igb_ethtool.c 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. /* ethtool support for igb */
  24. #include <linux/vmalloc.h>
  25. #include <linux/netdevice.h>
  26. #include <linux/pci.h>
  27. #include <linux/delay.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/if_ether.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/sched.h>
  32. #include <linux/slab.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/highmem.h>
  35. #include <linux/mdio.h>
  36. #include "igb.h"
  37. struct igb_stats {
  38. char stat_string[ETH_GSTRING_LEN];
  39. int sizeof_stat;
  40. int stat_offset;
  41. };
  42. #define IGB_STAT(_name, _stat) { \
  43. .stat_string = _name, \
  44. .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  45. .stat_offset = offsetof(struct igb_adapter, _stat) \
  46. }
  47. static const struct igb_stats igb_gstrings_stats[] = {
  48. IGB_STAT("rx_packets", stats.gprc),
  49. IGB_STAT("tx_packets", stats.gptc),
  50. IGB_STAT("rx_bytes", stats.gorc),
  51. IGB_STAT("tx_bytes", stats.gotc),
  52. IGB_STAT("rx_broadcast", stats.bprc),
  53. IGB_STAT("tx_broadcast", stats.bptc),
  54. IGB_STAT("rx_multicast", stats.mprc),
  55. IGB_STAT("tx_multicast", stats.mptc),
  56. IGB_STAT("multicast", stats.mprc),
  57. IGB_STAT("collisions", stats.colc),
  58. IGB_STAT("rx_crc_errors", stats.crcerrs),
  59. IGB_STAT("rx_no_buffer_count", stats.rnbc),
  60. IGB_STAT("rx_missed_errors", stats.mpc),
  61. IGB_STAT("tx_aborted_errors", stats.ecol),
  62. IGB_STAT("tx_carrier_errors", stats.tncrs),
  63. IGB_STAT("tx_window_errors", stats.latecol),
  64. IGB_STAT("tx_abort_late_coll", stats.latecol),
  65. IGB_STAT("tx_deferred_ok", stats.dc),
  66. IGB_STAT("tx_single_coll_ok", stats.scc),
  67. IGB_STAT("tx_multi_coll_ok", stats.mcc),
  68. IGB_STAT("tx_timeout_count", tx_timeout_count),
  69. IGB_STAT("rx_long_length_errors", stats.roc),
  70. IGB_STAT("rx_short_length_errors", stats.ruc),
  71. IGB_STAT("rx_align_errors", stats.algnerrc),
  72. IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  73. IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  74. IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  75. IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  76. IGB_STAT("tx_flow_control_xon", stats.xontxc),
  77. IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  78. IGB_STAT("rx_long_byte_count", stats.gorc),
  79. IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  80. IGB_STAT("tx_smbus", stats.mgptc),
  81. IGB_STAT("rx_smbus", stats.mgprc),
  82. IGB_STAT("dropped_smbus", stats.mgpdc),
  83. IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  84. IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  85. IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  86. IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  87. IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  88. IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  89. IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  90. };
  91. #define IGB_NETDEV_STAT(_net_stat) { \
  92. .stat_string = __stringify(_net_stat), \
  93. .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
  94. .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  95. }
  96. static const struct igb_stats igb_gstrings_net_stats[] = {
  97. IGB_NETDEV_STAT(rx_errors),
  98. IGB_NETDEV_STAT(tx_errors),
  99. IGB_NETDEV_STAT(tx_dropped),
  100. IGB_NETDEV_STAT(rx_length_errors),
  101. IGB_NETDEV_STAT(rx_over_errors),
  102. IGB_NETDEV_STAT(rx_frame_errors),
  103. IGB_NETDEV_STAT(rx_fifo_errors),
  104. IGB_NETDEV_STAT(tx_fifo_errors),
  105. IGB_NETDEV_STAT(tx_heartbeat_errors)
  106. };
  107. #define IGB_GLOBAL_STATS_LEN \
  108. (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  109. #define IGB_NETDEV_STATS_LEN \
  110. (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  111. #define IGB_RX_QUEUE_STATS_LEN \
  112. (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
  113. #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
  114. #define IGB_QUEUE_STATS_LEN \
  115. ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
  116. IGB_RX_QUEUE_STATS_LEN) + \
  117. (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
  118. IGB_TX_QUEUE_STATS_LEN))
  119. #define IGB_STATS_LEN \
  120. (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
  121. enum igb_diagnostics_results {
  122. TEST_REG = 0,
  123. TEST_EEP,
  124. TEST_IRQ,
  125. TEST_LOOP,
  126. TEST_LINK
  127. };
  128. static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
  129. [TEST_REG] = "Register test (offline)",
  130. [TEST_EEP] = "Eeprom test (offline)",
  131. [TEST_IRQ] = "Interrupt test (offline)",
  132. [TEST_LOOP] = "Loopback test (offline)",
  133. [TEST_LINK] = "Link test (on/offline)"
  134. };
  135. #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
  136. static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
  137. #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
  138. "legacy-rx",
  139. };
  140. #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
  141. static int igb_get_link_ksettings(struct net_device *netdev,
  142. struct ethtool_link_ksettings *cmd)
  143. {
  144. struct igb_adapter *adapter = netdev_priv(netdev);
  145. struct e1000_hw *hw = &adapter->hw;
  146. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  147. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  148. u32 status;
  149. u32 speed;
  150. u32 supported, advertising;
  151. status = rd32(E1000_STATUS);
  152. if (hw->phy.media_type == e1000_media_type_copper) {
  153. supported = (SUPPORTED_10baseT_Half |
  154. SUPPORTED_10baseT_Full |
  155. SUPPORTED_100baseT_Half |
  156. SUPPORTED_100baseT_Full |
  157. SUPPORTED_1000baseT_Full|
  158. SUPPORTED_Autoneg |
  159. SUPPORTED_TP |
  160. SUPPORTED_Pause);
  161. advertising = ADVERTISED_TP;
  162. if (hw->mac.autoneg == 1) {
  163. advertising |= ADVERTISED_Autoneg;
  164. /* the e1000 autoneg seems to match ethtool nicely */
  165. advertising |= hw->phy.autoneg_advertised;
  166. }
  167. cmd->base.port = PORT_TP;
  168. cmd->base.phy_address = hw->phy.addr;
  169. } else {
  170. supported = (SUPPORTED_FIBRE |
  171. SUPPORTED_1000baseKX_Full |
  172. SUPPORTED_Autoneg |
  173. SUPPORTED_Pause);
  174. advertising = (ADVERTISED_FIBRE |
  175. ADVERTISED_1000baseKX_Full);
  176. if (hw->mac.type == e1000_i354) {
  177. if ((hw->device_id ==
  178. E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
  179. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  180. supported |= SUPPORTED_2500baseX_Full;
  181. supported &= ~SUPPORTED_1000baseKX_Full;
  182. advertising |= ADVERTISED_2500baseX_Full;
  183. advertising &= ~ADVERTISED_1000baseKX_Full;
  184. }
  185. }
  186. if (eth_flags->e100_base_fx) {
  187. supported |= SUPPORTED_100baseT_Full;
  188. advertising |= ADVERTISED_100baseT_Full;
  189. }
  190. if (hw->mac.autoneg == 1)
  191. advertising |= ADVERTISED_Autoneg;
  192. cmd->base.port = PORT_FIBRE;
  193. }
  194. if (hw->mac.autoneg != 1)
  195. advertising &= ~(ADVERTISED_Pause |
  196. ADVERTISED_Asym_Pause);
  197. switch (hw->fc.requested_mode) {
  198. case e1000_fc_full:
  199. advertising |= ADVERTISED_Pause;
  200. break;
  201. case e1000_fc_rx_pause:
