igb_ptp.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303
  1. /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
  2. *
  3. * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/pci.h>
  21. #include <linux/ptp_classify.h>
  22. #include "igb.h"
  23. #define INCVALUE_MASK 0x7fffffff
  24. #define ISGN 0x80000000
  25. /* The 82580 timesync updates the system timer every 8ns by 8ns,
  26. * and this update value cannot be reprogrammed.
  27. *
  28. * Neither the 82576 nor the 82580 offer registers wide enough to hold
  29. * nanoseconds time values for very long. For the 82580, SYSTIM always
  30. * counts nanoseconds, but the upper 24 bits are not available. The
  31. * frequency is adjusted by changing the 32 bit fractional nanoseconds
  32. * register, TIMINCA.
  33. *
  34. * For the 82576, the SYSTIM register time unit is affect by the
  35. * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  36. * field are needed to provide the nominal 16 nanosecond period,
  37. * leaving 19 bits for fractional nanoseconds.
  38. *
  39. * We scale the NIC clock cycle by a large factor so that relatively
  40. * small clock corrections can be added or subtracted at each clock
  41. * tick. The drawbacks of a large factor are a) that the clock
  42. * register overflows more quickly (not such a big deal) and b) that
  43. * the increment per tick has to fit into 24 bits. As a result we
  44. * need to use a shift of 19 so we can fit a value of 16 into the
  45. * TIMINCA register.
  46. *
  47. *
  48. * SYSTIMH SYSTIML
  49. * +--------------+ +---+---+------+
  50. * 82576 | 32 | | 8 | 5 | 19 |
  51. * +--------------+ +---+---+------+
  52. * \________ 45 bits _______/ fract
  53. *
  54. * +----------+---+ +--------------+
  55. * 82580 | 24 | 8 | | 32 |
  56. * +----------+---+ +--------------+
  57. * reserved \______ 40 bits _____/
  58. *
  59. *
  60. * The 45 bit 82576 SYSTIM overflows every
  61. * 2^45 * 10^-9 / 3600 = 9.77 hours.
  62. *
  63. * The 40 bit 82580 SYSTIM overflows every
  64. * 2^40 * 10^-9 / 60 = 18.3 minutes.
  65. */
  66. #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
  67. #define IGB_PTP_TX_TIMEOUT (HZ * 15)
  68. #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
  69. #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  70. #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
  71. #define IGB_NBITS_82580 40
  72. static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  73. /* SYSTIM read access for the 82576 */
  74. static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  75. {
  76. struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77. struct e1000_hw *hw = &igb->hw;
  78. u64 val;
  79. u32 lo, hi;
  80. lo = rd32(E1000_SYSTIML);
  81. hi = rd32(E1000_SYSTIMH);
  82. val = ((u64) hi) << 32;
  83. val |= lo;
  84. return val;
  85. }
  86. /* SYSTIM read access for the 82580 */
  87. static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  88. {
  89. struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  90. struct e1000_hw *hw = &igb->hw;
  91. u32 lo, hi;
  92. u64 val;
  93. /* The timestamp latches on lowest register read. For the 82580
  94. * the lowest register is SYSTIMR instead of SYSTIML. However we only
  95. * need to provide nanosecond resolution, so we just ignore it.
  96. */
  97. rd32(E1000_SYSTIMR);
  98. lo = rd32(E1000_SYSTIML);
  99. hi = rd32(E1000_SYSTIMH);
  100. val = ((u64) hi) << 32;
  101. val |= lo;
  102. return val;
  103. }
  104. /* SYSTIM read access for I210/I211 */
  105. static void igb_ptp_read_i210(struct igb_adapter *adapter,
  106. struct timespec64 *ts)
  107. {
  108. struct e1000_hw *hw = &adapter->hw;
  109. u32 sec, nsec;
  110. /* The timestamp latches on lowest register read. For I210/I211, the
  111. * lowest register is SYSTIMR. Since we only need to provide nanosecond
  112. * resolution, we can ignore it.
  113. */
  114. rd32(E1000_SYSTIMR);
  115. nsec = rd32(E1000_SYSTIML);
  116. sec = rd32(E1000_SYSTIMH);
  117. ts->tv_sec = sec;
  118. ts->tv_nsec = nsec;
  119. }
  120. static void igb_ptp_write_i210(struct igb_adapter *adapter,
  121. const struct timespec64 *ts)
  122. {
  123. struct e1000_hw *hw = &adapter->hw;
  124. /* Writing the SYSTIMR register is not necessary as it only provides
  125. * sub-nanosecond resolution.
  126. */
  127. wr32(E1000_SYSTIML, ts->tv_nsec);
  128. wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
  129. }
  130. /**
  131. * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
  132. * @adapter: board private structure
  133. * @hwtstamps: timestamp structure to update
  134. * @systim: unsigned 64bit system time value.
  135. *
  136. * We need to convert the system time value stored in the RX/TXSTMP registers
  137. * into a hwtstamp which can be used by the upper level timestamping functions.
  138. *
  139. * The 'tmreg_lock' spinlock is used to protect the consistency of the
  140. * system time value. This is needed because reading the 64 bit time
  141. * value involves reading two (or three) 32 bit registers. The first
  142. * read latches the value. Ditto for writing.
