. * Description:
  5339. * This invokes the MemBist test of the card. We give around
  5340. * 2 secs time for the Test to complete. If it's still not complete
  5341. * within this peiod, we consider that the test failed.
  5342. * Return value:
  5343. * 0 on success and -1 on failure.
  5344. */
  5345. static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
  5346. {
  5347. u8 bist = 0;
  5348. int cnt = 0, ret = -1;
  5349. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5350. bist |= PCI_BIST_START;
  5351. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5352. while (cnt < 20) {
  5353. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5354. if (!(bist & PCI_BIST_START)) {
  5355. *data = (bist & PCI_BIST_CODE_MASK);
  5356. ret = 0;
  5357. break;
  5358. }
  5359. msleep(100);
  5360. cnt++;
  5361. }
  5362. return ret;
  5363. }
  5364. /**
  5365. * s2io_link_test - verifies the link state of the nic
  5366. * @sp ; private member of the device structure, which is a pointer to the
  5367. * s2io_nic structure.
  5368. * @data: variable that returns the result of each of the test conducted by
  5369. * the driver.
  5370. * Description:
  5371. * The function verifies the link state of the NIC and updates the input
  5372. * argument 'data' appropriately.
  5373. * Return value:
  5374. * 0 on success.
  5375. */
  5376. static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
  5377. {
  5378. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5379. u64 val64;
  5380. val64 = readq(&bar0->adapter_status);
  5381. if (!(LINK_IS_UP(val64)))
  5382. *data = 1;
  5383. else
  5384. *data = 0;
  5385. return *data;
  5386. }
  5387. /**
  5388. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5389. * @sp: private member of the device structure, which is a pointer to the
  5390. * s2io_nic structure.
  5391. * @data: variable that returns the result of each of the test
  5392. * conducted by the driver.
  5393. * Description:
  5394. * This is one of the offline test that tests the read and write
  5395. * access to the RldRam chip on the NIC.
  5396. * Return value:
  5397. * 0 on success.
  5398. */
  5399. static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
  5400. {
  5401. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5402. u64 val64;
  5403. int cnt, iteration = 0, test_fail = 0;
  5404. val64 = readq(&bar0->adapter_control);
  5405. val64 &= ~ADAPTER_ECC_EN;
  5406. writeq(val64, &bar0->adapter_control);
  5407. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5408. val64 |= MC_RLDRAM_TEST_MODE;
  5409. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5410. val64 = readq(&bar0->mc_rldram_mrs);
  5411. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5412. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5413. val64 |= MC_RLDRAM_MRS_ENABLE;
  5414. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5415. while (iteration < 2) {
  5416. val64 = 0x55555555aaaa0000ULL;
  5417. if (iteration == 1)
  5418. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5419. writeq(val64, &bar0->mc_rldram_test_d0);
  5420. val64 = 0xaaaa5a5555550000ULL;
  5421. if (iteration == 1)
  5422. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5423. writeq(val64, &bar0->mc_rldram_test_d1);
  5424. val64 = 0x55aaaaaaaa5a0000ULL;
  5425. if (iteration == 1)
  5426. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5427. writeq(val64, &bar0->mc_rldram_test_d2);
  5428. val64 = (u64) (0x0000003ffffe0100ULL);
  5429. writeq(val64, &bar0->mc_rldram_test_add);
  5430. val64 = MC_RLDRAM_TEST_MODE |
  5431. MC_RLDRAM_TEST_WRITE |
  5432. MC_RLDRAM_TEST_GO;
  5433. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5434. for (cnt = 0; cnt < 5; cnt++) {
  5435. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5436. if (val64 & MC_RLDRAM_TEST_DONE)
  5437. break;
  5438. msleep(200);
  5439. }
  5440. if (cnt == 5)
  5441. break;
  5442. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5443. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5444. for (cnt = 0; cnt < 5; cnt++) {
  5445. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5446. if (val64 & MC_RLDRAM_TEST_DONE)
  5447. break;
  5448. msleep(500);
  5449. }
  5450. if (cnt == 5)
  5451. break;
  5452. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5453. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5454. test_fail = 1;
  5455. iteration++;
  5456. }
  5457. *data = test_fail;
  5458. /* Bring the adapter out of test mode */
  5459. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5460. return test_fail;
  5461. }
  5462. /**
  5463. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5464. * @sp : private member of the device structure, which is a pointer to the
  5465. * s2io_nic structure.
  5466. * @ethtest : pointer to a ethtool command specific structure that will be
  5467. * returned to the user.
  5468. * @data : variable that returns the result of each of the test
  5469. * conducted by the driver.
  5470. * Description:
  5471. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5472. * the health of the card.
  5473. * Return value:
  5474. * void
  5475. */
  5476. static void s2io_ethtool_test(struct net_device *dev,
  5477. struct ethtool_test *ethtest,
  5478. uint64_t *data)
  5479. {
  5480. struct s2io_nic *sp = netdev_priv(dev);
  5481. int orig_state = netif_running(sp->dev);
  5482. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5483. /* Offline Tests. */
  5484. if (orig_state)
  5485. s2io_close(sp->dev);
  5486. if (s2io_register_test(sp, &data[0]))
  5487. ethtest->flags |= ETH_TEST_FL_FAILED;
  5488. s2io_reset(sp);
  5489. if (s2io_rldram_test(sp, &data[3]))
  5490. ethtest->flags |= ETH_TEST_FL_FAILED;
  5491. s2io_reset(sp);
  5492. if (s2io_eeprom_test(sp, &data[1]))
  5493. ethtest->flags |= ETH_TEST_FL_FAILED;
  5494. if (s2io_bist_test(sp, &data[4]))
  5495. ethtest->flags |= ETH_TEST_FL_FAILED;
  5496. if (orig_state)
  5497. s2io_open(sp->dev);
  5498. data[2] = 0;
  5499. } else {
  5500. /* Online Tests. */
  5501. if (!orig_state) {
  5502. DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
  5503. dev->name);
  5504. data[0] = -1;
  5505. data[1] = -1;
  5506. data[2] = -1;
  5507. data[3] = -1;
  5508. data[4] = -1;
  5509. }
  5510. if (s2io_link_test(sp, &data[2]))
  5511. ethtest->flags |= ETH_TEST_FL_FAILED;
  5512. data[0] = 0;
  5513. data[1] = 0;
  5514. data[3] = 0;
  5515. data[4] = 0;
  5516. }
  5517. }
  5518. static void s2io_get_ethtool_stats(struct net_device *dev,
  5519. struct ethtool_stats *estats,
  5520. u64 *tmp_stats)
  5521. {
  5522. int i = 0, k;
  5523. struct s2io_nic *sp = netdev_priv(dev);
  5524. struct stat_block *stats = sp->mac_control.stats_info;
  5525. struct swStat *swstats = &stats->sw_stat;
  5526. struct xpakStat *xstats = &stats->xpak_stat;
  5527. s2io_updt_stats(sp);
  5528. tmp_stats[i++] =
  5529. (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
  5530. le32_to_cpu(stats->tmac_frms);
  5531. tmp_stats[i++] =
  5532. (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
  5533. le32_to_cpu(stats->tmac_data_octets);
  5534. tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
  5535. tmp_stats[i++] =
  5536. (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
  5537. le32_to_cpu(stats->tmac_mcst_frms);
  5538. tmp_stats[i++] =
  5539. (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
  5540. le32_to_cpu(stats->tmac_bcst_frms);
  5541. tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
  5542. tmp_stats[i++] =
  5543. (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
  5544. le32_to_cpu(stats->tmac_ttl_octets);
  5545. tmp_stats[i++] =
  5546. (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
  5547. le32_to_cpu(stats->tmac_ucst_frms);
  5548. tmp_stats[i++] =
  5549. (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
  5550. le32_to_cpu(stats->tmac_nucst_frms);
  5551. tmp_stats[i++] =
  5552. (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
  5553. le32_to_cpu(stats->tmac_any_err_frms);
  5554. tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
  5555. tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
  5556. tmp_stats[i++] =
  5557. (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
  5558. le32_to_cpu(stats->tmac_vld_ip);
  5559. tmp_stats[i++] =
  5560. (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
  5561. le32_to_cpu(stats->tmac_drop_ip);
  5562. tmp_stats[i++] =
  5563. (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
  5564. le32_to_cpu(stats->tmac_icmp);
  5565. tmp_stats[i++] =
  5566. (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
  5567. le32_to_cpu(stats->tmac_rst_tcp);
  5568. tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
  5569. tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
  5570. le32_to_cpu(stats->tmac_udp);
  5571. tmp_stats[i++] =
  5572. (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
  5573. le32_to_cpu(stats->rmac_vld_frms);
  5574. tmp_stats[i++] =
  5575. (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
  5576. le32_to_cpu(stats->rmac_data_octets);
  5577. tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
  5578. tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
  5579. tmp_stats[i++] =
  5580. (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
  5581. le32_to_cpu(stats->rmac_vld_mcst_frms);
  5582. tmp_stats[i++] =
  5583. (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
  5584. le32_to_cpu(stats->rmac_vld_bcst_frms);
  5585. tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
  5586. tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
  5587. tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
  5588. tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
  5589. tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
  5590. tmp_stats[i++] =
  5591. (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
  5592. le32_to_cpu(stats->rmac_ttl_octets);
  5593. tmp_stats[i++] =
  5594. (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
  5595. | le32_to_cpu(stats->rmac_accepted_ucst_frms);
  5596. tmp_stats[i++] =
  5597. (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
  5598. << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
  5599. tmp_stats[i++] =
  5600. (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
  5601. le32_to_cpu(stats->rmac_discarded_frms);
  5602. tmp_stats[i++] =
  5603. (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
  5604. << 32 | le32_to_cpu(stats->rmac_drop_events);
  5605. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
  5606. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
  5607. tmp_stats[i++] =
  5608. (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
  5609. le32_to_cpu(stats->rmac_usized_frms);
  5610. tmp_stats[i++] =
  5611. (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
  5612. le32_to_cpu(stats->rmac_osized_frms);
  5613. tmp_stats[i++] =
  5614. (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
  5615. le32_to_cpu(stats->rmac_frag_frms);
  5616. tmp_stats[i++] =
  5617. (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
  5618. le32_to_cpu(stats->rmac_jabber_frms);
  5619. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
  5620. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
  5621. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
  5622. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
  5623. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
  5624. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
  5625. tmp_stats[i++] =
  5626. (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