  202. advertising |= (ADVERTISED_Pause |
  203. ADVERTISED_Asym_Pause);
  204. break;
  205. case e1000_fc_tx_pause:
  206. advertising |= ADVERTISED_Asym_Pause;
  207. break;
  208. default:
  209. advertising &= ~(ADVERTISED_Pause |
  210. ADVERTISED_Asym_Pause);
  211. }
  212. if (status & E1000_STATUS_LU) {
  213. if ((status & E1000_STATUS_2P5_SKU) &&
  214. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  215. speed = SPEED_2500;
  216. } else if (status & E1000_STATUS_SPEED_1000) {
  217. speed = SPEED_1000;
  218. } else if (status & E1000_STATUS_SPEED_100) {
  219. speed = SPEED_100;
  220. } else {
  221. speed = SPEED_10;
  222. }
  223. if ((status & E1000_STATUS_FD) ||
  224. hw->phy.media_type != e1000_media_type_copper)
  225. cmd->base.duplex = DUPLEX_FULL;
  226. else
  227. cmd->base.duplex = DUPLEX_HALF;
  228. } else {
  229. speed = SPEED_UNKNOWN;
  230. cmd->base.duplex = DUPLEX_UNKNOWN;
  231. }
  232. cmd->base.speed = speed;
  233. if ((hw->phy.media_type == e1000_media_type_fiber) ||
  234. hw->mac.autoneg)
  235. cmd->base.autoneg = AUTONEG_ENABLE;
  236. else
  237. cmd->base.autoneg = AUTONEG_DISABLE;
  238. /* MDI-X => 2; MDI =>1; Invalid =>0 */
  239. if (hw->phy.media_type == e1000_media_type_copper)
  240. cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
  241. ETH_TP_MDI;
  242. else
  243. cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
  244. if (hw->phy.mdix == AUTO_ALL_MODES)
  245. cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
  246. else
  247. cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
  248. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  249. supported);
  250. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  251. advertising);
  252. return 0;
  253. }
  254. static int igb_set_link_ksettings(struct net_device *netdev,
  255. const struct ethtool_link_ksettings *cmd)
  256. {
  257. struct igb_adapter *adapter = netdev_priv(netdev);
  258. struct e1000_hw *hw = &adapter->hw;
  259. u32 advertising;
  260. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  261. * cannot be changed
  262. */
  263. if (igb_check_reset_block(hw)) {
  264. dev_err(&adapter->pdev->dev,
  265. "Cannot change link characteristics when SoL/IDER is active.\n");
  266. return -EINVAL;
  267. }
  268. /* MDI setting is only allowed when autoneg enabled because
  269. * some hardware doesn't allow MDI setting when speed or
  270. * duplex is forced.
  271. */
  272. if (cmd->base.eth_tp_mdix_ctrl) {
  273. if (hw->phy.media_type != e1000_media_type_copper)
  274. return -EOPNOTSUPP;
  275. if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
  276. (cmd->base.autoneg != AUTONEG_ENABLE)) {
  277. dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
  278. return -EINVAL;
  279. }
  280. }
  281. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  282. usleep_range(1000, 2000);
  283. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  284. cmd->link_modes.advertising);
  285. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  286. hw->mac.autoneg = 1;
  287. if (hw->phy.media_type == e1000_media_type_fiber) {
  288. hw->phy.autoneg_advertised = advertising |
  289. ADVERTISED_FIBRE |
  290. ADVERTISED_Autoneg;
  291. switch (adapter->link_speed) {
  292. case SPEED_2500:
  293. hw->phy.autoneg_advertised =
  294. ADVERTISED_2500baseX_Full;
  295. break;
  296. case SPEED_1000:
  297. hw->phy.autoneg_advertised =
  298. ADVERTISED_1000baseT_Full;
  299. break;
  300. case SPEED_100:
  301. hw->phy.autoneg_advertised =
  302. ADVERTISED_100baseT_Full;
  303. break;
  304. default:
  305. break;
  306. }
  307. } else {
  308. hw->phy.autoneg_advertised = advertising |
  309. ADVERTISED_TP |
  310. ADVERTISED_Autoneg;
  311. }
  312. advertising = hw->phy.autoneg_advertised;
  313. if (adapter->fc_autoneg)
  314. hw->fc.requested_mode = e1000_fc_default;
  315. } else {
  316. u32 speed = cmd->base.speed;
  317. /* calling this overrides forced MDI setting */
  318. if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
  319. clear_bit(__IGB_RESETTING, &adapter->state);
  320. return -EINVAL;
  321. }
  322. }
  323. /* MDI-X => 2; MDI => 1; Auto => 3 */
  324. if (cmd->base.eth_tp_mdix_ctrl) {
  325. /* fix up the value for auto (3 => 0) as zero is mapped
  326. * internally to auto
  327. */
  328. if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
  329. hw->phy.mdix = AUTO_ALL_MODES;
  330. else
  331. hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
  332. }
  333. /* reset the link */
  334. if (netif_running(adapter->netdev)) {
  335. igb_down(adapter);
  336. igb_up(adapter);
  337. } else
  338. igb_reset(adapter);
  339. clear_bit(__IGB_RESETTING, &adapter->state);
  340. return 0;
  341. }
  342. static u32 igb_get_link(struct net_device *netdev)
  343. {
  344. struct igb_adapter *adapter = netdev_priv(netdev);
  345. struct e1000_mac_info *mac = &adapter->hw.mac;
  346. /* If the link is not reported up to netdev, interrupts are disabled,
  347. * and so the physical link state may have changed since we last
  348. * looked. Set get_link_status to make sure that the true link
  349. * state is interrogated, rather than pulling a cached and possibly
  350. * stale link state from the driver.
  351. */
  352. if (!netif_carrier_ok(netdev))
  353. mac->get_link_status = 1;
  354. return igb_has_link(adapter);
  355. }
  356. static void igb_get_pauseparam(struct net_device *netdev,
  357. struct ethtool_pauseparam *pause)
  358. {
  359. struct igb_adapter *adapter = netdev_priv(netdev);
  360. struct e1000_hw *hw = &adapter->hw;
  361. pause->autoneg =
  362. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  363. if (hw->fc.current_mode == e1000_fc_rx_pause)
  364. pause->rx_pause = 1;
  365. else if (hw->fc.current_mode == e1000_fc_tx_pause)
  366. pause->tx_pause = 1;
  367. else if (hw->fc.current_mode == e1000_fc_full) {
  368. pause->rx_pause = 1;
  369. pause->tx_pause = 1;
  370. }
  371. }
  372. static int igb_set_pauseparam(struct net_device *netdev,
  373. struct ethtool_pauseparam *pause)
  374. {
  375. struct igb_adapter *adapter = netdev_priv(netdev);
  376. struct e1000_hw *hw = &adapter->hw;
  377. int retval = 0;
  378. /* 100basefx does not support setting link flow control */
  379. if (hw->dev_spec._82575.eth_flags.e100_base_fx)
  380. return -EINVAL;
  381. adapter->fc_autoneg = pause->autoneg;
  382. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  383. usleep_range(1000, 2000);
  384. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  385. hw->fc.requested_mode = e1000_fc_default;
  386. if (netif_running(adapter->netdev)) {
  387. igb_down(adapter);
  388. igb_up(adapter);
  389. } else {
  390. igb_reset(adapter);
  391. }
  392. } else {
  393. if (pause->rx_pause && pause->tx_pause)
  394. hw->fc.requested_mode = e1000_fc_full;
  395. else if (pause->rx_pause && !pause->tx_pause)
  396. hw->fc.requested_mode = e1000_fc_rx_pause;
  397. else if (!pause->rx_pause && pause->tx_pause)
  398. hw->fc.requested_mode = e1000_fc_tx_pause;
  399. else if (!pause->rx_pause && !pause->tx_pause)
  400. hw->fc.requested_mode = e1000_fc_none;
  401. hw->fc.current_mode = hw->fc.requested_mode;
  402. retval = ((hw->phy.media_type == e1000_media_type_copper) ?