  143. *
  144. * In addition, here have extended the system time with an overflow
  145. * counter in software.
  146. **/
  147. static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
  148. struct skb_shared_hwtstamps *hwtstamps,
  149. u64 systim)
  150. {
  151. unsigned long flags;
  152. u64 ns;
  153. switch (adapter->hw.mac.type) {
  154. case e1000_82576:
  155. case e1000_82580:
  156. case e1000_i354:
  157. case e1000_i350:
  158. spin_lock_irqsave(&adapter->tmreg_lock, flags);
  159. ns = timecounter_cyc2time(&adapter->tc, systim);
  160. spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
  161. memset(hwtstamps, 0, sizeof(*hwtstamps));
  162. hwtstamps->hwtstamp = ns_to_ktime(ns);
  163. break;
  164. case e1000_i210:
  165. case e1000_i211:
  166. memset(hwtstamps, 0, sizeof(*hwtstamps));
  167. /* Upper 32 bits contain s, lower 32 bits contain ns. */
  168. hwtstamps->hwtstamp = ktime_set(systim >> 32,
  169. systim & 0xFFFFFFFF);
  170. break;
  171. default:
  172. break;
  173. }
  174. }
  175. /* PTP clock operations */
  176. static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
  177. {
  178. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  179. ptp_caps);
  180. struct e1000_hw *hw = &igb->hw;
  181. int neg_adj = 0;
  182. u64 rate;
  183. u32 incvalue;
  184. if (ppb < 0) {
  185. neg_adj = 1;
  186. ppb = -ppb;
  187. }
  188. rate = ppb;
  189. rate <<= 14;
  190. rate = div_u64(rate, 1953125);
  191. incvalue = 16 << IGB_82576_TSYNC_SHIFT;
  192. if (neg_adj)
  193. incvalue -= rate;
  194. else
  195. incvalue += rate;
  196. wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
  197. return 0;
  198. }
  199. static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
  200. {
  201. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  202. ptp_caps);
  203. struct e1000_hw *hw = &igb->hw;
  204. int neg_adj = 0;
  205. u64 rate;
  206. u32 inca;
  207. if (scaled_ppm < 0) {
  208. neg_adj = 1;
  209. scaled_ppm = -scaled_ppm;
  210. }
  211. rate = scaled_ppm;
  212. rate <<= 13;
  213. rate = div_u64(rate, 15625);
  214. inca = rate & INCVALUE_MASK;
  215. if (neg_adj)
  216. inca |= ISGN;
  217. wr32(E1000_TIMINCA, inca);
  218. return 0;
  219. }
  220. static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
  221. {
  222. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  223. ptp_caps);
  224. unsigned long flags;
  225. spin_lock_irqsave(&igb->tmreg_lock, flags);
  226. timecounter_adjtime(&igb->tc, delta);
  227. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  228. return 0;
  229. }
  230. static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
  231. {
  232. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  233. ptp_caps);
  234. unsigned long flags;
  235. struct timespec64 now, then = ns_to_timespec64(delta);
  236. spin_lock_irqsave(&igb->tmreg_lock, flags);
  237. igb_ptp_read_i210(igb, &now);
  238. now = timespec64_add(now, then);
  239. igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
  240. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  241. return 0;
  242. }
  243. static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
  244. struct timespec64 *ts)
  245. {
  246. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  247. ptp_caps);
  248. unsigned long flags;
  249. u64 ns;
  250. spin_lock_irqsave(&igb->tmreg_lock, flags);
  251. ns = timecounter_read(&igb->tc);
  252. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  253. *ts = ns_to_timespec64(ns);
  254. return 0;
  255. }
  256. static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
  257. struct timespec64 *ts)
  258. {
  259. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  260. ptp_caps);
  261. unsigned long flags;
  262. spin_lock_irqsave(&igb->tmreg_lock, flags);
  263. igb_ptp_read_i210(igb, ts);
  264. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  265. return 0;
  266. }
  267. static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
  268. const struct timespec64 *ts)
  269. {
  270. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  271. ptp_caps);
  272. unsigned long flags;
  273. u64 ns;
  274. ns = timespec64_to_ns(ts);
  275. spin_lock_irqsave(&igb->tmreg_lock, flags);
  276. timecounter_init(&igb->tc, &igb->cc, ns);
  277. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  278. return 0;
  279. }
  280. static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
  281. const struct timespec64 *ts)
  282. {
  283. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  284. ptp_caps);
  285. unsigned long flags;
  286. spin_lock_irqsave(&igb->tmreg_lock, flags);
  287. igb_ptp_write_i210(igb, ts);
  288. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  289. return 0;
  290. }
  291. static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
  292. {
  293. u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
  294. static const u32 mask[IGB_N_SDP] = {
  295. E1000_CTRL_SDP0_DIR,
  296. E1000_CTRL_SDP1_DIR,
  297. E1000_CTRL_EXT_SDP2_DIR,