  5627. le32_to_cpu(stats->rmac_ip);
  5628. tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
  5629. tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
  5630. tmp_stats[i++] =
  5631. (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
  5632. le32_to_cpu(stats->rmac_drop_ip);
  5633. tmp_stats[i++] =
  5634. (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
  5635. le32_to_cpu(stats->rmac_icmp);
  5636. tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
  5637. tmp_stats[i++] =
  5638. (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
  5639. le32_to_cpu(stats->rmac_udp);
  5640. tmp_stats[i++] =
  5641. (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
  5642. le32_to_cpu(stats->rmac_err_drp_udp);
  5643. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
  5644. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
  5645. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
  5646. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
  5647. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
  5648. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
  5649. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
  5650. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
  5651. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
  5652. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
  5653. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
  5654. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
  5655. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
  5656. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
  5657. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
  5658. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
  5659. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
  5660. tmp_stats[i++] =
  5661. (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
  5662. le32_to_cpu(stats->rmac_pause_cnt);
  5663. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
  5664. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
  5665. tmp_stats[i++] =
  5666. (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
  5667. le32_to_cpu(stats->rmac_accepted_ip);
  5668. tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
  5669. tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
  5670. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
  5671. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
  5672. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
  5673. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
  5674. tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
  5675. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
  5676. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
  5677. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
  5678. tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
  5679. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
  5680. tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
  5681. tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
  5682. tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
  5683. tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
  5684. tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
  5685. tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
  5686. tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
  5687. /* Enhanced statistics exist only for Hercules */
  5688. if (sp->device_type == XFRAME_II_DEVICE) {
  5689. tmp_stats[i++] =
  5690. le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
  5691. tmp_stats[i++] =
  5692. le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
  5693. tmp_stats[i++] =
  5694. le64_to_cpu(stats->rmac_ttl_8192_max_frms);
  5695. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
  5696. tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
  5697. tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
  5698. tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
  5699. tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
  5700. tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
  5701. tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
  5702. tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
  5703. tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
  5704. tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
  5705. tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
  5706. tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
  5707. tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
  5708. }
  5709. tmp_stats[i++] = 0;
  5710. tmp_stats[i++] = swstats->single_ecc_errs;
  5711. tmp_stats[i++] = swstats->double_ecc_errs;
  5712. tmp_stats[i++] = swstats->parity_err_cnt;
  5713. tmp_stats[i++] = swstats->serious_err_cnt;
  5714. tmp_stats[i++] = swstats->soft_reset_cnt;
  5715. tmp_stats[i++] = swstats->fifo_full_cnt;
  5716. for (k = 0; k < MAX_RX_RINGS; k++)
  5717. tmp_stats[i++] = swstats->ring_full_cnt[k];
  5718. tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
  5719. tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
  5720. tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
  5721. tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
  5722. tmp_stats[i++] = xstats->alarm_laser_output_power_high;
  5723. tmp_stats[i++] = xstats->alarm_laser_output_power_low;
  5724. tmp_stats[i++] = xstats->warn_transceiver_temp_high;
  5725. tmp_stats[i++] = xstats->warn_transceiver_temp_low;
  5726. tmp_stats[i++] = xstats->warn_laser_bias_current_high;
  5727. tmp_stats[i++] = xstats->warn_laser_bias_current_low;
  5728. tmp_stats[i++] = xstats->warn_laser_output_power_high;
  5729. tmp_stats[i++] = xstats->warn_laser_output_power_low;
  5730. tmp_stats[i++] = swstats->clubbed_frms_cnt;
  5731. tmp_stats[i++] = swstats->sending_both;
  5732. tmp_stats[i++] = swstats->outof_sequence_pkts;
  5733. tmp_stats[i++] = swstats->flush_max_pkts;
  5734. if (swstats->num_aggregations) {
  5735. u64 tmp = swstats->sum_avg_pkts_aggregated;
  5736. int count = 0;
  5737. /*
  5738. * Since 64-bit divide does not work on all platforms,
  5739. * do repeated subtraction.
  5740. */
  5741. while (tmp >= swstats->num_aggregations) {
  5742. tmp -= swstats->num_aggregations;
  5743. count++;
  5744. }
  5745. tmp_stats[i++] = count;
  5746. } else
  5747. tmp_stats[i++] = 0;
  5748. tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
  5749. tmp_stats[i++] = swstats->pci_map_fail_cnt;
  5750. tmp_stats[i++] = swstats->watchdog_timer_cnt;
  5751. tmp_stats[i++] = swstats->mem_allocated;
  5752. tmp_stats[i++] = swstats->mem_freed;
  5753. tmp_stats[i++] = swstats->link_up_cnt;
  5754. tmp_stats[i++] = swstats->link_down_cnt;
  5755. tmp_stats[i++] = swstats->link_up_time;
  5756. tmp_stats[i++] = swstats->link_down_time;
  5757. tmp_stats[i++] = swstats->tx_buf_abort_cnt;
  5758. tmp_stats[i++] = swstats->tx_desc_abort_cnt;
  5759. tmp_stats[i++] = swstats->tx_parity_err_cnt;
  5760. tmp_stats[i++] = swstats->tx_link_loss_cnt;
  5761. tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
  5762. tmp_stats[i++] = swstats->rx_parity_err_cnt;
  5763. tmp_stats[i++] = swstats->rx_abort_cnt;
  5764. tmp_stats[i++] = swstats->rx_parity_abort_cnt;
  5765. tmp_stats[i++] = swstats->rx_rda_fail_cnt;
  5766. tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
  5767. tmp_stats[i++] = swstats->rx_fcs_err_cnt;
  5768. tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
  5769. tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
  5770. tmp_stats[i++] = swstats->rx_unkn_err_cnt;
  5771. tmp_stats[i++] = swstats->tda_err_cnt;
  5772. tmp_stats[i++] = swstats->pfc_err_cnt;
  5773. tmp_stats[i++] = swstats->pcc_err_cnt;
  5774. tmp_stats[i++] = swstats->tti_err_cnt;
  5775. tmp_stats[i++] = swstats->tpa_err_cnt;
  5776. tmp_stats[i++] = swstats->sm_err_cnt;
  5777. tmp_stats[i++] = swstats->lso_err_cnt;
  5778. tmp_stats[i++] = swstats->mac_tmac_err_cnt;
  5779. tmp_stats[i++] = swstats->mac_rmac_err_cnt;
  5780. tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
  5781. tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
  5782. tmp_stats[i++] = swstats->rc_err_cnt;
  5783. tmp_stats[i++] = swstats->prc_pcix_err_cnt;
  5784. tmp_stats[i++] = swstats->rpa_err_cnt;
  5785. tmp_stats[i++] = swstats->rda_err_cnt;
  5786. tmp_stats[i++] = swstats->rti_err_cnt;
  5787. tmp_stats[i++] = swstats->mc_err_cnt;
  5788. }
  5789. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5790. {
  5791. return XENA_REG_SPACE;
  5792. }
  5793. static int s2io_get_eeprom_len(struct net_device *dev)
  5794. {
  5795. return XENA_EEPROM_SPACE;
  5796. }
  5797. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5798. {
  5799. struct s2io_nic *sp = netdev_priv(dev);
  5800. switch (sset) {
  5801. case ETH_SS_TEST:
  5802. return S2IO_TEST_LEN;
  5803. case ETH_SS_STATS:
  5804. switch (sp->device_type) {
  5805. case XFRAME_I_DEVICE:
  5806. return XFRAME_I_STAT_LEN;
  5807. case XFRAME_II_DEVICE:
  5808. return XFRAME_II_STAT_LEN;
  5809. default:
  5810. return 0;
  5811. }
  5812. default:
  5813. return -EOPNOTSUPP;
  5814. }
  5815. }
  5816. static void s2io_ethtool_get_strings(struct net_device *dev,
  5817. u32 stringset, u8 *data)
  5818. {
  5819. int stat_size = 0;
  5820. struct s2io_nic *sp = netdev_priv(dev);
  5821. switch (stringset) {
  5822. case ETH_SS_TEST:
  5823. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5824. break;
  5825. case ETH_SS_STATS:
  5826. stat_size = sizeof(ethtool_xena_stats_keys);
  5827. memcpy(data, &ethtool_xena_stats_keys, stat_size);
  5828. if (sp->device_type == XFRAME_II_DEVICE) {
  5829. memcpy(data + stat_size,
  5830. &ethtool_enhanced_stats_keys,
  5831. sizeof(ethtool_enhanced_stats_keys));
  5832. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5833. }
  5834. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5835. sizeof(ethtool_driver_stats_keys));
  5836. }
  5837. }
  5838. static int s2io_set_features(struct net_device *dev, netdev_features_t features)
  5839. {
  5840. struct s2io_nic *sp = netdev_priv(dev);
  5841. netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
  5842. if (changed && netif_running(dev)) {
  5843. int rc;
  5844. s2io_stop_all_tx_queue(sp);
  5845. s2io_card_down(sp);
  5846. dev->features = features;
  5847. rc = s2io_card_up(sp);
  5848. if (rc)
  5849. s2io_reset(sp);
  5850. else
  5851. s2io_start_all_tx_queue(sp);
  5852. return rc ? rc : 1;
  5853. }
  5854. return 0;
  5855. }
  5856. static const struct ethtool_ops netdev_ethtool_ops = {
  5857. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5858. .get_regs_len = s2io_ethtool_get_regs_len,
  5859. .get_regs = s2io_ethtool_gregs,
  5860. .get_link = ethtool_op_get_link,
  5861. .get_eeprom_len = s2io_get_eeprom_len,
  5862. .get_eeprom = s2io_ethtool_geeprom,
  5863. .set_eeprom = s2io_ethtool_seeprom,
  5864. .get_ringparam = s2io_ethtool_gringparam,
  5865. .get_pauseparam = s2io_ethtool_getpause_data,
  5866. .set_pauseparam = s2io_ethtool_setpause_data,
  5867. .self_test = s2io_ethtool_test,
  5868. .get_strings = s2io_ethtool_get_strings,
  5869. .set_phys_id = s2io_ethtool_set_led,
  5870. .get_ethtool_stats = s2io_get_ethtool_stats,
  5871. .get_sset_count = s2io_get_sset_count,
  5872. .get_link_ksettings = s2io_ethtool_get_link_ksettings,
  5873. .set_link_ksettings = s2io_ethtool_set_link_ksettings,
  5874. };
  5875. /**
  5876. * s2io_ioctl - Entry point for the Ioctl
  5877. * @dev : Device pointer.
  5878. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5879. * a proprietary structure used to pass information to the driver.