  403. igb_force_mac_fc(hw) : igb_setup_link(hw));
  404. }
  405. clear_bit(__IGB_RESETTING, &adapter->state);
  406. return retval;
  407. }
  408. static u32 igb_get_msglevel(struct net_device *netdev)
  409. {
  410. struct igb_adapter *adapter = netdev_priv(netdev);
  411. return adapter->msg_enable;
  412. }
  413. static void igb_set_msglevel(struct net_device *netdev, u32 data)
  414. {
  415. struct igb_adapter *adapter = netdev_priv(netdev);
  416. adapter->msg_enable = data;
  417. }
  418. static int igb_get_regs_len(struct net_device *netdev)
  419. {
  420. #define IGB_REGS_LEN 739
  421. return IGB_REGS_LEN * sizeof(u32);
  422. }
  423. static void igb_get_regs(struct net_device *netdev,
  424. struct ethtool_regs *regs, void *p)
  425. {
  426. struct igb_adapter *adapter = netdev_priv(netdev);
  427. struct e1000_hw *hw = &adapter->hw;
  428. u32 *regs_buff = p;
  429. u8 i;
  430. memset(p, 0, IGB_REGS_LEN * sizeof(u32));
  431. regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
  432. /* General Registers */
  433. regs_buff[0] = rd32(E1000_CTRL);
  434. regs_buff[1] = rd32(E1000_STATUS);
  435. regs_buff[2] = rd32(E1000_CTRL_EXT);
  436. regs_buff[3] = rd32(E1000_MDIC);
  437. regs_buff[4] = rd32(E1000_SCTL);
  438. regs_buff[5] = rd32(E1000_CONNSW);
  439. regs_buff[6] = rd32(E1000_VET);
  440. regs_buff[7] = rd32(E1000_LEDCTL);
  441. regs_buff[8] = rd32(E1000_PBA);
  442. regs_buff[9] = rd32(E1000_PBS);
  443. regs_buff[10] = rd32(E1000_FRTIMER);
  444. regs_buff[11] = rd32(E1000_TCPTIMER);
  445. /* NVM Register */
  446. regs_buff[12] = rd32(E1000_EECD);
  447. /* Interrupt */
  448. /* Reading EICS for EICR because they read the
  449. * same but EICS does not clear on read
  450. */
  451. regs_buff[13] = rd32(E1000_EICS);
  452. regs_buff[14] = rd32(E1000_EICS);
  453. regs_buff[15] = rd32(E1000_EIMS);
  454. regs_buff[16] = rd32(E1000_EIMC);
  455. regs_buff[17] = rd32(E1000_EIAC);
  456. regs_buff[18] = rd32(E1000_EIAM);
  457. /* Reading ICS for ICR because they read the
  458. * same but ICS does not clear on read
  459. */
  460. regs_buff[19] = rd32(E1000_ICS);
  461. regs_buff[20] = rd32(E1000_ICS);
  462. regs_buff[21] = rd32(E1000_IMS);
  463. regs_buff[22] = rd32(E1000_IMC);
  464. regs_buff[23] = rd32(E1000_IAC);
  465. regs_buff[24] = rd32(E1000_IAM);
  466. regs_buff[25] = rd32(E1000_IMIRVP);
  467. /* Flow Control */
  468. regs_buff[26] = rd32(E1000_FCAL);
  469. regs_buff[27] = rd32(E1000_FCAH);
  470. regs_buff[28] = rd32(E1000_FCTTV);
  471. regs_buff[29] = rd32(E1000_FCRTL);
  472. regs_buff[30] = rd32(E1000_FCRTH);
  473. regs_buff[31] = rd32(E1000_FCRTV);
  474. /* Receive */
  475. regs_buff[32] = rd32(E1000_RCTL);
  476. regs_buff[33] = rd32(E1000_RXCSUM);
  477. regs_buff[34] = rd32(E1000_RLPML);
  478. regs_buff[35] = rd32(E1000_RFCTL);
  479. regs_buff[36] = rd32(E1000_MRQC);
  480. regs_buff[37] = rd32(E1000_VT_CTL);
  481. /* Transmit */
  482. regs_buff[38] = rd32(E1000_TCTL);
  483. regs_buff[39] = rd32(E1000_TCTL_EXT);
  484. regs_buff[40] = rd32(E1000_TIPG);
  485. regs_buff[41] = rd32(E1000_DTXCTL);
  486. /* Wake Up */
  487. regs_buff[42] = rd32(E1000_WUC);
  488. regs_buff[43] = rd32(E1000_WUFC);
  489. regs_buff[44] = rd32(E1000_WUS);
  490. regs_buff[45] = rd32(E1000_IPAV);
  491. regs_buff[46] = rd32(E1000_WUPL);
  492. /* MAC */
  493. regs_buff[47] = rd32(E1000_PCS_CFG0);
  494. regs_buff[48] = rd32(E1000_PCS_LCTL);
  495. regs_buff[49] = rd32(E1000_PCS_LSTAT);
  496. regs_buff[50] = rd32(E1000_PCS_ANADV);
  497. regs_buff[51] = rd32(E1000_PCS_LPAB);
  498. regs_buff[52] = rd32(E1000_PCS_NPTX);
  499. regs_buff[53] = rd32(E1000_PCS_LPABNP);
  500. /* Statistics */
  501. regs_buff[54] = adapter->stats.crcerrs;
  502. regs_buff[55] = adapter->stats.algnerrc;
  503. regs_buff[56] = adapter->stats.symerrs;
  504. regs_buff[57] = adapter->stats.rxerrc;
  505. regs_buff[58] = adapter->stats.mpc;
  506. regs_buff[59] = adapter->stats.scc;
  507. regs_buff[60] = adapter->stats.ecol;
  508. regs_buff[61] = adapter->stats.mcc;
  509. regs_buff[62] = adapter->stats.latecol;
  510. regs_buff[63] = adapter->stats.colc;
  511. regs_buff[64] = adapter->stats.dc;
  512. regs_buff[65] = adapter->stats.tncrs;
  513. regs_buff[66] = adapter->stats.sec;
  514. regs_buff[67] = adapter->stats.htdpmc;
  515. regs_buff[68] = adapter->stats.rlec;
  516. regs_buff[69] = adapter->stats.xonrxc;
  517. regs_buff[70] = adapter->stats.xontxc;
  518. regs_buff[71] = adapter->stats.xoffrxc;
  519. regs_buff[72] = adapter->stats.xofftxc;
  520. regs_buff[73] = adapter->stats.fcruc;
  521. regs_buff[74] = adapter->stats.prc64;
  522. regs_buff[75] = adapter->stats.prc127;
  523. regs_buff[76] = adapter->stats.prc255;
  524. regs_buff[77] = adapter->stats.prc511;
  525. regs_buff[78] = adapter->stats.prc1023;
  526. regs_buff[79] = adapter->stats.prc1522;
  527. regs_buff[80] = adapter->stats.gprc;
  528. regs_buff[81] = adapter->stats.bprc;
  529. regs_buff[82] = adapter->stats.mprc;
  530. regs_buff[83] = adapter->stats.gptc;
  531. regs_buff[84] = adapter->stats.gorc;
  532. regs_buff[86] = adapter->stats.gotc;
  533. regs_buff[88] = adapter->stats.rnbc;
  534. regs_buff[89] = adapter->stats.ruc;
  535. regs_buff[90] = adapter->stats.rfc;
  536. regs_buff[91] = adapter->stats.roc;
  537. regs_buff[92] = adapter->stats.rjc;
  538. regs_buff[93] = adapter->stats.mgprc;
  539. regs_buff[94] = adapter->stats.mgpdc;
  540. regs_buff[95] = adapter->stats.mgptc;
  541. regs_buff[96] = adapter->stats.tor;
  542. regs_buff[98] = adapter->stats.tot;
  543. regs_buff[100] = adapter->stats.tpr;
  544. regs_buff[101] = adapter->stats.tpt;
  545. regs_buff[102] = adapter->stats.ptc64;
  546. regs_buff[103] = adapter->stats.ptc127;
  547. regs_buff[104] = adapter->stats.ptc255;
  548. regs_buff[105] = adapter->stats.ptc511;
  549. regs_buff[106] = adapter->stats.ptc1023;
  550. regs_buff[107] = adapter->stats.ptc1522;
  551. regs_buff[108] = adapter->stats.mptc;
  552. regs_buff[109] = adapter->stats.bptc;
  553. regs_buff[110] = adapter->stats.tsctc;
  554. regs_buff[111] = adapter->stats.iac;
  555. regs_buff[112] = adapter->stats.rpthc;
  556. regs_buff[113] = adapter->stats.hgptc;
  557. regs_buff[114] = adapter->stats.hgorc;
  558. regs_buff[116] = adapter->stats.hgotc;
  559. regs_buff[118] = adapter->stats.lenerrs;
  560. regs_buff[119] = adapter->stats.scvpc;
  561. regs_buff[120] = adapter->stats.hrmpc;
  562. for (i = 0; i < 4; i++)
  563. regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