  298. E1000_CTRL_EXT_SDP3_DIR,
  299. };
  300. if (input)
  301. *ptr &= ~mask[pin];
  302. else
  303. *ptr |= mask[pin];
  304. }
  305. static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
  306. {
  307. static const u32 aux0_sel_sdp[IGB_N_SDP] = {
  308. AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
  309. };
  310. static const u32 aux1_sel_sdp[IGB_N_SDP] = {
  311. AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
  312. };
  313. static const u32 ts_sdp_en[IGB_N_SDP] = {
  314. TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
  315. };
  316. struct e1000_hw *hw = &igb->hw;
  317. u32 ctrl, ctrl_ext, tssdp = 0;
  318. ctrl = rd32(E1000_CTRL);
  319. ctrl_ext = rd32(E1000_CTRL_EXT);
  320. tssdp = rd32(E1000_TSSDP);
  321. igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
  322. /* Make sure this pin is not enabled as an output. */
  323. tssdp &= ~ts_sdp_en[pin];
  324. if (chan == 1) {
  325. tssdp &= ~AUX1_SEL_SDP3;
  326. tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
  327. } else {
  328. tssdp &= ~AUX0_SEL_SDP3;
  329. tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
  330. }
  331. wr32(E1000_TSSDP, tssdp);
  332. wr32(E1000_CTRL, ctrl);
  333. wr32(E1000_CTRL_EXT, ctrl_ext);
  334. }
  335. static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
  336. {
  337. static const u32 aux0_sel_sdp[IGB_N_SDP] = {
  338. AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
  339. };
  340. static const u32 aux1_sel_sdp[IGB_N_SDP] = {
  341. AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
  342. };
  343. static const u32 ts_sdp_en[IGB_N_SDP] = {
  344. TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
  345. };
  346. static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
  347. TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
  348. TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
  349. };
  350. static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
  351. TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
  352. TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
  353. };
  354. static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
  355. TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
  356. TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
  357. };
  358. static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
  359. TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
  360. TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
  361. };
  362. static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
  363. TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
  364. TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
  365. };
  366. struct e1000_hw *hw = &igb->hw;
  367. u32 ctrl, ctrl_ext, tssdp = 0;
  368. ctrl = rd32(E1000_CTRL);
  369. ctrl_ext = rd32(E1000_CTRL_EXT);
  370. tssdp = rd32(E1000_TSSDP);
  371. igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
  372. /* Make sure this pin is not enabled as an input. */
  373. if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
  374. tssdp &= ~AUX0_TS_SDP_EN;
  375. if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
  376. tssdp &= ~AUX1_TS_SDP_EN;
  377. tssdp &= ~ts_sdp_sel_clr[pin];
  378. if (freq) {
  379. if (chan == 1)
  380. tssdp |= ts_sdp_sel_fc1[pin];
  381. else
  382. tssdp |= ts_sdp_sel_fc0[pin];
  383. } else {
  384. if (chan == 1)
  385. tssdp |= ts_sdp_sel_tt1[pin];
  386. else
  387. tssdp |= ts_sdp_sel_tt0[pin];
  388. }
  389. tssdp |= ts_sdp_en[pin];
  390. wr32(E1000_TSSDP, tssdp);
  391. wr32(E1000_CTRL, ctrl);
  392. wr32(E1000_CTRL_EXT, ctrl_ext);
  393. }
  394. static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
  395. struct ptp_clock_request *rq, int on)
  396. {
  397. struct igb_adapter *igb =
  398. container_of(ptp, struct igb_adapter, ptp_caps);
  399. struct e1000_hw *hw = &igb->hw;
  400. u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
  401. unsigned long flags;
  402. struct timespec64 ts;
  403. int use_freq = 0, pin = -1;
  404. s64 ns;
  405. switch (rq->type) {
  406. case PTP_CLK_REQ_EXTTS:
  407. if (on) {
  408. pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
  409. rq->extts.index);
  410. if (pin < 0)
  411. return -EBUSY;
  412. }
  413. if (rq->extts.index == 1) {
  414. tsauxc_mask = TSAUXC_EN_TS1;
  415. tsim_mask = TSINTR_AUTT1;
  416. } else {
  417. tsauxc_mask = TSAUXC_EN_TS0;
  418. tsim_mask = TSINTR_AUTT0;
  419. }
  420. spin_lock_irqsave(&igb->tmreg_lock, flags);
  421. tsauxc = rd32(E1000_TSAUXC);
  422. tsim = rd32(E1000_TSIM);
  423. if (on) {
  424. igb_pin_extts(igb, rq->extts.index, pin);
  425. tsauxc |= tsauxc_mask;
  426. tsim |= tsim_mask;
  427. } else {
  428. tsauxc &= ~tsauxc_mask;
  429. tsim &= ~tsim_mask;
  430. }
  431. wr32(E1000_TSAUXC, tsauxc);
  432. wr32(E1000_TSIM, tsim);
  433. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  434. return 0;
  435. case PTP_CLK_REQ_PEROUT:
  436. if (on) {