  5880. * @cmd : This is used to distinguish between the different commands that
  5881. * can be passed to the IOCTL functions.
  5882. * Description:
  5883. * Currently there are no special functionality supported in IOCTL, hence
  5884. * function always return EOPNOTSUPPORTED
  5885. */
  5886. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5887. {
  5888. return -EOPNOTSUPP;
  5889. }
  5890. /**
  5891. * s2io_change_mtu - entry point to change MTU size for the device.
  5892. * @dev : device pointer.
  5893. * @new_mtu : the new MTU size for the device.
  5894. * Description: A driver entry point to change MTU size for the device.
  5895. * Before changing the MTU the device must be stopped.
  5896. * Return value:
  5897. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5898. * file on failure.
  5899. */
  5900. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5901. {
  5902. struct s2io_nic *sp = netdev_priv(dev);
  5903. int ret = 0;
  5904. dev->mtu = new_mtu;
  5905. if (netif_running(dev)) {
  5906. s2io_stop_all_tx_queue(sp);
  5907. s2io_card_down(sp);
  5908. ret = s2io_card_up(sp);
  5909. if (ret) {
  5910. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5911. __func__);
  5912. return ret;
  5913. }
  5914. s2io_wake_all_tx_queue(sp);
  5915. } else { /* Device is down */
  5916. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5917. u64 val64 = new_mtu;
  5918. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5919. }
  5920. return ret;
  5921. }
  5922. /**
  5923. * s2io_set_link - Set the LInk status
  5924. * @data: long pointer to device private structue
  5925. * Description: Sets the link status for the adapter
  5926. */
  5927. static void s2io_set_link(struct work_struct *work)
  5928. {
  5929. struct s2io_nic *nic = container_of(work, struct s2io_nic,
  5930. set_link_task);
  5931. struct net_device *dev = nic->dev;
  5932. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5933. register u64 val64;
  5934. u16 subid;
  5935. rtnl_lock();
  5936. if (!netif_running(dev))
  5937. goto out_unlock;
  5938. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5939. /* The card is being reset, no point doing anything */
  5940. goto out_unlock;
  5941. }
  5942. subid = nic->pdev->subsystem_device;
  5943. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5944. /*
  5945. * Allow a small delay for the NICs self initiated
  5946. * cleanup to complete.
  5947. */
  5948. msleep(100);
  5949. }
  5950. val64 = readq(&bar0->adapter_status);
  5951. if (LINK_IS_UP(val64)) {
  5952. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5953. if (verify_xena_quiescence(nic)) {
  5954. val64 = readq(&bar0->adapter_control);
  5955. val64 |= ADAPTER_CNTL_EN;
  5956. writeq(val64, &bar0->adapter_control);
  5957. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5958. nic->device_type, subid)) {
  5959. val64 = readq(&bar0->gpio_control);
  5960. val64 |= GPIO_CTRL_GPIO_0;
  5961. writeq(val64, &bar0->gpio_control);
  5962. val64 = readq(&bar0->gpio_control);
  5963. } else {
  5964. val64 |= ADAPTER_LED_ON;
  5965. writeq(val64, &bar0->adapter_control);
  5966. }
  5967. nic->device_enabled_once = true;
  5968. } else {
  5969. DBG_PRINT(ERR_DBG,
  5970. "%s: Error: device is not Quiescent\n",
  5971. dev->name);
  5972. s2io_stop_all_tx_queue(nic);
  5973. }
  5974. }
  5975. val64 = readq(&bar0->adapter_control);
  5976. val64 |= ADAPTER_LED_ON;
  5977. writeq(val64, &bar0->adapter_control);
  5978. s2io_link(nic, LINK_UP);
  5979. } else {
  5980. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5981. subid)) {
  5982. val64 = readq(&bar0->gpio_control);
  5983. val64 &= ~GPIO_CTRL_GPIO_0;
  5984. writeq(val64, &bar0->gpio_control);
  5985. val64 = readq(&bar0->gpio_control);
  5986. }
  5987. /* turn off LED */
  5988. val64 = readq(&bar0->adapter_control);
  5989. val64 = val64 & (~ADAPTER_LED_ON);
  5990. writeq(val64, &bar0->adapter_control);
  5991. s2io_link(nic, LINK_DOWN);
  5992. }
  5993. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5994. out_unlock:
  5995. rtnl_unlock();
  5996. }
  5997. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5998. struct buffAdd *ba,
  5999. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  6000. u64 *temp2, int size)
  6001. {
  6002. struct net_device *dev = sp->dev;
  6003. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6004. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  6005. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  6006. /* allocate skb */
  6007. if (*skb) {
  6008. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  6009. /*
  6010. * As Rx frame are not going to be processed,
  6011. * using same mapped address for the Rxd
  6012. * buffer pointer
  6013. */
  6014. rxdp1->Buffer0_ptr = *temp0;
  6015. } else {
  6016. *skb = netdev_alloc_skb(dev, size);
  6017. if (!(*skb)) {
  6018. DBG_PRINT(INFO_DBG,
  6019. "%s: Out of memory to allocate %s\n",
  6020. dev->name, "1 buf mode SKBs");
  6021. stats->mem_alloc_fail_cnt++;
  6022. return -ENOMEM ;
  6023. }
  6024. stats->mem_allocated += (*skb)->truesize;
  6025. /* storing the mapped addr in a temp variable
  6026. * such it will be used for next rxd whose
  6027. * Host Control is NULL
  6028. */
  6029. rxdp1->Buffer0_ptr = *temp0 =
  6030. pci_map_single(sp->pdev, (*skb)->data,
  6031. size - NET_IP_ALIGN,
  6032. PCI_DMA_FROMDEVICE);
  6033. if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
  6034. goto memalloc_failed;
  6035. rxdp->Host_Control = (unsigned long) (*skb);
  6036. }
  6037. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  6038. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  6039. /* Two buffer Mode */
  6040. if (*skb) {
  6041. rxdp3->Buffer2_ptr = *temp2;
  6042. rxdp3->Buffer0_ptr = *temp0;
  6043. rxdp3->Buffer1_ptr = *temp1;
  6044. } else {
  6045. *skb = netdev_alloc_skb(dev, size);
  6046. if (!(*skb)) {
  6047. DBG_PRINT(INFO_DBG,
  6048. "%s: Out of memory to allocate %s\n",
  6049. dev->name,
  6050. "2 buf mode SKBs");
  6051. stats->mem_alloc_fail_cnt++;
  6052. return -ENOMEM;
  6053. }
  6054. stats->mem_allocated += (*skb)->truesize;
  6055. rxdp3->Buffer2_ptr = *temp2 =
  6056. pci_map_single(sp->pdev, (*skb)->data,
  6057. dev->mtu + 4,
  6058. PCI_DMA_FROMDEVICE);
  6059. if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
  6060. goto memalloc_failed;
  6061. rxdp3->Buffer0_ptr = *temp0 =
  6062. pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
  6063. PCI_DMA_FROMDEVICE);
  6064. if (pci_dma_mapping_error(sp->pdev,
  6065. rxdp3->Buffer0_ptr)) {
  6066. pci_unmap_single(sp->pdev,
  6067. (dma_addr_t)rxdp3->Buffer2_ptr,
  6068. dev->mtu + 4,
  6069. PCI_DMA_FROMDEVICE);
  6070. goto memalloc_failed;
  6071. }
  6072. rxdp->Host_Control = (unsigned long) (*skb);
  6073. /* Buffer-1 will be dummy buffer not used */
  6074. rxdp3->Buffer1_ptr = *temp1 =
  6075. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  6076. PCI_DMA_FROMDEVICE);
  6077. if (pci_dma_mapping_error(sp->pdev,
  6078. rxdp3->Buffer1_ptr)) {
  6079. pci_unmap_single(sp->pdev,
  6080. (dma_addr_t)rxdp3->Buffer0_ptr,
  6081. BUF0_LEN, PCI_DMA_FROMDEVICE);
  6082. pci_unmap_single(sp->pdev,
  6083. (dma_addr_t)rxdp3->Buffer2_ptr,
  6084. dev->mtu + 4,
  6085. PCI_DMA_FROMDEVICE);
  6086. goto memalloc_failed;
  6087. }
  6088. }
  6089. }
  6090. return 0;
  6091. memalloc_failed:
  6092. stats->pci_map_fail_cnt++;
  6093. stats->mem_freed += (*skb)->truesize;
  6094. dev_kfree_skb(*skb);
  6095. return -ENOMEM;
  6096. }
  6097. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  6098. int size)
  6099. {
  6100. struct net_device *dev = sp->dev;
  6101. if (sp->rxd_mode == RXD_MODE_1) {
  6102. rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  6103. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6104. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  6105. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  6106. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
  6107. }
  6108. }
  6109. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  6110. {
  6111. int i, j, k, blk_cnt = 0, size;
  6112. struct config_param *config = &sp->config;
  6113. struct mac_info *mac_control = &sp->mac_control;
  6114. struct net_device *dev = sp->dev;
  6115. struct RxD_t *rxdp = NULL;
  6116. struct sk_buff *skb = NULL;
  6117. struct buffAdd *ba = NULL;
  6118. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  6119. /* Calculate the size based on ring mode */
  6120. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  6121. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  6122. if (sp->rxd_mode == RXD_MODE_1)
  6123. size += NET_IP_ALIGN;
  6124. else if (sp->rxd_mode == RXD_MODE_3B)
  6125. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  6126. for (i = 0; i < config->rx_ring_num; i++) {
  6127. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6128. struct ring_info *ring = &mac_control->rings[i];
  6129. blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
  6130. for (j = 0; j < blk_cnt; j++) {
  6131. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  6132. rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
  6133. if (sp->rxd_mode == RXD_MODE_3B)
  6134. ba = &ring->ba[j][k];
  6135. if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
  6136. &temp0_64,
  6137. &temp1_64,
  6138. &temp2_64,
  6139. size) == -ENOMEM) {
  6140. return 0;
  6141. }
  6142. set_rxd_buffer_size(sp, rxdp, size);
  6143. dma_wmb();
  6144. /* flip the Ownership bit to Hardware */
  6145. rxdp->Control_1 |= RXD_OWN_XENA;
  6146. }
  6147. }
  6148. }
  6149. return 0;
  6150. }