  564. for (i = 0; i < 4; i++)
  565. regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
  566. for (i = 0; i < 4; i++)
  567. regs_buff[129 + i] = rd32(E1000_RDBAL(i));
  568. for (i = 0; i < 4; i++)
  569. regs_buff[133 + i] = rd32(E1000_RDBAH(i));
  570. for (i = 0; i < 4; i++)
  571. regs_buff[137 + i] = rd32(E1000_RDLEN(i));
  572. for (i = 0; i < 4; i++)
  573. regs_buff[141 + i] = rd32(E1000_RDH(i));
  574. for (i = 0; i < 4; i++)
  575. regs_buff[145 + i] = rd32(E1000_RDT(i));
  576. for (i = 0; i < 4; i++)
  577. regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
  578. for (i = 0; i < 10; i++)
  579. regs_buff[153 + i] = rd32(E1000_EITR(i));
  580. for (i = 0; i < 8; i++)
  581. regs_buff[163 + i] = rd32(E1000_IMIR(i));
  582. for (i = 0; i < 8; i++)
  583. regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
  584. for (i = 0; i < 16; i++)
  585. regs_buff[179 + i] = rd32(E1000_RAL(i));
  586. for (i = 0; i < 16; i++)
  587. regs_buff[195 + i] = rd32(E1000_RAH(i));
  588. for (i = 0; i < 4; i++)
  589. regs_buff[211 + i] = rd32(E1000_TDBAL(i));
  590. for (i = 0; i < 4; i++)
  591. regs_buff[215 + i] = rd32(E1000_TDBAH(i));
  592. for (i = 0; i < 4; i++)
  593. regs_buff[219 + i] = rd32(E1000_TDLEN(i));
  594. for (i = 0; i < 4; i++)
  595. regs_buff[223 + i] = rd32(E1000_TDH(i));
  596. for (i = 0; i < 4; i++)
  597. regs_buff[227 + i] = rd32(E1000_TDT(i));
  598. for (i = 0; i < 4; i++)
  599. regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
  600. for (i = 0; i < 4; i++)
  601. regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
  602. for (i = 0; i < 4; i++)
  603. regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
  604. for (i = 0; i < 4; i++)
  605. regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
  606. for (i = 0; i < 4; i++)
  607. regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
  608. for (i = 0; i < 4; i++)
  609. regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
  610. for (i = 0; i < 32; i++)
  611. regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
  612. for (i = 0; i < 128; i++)
  613. regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
  614. for (i = 0; i < 128; i++)
  615. regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
  616. for (i = 0; i < 4; i++)
  617. regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
  618. regs_buff[547] = rd32(E1000_TDFH);
  619. regs_buff[548] = rd32(E1000_TDFT);
  620. regs_buff[549] = rd32(E1000_TDFHS);
  621. regs_buff[550] = rd32(E1000_TDFPC);
  622. if (hw->mac.type > e1000_82580) {
  623. regs_buff[551] = adapter->stats.o2bgptc;
  624. regs_buff[552] = adapter->stats.b2ospc;
  625. regs_buff[553] = adapter->stats.o2bspc;
  626. regs_buff[554] = adapter->stats.b2ogprc;
  627. }
  628. if (hw->mac.type != e1000_82576)
  629. return;
  630. for (i = 0; i < 12; i++)
  631. regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
  632. for (i = 0; i < 4; i++)
  633. regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
  634. for (i = 0; i < 12; i++)
  635. regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
  636. for (i = 0; i < 12; i++)
  637. regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
  638. for (i = 0; i < 12; i++)
  639. regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
  640. for (i = 0; i < 12; i++)
  641. regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
  642. for (i = 0; i < 12; i++)
  643. regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
  644. for (i = 0; i < 12; i++)
  645. regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
  646. for (i = 0; i < 12; i++)
  647. regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
  648. for (i = 0; i < 12; i++)
  649. regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
  650. for (i = 0; i < 12; i++)
  651. regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
  652. for (i = 0; i < 12; i++)
  653. regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
  654. for (i = 0; i < 12; i++)
  655. regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
  656. for (i = 0; i < 12; i++)
  657. regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
  658. for (i = 0; i < 12; i++)
  659. regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
  660. for (i = 0; i < 12; i++)
  661. regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
  662. }
  663. static int igb_get_eeprom_len(struct net_device *netdev)
  664. {
  665. struct igb_adapter *adapter = netdev_priv(netdev);
  666. return adapter->hw.nvm.word_size * 2;
  667. }
  668. static int igb_get_eeprom(struct net_device *netdev,
  669. struct ethtool_eeprom *eeprom, u8 *bytes)
  670. {
  671. struct igb_adapter *adapter = netdev_priv(netdev);
  672. struct e1000_hw *hw = &adapter->hw;
  673. u16 *eeprom_buff;
  674. int first_word, last_word;
  675. int ret_val = 0;
  676. u16 i;
  677. if (eeprom->len == 0)
  678. return -EINVAL;
  679. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  680. first_word = eeprom->offset >> 1;
  681. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  682. eeprom_buff = kmalloc(sizeof(u16) *
  683. (last_word - first_word + 1), GFP_KERNEL);
  684. if (!eeprom_buff)
  685. return -ENOMEM;
  686. if (hw->nvm.type == e1000_nvm_eeprom_spi)
  687. ret_val = hw->nvm.ops.read(hw, first_word,
  688. last_word - first_word + 1,
  689. eeprom_buff);
  690. else {
  691. for (i = 0; i < last_word - first_word + 1; i++) {
  692. ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
  693. &eeprom_buff[i]);
  694. if (ret_val)
  695. break;
  696. }
  697. }
  698. /* Device's eeprom is always little-endian, word addressable */
  699. for (i = 0; i < last_word - first_word + 1; i++)
  700. le16_to_cpus(&eeprom_buff[i]);
  701. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
  702. eeprom->len);
  703. kfree(eeprom_buff);
  704. return ret_val;
  705. }
  706. static int igb_set_eeprom(struct net_device *netdev,
  707. struct ethtool_eeprom *eeprom, u8 *bytes)
  708. {
  709. struct igb_adapter *adapter = netdev_priv(netdev);
  710. struct e1000_hw *hw = &adapter->hw;
  711. u16 *eeprom_buff;
  712. void *ptr;
  713. int max_len, first_word, last_word, ret_val = 0;
  714. u16 i;
  715. if (eeprom->len == 0)
  716. return -EOPNOTSUPP;
  717. if ((hw->mac.type >= e1000_i210) &&
  718. !igb_get_flash_presence_i210(hw)) {
  719. return -EOPNOTSUPP;
  720. }
  721. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  722. return -EFAULT;
  723. max_len = hw->nvm.word_size * 2;