  437. pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
  438. rq->perout.index);
  439. if (pin < 0)
  440. return -EBUSY;
  441. }
  442. ts.tv_sec = rq->perout.period.sec;
  443. ts.tv_nsec = rq->perout.period.nsec;
  444. ns = timespec64_to_ns(&ts);
  445. ns = ns >> 1;
  446. if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
  447. (ns == 250000000LL) || (ns == 500000000LL))) {
  448. if (ns < 8LL)
  449. return -EINVAL;
  450. use_freq = 1;
  451. }
  452. ts = ns_to_timespec64(ns);
  453. if (rq->perout.index == 1) {
  454. if (use_freq) {
  455. tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
  456. tsim_mask = 0;
  457. } else {
  458. tsauxc_mask = TSAUXC_EN_TT1;
  459. tsim_mask = TSINTR_TT1;
  460. }
  461. trgttiml = E1000_TRGTTIML1;
  462. trgttimh = E1000_TRGTTIMH1;
  463. freqout = E1000_FREQOUT1;
  464. } else {
  465. if (use_freq) {
  466. tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
  467. tsim_mask = 0;
  468. } else {
  469. tsauxc_mask = TSAUXC_EN_TT0;
  470. tsim_mask = TSINTR_TT0;
  471. }
  472. trgttiml = E1000_TRGTTIML0;
  473. trgttimh = E1000_TRGTTIMH0;
  474. freqout = E1000_FREQOUT0;
  475. }
  476. spin_lock_irqsave(&igb->tmreg_lock, flags);
  477. tsauxc = rd32(E1000_TSAUXC);
  478. tsim = rd32(E1000_TSIM);
  479. if (rq->perout.index == 1) {
  480. tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
  481. tsim &= ~TSINTR_TT1;
  482. } else {
  483. tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
  484. tsim &= ~TSINTR_TT0;
  485. }
  486. if (on) {
  487. int i = rq->perout.index;
  488. igb_pin_perout(igb, i, pin, use_freq);
  489. igb->perout[i].start.tv_sec = rq->perout.start.sec;
  490. igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
  491. igb->perout[i].period.tv_sec = ts.tv_sec;
  492. igb->perout[i].period.tv_nsec = ts.tv_nsec;
  493. wr32(trgttimh, rq->perout.start.sec);
  494. wr32(trgttiml, rq->perout.start.nsec);
  495. if (use_freq)
  496. wr32(freqout, ns);
  497. tsauxc |= tsauxc_mask;
  498. tsim |= tsim_mask;
  499. }
  500. wr32(E1000_TSAUXC, tsauxc);
  501. wr32(E1000_TSIM, tsim);
  502. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  503. return 0;
  504. case PTP_CLK_REQ_PPS:
  505. spin_lock_irqsave(&igb->tmreg_lock, flags);
  506. tsim = rd32(E1000_TSIM);
  507. if (on)
  508. tsim |= TSINTR_SYS_WRAP;
  509. else
  510. tsim &= ~TSINTR_SYS_WRAP;
  511. igb->pps_sys_wrap_on = !!on;
  512. wr32(E1000_TSIM, tsim);
  513. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  514. return 0;
  515. }
  516. return -EOPNOTSUPP;
  517. }
  518. static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
  519. struct ptp_clock_request *rq, int on)
  520. {
  521. return -EOPNOTSUPP;
  522. }
  523. static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
  524. enum ptp_pin_function func, unsigned int chan)
  525. {
  526. switch (func) {
  527. case PTP_PF_NONE:
  528. case PTP_PF_EXTTS:
  529. case PTP_PF_PEROUT:
  530. break;
  531. case PTP_PF_PHYSYNC:
  532. return -1;
  533. }
  534. return 0;
  535. }
  536. /**
  537. * igb_ptp_tx_work
  538. * @work: pointer to work struct
  539. *
  540. * This work function polls the TSYNCTXCTL valid bit to determine when a
  541. * timestamp has been taken for the current stored skb.
  542. **/
  543. static void igb_ptp_tx_work(struct work_struct *work)
  544. {
  545. struct igb_adapter *adapter = container_of(work, struct igb_adapter,
  546. ptp_tx_work);
  547. struct e1000_hw *hw = &adapter->hw;
  548. u32 tsynctxctl;
  549. if (!adapter->ptp_tx_skb)
  550. return;
  551. if (time_is_before_jiffies(adapter->ptp_tx_start +
  552. IGB_PTP_TX_TIMEOUT)) {
  553. dev_kfree_skb_any(adapter->ptp_tx_skb);
  554. adapter->ptp_tx_skb = NULL;
  555. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  556. adapter->tx_hwtstamp_timeouts++;
  557. dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
  558. return;
  559. }
  560. tsynctxctl = rd32(E1000_TSYNCTXCTL);
  561. if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
  562. igb_ptp_tx_hwtstamp(adapter);
  563. else
  564. /* reschedule to check later */
  565. schedule_work(&adapter->ptp_tx_work);
  566. }
  567. static void igb_ptp_overflow_check(struct work_struct *work)
  568. {
  569. struct igb_adapter *igb =
  570. container_of(work, struct igb_adapter, ptp_overflow_work.work);
  571. struct timespec64 ts;
  572. igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
  573. pr_debug("igb overflow check at %lld.%09lu\n",
  574. (long long) ts.tv_sec, ts.tv_nsec);
  575. schedule_delayed_work(&igb->ptp_overflow_work,
  576. IGB_SYSTIM_OVERFLOW_PERIOD);
  577. }
  578. /**
  579. * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
  580. * @adapter: private network adapter structure
  581. *
  582. * This watchdog task is scheduled to detect error case where hardware has
  583. * dropped an Rx packet that was timestamped when the ring is full. The
  584. * particular error is rare but leaves the device in a state unable to timestamp
  585. * any future packets.