  6151. static int s2io_add_isr(struct s2io_nic *sp)
  6152. {
  6153. int ret = 0;
  6154. struct net_device *dev = sp->dev;
  6155. int err = 0;
  6156. if (sp->config.intr_type == MSI_X)
  6157. ret = s2io_enable_msi_x(sp);
  6158. if (ret) {
  6159. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6160. sp->config.intr_type = INTA;
  6161. }
  6162. /*
  6163. * Store the values of the MSIX table in
  6164. * the struct s2io_nic structure
  6165. */
  6166. store_xmsi_data(sp);
  6167. /* After proper initialization of H/W, register ISR */
  6168. if (sp->config.intr_type == MSI_X) {
  6169. int i, msix_rx_cnt = 0;
  6170. for (i = 0; i < sp->num_entries; i++) {
  6171. if (sp->s2io_entries[i].in_use == MSIX_FLG) {
  6172. if (sp->s2io_entries[i].type ==
  6173. MSIX_RING_TYPE) {
  6174. snprintf(sp->desc[i],
  6175. sizeof(sp->desc[i]),
  6176. "%s:MSI-X-%d-RX",
  6177. dev->name, i);
  6178. err = request_irq(sp->entries[i].vector,
  6179. s2io_msix_ring_handle,
  6180. 0,
  6181. sp->desc[i],
  6182. sp->s2io_entries[i].arg);
  6183. } else if (sp->s2io_entries[i].type ==
  6184. MSIX_ALARM_TYPE) {
  6185. snprintf(sp->desc[i],
  6186. sizeof(sp->desc[i]),
  6187. "%s:MSI-X-%d-TX",
  6188. dev->name, i);
  6189. err = request_irq(sp->entries[i].vector,
  6190. s2io_msix_fifo_handle,
  6191. 0,
  6192. sp->desc[i],
  6193. sp->s2io_entries[i].arg);
  6194. }
  6195. /* if either data or addr is zero print it. */
  6196. if (!(sp->msix_info[i].addr &&
  6197. sp->msix_info[i].data)) {
  6198. DBG_PRINT(ERR_DBG,
  6199. "%s @Addr:0x%llx Data:0x%llx\n",
  6200. sp->desc[i],
  6201. (unsigned long long)
  6202. sp->msix_info[i].addr,
  6203. (unsigned long long)
  6204. ntohl(sp->msix_info[i].data));
  6205. } else
  6206. msix_rx_cnt++;
  6207. if (err) {
  6208. remove_msix_isr(sp);
  6209. DBG_PRINT(ERR_DBG,
  6210. "%s:MSI-X-%d registration "
  6211. "failed\n", dev->name, i);
  6212. DBG_PRINT(ERR_DBG,
  6213. "%s: Defaulting to INTA\n",
  6214. dev->name);
  6215. sp->config.intr_type = INTA;
  6216. break;
  6217. }
  6218. sp->s2io_entries[i].in_use =
  6219. MSIX_REGISTERED_SUCCESS;
  6220. }
  6221. }
  6222. if (!err) {
  6223. pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
  6224. DBG_PRINT(INFO_DBG,
  6225. "MSI-X-TX entries enabled through alarm vector\n");
  6226. }
  6227. }
  6228. if (sp->config.intr_type == INTA) {
  6229. err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6230. sp->name, dev);
  6231. if (err) {
  6232. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6233. dev->name);
  6234. return -1;
  6235. }
  6236. }
  6237. return 0;
  6238. }
  6239. static void s2io_rem_isr(struct s2io_nic *sp)
  6240. {
  6241. if (sp->config.intr_type == MSI_X)
  6242. remove_msix_isr(sp);
  6243. else
  6244. remove_inta_isr(sp);
  6245. }
  6246. static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
  6247. {
  6248. int cnt = 0;
  6249. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6250. register u64 val64 = 0;
  6251. struct config_param *config;
  6252. config = &sp->config;
  6253. if (!is_s2io_card_up(sp))
  6254. return;
  6255. del_timer_sync(&sp->alarm_timer);
  6256. /* If s2io_set_link task is executing, wait till it completes. */
  6257. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
  6258. msleep(50);
  6259. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6260. /* Disable napi */
  6261. if (sp->config.napi) {
  6262. int off = 0;
  6263. if (config->intr_type == MSI_X) {
  6264. for (; off < sp->config.rx_ring_num; off++)
  6265. napi_disable(&sp->mac_control.rings[off].napi);
  6266. }
  6267. else
  6268. napi_disable(&sp->napi);
  6269. }
  6270. /* disable Tx and Rx traffic on the NIC */
  6271. if (do_io)
  6272. stop_nic(sp);
  6273. s2io_rem_isr(sp);
  6274. /* stop the tx queue, indicate link down */
  6275. s2io_link(sp, LINK_DOWN);
  6276. /* Check if the device is Quiescent and then Reset the NIC */
  6277. while (do_io) {
  6278. /* As per the HW requirement we need to replenish the
  6279. * receive buffer to avoid the ring bump. Since there is
  6280. * no intention of processing the Rx frame at this pointwe are
  6281. * just setting the ownership bit of rxd in Each Rx
  6282. * ring to HW and set the appropriate buffer size
  6283. * based on the ring mode
  6284. */
  6285. rxd_owner_bit_reset(sp);
  6286. val64 = readq(&bar0->adapter_status);
  6287. if (verify_xena_quiescence(sp)) {
  6288. if (verify_pcc_quiescent(sp, sp->device_enabled_once))
  6289. break;
  6290. }
  6291. msleep(50);
  6292. cnt++;
  6293. if (cnt == 10) {
  6294. DBG_PRINT(ERR_DBG, "Device not Quiescent - "
  6295. "adapter status reads 0x%llx\n",
  6296. (unsigned long long)val64);
  6297. break;
  6298. }
  6299. }
  6300. if (do_io)
  6301. s2io_reset(sp);
  6302. /* Free all Tx buffers */
  6303. free_tx_buffers(sp);
  6304. /* Free all Rx buffers */
  6305. free_rx_buffers(sp);
  6306. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6307. }
  6308. static void s2io_card_down(struct s2io_nic *sp)
  6309. {
  6310. do_s2io_card_down(sp, 1);
  6311. }
  6312. static int s2io_card_up(struct s2io_nic *sp)
  6313. {
  6314. int i, ret = 0;
  6315. struct config_param *config;
  6316. struct mac_info *mac_control;
  6317. struct net_device *dev = sp->dev;
  6318. u16 interruptible;
  6319. /* Initialize the H/W I/O registers */
  6320. ret = init_nic(sp);
  6321. if (ret != 0) {
  6322. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6323. dev->name);
  6324. if (ret != -EIO)
  6325. s2io_reset(sp);
  6326. return ret;
  6327. }
  6328. /*
  6329. * Initializing the Rx buffers. For now we are considering only 1
  6330. * Rx ring and initializing buffers into 30 Rx blocks
  6331. */
  6332. config = &sp->config;
  6333. mac_control = &sp->mac_control;
  6334. for (i = 0; i < config->rx_ring_num; i++) {
  6335. struct ring_info *ring = &mac_control->rings[i];
  6336. ring->mtu = dev->mtu;
  6337. ring->lro = !!(dev->features & NETIF_F_LRO);
  6338. ret = fill_rx_buffers(sp, ring, 1);
  6339. if (ret) {
  6340. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6341. dev->name);
  6342. s2io_reset(sp);
  6343. free_rx_buffers(sp);
  6344. return -ENOMEM;
  6345. }
  6346. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6347. ring->rx_bufs_left);
  6348. }
  6349. /* Initialise napi */
  6350. if (config->napi) {
  6351. if (config->intr_type == MSI_X) {
  6352. for (i = 0; i < sp->config.rx_ring_num; i++)
  6353. napi_enable(&sp->mac_control.rings[i].napi);
  6354. } else {
  6355. napi_enable(&sp->napi);
  6356. }
  6357. }
  6358. /* Maintain the state prior to the open */
  6359. if (sp->promisc_flg)
  6360. sp->promisc_flg = 0;
  6361. if (sp->m_cast_flg) {
  6362. sp->m_cast_flg = 0;
  6363. sp->all_multi_pos = 0;
  6364. }
  6365. /* Setting its receive mode */
  6366. s2io_set_multicast(dev);
  6367. if (dev->features & NETIF_F_LRO) {
  6368. /* Initialize max aggregatable pkts per session based on MTU */
  6369. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6370. /* Check if we can use (if specified) user provided value */
  6371. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6372. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6373. }
  6374. /* Enable Rx Traffic and interrupts on the NIC */
  6375. if (start_nic(sp)) {
  6376. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6377. s2io_reset(sp);
  6378. free_rx_buffers(sp);
  6379. return -ENODEV;
  6380. }
  6381. /* Add interrupt service routine */
  6382. if (s2io_add_isr(sp) != 0) {
  6383. if (sp->config.intr_type == MSI_X)
  6384. s2io_rem_isr(sp);
  6385. s2io_reset(sp);
  6386. free_rx_buffers(sp);
  6387. return -ENODEV;
  6388. }
  6389. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6390. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6391. /* Enable select interrupts */
  6392. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6393. if (sp->config.intr_type != INTA) {
  6394. interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
  6395. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6396. } else {
  6397. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6398. interruptible |= TX_PIC_INTR;
  6399. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6400. }
  6401. return 0;
  6402. }
  6403. /**
  6404. * s2io_restart_nic - Resets the NIC.
  6405. * @data : long pointer to the device private structure
  6406. * Description:
  6407. * This function is scheduled to be run by the s2io_tx_watchdog
  6408. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6409. * the run time of the watch dog routine which is run holding a
  6410. * spin lock.
  6411. */
  6412. static void s2io_restart_nic(struct work_struct *work)
  6413. {
  6414. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6415. struct net_device *dev = sp->dev;
  6416. rtnl_lock();
  6417. if (!netif_running(dev))
  6418. goto out_unlock;
  6419. s2io_card_down(sp);
  6420. if (s2io_card_up(sp)) {
  6421. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
  6422. }
  6423. s2io_wake_all_tx_queue(sp);
  6424. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
  6425. out_unlock:
  6426. rtnl_unlock();
  6427. }
  6428. /**
  6429. * s2io_tx_watchdog - Watchdog for transmit side.
  6430. * @dev : Pointer to net device structure
  6431. * Description:
  6432. * This function is triggered if the Tx Queue is stopped
  6433. * for a pre-defined amount of time when the Interface is still up.
  6434. * If the Interface is jammed in such a situation, the hardware is
  6435. * reset (by s2io_close) and restarted again (by s2io_open) to
  6436. * overcome any problem that might have been caused in the hardware.