  724. first_word = eeprom->offset >> 1;
  725. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  726. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  727. if (!eeprom_buff)
  728. return -ENOMEM;
  729. ptr = (void *)eeprom_buff;
  730. if (eeprom->offset & 1) {
  731. /* need read/modify/write of first changed EEPROM word
  732. * only the second byte of the word is being modified
  733. */
  734. ret_val = hw->nvm.ops.read(hw, first_word, 1,
  735. &eeprom_buff[0]);
  736. ptr++;
  737. }
  738. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  739. /* need read/modify/write of last changed EEPROM word
  740. * only the first byte of the word is being modified
  741. */
  742. ret_val = hw->nvm.ops.read(hw, last_word, 1,
  743. &eeprom_buff[last_word - first_word]);
  744. }
  745. /* Device's eeprom is always little-endian, word addressable */
  746. for (i = 0; i < last_word - first_word + 1; i++)
  747. le16_to_cpus(&eeprom_buff[i]);
  748. memcpy(ptr, bytes, eeprom->len);
  749. for (i = 0; i < last_word - first_word + 1; i++)
  750. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  751. ret_val = hw->nvm.ops.write(hw, first_word,
  752. last_word - first_word + 1, eeprom_buff);
  753. /* Update the checksum if nvm write succeeded */
  754. if (ret_val == 0)
  755. hw->nvm.ops.update(hw);
  756. igb_set_fw_version(adapter);
  757. kfree(eeprom_buff);
  758. return ret_val;
  759. }
  760. static void igb_get_drvinfo(struct net_device *netdev,
  761. struct ethtool_drvinfo *drvinfo)
  762. {
  763. struct igb_adapter *adapter = netdev_priv(netdev);
  764. strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
  765. strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
  766. /* EEPROM image version # is reported as firmware version # for
  767. * 82575 controllers
  768. */
  769. strlcpy(drvinfo->fw_version, adapter->fw_version,
  770. sizeof(drvinfo->fw_version));
  771. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  772. sizeof(drvinfo->bus_info));
  773. drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
  774. }
  775. static void igb_get_ringparam(struct net_device *netdev,
  776. struct ethtool_ringparam *ring)
  777. {
  778. struct igb_adapter *adapter = netdev_priv(netdev);
  779. ring->rx_max_pending = IGB_MAX_RXD;
  780. ring->tx_max_pending = IGB_MAX_TXD;
  781. ring->rx_pending = adapter->rx_ring_count;
  782. ring->tx_pending = adapter->tx_ring_count;
  783. }
  784. static int igb_set_ringparam(struct net_device *netdev,
  785. struct ethtool_ringparam *ring)
  786. {
  787. struct igb_adapter *adapter = netdev_priv(netdev);
  788. struct igb_ring *temp_ring;
  789. int i, err = 0;
  790. u16 new_rx_count, new_tx_count;
  791. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  792. return -EINVAL;
  793. new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
  794. new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
  795. new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
  796. new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
  797. new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
  798. new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
  799. if ((new_tx_count == adapter->tx_ring_count) &&
  800. (new_rx_count == adapter->rx_ring_count)) {
  801. /* nothing to do */
  802. return 0;
  803. }
  804. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  805. usleep_range(1000, 2000);
  806. if (!netif_running(adapter->netdev)) {
  807. for (i = 0; i < adapter->num_tx_queues; i++)
  808. adapter->tx_ring[i]->count = new_tx_count;
  809. for (i = 0; i < adapter->num_rx_queues; i++)
  810. adapter->rx_ring[i]->count = new_rx_count;
  811. adapter->tx_ring_count = new_tx_count;
  812. adapter->rx_ring_count = new_rx_count;
  813. goto clear_reset;
  814. }
  815. if (adapter->num_tx_queues > adapter->num_rx_queues)
  816. temp_ring = vmalloc(adapter->num_tx_queues *
  817. sizeof(struct igb_ring));
  818. else
  819. temp_ring = vmalloc(adapter->num_rx_queues *
  820. sizeof(struct igb_ring));
  821. if (!temp_ring) {
  822. err = -ENOMEM;
  823. goto clear_reset;
  824. }
  825. igb_down(adapter);
  826. /* We can't just free everything and then setup again,
  827. * because the ISRs in MSI-X mode get passed pointers
  828. * to the Tx and Rx ring structs.
  829. */
  830. if (new_tx_count != adapter->tx_ring_count) {
  831. for (i = 0; i < adapter->num_tx_queues; i++) {
  832. memcpy(&temp_ring[i], adapter->tx_ring[i],
  833. sizeof(struct igb_ring));
  834. temp_ring[i].count = new_tx_count;
  835. err = igb_setup_tx_resources(&temp_ring[i]);
  836. if (err) {
  837. while (i) {
  838. i--;
  839. igb_free_tx_resources(&temp_ring[i]);
  840. }
  841. goto err_setup;
  842. }
  843. }
  844. for (i = 0; i < adapter->num_tx_queues; i++) {
  845. igb_free_tx_resources(adapter->tx_ring[i]);
  846. memcpy(adapter->tx_ring[i], &temp_ring[i],
  847. sizeof(struct igb_ring));
  848. }
  849. adapter->tx_ring_count = new_tx_count;
  850. }
  851. if (new_rx_count != adapter->rx_ring_count) {
  852. for (i = 0; i < adapter->num_rx_queues; i++) {
  853. memcpy(&temp_ring[i], adapter->rx_ring[i],
  854. sizeof(struct igb_ring));
  855. temp_ring[i].count = new_rx_count;
  856. err = igb_setup_rx_resources(&temp_ring[i]);
  857. if (err) {
  858. while (i) {
  859. i--;
  860. igb_free_rx_resources(&temp_ring[i]);
  861. }
  862. goto err_setup;
  863. }
  864. }
  865. for (i = 0; i < adapter->num_rx_queues; i++) {
  866. igb_free_rx_resources(adapter->rx_ring[i]);
  867. memcpy(adapter->rx_ring[i], &temp_ring[i],
  868. sizeof(struct igb_ring));
  869. }
  870. adapter->rx_ring_count = new_rx_count;
  871. }
  872. err_setup:
  873. igb_up(adapter);
  874. vfree(temp_ring);
  875. clear_reset:
  876. clear_bit(__IGB_RESETTING, &adapter->state);
  877. return err;
  878. }
  879. /* ethtool register test data */
  880. struct igb_reg_test {
  881. u16 reg;
  882. u16 reg_offset;
  883. u16 array_len;
  884. u16 test_type;
  885. u32 mask;
  886. u32 write;
  887. };
  888. /* In the hardware, registers are laid out either singly, in arrays
  889. * spaced 0x100 bytes apart, or in contiguous tables. We assume
  890. * most tests take place on arrays or single registers (handled
  891. * as a single-element array) and special-case the tables.
  892. * Table tests are always pattern tests.
  893. *
  894. * We also make provision for some required setup steps by specifying
  895. * registers to be written without any read-back testing.