  586. **/
  587. void igb_ptp_rx_hang(struct igb_adapter *adapter)
  588. {
  589. struct e1000_hw *hw = &adapter->hw;
  590. u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
  591. unsigned long rx_event;
  592. /* Other hardware uses per-packet timestamps */
  593. if (hw->mac.type != e1000_82576)
  594. return;
  595. /* If we don't have a valid timestamp in the registers, just update the
  596. * timeout counter and exit
  597. */
  598. if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
  599. adapter->last_rx_ptp_check = jiffies;
  600. return;
  601. }
  602. /* Determine the most recent watchdog or rx_timestamp event */
  603. rx_event = adapter->last_rx_ptp_check;
  604. if (time_after(adapter->last_rx_timestamp, rx_event))
  605. rx_event = adapter->last_rx_timestamp;
  606. /* Only need to read the high RXSTMP register to clear the lock */
  607. if (time_is_before_jiffies(rx_event + 5 * HZ)) {
  608. rd32(E1000_RXSTMPH);
  609. adapter->last_rx_ptp_check = jiffies;
  610. adapter->rx_hwtstamp_cleared++;
  611. dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
  612. }
  613. }
  614. /**
  615. * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
  616. * @adapter: private network adapter structure
  617. */
  618. void igb_ptp_tx_hang(struct igb_adapter *adapter)
  619. {
  620. bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
  621. IGB_PTP_TX_TIMEOUT);
  622. if (!adapter->ptp_tx_skb)
  623. return;
  624. if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
  625. return;
  626. /* If we haven't received a timestamp within the timeout, it is
  627. * reasonable to assume that it will never occur, so we can unlock the
  628. * timestamp bit when this occurs.
  629. */
  630. if (timeout) {
  631. cancel_work_sync(&adapter->ptp_tx_work);
  632. dev_kfree_skb_any(adapter->ptp_tx_skb);
  633. adapter->ptp_tx_skb = NULL;
  634. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  635. adapter->tx_hwtstamp_timeouts++;
  636. dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
  637. }
  638. }
  639. /**
  640. * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
  641. * @adapter: Board private structure.
  642. *
  643. * If we were asked to do hardware stamping and such a time stamp is
  644. * available, then it must have been for this skb here because we only
  645. * allow only one such packet into the queue.
  646. **/
  647. static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
  648. {
  649. struct sk_buff *skb = adapter->ptp_tx_skb;
  650. struct e1000_hw *hw = &adapter->hw;
  651. struct skb_shared_hwtstamps shhwtstamps;
  652. u64 regval;
  653. int adjust = 0;
  654. regval = rd32(E1000_TXSTMPL);
  655. regval |= (u64)rd32(E1000_TXSTMPH) << 32;
  656. igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
  657. /* adjust timestamp for the TX latency based on link speed */
  658. if (adapter->hw.mac.type == e1000_i210) {
  659. switch (adapter->link_speed) {
  660. case SPEED_10:
  661. adjust = IGB_I210_TX_LATENCY_10;
  662. break;
  663. case SPEED_100:
  664. adjust = IGB_I210_TX_LATENCY_100;
  665. break;
  666. case SPEED_1000:
  667. adjust = IGB_I210_TX_LATENCY_1000;
  668. break;
  669. }
  670. }
  671. shhwtstamps.hwtstamp =
  672. ktime_add_ns(shhwtstamps.hwtstamp, adjust);
  673. /* Clear the lock early before calling skb_tstamp_tx so that
  674. * applications are not woken up before the lock bit is clear. We use
  675. * a copy of the skb pointer to ensure other threads can't change it
  676. * while we're notifying the stack.
  677. */
  678. adapter->ptp_tx_skb = NULL;
  679. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  680. /* Notify the stack and free the skb after we've unlocked */
  681. skb_tstamp_tx(skb, &shhwtstamps);
  682. dev_kfree_skb_any(skb);
  683. }
  684. /**
  685. * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
  686. * @q_vector: Pointer to interrupt specific structure
  687. * @va: Pointer to address containing Rx buffer
  688. * @skb: Buffer containing timestamp and packet
  689. *
  690. * This function is meant to retrieve a timestamp from the first buffer of an
  691. * incoming frame. The value is stored in little endian format starting on
  692. * byte 8.
  693. **/
  694. void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
  695. struct sk_buff *skb)
  696. {
  697. __le64 *regval = (__le64 *)va;
  698. struct igb_adapter *adapter = q_vector->adapter;
  699. int adjust = 0;
  700. /* The timestamp is recorded in little endian format.
  701. * DWORD: 0 1 2 3
  702. * Field: Reserved Reserved SYSTIML SYSTIMH
  703. */
  704. igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
  705. le64_to_cpu(regval[1]));
  706. /* adjust timestamp for the RX latency based on link speed */
  707. if (adapter->hw.mac.type == e1000_i210) {
  708. switch (adapter->link_speed) {
  709. case SPEED_10:
  710. adjust = IGB_I210_RX_LATENCY_10;
  711. break;
  712. case SPEED_100:
  713. adjust = IGB_I210_RX_LATENCY_100;
  714. break;
  715. case SPEED_1000:
  716. adjust = IGB_I210_RX_LATENCY_1000;
  717. break;
  718. }
  719. }
  720. skb_hwtstamps(skb)->hwtstamp =
  721. ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
  722. }
  723. /**
  724. * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
  725. * @q_vector: Pointer to interrupt specific structure
  726. * @skb: Buffer containing timestamp and packet
  727. *
  728. * This function is meant to retrieve a timestamp from the internal registers
  729. * of the adapter and store it in the skb.