  6437. * Return value:
  6438. * void
  6439. */
  6440. static void s2io_tx_watchdog(struct net_device *dev)
  6441. {
  6442. struct s2io_nic *sp = netdev_priv(dev);
  6443. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6444. if (netif_carrier_ok(dev)) {
  6445. swstats->watchdog_timer_cnt++;
  6446. schedule_work(&sp->rst_timer_task);
  6447. swstats->soft_reset_cnt++;
  6448. }
  6449. }
  6450. /**
  6451. * rx_osm_handler - To perform some OS related operations on SKB.
  6452. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6453. * @skb : the socket buffer pointer.
  6454. * @len : length of the packet
  6455. * @cksum : FCS checksum of the frame.
  6456. * @ring_no : the ring from which this RxD was extracted.
  6457. * Description:
  6458. * This function is called by the Rx interrupt serivce routine to perform
  6459. * some OS related operations on the SKB before passing it to the upper
  6460. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6461. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6462. * to the upper layer. If the checksum is wrong, it increments the Rx
  6463. * packet error count, frees the SKB and returns error.
  6464. * Return value:
  6465. * SUCCESS on success and -1 on failure.
  6466. */
  6467. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6468. {
  6469. struct s2io_nic *sp = ring_data->nic;
  6470. struct net_device *dev = ring_data->dev;
  6471. struct sk_buff *skb = (struct sk_buff *)
  6472. ((unsigned long)rxdp->Host_Control);
  6473. int ring_no = ring_data->ring_no;
  6474. u16 l3_csum, l4_csum;
  6475. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6476. struct lro *uninitialized_var(lro);
  6477. u8 err_mask;
  6478. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6479. skb->dev = dev;
  6480. if (err) {
  6481. /* Check for parity error */
  6482. if (err & 0x1)
  6483. swstats->parity_err_cnt++;
  6484. err_mask = err >> 48;
  6485. switch (err_mask) {
  6486. case 1:
  6487. swstats->rx_parity_err_cnt++;
  6488. break;
  6489. case 2:
  6490. swstats->rx_abort_cnt++;
  6491. break;
  6492. case 3:
  6493. swstats->rx_parity_abort_cnt++;
  6494. break;
  6495. case 4:
  6496. swstats->rx_rda_fail_cnt++;
  6497. break;
  6498. case 5:
  6499. swstats->rx_unkn_prot_cnt++;
  6500. break;
  6501. case 6:
  6502. swstats->rx_fcs_err_cnt++;
  6503. break;
  6504. case 7:
  6505. swstats->rx_buf_size_err_cnt++;
  6506. break;
  6507. case 8:
  6508. swstats->rx_rxd_corrupt_cnt++;
  6509. break;
  6510. case 15:
  6511. swstats->rx_unkn_err_cnt++;
  6512. break;
  6513. }
  6514. /*
  6515. * Drop the packet if bad transfer code. Exception being
  6516. * 0x5, which could be due to unsupported IPv6 extension header.
  6517. * In this case, we let stack handle the packet.
  6518. * Note that in this case, since checksum will be incorrect,
  6519. * stack will validate the same.
  6520. */
  6521. if (err_mask != 0x5) {
  6522. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6523. dev->name, err_mask);
  6524. dev->stats.rx_crc_errors++;
  6525. swstats->mem_freed
  6526. += skb->truesize;
  6527. dev_kfree_skb(skb);
  6528. ring_data->rx_bufs_left -= 1;
  6529. rxdp->Host_Control = 0;
  6530. return 0;
  6531. }
  6532. }
  6533. rxdp->Host_Control = 0;
  6534. if (sp->rxd_mode == RXD_MODE_1) {
  6535. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6536. skb_put(skb, len);
  6537. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6538. int get_block = ring_data->rx_curr_get_info.block_index;
  6539. int get_off = ring_data->rx_curr_get_info.offset;
  6540. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6541. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6542. unsigned char *buff = skb_push(skb, buf0_len);
  6543. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6544. memcpy(buff, ba->ba_0, buf0_len);
  6545. skb_put(skb, buf2_len);
  6546. }
  6547. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
  6548. ((!ring_data->lro) ||
  6549. (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
  6550. (dev->features & NETIF_F_RXCSUM)) {
  6551. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6552. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6553. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6554. /*
  6555. * NIC verifies if the Checksum of the received
  6556. * frame is Ok or not and accordingly returns
  6557. * a flag in the RxD.
  6558. */
  6559. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6560. if (ring_data->lro) {
  6561. u32 tcp_len = 0;
  6562. u8 *tcp;
  6563. int ret = 0;
  6564. ret = s2io_club_tcp_session(ring_data,
  6565. skb->data, &tcp,
  6566. &tcp_len, &lro,
  6567. rxdp, sp);
  6568. switch (ret) {
  6569. case 3: /* Begin anew */
  6570. lro->parent = skb;
  6571. goto aggregate;
  6572. case 1: /* Aggregate */
  6573. lro_append_pkt(sp, lro, skb, tcp_len);
  6574. goto aggregate;
  6575. case 4: /* Flush session */
  6576. lro_append_pkt(sp, lro, skb, tcp_len);
  6577. queue_rx_frame(lro->parent,
  6578. lro->vlan_tag);
  6579. clear_lro_session(lro);
  6580. swstats->flush_max_pkts++;
  6581. goto aggregate;
  6582. case 2: /* Flush both */
  6583. lro->parent->data_len = lro->frags_len;
  6584. swstats->sending_both++;
  6585. queue_rx_frame(lro->parent,
  6586. lro->vlan_tag);
  6587. clear_lro_session(lro);
  6588. goto send_up;
  6589. case 0: /* sessions exceeded */
  6590. case -1: /* non-TCP or not L2 aggregatable */
  6591. case 5: /*
  6592. * First pkt in session not
  6593. * L3/L4 aggregatable
  6594. */
  6595. break;
  6596. default:
  6597. DBG_PRINT(ERR_DBG,
  6598. "%s: Samadhana!!\n",
  6599. __func__);
  6600. BUG();
  6601. }
  6602. }
  6603. } else {
  6604. /*
  6605. * Packet with erroneous checksum, let the
  6606. * upper layers deal with it.
  6607. */
  6608. skb_checksum_none_assert(skb);
  6609. }
  6610. } else
  6611. skb_checksum_none_assert(skb);
  6612. swstats->mem_freed += skb->truesize;
  6613. send_up:
  6614. skb_record_rx_queue(skb, ring_no);
  6615. queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
  6616. aggregate:
  6617. sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
  6618. return SUCCESS;
  6619. }
  6620. /**
  6621. * s2io_link - stops/starts the Tx queue.
  6622. * @sp : private member of the device structure, which is a pointer to the
  6623. * s2io_nic structure.
  6624. * @link : inidicates whether link is UP/DOWN.
  6625. * Description:
  6626. * This function stops/starts the Tx queue depending on whether the link
  6627. * status of the NIC is is down or up. This is called by the Alarm
  6628. * interrupt handler whenever a link change interrupt comes up.
  6629. * Return value:
  6630. * void.
  6631. */
  6632. static void s2io_link(struct s2io_nic *sp, int link)
  6633. {
  6634. struct net_device *dev = sp->dev;
  6635. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6636. if (link != sp->last_link_state) {
  6637. init_tti(sp, link);
  6638. if (link == LINK_DOWN) {
  6639. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6640. s2io_stop_all_tx_queue(sp);
  6641. netif_carrier_off(dev);
  6642. if (swstats->link_up_cnt)
  6643. swstats->link_up_time =
  6644. jiffies - sp->start_time;
  6645. swstats->link_down_cnt++;
  6646. } else {
  6647. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6648. if (swstats->link_down_cnt)
  6649. swstats->link_down_time =
  6650. jiffies - sp->start_time;
  6651. swstats->link_up_cnt++;
  6652. netif_carrier_on(dev);
  6653. s2io_wake_all_tx_queue(sp);
  6654. }
  6655. }
  6656. sp->last_link_state = link;
  6657. sp->start_time = jiffies;
  6658. }
  6659. /**
  6660. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6661. * @sp : private member of the device structure, which is a pointer to the
  6662. * s2io_nic structure.
  6663. * Description:
  6664. * This function initializes a few of the PCI and PCI-X configuration registers
  6665. * with recommended values.
  6666. * Return value:
  6667. * void
  6668. */
  6669. static void s2io_init_pci(struct s2io_nic *sp)
  6670. {
  6671. u16 pci_cmd = 0, pcix_cmd = 0;
  6672. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6673. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6674. &(pcix_cmd));
  6675. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6676. (pcix_cmd | 1));
  6677. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6678. &(pcix_cmd));
  6679. /* Set the PErr Response bit in PCI command register. */
  6680. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6681. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6682. (pci_cmd | PCI_COMMAND_PARITY));
  6683. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6684. }
  6685. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
  6686. u8 *dev_multiq)
  6687. {
  6688. int i;
  6689. if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
  6690. DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
  6691. "(%d) not supported\n", tx_fifo_num);
  6692. if (tx_fifo_num < 1)
  6693. tx_fifo_num = 1;
  6694. else
  6695. tx_fifo_num = MAX_TX_FIFOS;
  6696. DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
  6697. }
  6698. if (multiq)
  6699. *dev_multiq = multiq;
  6700. if (tx_steering_type && (1 == tx_fifo_num)) {
  6701. if (tx_steering_type != TX_DEFAULT_STEERING)
  6702. DBG_PRINT(ERR_DBG,
  6703. "Tx steering is not supported with "
  6704. "one fifo. Disabling Tx steering.\n");
  6705. tx_steering_type = NO_STEERING;
  6706. }
  6707. if ((tx_steering_type < NO_STEERING) ||
  6708. (tx_steering_type > TX_DEFAULT_STEERING)) {
  6709. DBG_PRINT(ERR_DBG,
  6710. "Requested transmit steering not supported\n");
  6711. DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
  6712. tx_steering_type = NO_STEERING;
  6713. }
  6714. if (rx_ring_num > MAX_RX_RINGS) {
  6715. DBG_PRINT(ERR_DBG,
  6716. "Requested number of rx rings not supported\n");
  6717. DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
  6718. MAX_RX_RINGS);
  6719. rx_ring_num = MAX_RX_RINGS;
  6720. }
  6721. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6722. DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
  6723. "Defaulting to INTA\n");
  6724. *dev_intr_type = INTA;
  6725. }
  6726. if ((*dev_intr_type == MSI_X) &&
  6727. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6728. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6729. DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
  6730. "Defaulting to INTA\n");
  6731. *dev_intr_type = INTA;
  6732. }
  6733. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6734. DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
  6735. DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
  6736. rx_ring_mode = 1;
  6737. }
  6738. for (i = 0; i < MAX_RX_RINGS; i++)
  6739. if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
  6740. DBG_PRINT(ERR_DBG, "Requested rx ring size not "
  6741. "supported\nDefaulting to %d\n",
  6742. MAX_RX_BLOCKS_PER_RING);
  6743. rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
  6744. }
  6745. return SUCCESS;
  6746. }
  6747. /**
  6748. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6749. * or Traffic class respectively.