  896. */
  897. #define PATTERN_TEST 1
  898. #define SET_READ_TEST 2
  899. #define WRITE_NO_TEST 3
  900. #define TABLE32_TEST 4
  901. #define TABLE64_TEST_LO 5
  902. #define TABLE64_TEST_HI 6
  903. /* i210 reg test */
  904. static struct igb_reg_test reg_test_i210[] = {
  905. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  906. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  907. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  908. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  909. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  910. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  911. /* RDH is read-only for i210, only test RDT. */
  912. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  913. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  914. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  915. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  916. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  917. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  918. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  919. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  920. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  921. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  922. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  923. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  924. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  925. 0xFFFFFFFF, 0xFFFFFFFF },
  926. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  927. 0x900FFFFF, 0xFFFFFFFF },
  928. { E1000_MTA, 0, 128, TABLE32_TEST,
  929. 0xFFFFFFFF, 0xFFFFFFFF },
  930. { 0, 0, 0, 0, 0 }
  931. };
  932. /* i350 reg test */
  933. static struct igb_reg_test reg_test_i350[] = {
  934. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  935. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  936. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  937. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
  938. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  939. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  940. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  941. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  942. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  943. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  944. /* RDH is read-only for i350, only test RDT. */
  945. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  946. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  947. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  948. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  949. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  950. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  951. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  952. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  953. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  954. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  955. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  956. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  957. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  958. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  959. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  960. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  961. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  962. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  963. 0xFFFFFFFF, 0xFFFFFFFF },
  964. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  965. 0xC3FFFFFF, 0xFFFFFFFF },
  966. { E1000_RA2, 0, 16, TABLE64_TEST_LO,
  967. 0xFFFFFFFF, 0xFFFFFFFF },
  968. { E1000_RA2, 0, 16, TABLE64_TEST_HI,
  969. 0xC3FFFFFF, 0xFFFFFFFF },
  970. { E1000_MTA, 0, 128, TABLE32_TEST,
  971. 0xFFFFFFFF, 0xFFFFFFFF },
  972. { 0, 0, 0, 0 }
  973. };
  974. /* 82580 reg test */
  975. static struct igb_reg_test reg_test_82580[] = {
  976. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  977. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  978. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  979. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  980. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  981. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  982. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  983. { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  984. { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  985. { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  986. /* RDH is read-only for 82580, only test RDT. */
  987. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  988. { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  989. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  990. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  991. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  992. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  993. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  994. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  995. { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  996. { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  997. { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  998. { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  999. { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1000. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1001. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1002. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1003. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1004. { E1000_RA, 0, 16, TABLE64_TEST_LO,
  1005. 0xFFFFFFFF, 0xFFFFFFFF },
  1006. { E1000_RA, 0, 16, TABLE64_TEST_HI,
  1007. 0x83FFFFFF, 0xFFFFFFFF },
  1008. { E1000_RA2, 0, 8, TABLE64_TEST_LO,
  1009. 0xFFFFFFFF, 0xFFFFFFFF },
  1010. { E1000_RA2, 0, 8, TABLE64_TEST_HI,
  1011. 0x83FFFFFF, 0xFFFFFFFF },
  1012. { E1000_MTA, 0, 128, TABLE32_TEST,
  1013. 0xFFFFFFFF, 0xFFFFFFFF },
  1014. { 0, 0, 0, 0 }
  1015. };
  1016. /* 82576 reg test */
  1017. static struct igb_reg_test reg_test_82576[] = {
  1018. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1019. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1020. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1021. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1022. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1023. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1024. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1025. { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1026. { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1027. { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1028. /* Enable all RX queues before testing. */
  1029. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1030. E1000_RXDCTL_QUEUE_ENABLE },
  1031. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
  1032. E1000_RXDCTL_QUEUE_ENABLE },
  1033. /* RDH is read-only for 82576, only test RDT. */
  1034. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1035. { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1036. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1037. { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
  1038. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1039. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1040. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1041. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1042. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1043. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1044. { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1045. { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1046. { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
  1047. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1048. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
  1049. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
  1050. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1051. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1052. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1053. { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1054. { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
  1055. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1056. { 0, 0, 0, 0 }
  1057. };
  1058. /* 82575 register test */
  1059. static struct igb_reg_test reg_test_82575[] = {
  1060. { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1061. { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1062. { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
  1063. { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1064. { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1065. { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1066. { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1067. /* Enable all four RX queues before testing. */
  1068. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
  1069. E1000_RXDCTL_QUEUE_ENABLE },
  1070. /* RDH is read-only for 82575, only test RDT. */
  1071. { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1072. { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
  1073. { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
  1074. { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
  1075. { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
  1076. { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
  1077. { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1078. { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
  1079. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1080. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
  1081. { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
  1082. { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
  1083. { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
  1084. { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
  1085. { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
  1086. { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
  1087. { 0, 0, 0, 0 }
  1088. };
  1089. static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
  1090. int reg, u32 mask, u32 write)
  1091. {
  1092. struct e1000_hw *hw = &adapter->hw;
  1093. u32 pat, val;
  1094. static const u32 _test[] = {
  1095. 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
  1096. for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
  1097. wr32(reg, (_test[pat] & write));
  1098. val = rd32(reg) & mask;
  1099. if (val != (_test[pat] & write & mask)) {
  1100. dev_err(&adapter->pdev->dev,
  1101. "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
  1102. reg, val, (_test[pat] & write & mask));
  1103. *data = reg;
  1104. return true;
  1105. }
  1106. }
  1107. return false;
  1108. }
  1109. static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
  1110. int reg, u32 mask, u32 write)
  1111. {
  1112. struct e1000_hw *hw = &adapter->hw;
  1113. u32 val;
  1114. wr32(reg, write & mask);
  1115. val = rd32(reg);
  1116. if ((write & mask) != (val & mask)) {
  1117. dev_err(&adapter->pdev->dev,
  1118. "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
  1119. reg, (val & mask), (write & mask));
  1120. *data = reg;
  1121. return true;
  1122. }
  1123. return false;
  1124. }
  1125. #define REG_PATTERN_TEST(reg, mask, write) \
  1126. do { \
  1127. if (reg_pattern_test(adapter, data, reg, mask, write)) \
  1128. return 1; \
  1129. } while (0)
  1130. #define REG_SET_AND_CHECK(reg, mask, write) \
  1131. do { \
  1132. if (reg_set_and_check(adapter, data, reg, mask, write)) \
  1133. return 1; \
  1134. } while (0)
  1135. static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
  1136. {
  1137. struct e1000_hw *hw = &adapter->hw;
  1138. struct igb_reg_test *test;
  1139. u32 value, before, after;
  1140. u32 i, toggle;
  1141. switch (adapter->hw.mac.type) {
  1142. case e1000_i350:
  1143. case e1000_i354:
  1144. test = reg_test_i350;
  1145. toggle = 0x7FEFF3FF;
  1146. break;
  1147. case e1000_i210:
  1148. case e1000_i211:
  1149. test = reg_test_i210;
  1150. toggle = 0x7FEFF3FF;
  1151. break;
  1152. case e1000_82580:
  1153. test = reg_test_82580;
  1154. toggle = 0x7FEFF3FF;
  1155. break;
  1156. case e1000_82576:
  1157. test = reg_test_82576;
  1158. toggle = 0x7FFFF3FF;
  1159. break;
  1160. default:
  1161. test = reg_test_82575;
  1162. toggle = 0x7FFFF3FF;
  1163. break;
  1164. }
  1165. /* Because the status register is such a special case,
  1166. * we handle it separately from the rest of the register
  1167. * tests. Some bits are read-only, some toggle, and some
  1168. * are writable on newer MACs.
  1169. */
  1170. before = rd32(E1000_STATUS);
  1171. value = (rd32(E1000_STATUS) & toggle);
  1172. wr32(E1000_STATUS, toggle);
  1173. after = rd32(E1000_STATUS) & toggle;
  1174. if (value != after) {
  1175. dev_err(&adapter->pdev->dev,
  1176. "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
  1177. after, value);
  1178. *data = 1;
  1179. return 1;
  1180. }
  1181. /* restore previous status */
  1182. wr32(E1000_STATUS, before);
  1183. /* Perform the remainder of the register test, looping through
  1184. * the test table until we either fail or reach the null entry.