  730. **/
  731. void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
  732. struct sk_buff *skb)
  733. {
  734. struct igb_adapter *adapter = q_vector->adapter;
  735. struct e1000_hw *hw = &adapter->hw;
  736. u64 regval;
  737. int adjust = 0;
  738. /* If this bit is set, then the RX registers contain the time stamp. No
  739. * other packet will be time stamped until we read these registers, so
  740. * read the registers to make them available again. Because only one
  741. * packet can be time stamped at a time, we know that the register
  742. * values must belong to this one here and therefore we don't need to
  743. * compare any of the additional attributes stored for it.
  744. *
  745. * If nothing went wrong, then it should have a shared tx_flags that we
  746. * can turn into a skb_shared_hwtstamps.
  747. */
  748. if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
  749. return;
  750. regval = rd32(E1000_RXSTMPL);
  751. regval |= (u64)rd32(E1000_RXSTMPH) << 32;
  752. igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
  753. /* adjust timestamp for the RX latency based on link speed */
  754. if (adapter->hw.mac.type == e1000_i210) {
  755. switch (adapter->link_speed) {
  756. case SPEED_10:
  757. adjust = IGB_I210_RX_LATENCY_10;
  758. break;
  759. case SPEED_100:
  760. adjust = IGB_I210_RX_LATENCY_100;
  761. break;
  762. case SPEED_1000:
  763. adjust = IGB_I210_RX_LATENCY_1000;
  764. break;
  765. }
  766. }
  767. skb_hwtstamps(skb)->hwtstamp =
  768. ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
  769. /* Update the last_rx_timestamp timer in order to enable watchdog check
  770. * for error case of latched timestamp on a dropped packet.
  771. */
  772. adapter->last_rx_timestamp = jiffies;
  773. }
  774. /**
  775. * igb_ptp_get_ts_config - get hardware time stamping config
  776. * @netdev:
  777. * @ifreq:
  778. *
  779. * Get the hwtstamp_config settings to return to the user. Rather than attempt
  780. * to deconstruct the settings from the registers, just return a shadow copy
  781. * of the last known settings.
  782. **/
  783. int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
  784. {
  785. struct igb_adapter *adapter = netdev_priv(netdev);
  786. struct hwtstamp_config *config = &adapter->tstamp_config;
  787. return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
  788. -EFAULT : 0;
  789. }
  790. /**
  791. * igb_ptp_set_timestamp_mode - setup hardware for timestamping
  792. * @adapter: networking device structure
  793. * @config: hwtstamp configuration
  794. *
  795. * Outgoing time stamping can be enabled and disabled. Play nice and
  796. * disable it when requested, although it shouldn't case any overhead
  797. * when no packet needs it. At most one packet in the queue may be
  798. * marked for time stamping, otherwise it would be impossible to tell
  799. * for sure to which packet the hardware time stamp belongs.
  800. *
  801. * Incoming time stamping has to be configured via the hardware
  802. * filters. Not all combinations are supported, in particular event
  803. * type has to be specified. Matching the kind of event packet is
  804. * not supported, with the exception of "all V2 events regardless of
  805. * level 2 or 4".
  806. */
  807. static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
  808. struct hwtstamp_config *config)
  809. {
  810. struct e1000_hw *hw = &adapter->hw;
  811. u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
  812. u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
  813. u32 tsync_rx_cfg = 0;
  814. bool is_l4 = false;
  815. bool is_l2 = false;
  816. u32 regval;
  817. /* reserved for future extensions */
  818. if (config->flags)
  819. return -EINVAL;
  820. switch (config->tx_type) {
  821. case HWTSTAMP_TX_OFF:
  822. tsync_tx_ctl = 0;
  823. case HWTSTAMP_TX_ON:
  824. break;
  825. default:
  826. return -ERANGE;
  827. }
  828. switch (config->rx_filter) {
  829. case HWTSTAMP_FILTER_NONE:
  830. tsync_rx_ctl = 0;
  831. break;
  832. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  833. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
  834. tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
  835. is_l4 = true;
  836. break;
  837. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  838. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
  839. tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
  840. is_l4 = true;
  841. break;
  842. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  843. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  844. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  845. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  846. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  847. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  848. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  849. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  850. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  851. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
  852. config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
  853. is_l2 = true;
  854. is_l4 = true;
  855. break;
  856. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  857. case HWTSTAMP_FILTER_NTP_ALL:
  858. case HWTSTAMP_FILTER_ALL:
  859. /* 82576 cannot timestamp all packets, which it needs to do to
  860. * support both V1 Sync and Delay_Req messages
  861. */
  862. if (hw->mac.type != e1000_82576) {
  863. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
  864. config->rx_filter = HWTSTAMP_FILTER_ALL;
  865. break;
  866. }
  867. /* fall through */
  868. default:
  869. config->rx_filter = HWTSTAMP_FILTER_NONE;
  870. return -ERANGE;
  871. }
  872. if (hw->mac.type == e1000_82575) {
  873. if (tsync_rx_ctl | tsync_tx_ctl)
  874. return -EINVAL;
  875. return 0;
  876. }
  877. /* Per-packet timestamping only works if all packets are
  878. * timestamped, so enable timestamping in all packets as
  879. * long as one Rx filter was configured.