  6750. * @nic: device private variable
  6751. * Description: The function configures the receive steering to
  6752. * desired receive ring.
  6753. * Return Value: SUCCESS on success and
  6754. * '-1' on failure (endian settings incorrect).
  6755. */
  6756. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6757. {
  6758. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6759. register u64 val64 = 0;
  6760. if (ds_codepoint > 63)
  6761. return FAILURE;
  6762. val64 = RTS_DS_MEM_DATA(ring);
  6763. writeq(val64, &bar0->rts_ds_mem_data);
  6764. val64 = RTS_DS_MEM_CTRL_WE |
  6765. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6766. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6767. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6768. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6769. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6770. S2IO_BIT_RESET);
  6771. }
  6772. static const struct net_device_ops s2io_netdev_ops = {
  6773. .ndo_open = s2io_open,
  6774. .ndo_stop = s2io_close,
  6775. .ndo_get_stats = s2io_get_stats,
  6776. .ndo_start_xmit = s2io_xmit,
  6777. .ndo_validate_addr = eth_validate_addr,
  6778. .ndo_set_rx_mode = s2io_set_multicast,
  6779. .ndo_do_ioctl = s2io_ioctl,
  6780. .ndo_set_mac_address = s2io_set_mac_addr,
  6781. .ndo_change_mtu = s2io_change_mtu,
  6782. .ndo_set_features = s2io_set_features,
  6783. .ndo_tx_timeout = s2io_tx_watchdog,
  6784. #ifdef CONFIG_NET_POLL_CONTROLLER
  6785. .ndo_poll_controller = s2io_netpoll,
  6786. #endif
  6787. };
  6788. /**
  6789. * s2io_init_nic - Initialization of the adapter .
  6790. * @pdev : structure containing the PCI related information of the device.
  6791. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6792. * Description:
  6793. * The function initializes an adapter identified by the pci_dec structure.
  6794. * All OS related initialization including memory and device structure and
  6795. * initlaization of the device private variable is done. Also the swapper
  6796. * control register is initialized to enable read and write into the I/O
  6797. * registers of the device.
  6798. * Return value:
  6799. * returns 0 on success and negative on failure.
  6800. */
  6801. static int
  6802. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6803. {
  6804. struct s2io_nic *sp;
  6805. struct net_device *dev;
  6806. int i, j, ret;
  6807. int dma_flag = false;
  6808. u32 mac_up, mac_down;
  6809. u64 val64 = 0, tmp64 = 0;
  6810. struct XENA_dev_config __iomem *bar0 = NULL;
  6811. u16 subid;
  6812. struct config_param *config;
  6813. struct mac_info *mac_control;
  6814. int mode;
  6815. u8 dev_intr_type = intr_type;
  6816. u8 dev_multiq = 0;
  6817. ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
  6818. if (ret)
  6819. return ret;
  6820. ret = pci_enable_device(pdev);
  6821. if (ret) {
  6822. DBG_PRINT(ERR_DBG,
  6823. "%s: pci_enable_device failed\n", __func__);
  6824. return ret;
  6825. }
  6826. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  6827. DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
  6828. dma_flag = true;
  6829. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  6830. DBG_PRINT(ERR_DBG,
  6831. "Unable to obtain 64bit DMA "
  6832. "for consistent allocations\n");
  6833. pci_disable_device(pdev);
  6834. return -ENOMEM;
  6835. }
  6836. } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  6837. DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
  6838. } else {
  6839. pci_disable_device(pdev);
  6840. return -ENOMEM;
  6841. }
  6842. ret = pci_request_regions(pdev, s2io_driver_name);
  6843. if (ret) {
  6844. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
  6845. __func__, ret);
  6846. pci_disable_device(pdev);
  6847. return -ENODEV;
  6848. }
  6849. if (dev_multiq)
  6850. dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
  6851. else
  6852. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6853. if (dev == NULL) {
  6854. pci_disable_device(pdev);
  6855. pci_release_regions(pdev);
  6856. return -ENODEV;
  6857. }
  6858. pci_set_master(pdev);
  6859. pci_set_drvdata(pdev, dev);
  6860. SET_NETDEV_DEV(dev, &pdev->dev);
  6861. /* Private member variable initialized to s2io NIC structure */
  6862. sp = netdev_priv(dev);
  6863. sp->dev = dev;
  6864. sp->pdev = pdev;
  6865. sp->high_dma_flag = dma_flag;
  6866. sp->device_enabled_once = false;
  6867. if (rx_ring_mode == 1)
  6868. sp->rxd_mode = RXD_MODE_1;
  6869. if (rx_ring_mode == 2)
  6870. sp->rxd_mode = RXD_MODE_3B;
  6871. sp->config.intr_type = dev_intr_type;
  6872. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6873. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6874. sp->device_type = XFRAME_II_DEVICE;
  6875. else
  6876. sp->device_type = XFRAME_I_DEVICE;
  6877. /* Initialize some PCI/PCI-X fields of the NIC. */
  6878. s2io_init_pci(sp);
  6879. /*
  6880. * Setting the device configuration parameters.
  6881. * Most of these parameters can be specified by the user during
  6882. * module insertion as they are module loadable parameters. If
  6883. * these parameters are not not specified during load time, they
  6884. * are initialized with default values.
  6885. */
  6886. config = &sp->config;
  6887. mac_control = &sp->mac_control;
  6888. config->napi = napi;
  6889. config->tx_steering_type = tx_steering_type;
  6890. /* Tx side parameters. */
  6891. if (config->tx_steering_type == TX_PRIORITY_STEERING)
  6892. config->tx_fifo_num = MAX_TX_FIFOS;
  6893. else
  6894. config->tx_fifo_num = tx_fifo_num;
  6895. /* Initialize the fifos used for tx steering */
  6896. if (config->tx_fifo_num < 5) {
  6897. if (config->tx_fifo_num == 1)
  6898. sp->total_tcp_fifos = 1;
  6899. else
  6900. sp->total_tcp_fifos = config->tx_fifo_num - 1;
  6901. sp->udp_fifo_idx = config->tx_fifo_num - 1;
  6902. sp->total_udp_fifos = 1;
  6903. sp->other_fifo_idx = sp->total_tcp_fifos - 1;
  6904. } else {
  6905. sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
  6906. FIFO_OTHER_MAX_NUM);
  6907. sp->udp_fifo_idx = sp->total_tcp_fifos;
  6908. sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
  6909. sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
  6910. }
  6911. config->multiq = dev_multiq;
  6912. for (i = 0; i < config->tx_fifo_num; i++) {
  6913. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  6914. tx_cfg->fifo_len = tx_fifo_len[i];
  6915. tx_cfg->fifo_priority = i;
  6916. }
  6917. /* mapping the QoS priority to the configured fifos */
  6918. for (i = 0; i < MAX_TX_FIFOS; i++)
  6919. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
  6920. /* map the hashing selector table to the configured fifos */
  6921. for (i = 0; i < config->tx_fifo_num; i++)
  6922. sp->fifo_selector[i] = fifo_selector[i];
  6923. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6924. for (i = 0; i < config->tx_fifo_num; i++) {
  6925. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  6926. tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6927. if (tx_cfg->fifo_len < 65) {
  6928. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6929. break;
  6930. }
  6931. }
  6932. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6933. config->max_txds = MAX_SKB_FRAGS + 2;
  6934. /* Rx side parameters. */
  6935. config->rx_ring_num = rx_ring_num;
  6936. for (i = 0; i < config->rx_ring_num; i++) {
  6937. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6938. struct ring_info *ring = &mac_control->rings[i];
  6939. rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
  6940. rx_cfg->ring_priority = i;
  6941. ring->rx_bufs_left = 0;
  6942. ring->rxd_mode = sp->rxd_mode;
  6943. ring->rxd_count = rxd_count[sp->rxd_mode];
  6944. ring->pdev = sp->pdev;
  6945. ring->dev = sp->dev;
  6946. }
  6947. for (i = 0; i < rx_ring_num; i++) {
  6948. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6949. rx_cfg->ring_org = RING_ORG_BUFF1;
  6950. rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6951. }
  6952. /* Setting Mac Control parameters */
  6953. mac_control->rmac_pause_time = rmac_pause_time;
  6954. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6955. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6956. /* initialize the shared memory used by the NIC and the host */
  6957. if (init_shared_mem(sp)) {
  6958. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
  6959. ret = -ENOMEM;
  6960. goto mem_alloc_failed;
  6961. }
  6962. sp->bar0 = pci_ioremap_bar(pdev, 0);
  6963. if (!sp->bar0) {
  6964. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6965. dev->name);
  6966. ret = -ENOMEM;
  6967. goto bar0_remap_failed;
  6968. }
  6969. sp->bar1 = pci_ioremap_bar(pdev, 2);
  6970. if (!sp->bar1) {
  6971. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6972. dev->name);
  6973. ret = -ENOMEM;
  6974. goto bar1_remap_failed;
  6975. }
  6976. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6977. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6978. mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
  6979. }
  6980. /* Driver entry points */
  6981. dev->netdev_ops = &s2io_netdev_ops;
  6982. dev->ethtool_ops = &netdev_ethtool_ops;
  6983. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  6984. NETIF_F_TSO | NETIF_F_TSO6 |
  6985. NETIF_F_RXCSUM | NETIF_F_LRO;
  6986. dev->features |= dev->hw_features |
  6987. NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
  6988. if (sp->high_dma_flag == true)
  6989. dev->features |= NETIF_F_HIGHDMA;
  6990. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6991. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6992. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6993. pci_save_state(sp->pdev);
  6994. /* Setting swapper control on the NIC, for proper reset operation */
  6995. if (s2io_set_swapper(sp)) {
  6996. DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
  6997. dev->name);
  6998. ret = -EAGAIN;
  6999. goto set_swap_failed;
  7000. }
  7001. /* Verify if the Herc works on the slot its placed into */
  7002. if (sp->device_type & XFRAME_II_DEVICE) {
  7003. mode = s2io_verify_pci_mode(sp);
  7004. if (mode < 0) {
  7005. DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
  7006. __func__);
  7007. ret = -EBADSLT;
  7008. goto set_swap_failed;
  7009. }
  7010. }
  7011. if (sp->config.intr_type == MSI_X) {
  7012. sp->num_entries = config->rx_ring_num + 1;
  7013. ret = s2io_enable_msi_x(sp);
  7014. if (!ret) {
  7015. ret = s2io_test_msi(sp);
  7016. /* rollback MSI-X, will re-enable during add_isr() */
  7017. remove_msix_isr(sp);
  7018. }
  7019. if (ret) {
  7020. DBG_PRINT(ERR_DBG,
  7021. "MSI-X requested but failed to enable\n");
  7022. sp->config.intr_type = INTA;
  7023. }
  7024. }
  7025. if (config->intr_type == MSI_X) {
  7026. for (i = 0; i < config->rx_ring_num ; i++) {
  7027. struct ring_info *ring = &mac_control->rings[i];
  7028. netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
  7029. }
  7030. } else {
  7031. netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
  7032. }
  7033. /* Not needed for Herc */
  7034. if (sp->device_type & XFRAME_I_DEVICE) {
  7035. /*
  7036. * Fix for all "FFs" MAC address problems observed on
  7037. * Alpha platforms
  7038. */
  7039. fix_mac_address(sp);
  7040. s2io_reset(sp);
  7041. }
  7042. /*
  7043. * MAC address initialization.