  1185. */
  1186. while (test->reg) {
  1187. for (i = 0; i < test->array_len; i++) {
  1188. switch (test->test_type) {
  1189. case PATTERN_TEST:
  1190. REG_PATTERN_TEST(test->reg +
  1191. (i * test->reg_offset),
  1192. test->mask,
  1193. test->write);
  1194. break;
  1195. case SET_READ_TEST:
  1196. REG_SET_AND_CHECK(test->reg +
  1197. (i * test->reg_offset),
  1198. test->mask,
  1199. test->write);
  1200. break;
  1201. case WRITE_NO_TEST:
  1202. writel(test->write,
  1203. (adapter->hw.hw_addr + test->reg)
  1204. + (i * test->reg_offset));
  1205. break;
  1206. case TABLE32_TEST:
  1207. REG_PATTERN_TEST(test->reg + (i * 4),
  1208. test->mask,
  1209. test->write);
  1210. break;
  1211. case TABLE64_TEST_LO:
  1212. REG_PATTERN_TEST(test->reg + (i * 8),
  1213. test->mask,
  1214. test->write);
  1215. break;
  1216. case TABLE64_TEST_HI:
  1217. REG_PATTERN_TEST((test->reg + 4) + (i * 8),
  1218. test->mask,
  1219. test->write);
  1220. break;
  1221. }
  1222. }
  1223. test++;
  1224. }
  1225. *data = 0;
  1226. return 0;
  1227. }
  1228. static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
  1229. {
  1230. struct e1000_hw *hw = &adapter->hw;
  1231. *data = 0;
  1232. /* Validate eeprom on all parts but flashless */
  1233. switch (hw->mac.type) {
  1234. case e1000_i210:
  1235. case e1000_i211:
  1236. if (igb_get_flash_presence_i210(hw)) {
  1237. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1238. *data = 2;
  1239. }
  1240. break;
  1241. default:
  1242. if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
  1243. *data = 2;
  1244. break;
  1245. }
  1246. return *data;
  1247. }
  1248. static irqreturn_t igb_test_intr(int irq, void *data)
  1249. {
  1250. struct igb_adapter *adapter = (struct igb_adapter *) data;
  1251. struct e1000_hw *hw = &adapter->hw;
  1252. adapter->test_icr |= rd32(E1000_ICR);
  1253. return IRQ_HANDLED;
  1254. }
  1255. static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
  1256. {
  1257. struct e1000_hw *hw = &adapter->hw;
  1258. struct net_device *netdev = adapter->netdev;
  1259. u32 mask, ics_mask, i = 0, shared_int = true;
  1260. u32 irq = adapter->pdev->irq;
  1261. *data = 0;
  1262. /* Hook up test interrupt handler just for this test */
  1263. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1264. if (request_irq(adapter->msix_entries[0].vector,
  1265. igb_test_intr, 0, netdev->name, adapter)) {
  1266. *data = 1;
  1267. return -1;
  1268. }
  1269. } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1270. shared_int = false;
  1271. if (request_irq(irq,
  1272. igb_test_intr, 0, netdev->name, adapter)) {
  1273. *data = 1;
  1274. return -1;
  1275. }
  1276. } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
  1277. netdev->name, adapter)) {
  1278. shared_int = false;
  1279. } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
  1280. netdev->name, adapter)) {
  1281. *data = 1;
  1282. return -1;
  1283. }
  1284. dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
  1285. (shared_int ? "shared" : "unshared"));
  1286. /* Disable all the interrupts */
  1287. wr32(E1000_IMC, ~0);
  1288. wrfl();
  1289. usleep_range(10000, 11000);
  1290. /* Define all writable bits for ICS */
  1291. switch (hw->mac.type) {
  1292. case e1000_82575:
  1293. ics_mask = 0x37F47EDD;
  1294. break;
  1295. case e1000_82576:
  1296. ics_mask = 0x77D4FBFD;
  1297. break;
  1298. case e1000_82580:
  1299. ics_mask = 0x77DCFED5;
  1300. break;
  1301. case e1000_i350:
  1302. case e1000_i354:
  1303. case e1000_i210:
  1304. case e1000_i211:
  1305. ics_mask = 0x77DCFED5;
  1306. break;
  1307. default:
  1308. ics_mask = 0x7FFFFFFF;
  1309. break;
  1310. }
  1311. /* Test each interrupt */
  1312. for (; i < 31; i++) {
  1313. /* Interrupt to test */
  1314. mask = BIT(i);
  1315. if (!(mask & ics_mask))
  1316. continue;
  1317. if (!shared_int) {
  1318. /* Disable the interrupt to be reported in
  1319. * the cause register and then force the same
  1320. * interrupt and see if one gets posted. If
  1321. * an interrupt was posted to the bus, the
  1322. * test failed.
  1323. */
  1324. adapter->test_icr = 0;
  1325. /* Flush any pending interrupts */
  1326. wr32(E1000_ICR, ~0);
  1327. wr32(E1000_IMC, mask);
  1328. wr32(E1000_ICS, mask);
  1329. wrfl();
  1330. usleep_range(10000, 11000);
  1331. if (adapter->test_icr & mask) {
  1332. *data = 3;
  1333. break;
  1334. }
  1335. }
  1336. /* Enable the interrupt to be reported in
  1337. * the cause register and then force the same
  1338. * interrupt and see if one gets posted. If
  1339. * an interrupt was not posted to the bus, the
  1340. * test failed.
  1341. */
  1342. adapter->test_icr = 0;
  1343. /* Flush any pending interrupts */
  1344. wr32(E1000_ICR, ~0);
  1345. wr32(E1000_IMS, mask);
  1346. wr32(E1000_ICS, mask);
  1347. wrfl();
  1348. usleep_range(10000, 11000);
  1349. if (!(adapter->test_icr & mask)) {
  1350. *data = 4;
  1351. break;
  1352. }
  1353. if (!shared_int) {
  1354. /* Disable the other interrupts to be reported in
  1355. * the cause register and then force the other
  1356. * interrupts and see if any get posted. If
  1357. * an interrupt was posted to the bus, the
  1358. * test failed.
  1359. */
  1360. adapter->test_icr = 0;
  1361. /* Flush any pending interrupts */
  1362. wr32(E1000_ICR, ~0);
  1363. wr32(E1000_IMC, ~mask);
  1364. wr32(E1000_ICS, ~mask);
  1365. wrfl();
  1366. usleep_range(10000, 11000);
  1367. if (adapter->test_icr & mask) {
  1368. *data = 5;
  1369. break;
  1370. }
  1371. }
  1372. }
  1373. /* Disable all the interrupts */
  1374. wr32(E1000_IMC, ~0);
  1375. wrfl();
  1376. usleep_range(10000, 11000);
  1377. /* Unhook test interrupt handler */
  1378. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1379. free_irq(adapter->msix_entries[0].vector, adapter);
  1380. else
  1381. free_irq(irq, adapter);
  1382. return *data;
  1383. }
  1384. static void igb_free_desc_rings(struct igb_adapter *adapter)
  1385. {
  1386. igb_free_tx_resources(&adapter->test_tx_ring);
  1387. igb_free_rx_resources(&adapter->test_rx_ring);
  1388. }
  1389. static int igb_setup_desc_rings(struct igb_adapter *adapter)
  1390. {
  1391. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1392. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1393. struct e1000_hw *hw = &adapter->hw;
  1394. int ret_val;
  1395. /* Setup Tx descriptor ring and Tx buffers */
  1396. tx_ring->count = IGB_DEFAULT_TXD;
  1397. tx_ring->dev = &adapter->pdev->dev;
  1398. tx_ring->netdev = adapter->netdev;
  1399. tx_ring->reg_idx = adapter->vfs_allocated_count;
  1400. if (igb_setup_tx_resources(tx_ring)) {
  1401. ret_val = 1;
  1402. goto err_nomem;
  1403. }
  1404. igb_setup_tctl(adapter);
  1405. igb_configure_tx_ring(adapter, tx_ring);
  1406. /* Setup Rx descriptor ring and Rx buffers */
  1407. rx_ring->count = IGB_DEFAULT_RXD;
  1408. rx_ring->dev = &adapter->pdev->dev;
  1409. rx_ring->netdev = adapter->netdev;
  1410. rx_ring->reg_idx = adapter->vfs_allocated_count;
  1411. if (igb_setup_rx_resources(rx_ring)) {
  1412. ret_val = 3;
  1413. goto err_nomem;
  1414. }
  1415. /* set the default queue to queue 0 of PF */
  1416. wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
  1417. /* enable receive ring */
  1418. igb_setup_rctl(adapter);
  1419. igb_configure_rx_ring(adapter, rx_ring);
  1420. igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
  1421. return 0;
  1422. err_nomem:
  1423. igb_free_desc_rings(adapter);
  1424. return ret_val;
  1425. }
  1426. static void igb_phy_disable_receiver(struct igb_adapter *adapter)
  1427. {
  1428. struct e1000_hw *hw = &adapter->hw;
  1429. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1430. igb_write_phy_reg(hw, 29, 0x001F);
  1431. igb_write_phy_reg(hw, 30, 0x8FFC);