  880. */
  881. if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
  882. tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
  883. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
  884. config->rx_filter = HWTSTAMP_FILTER_ALL;
  885. is_l2 = true;
  886. is_l4 = true;
  887. if ((hw->mac.type == e1000_i210) ||
  888. (hw->mac.type == e1000_i211)) {
  889. regval = rd32(E1000_RXPBS);
  890. regval |= E1000_RXPBS_CFG_TS_EN;
  891. wr32(E1000_RXPBS, regval);
  892. }
  893. }
  894. /* enable/disable TX */
  895. regval = rd32(E1000_TSYNCTXCTL);
  896. regval &= ~E1000_TSYNCTXCTL_ENABLED;
  897. regval |= tsync_tx_ctl;
  898. wr32(E1000_TSYNCTXCTL, regval);
  899. /* enable/disable RX */
  900. regval = rd32(E1000_TSYNCRXCTL);
  901. regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
  902. regval |= tsync_rx_ctl;
  903. wr32(E1000_TSYNCRXCTL, regval);
  904. /* define which PTP packets are time stamped */
  905. wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
  906. /* define ethertype filter for timestamped packets */
  907. if (is_l2)
  908. wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
  909. (E1000_ETQF_FILTER_ENABLE | /* enable filter */
  910. E1000_ETQF_1588 | /* enable timestamping */
  911. ETH_P_1588)); /* 1588 eth protocol type */
  912. else
  913. wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
  914. /* L4 Queue Filter[3]: filter by destination port and protocol */
  915. if (is_l4) {
  916. u32 ftqf = (IPPROTO_UDP /* UDP */
  917. | E1000_FTQF_VF_BP /* VF not compared */
  918. | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
  919. | E1000_FTQF_MASK); /* mask all inputs */
  920. ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
  921. wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
  922. wr32(E1000_IMIREXT(3),
  923. (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
  924. if (hw->mac.type == e1000_82576) {
  925. /* enable source port check */
  926. wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
  927. ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
  928. }
  929. wr32(E1000_FTQF(3), ftqf);
  930. } else {
  931. wr32(E1000_FTQF(3), E1000_FTQF_MASK);
  932. }
  933. wrfl();
  934. /* clear TX/RX time stamp registers, just to be sure */
  935. regval = rd32(E1000_TXSTMPL);
  936. regval = rd32(E1000_TXSTMPH);
  937. regval = rd32(E1000_RXSTMPL);
  938. regval = rd32(E1000_RXSTMPH);
  939. return 0;
  940. }
  941. /**
  942. * igb_ptp_set_ts_config - set hardware time stamping config
  943. * @netdev:
  944. * @ifreq:
  945. *
  946. **/
  947. int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
  948. {
  949. struct igb_adapter *adapter = netdev_priv(netdev);
  950. struct hwtstamp_config config;
  951. int err;
  952. if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
  953. return -EFAULT;
  954. err = igb_ptp_set_timestamp_mode(adapter, &config);
  955. if (err)
  956. return err;
  957. /* save these settings for future reference */
  958. memcpy(&adapter->tstamp_config, &config,
  959. sizeof(adapter->tstamp_config));
  960. return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
  961. -EFAULT : 0;
  962. }
  963. /**
  964. * igb_ptp_init - Initialize PTP functionality
  965. * @adapter: Board private structure
  966. *
  967. * This function is called at device probe to initialize the PTP
  968. * functionality.