  7044. * For now only one mac address will be read and used.
  7045. */
  7046. bar0 = sp->bar0;
  7047. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  7048. RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
  7049. writeq(val64, &bar0->rmac_addr_cmd_mem);
  7050. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  7051. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  7052. S2IO_BIT_RESET);
  7053. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  7054. mac_down = (u32)tmp64;
  7055. mac_up = (u32) (tmp64 >> 32);
  7056. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  7057. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  7058. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  7059. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  7060. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  7061. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  7062. /* Set the factory defined MAC address initially */
  7063. dev->addr_len = ETH_ALEN;
  7064. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  7065. /* initialize number of multicast & unicast MAC entries variables */
  7066. if (sp->device_type == XFRAME_I_DEVICE) {
  7067. config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
  7068. config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
  7069. config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
  7070. } else if (sp->device_type == XFRAME_II_DEVICE) {
  7071. config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
  7072. config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
  7073. config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
  7074. }
  7075. /* MTU range: 46 - 9600 */
  7076. dev->min_mtu = MIN_MTU;
  7077. dev->max_mtu = S2IO_JUMBO_SIZE;
  7078. /* store mac addresses from CAM to s2io_nic structure */
  7079. do_s2io_store_unicast_mc(sp);
  7080. /* Configure MSIX vector for number of rings configured plus one */
  7081. if ((sp->device_type == XFRAME_II_DEVICE) &&
  7082. (config->intr_type == MSI_X))
  7083. sp->num_entries = config->rx_ring_num + 1;
  7084. /* Store the values of the MSIX table in the s2io_nic structure */
  7085. store_xmsi_data(sp);
  7086. /* reset Nic and bring it to known state */
  7087. s2io_reset(sp);
  7088. /*
  7089. * Initialize link state flags
  7090. * and the card state parameter
  7091. */
  7092. sp->state = 0;
  7093. /* Initialize spinlocks */
  7094. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7095. struct fifo_info *fifo = &mac_control->fifos[i];
  7096. spin_lock_init(&fifo->tx_lock);
  7097. }
  7098. /*
  7099. * SXE-002: Configure link and activity LED to init state
  7100. * on driver load.
  7101. */
  7102. subid = sp->pdev->subsystem_device;
  7103. if ((subid & 0xFF) >= 0x07) {
  7104. val64 = readq(&bar0->gpio_control);
  7105. val64 |= 0x0000800000000000ULL;
  7106. writeq(val64, &bar0->gpio_control);
  7107. val64 = 0x0411040400000000ULL;
  7108. writeq(val64, (void __iomem *)bar0 + 0x2700);
  7109. val64 = readq(&bar0->gpio_control);
  7110. }
  7111. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  7112. if (register_netdev(dev)) {
  7113. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  7114. ret = -ENODEV;
  7115. goto register_failed;
  7116. }
  7117. s2io_vpd_read(sp);
  7118. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
  7119. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
  7120. sp->product_name, pdev->revision);
  7121. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  7122. s2io_driver_version);
  7123. DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
  7124. DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
  7125. if (sp->device_type & XFRAME_II_DEVICE) {
  7126. mode = s2io_print_pci_mode(sp);
  7127. if (mode < 0) {
  7128. ret = -EBADSLT;
  7129. unregister_netdev(dev);
  7130. goto set_swap_failed;
  7131. }
  7132. }
  7133. switch (sp->rxd_mode) {
  7134. case RXD_MODE_1:
  7135. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  7136. dev->name);
  7137. break;
  7138. case RXD_MODE_3B:
  7139. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  7140. dev->name);
  7141. break;
  7142. }
  7143. switch (sp->config.napi) {
  7144. case 0:
  7145. DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
  7146. break;
  7147. case 1:
  7148. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  7149. break;
  7150. }
  7151. DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
  7152. sp->config.tx_fifo_num);
  7153. DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
  7154. sp->config.rx_ring_num);
  7155. switch (sp->config.intr_type) {
  7156. case INTA:
  7157. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  7158. break;
  7159. case MSI_X:
  7160. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  7161. break;
  7162. }
  7163. if (sp->config.multiq) {
  7164. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7165. struct fifo_info *fifo = &mac_control->fifos[i];
  7166. fifo->multiq = config->multiq;
  7167. }
  7168. DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
  7169. dev->name);
  7170. } else
  7171. DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
  7172. dev->name);
  7173. switch (sp->config.tx_steering_type) {
  7174. case NO_STEERING:
  7175. DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
  7176. dev->name);
  7177. break;
  7178. case TX_PRIORITY_STEERING:
  7179. DBG_PRINT(ERR_DBG,
  7180. "%s: Priority steering enabled for transmit\n",
  7181. dev->name);
  7182. break;
  7183. case TX_DEFAULT_STEERING:
  7184. DBG_PRINT(ERR_DBG,
  7185. "%s: Default steering enabled for transmit\n",
  7186. dev->name);
  7187. }
  7188. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  7189. dev->name);
  7190. /* Initialize device name */
  7191. snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
  7192. sp->product_name);
  7193. if (vlan_tag_strip)
  7194. sp->vlan_strip_flag = 1;
  7195. else
  7196. sp->vlan_strip_flag = 0;
  7197. /*
  7198. * Make Link state as off at this point, when the Link change
  7199. * interrupt comes the state will be automatically changed to
  7200. * the right state.
  7201. */
  7202. netif_carrier_off(dev);
  7203. return 0;
  7204. register_failed:
  7205. set_swap_failed:
  7206. iounmap(sp->bar1);
  7207. bar1_remap_failed:
  7208. iounmap(sp->bar0);
  7209. bar0_remap_failed:
  7210. mem_alloc_failed:
  7211. free_shared_mem(sp);
  7212. pci_disable_device(pdev);
  7213. pci_release_regions(pdev);
  7214. free_netdev(dev);
  7215. return ret;
  7216. }
  7217. /**
  7218. * s2io_rem_nic - Free the PCI device
  7219. * @pdev: structure containing the PCI related information of the device.
  7220. * Description: This function is called by the Pci subsystem to release a
  7221. * PCI device and free up all resource held up by the device. This could
  7222. * be in response to a Hot plug event or when the driver is to be removed
  7223. * from memory.
  7224. */
  7225. static void s2io_rem_nic(struct pci_dev *pdev)
  7226. {
  7227. struct net_device *dev = pci_get_drvdata(pdev);
  7228. struct s2io_nic *sp;
  7229. if (dev == NULL) {
  7230. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  7231. return;
  7232. }
  7233. sp = netdev_priv(dev);
  7234. cancel_work_sync(&sp->rst_timer_task);
  7235. cancel_work_sync(&sp->set_link_task);
  7236. unregister_netdev(dev);
  7237. free_shared_mem(sp);
  7238. iounmap(sp->bar0);
  7239. iounmap(sp->bar1);
  7240. pci_release_regions(pdev);
  7241. free_netdev(dev);
  7242. pci_disable_device(pdev);
  7243. }
  7244. module_pci_driver(s2io_driver);
  7245. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7246. struct tcphdr **tcp, struct RxD_t *rxdp,
  7247. struct s2io_nic *sp)
  7248. {
  7249. int ip_off;
  7250. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7251. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7252. DBG_PRINT(INIT_DBG,
  7253. "%s: Non-TCP frames not supported for LRO\n",
  7254. __func__);
  7255. return -1;
  7256. }
  7257. /* Checking for DIX type or DIX type with VLAN */
  7258. if ((l2_type == 0) || (l2_type == 4)) {
  7259. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7260. /*
  7261. * If vlan stripping is disabled and the frame is VLAN tagged,
  7262. * shift the offset by the VLAN header size bytes.
  7263. */
  7264. if ((!sp->vlan_strip_flag) &&
  7265. (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
  7266. ip_off += HEADER_VLAN_SIZE;
  7267. } else {
  7268. /* LLC, SNAP etc are considered non-mergeable */
  7269. return -1;
  7270. }
  7271. *ip = (struct iphdr *)(buffer + ip_off);
  7272. ip_len = (u8)((*ip)->ihl);
  7273. ip_len <<= 2;
  7274. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7275. return 0;
  7276. }
  7277. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7278. struct tcphdr *tcp)
  7279. {
  7280. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7281. if ((lro->iph->saddr != ip->saddr) ||
  7282. (lro->iph->daddr != ip->daddr) ||
  7283. (lro->tcph->source != tcp->source) ||
  7284. (lro->tcph->dest != tcp->dest))
  7285. return -1;
  7286. return 0;
  7287. }
  7288. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7289. {
  7290. return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
  7291. }
  7292. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7293. struct iphdr *ip, struct tcphdr *tcp,
  7294. u32 tcp_pyld_len, u16 vlan_tag)
  7295. {
  7296. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7297. lro->l2h = l2h;
  7298. lro->iph = ip;
  7299. lro->tcph = tcp;
  7300. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7301. lro->tcp_ack = tcp->ack_seq;
  7302. lro->sg_num = 1;
  7303. lro->total_len = ntohs(ip->tot_len);
  7304. lro->frags_len = 0;
  7305. lro->vlan_tag = vlan_tag;
  7306. /*
  7307. * Check if we saw TCP timestamp.