  969. */
  970. void igb_ptp_init(struct igb_adapter *adapter)
  971. {
  972. struct e1000_hw *hw = &adapter->hw;
  973. struct net_device *netdev = adapter->netdev;
  974. int i;
  975. switch (hw->mac.type) {
  976. case e1000_82576:
  977. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  978. adapter->ptp_caps.owner = THIS_MODULE;
  979. adapter->ptp_caps.max_adj = 999999881;
  980. adapter->ptp_caps.n_ext_ts = 0;
  981. adapter->ptp_caps.pps = 0;
  982. adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
  983. adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
  984. adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
  985. adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
  986. adapter->ptp_caps.enable = igb_ptp_feature_enable;
  987. adapter->cc.read = igb_ptp_read_82576;
  988. adapter->cc.mask = CYCLECOUNTER_MASK(64);
  989. adapter->cc.mult = 1;
  990. adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
  991. adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
  992. break;
  993. case e1000_82580:
  994. case e1000_i354:
  995. case e1000_i350:
  996. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  997. adapter->ptp_caps.owner = THIS_MODULE;
  998. adapter->ptp_caps.max_adj = 62499999;
  999. adapter->ptp_caps.n_ext_ts = 0;
  1000. adapter->ptp_caps.pps = 0;
  1001. adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
  1002. adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
  1003. adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
  1004. adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
  1005. adapter->ptp_caps.enable = igb_ptp_feature_enable;
  1006. adapter->cc.read = igb_ptp_read_82580;
  1007. adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
  1008. adapter->cc.mult = 1;
  1009. adapter->cc.shift = 0;
  1010. adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
  1011. break;
  1012. case e1000_i210:
  1013. case e1000_i211:
  1014. for (i = 0; i < IGB_N_SDP; i++) {
  1015. struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
  1016. snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
  1017. ppd->index = i;
  1018. ppd->func = PTP_PF_NONE;
  1019. }
  1020. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  1021. adapter->ptp_caps.owner = THIS_MODULE;
  1022. adapter->ptp_caps.max_adj = 62499999;
  1023. adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
  1024. adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
  1025. adapter->ptp_caps.n_pins = IGB_N_SDP;
  1026. adapter->ptp_caps.pps = 1;
  1027. adapter->ptp_caps.pin_config = adapter->sdp_config;
  1028. adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
  1029. adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
  1030. adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
  1031. adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
  1032. adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
  1033. adapter->ptp_caps.verify = igb_ptp_verify_pin;
  1034. break;
  1035. default:
  1036. adapter->ptp_clock = NULL;
  1037. return;
  1038. }
  1039. spin_lock_init(&adapter->tmreg_lock);
  1040. INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
  1041. if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
  1042. INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
  1043. igb_ptp_overflow_check);
  1044. adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
  1045. adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
  1046. igb_ptp_reset(adapter);
  1047. adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
  1048. &adapter->pdev->dev);
  1049. if (IS_ERR(adapter->ptp_clock)) {
  1050. adapter->ptp_clock = NULL;
  1051. dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
  1052. } else if (adapter->ptp_clock) {
  1053. dev_info(&adapter->pdev->dev, "added PHC on %s\n",
  1054. adapter->netdev->name);
  1055. adapter->ptp_flags |= IGB_PTP_ENABLED;
  1056. }
  1057. }
  1058. /**
  1059. * igb_ptp_suspend - Disable PTP work items and prepare for suspend
  1060. * @adapter: Board private structure
  1061. *
  1062. * This function stops the overflow check work and PTP Tx timestamp work, and
  1063. * will prepare the device for OS suspend.
  1064. */
  1065. void igb_ptp_suspend(struct igb_adapter *adapter)
  1066. {
  1067. if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
  1068. return;
  1069. if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
  1070. cancel_delayed_work_sync(&adapter->ptp_overflow_work);
  1071. cancel_work_sync(&adapter->ptp_tx_work);
  1072. if (adapter->ptp_tx_skb) {
  1073. dev_kfree_skb_any(adapter->ptp_tx_skb);
  1074. adapter->ptp_tx_skb = NULL;
  1075. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  1076. }
  1077. }
  1078. /**
  1079. * igb_ptp_stop - Disable PTP device and stop the overflow check.
  1080. * @adapter: Board private structure.
  1081. *
  1082. * This function stops the PTP support and cancels the delayed work.
  1083. **/
  1084. void igb_ptp_stop(struct igb_adapter *adapter)
  1085. {
  1086. igb_ptp_suspend(adapter);
  1087. if (adapter->ptp_clock) {
  1088. ptp_clock_unregister(adapter->ptp_clock);
  1089. dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
  1090. adapter->netdev->name);
  1091. adapter->ptp_flags &= ~IGB_PTP_ENABLED;
  1092. }
  1093. }
  1094. /**
  1095. * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
  1096. * @adapter: Board private structure.
  1097. *
  1098. * This function handles the reset work required to re-enable the PTP device.
  1099. **/
  1100. void igb_ptp_reset(struct igb_adapter *adapter)
  1101. {
  1102. struct e1000_hw *hw = &adapter->hw;
  1103. unsigned long flags;
  1104. /* reset the tstamp_config */
  1105. igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
  1106. spin_lock_irqsave(&adapter->tmreg_lock, flags);
  1107. switch (adapter->hw.mac.type) {
  1108. case e1000_82576:
  1109. /* Dial the nominal frequency. */
  1110. wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
  1111. break;
  1112. case e1000_82580:
  1113. case e1000_i354:
  1114. case e1000_i350:
  1115. case e1000_i210:
  1116. case e1000_i211:
  1117. wr32(E1000_TSAUXC, 0x0);
  1118. wr32(E1000_TSSDP, 0x0);
  1119. wr32(E1000_TSIM,
  1120. TSYNC_INTERRUPTS |
  1121. (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
  1122. wr32(E1000_IMS, E1000_IMS_TS);
  1123. break;
  1124. default:
  1125. /* No work to do. */
  1126. goto out;
  1127. }
  1128. /* Re-initialize the timer. */
  1129. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
  1130. struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
  1131. igb_ptp_write_i210(adapter, &ts);
  1132. } else {
  1133. timecounter_init(&adapter->tc, &adapter->cc,
  1134. ktime_to_ns(ktime_get_real()));
  1135. }
  1136. out:
  1137. spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
  1138. wrfl();
  1139. if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
  1140. schedule_delayed_work(&adapter->ptp_overflow_work,
  1141. IGB_SYSTIM_OVERFLOW_PERIOD);
  1142. }