  7308. * Other consistency checks have already been done.
  7309. */
  7310. if (tcp->doff == 8) {
  7311. __be32 *ptr;
  7312. ptr = (__be32 *)(tcp+1);
  7313. lro->saw_ts = 1;
  7314. lro->cur_tsval = ntohl(*(ptr+1));
  7315. lro->cur_tsecr = *(ptr+2);
  7316. }
  7317. lro->in_use = 1;
  7318. }
  7319. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7320. {
  7321. struct iphdr *ip = lro->iph;
  7322. struct tcphdr *tcp = lro->tcph;
  7323. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7324. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7325. /* Update L3 header */
  7326. csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
  7327. ip->tot_len = htons(lro->total_len);
  7328. /* Update L4 header */
  7329. tcp->ack_seq = lro->tcp_ack;
  7330. tcp->window = lro->window;
  7331. /* Update tsecr field if this session has timestamps enabled */
  7332. if (lro->saw_ts) {
  7333. __be32 *ptr = (__be32 *)(tcp + 1);
  7334. *(ptr+2) = lro->cur_tsecr;
  7335. }
  7336. /* Update counters required for calculation of
  7337. * average no. of packets aggregated.
  7338. */
  7339. swstats->sum_avg_pkts_aggregated += lro->sg_num;
  7340. swstats->num_aggregations++;
  7341. }
  7342. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7343. struct tcphdr *tcp, u32 l4_pyld)
  7344. {
  7345. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7346. lro->total_len += l4_pyld;
  7347. lro->frags_len += l4_pyld;
  7348. lro->tcp_next_seq += l4_pyld;
  7349. lro->sg_num++;
  7350. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7351. lro->tcp_ack = tcp->ack_seq;
  7352. lro->window = tcp->window;
  7353. if (lro->saw_ts) {
  7354. __be32 *ptr;
  7355. /* Update tsecr and tsval from this packet */
  7356. ptr = (__be32 *)(tcp+1);
  7357. lro->cur_tsval = ntohl(*(ptr+1));
  7358. lro->cur_tsecr = *(ptr + 2);
  7359. }
  7360. }
  7361. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7362. struct tcphdr *tcp, u32 tcp_pyld_len)
  7363. {
  7364. u8 *ptr;
  7365. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7366. if (!tcp_pyld_len) {
  7367. /* Runt frame or a pure ack */
  7368. return -1;
  7369. }
  7370. if (ip->ihl != 5) /* IP has options */
  7371. return -1;
  7372. /* If we see CE codepoint in IP header, packet is not mergeable */
  7373. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7374. return -1;
  7375. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7376. if (tcp->urg || tcp->psh || tcp->rst ||
  7377. tcp->syn || tcp->fin ||
  7378. tcp->ece || tcp->cwr || !tcp->ack) {
  7379. /*
  7380. * Currently recognize only the ack control word and
  7381. * any other control field being set would result in
  7382. * flushing the LRO session
  7383. */
  7384. return -1;
  7385. }
  7386. /*
  7387. * Allow only one TCP timestamp option. Don't aggregate if
  7388. * any other options are detected.
  7389. */
  7390. if (tcp->doff != 5 && tcp->doff != 8)
  7391. return -1;
  7392. if (tcp->doff == 8) {
  7393. ptr = (u8 *)(tcp + 1);
  7394. while (*ptr == TCPOPT_NOP)
  7395. ptr++;
  7396. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7397. return -1;
  7398. /* Ensure timestamp value increases monotonically */
  7399. if (l_lro)
  7400. if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
  7401. return -1;
  7402. /* timestamp echo reply should be non-zero */
  7403. if (*((__be32 *)(ptr+6)) == 0)
  7404. return -1;
  7405. }
  7406. return 0;
  7407. }
  7408. static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
  7409. u8 **tcp, u32 *tcp_len, struct lro **lro,
  7410. struct RxD_t *rxdp, struct s2io_nic *sp)
  7411. {
  7412. struct iphdr *ip;
  7413. struct tcphdr *tcph;
  7414. int ret = 0, i;
  7415. u16 vlan_tag = 0;
  7416. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7417. ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7418. rxdp, sp);
  7419. if (ret)
  7420. return ret;
  7421. DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
  7422. vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
  7423. tcph = (struct tcphdr *)*tcp;
  7424. *tcp_len = get_l4_pyld_length(ip, tcph);
  7425. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7426. struct lro *l_lro = &ring_data->lro0_n[i];
  7427. if (l_lro->in_use) {
  7428. if (check_for_socket_match(l_lro, ip, tcph))
  7429. continue;
  7430. /* Sock pair matched */
  7431. *lro = l_lro;
  7432. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7433. DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
  7434. "expected 0x%x, actual 0x%x\n",
  7435. __func__,
  7436. (*lro)->tcp_next_seq,
  7437. ntohl(tcph->seq));
  7438. swstats->outof_sequence_pkts++;
  7439. ret = 2;
  7440. break;
  7441. }
  7442. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
  7443. *tcp_len))
  7444. ret = 1; /* Aggregate */
  7445. else
  7446. ret = 2; /* Flush both */
  7447. break;
  7448. }
  7449. }
  7450. if (ret == 0) {
  7451. /* Before searching for available LRO objects,
  7452. * check if the pkt is L3/L4 aggregatable. If not
  7453. * don't create new LRO session. Just send this
  7454. * packet up.
  7455. */
  7456. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
  7457. return 5;
  7458. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7459. struct lro *l_lro = &ring_data->lro0_n[i];
  7460. if (!(l_lro->in_use)) {
  7461. *lro = l_lro;
  7462. ret = 3; /* Begin anew */
  7463. break;
  7464. }
  7465. }
  7466. }
  7467. if (ret == 0) { /* sessions exceeded */
  7468. DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
  7469. __func__);
  7470. *lro = NULL;
  7471. return ret;
  7472. }
  7473. switch (ret) {
  7474. case 3:
  7475. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
  7476. vlan_tag);
  7477. break;
  7478. case 2:
  7479. update_L3L4_header(sp, *lro);
  7480. break;
  7481. case 1:
  7482. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7483. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7484. update_L3L4_header(sp, *lro);
  7485. ret = 4; /* Flush the LRO */
  7486. }
  7487. break;
  7488. default:
  7489. DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
  7490. break;
  7491. }
  7492. return ret;
  7493. }
  7494. static void clear_lro_session(struct lro *lro)
  7495. {
  7496. static u16 lro_struct_size = sizeof(struct lro);
  7497. memset(lro, 0, lro_struct_size);
  7498. }
  7499. static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
  7500. {
  7501. struct net_device *dev = skb->dev;
  7502. struct s2io_nic *sp = netdev_priv(dev);
  7503. skb->protocol = eth_type_trans(skb, dev);
  7504. if (vlan_tag && sp->vlan_strip_flag)
  7505. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  7506. if (sp->config.napi)
  7507. netif_receive_skb(skb);
  7508. else
  7509. netif_rx(skb);
  7510. }
  7511. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7512. struct sk_buff *skb, u32 tcp_len)
  7513. {
  7514. struct sk_buff *first = lro->parent;
  7515. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7516. first->len += tcp_len;
  7517. first->data_len = lro->frags_len;
  7518. skb_pull(skb, (skb->len - tcp_len));
  7519. if (skb_shinfo(first)->frag_list)
  7520. lro->last_frag->next = skb;
  7521. else
  7522. skb_shinfo(first)->frag_list = skb;
  7523. first->truesize += skb->truesize;
  7524. lro->last_frag = skb;
  7525. swstats->clubbed_frms_cnt++;
  7526. }
  7527. /**
  7528. * s2io_io_error_detected - called when PCI error is detected
  7529. * @pdev: Pointer to PCI device
  7530. * @state: The current pci connection state
  7531. *
  7532. * This function is called after a PCI bus error affecting
  7533. * this device has been detected.
  7534. */
  7535. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7536. pci_channel_state_t state)
  7537. {
  7538. struct net_device *netdev = pci_get_drvdata(pdev);
  7539. struct s2io_nic *sp = netdev_priv(netdev);
  7540. netif_device_detach(netdev);
  7541. if (state == pci_channel_io_perm_failure)
  7542. return PCI_ERS_RESULT_DISCONNECT;
  7543. if (netif_running(netdev)) {
  7544. /* Bring down the card, while avoiding PCI I/O */
  7545. do_s2io_card_down(sp, 0);
  7546. }
  7547. pci_disable_device(pdev);
  7548. return PCI_ERS_RESULT_NEED_RESET;
  7549. }
  7550. /**
  7551. * s2io_io_slot_reset - called after the pci bus has been reset.
  7552. * @pdev: Pointer to PCI device
  7553. *
  7554. * Restart the card from scratch, as if from a cold-boot.
  7555. * At this point, the card has exprienced a hard reset,
  7556. * followed by fixups by BIOS, and has its config space
  7557. * set up identically to what it was at cold boot.
  7558. */
  7559. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7560. {
  7561. struct net_device *netdev = pci_get_drvdata(pdev);
  7562. struct s2io_nic *sp = netdev_priv(netdev);
  7563. if (pci_enable_device(pdev)) {
  7564. pr_err("Cannot re-enable PCI device after reset.\n");
  7565. return PCI_ERS_RESULT_DISCONNECT;
  7566. }
  7567. pci_set_master(pdev);
  7568. s2io_reset(sp);
  7569. return PCI_ERS_RESULT_RECOVERED;
  7570. }
  7571. /**
  7572. * s2io_io_resume - called when traffic can start flowing again.
  7573. * @pdev: Pointer to PCI device
  7574. *
  7575. * This callback is called when the error recovery driver tells
  7576. * us that its OK to resume normal operation.
  7577. */
  7578. static void s2io_io_resume(struct pci_dev *pdev)
  7579. {
  7580. struct net_device *netdev = pci_get_drvdata(pdev);
  7581. struct s2io_nic *sp = netdev_priv(netdev);
  7582. if (netif_running(netdev)) {
  7583. if (s2io_card_up(sp)) {
  7584. pr_err("Can't bring device back up after reset.\n");
  7585. return;
  7586. }
  7587. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7588. s2io_card_down(sp);
  7589. pr_err("Can't restore mac addr after reset.\n");
  7590. return;
  7591. }
  7592. }
  7593. netif_device_attach(netdev);
  7594. netif_tx_wake_all_queues(netdev);
  7595. }