  1432. igb_write_phy_reg(hw, 29, 0x001A);
  1433. igb_write_phy_reg(hw, 30, 0x8FF0);
  1434. }
  1435. static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
  1436. {
  1437. struct e1000_hw *hw = &adapter->hw;
  1438. u32 ctrl_reg = 0;
  1439. hw->mac.autoneg = false;
  1440. if (hw->phy.type == e1000_phy_m88) {
  1441. if (hw->phy.id != I210_I_PHY_ID) {
  1442. /* Auto-MDI/MDIX Off */
  1443. igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
  1444. /* reset to update Auto-MDI/MDIX */
  1445. igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
  1446. /* autoneg off */
  1447. igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
  1448. } else {
  1449. /* force 1000, set loopback */
  1450. igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
  1451. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1452. }
  1453. } else if (hw->phy.type == e1000_phy_82580) {
  1454. /* enable MII loopback */
  1455. igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
  1456. }
  1457. /* add small delay to avoid loopback test failure */
  1458. msleep(50);
  1459. /* force 1000, set loopback */
  1460. igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
  1461. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1462. ctrl_reg = rd32(E1000_CTRL);
  1463. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1464. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1465. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1466. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1467. E1000_CTRL_FD | /* Force Duplex to FULL */
  1468. E1000_CTRL_SLU); /* Set link up enable bit */
  1469. if (hw->phy.type == e1000_phy_m88)
  1470. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1471. wr32(E1000_CTRL, ctrl_reg);
  1472. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1473. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1474. */
  1475. if (hw->phy.type == e1000_phy_m88)
  1476. igb_phy_disable_receiver(adapter);
  1477. mdelay(500);
  1478. return 0;
  1479. }
  1480. static int igb_set_phy_loopback(struct igb_adapter *adapter)
  1481. {
  1482. return igb_integrated_phy_loopback(adapter);
  1483. }
  1484. static int igb_setup_loopback_test(struct igb_adapter *adapter)
  1485. {
  1486. struct e1000_hw *hw = &adapter->hw;
  1487. u32 reg;
  1488. reg = rd32(E1000_CTRL_EXT);
  1489. /* use CTRL_EXT to identify link type as SGMII can appear as copper */
  1490. if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1491. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1492. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1493. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1494. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1495. (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
  1496. (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
  1497. /* Enable DH89xxCC MPHY for near end loopback */
  1498. reg = rd32(E1000_MPHY_ADDR_CTL);
  1499. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1500. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1501. wr32(E1000_MPHY_ADDR_CTL, reg);
  1502. reg = rd32(E1000_MPHY_DATA);
  1503. reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1504. wr32(E1000_MPHY_DATA, reg);
  1505. }
  1506. reg = rd32(E1000_RCTL);
  1507. reg |= E1000_RCTL_LBM_TCVR;
  1508. wr32(E1000_RCTL, reg);
  1509. wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
  1510. reg = rd32(E1000_CTRL);
  1511. reg &= ~(E1000_CTRL_RFCE |
  1512. E1000_CTRL_TFCE |
  1513. E1000_CTRL_LRST);
  1514. reg |= E1000_CTRL_SLU |
  1515. E1000_CTRL_FD;
  1516. wr32(E1000_CTRL, reg);
  1517. /* Unset switch control to serdes energy detect */
  1518. reg = rd32(E1000_CONNSW);
  1519. reg &= ~E1000_CONNSW_ENRGSRC;
  1520. wr32(E1000_CONNSW, reg);
  1521. /* Unset sigdetect for SERDES loopback on
  1522. * 82580 and newer devices.
  1523. */
  1524. if (hw->mac.type >= e1000_82580) {
  1525. reg = rd32(E1000_PCS_CFG0);
  1526. reg |= E1000_PCS_CFG_IGN_SD;
  1527. wr32(E1000_PCS_CFG0, reg);
  1528. }
  1529. /* Set PCS register for forced speed */
  1530. reg = rd32(E1000_PCS_LCTL);
  1531. reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
  1532. reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
  1533. E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
  1534. E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
  1535. E1000_PCS_LCTL_FSD | /* Force Speed */
  1536. E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
  1537. wr32(E1000_PCS_LCTL, reg);
  1538. return 0;
  1539. }
  1540. return igb_set_phy_loopback(adapter);
  1541. }
  1542. static void igb_loopback_cleanup(struct igb_adapter *adapter)
  1543. {
  1544. struct e1000_hw *hw = &adapter->hw;
  1545. u32 rctl;
  1546. u16 phy_reg;
  1547. if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
  1548. (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
  1549. (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
  1550. (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
  1551. (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
  1552. u32 reg;
  1553. /* Disable near end loopback on DH89xxCC */
  1554. reg = rd32(E1000_MPHY_ADDR_CTL);
  1555. reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
  1556. E1000_MPHY_PCS_CLK_REG_OFFSET;
  1557. wr32(E1000_MPHY_ADDR_CTL, reg);
  1558. reg = rd32(E1000_MPHY_DATA);
  1559. reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
  1560. wr32(E1000_MPHY_DATA, reg);
  1561. }
  1562. rctl = rd32(E1000_RCTL);
  1563. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1564. wr32(E1000_RCTL, rctl);
  1565. hw->mac.autoneg = true;
  1566. igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
  1567. if (phy_reg & MII_CR_LOOPBACK) {
  1568. phy_reg &= ~MII_CR_LOOPBACK;
  1569. igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
  1570. igb_phy_sw_reset(hw);
  1571. }
  1572. }
  1573. static void igb_create_lbtest_frame(struct sk_buff *skb,
  1574. unsigned int frame_size)
  1575. {
  1576. memset(skb->data, 0xFF, frame_size);
  1577. frame_size /= 2;
  1578. memset(&skb->data[frame_size], 0xAA, frame_size - 1);
  1579. memset(&skb->data[frame_size + 10], 0xBE, 1);
  1580. memset(&skb->data[frame_size + 12], 0xAF, 1);
  1581. }
  1582. static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
  1583. unsigned int frame_size)
  1584. {
  1585. unsigned char *data;
  1586. bool match = true;
  1587. frame_size >>= 1;
  1588. data = kmap(rx_buffer->page);
  1589. if (data[3] != 0xFF ||
  1590. data[frame_size + 10] != 0xBE ||
  1591. data[frame_size + 12] != 0xAF)
  1592. match = false;
  1593. kunmap(rx_buffer->page);
  1594. return match;
  1595. }
  1596. static int igb_clean_test_rings(struct igb_ring *rx_ring,
  1597. struct igb_ring *tx_ring,
  1598. unsigned int size)
  1599. {
  1600. union e1000_adv_rx_desc *rx_desc;
  1601. struct igb_rx_buffer *rx_buffer_info;
  1602. struct igb_tx_buffer *tx_buffer_info;
  1603. u16 rx_ntc, tx_ntc, count = 0;
  1604. /* initialize next to clean and descriptor values */
  1605. rx_ntc = rx_ring->next_to_clean;
  1606. tx_ntc = tx_ring->next_to_clean;
  1607. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1608. while (rx_desc->wb.upper.length) {
  1609. /* check Rx buffer */
  1610. rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
  1611. /* sync Rx buffer for CPU read */
  1612. dma_sync_single_for_cpu(rx_ring->dev,
  1613. rx_buffer_info->dma,
  1614. size,
  1615. DMA_FROM_DEVICE);
  1616. /* verify contents of skb */
  1617. if (igb_check_lbtest_frame(rx_buffer_info, size))
  1618. count++;
  1619. /* sync Rx buffer for device write */
  1620. dma_sync_single_for_device(rx_ring->dev,
  1621. rx_buffer_info->dma,
  1622. size,
  1623. DMA_FROM_DEVICE);
  1624. /* unmap buffer on Tx side */
  1625. tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
  1626. /* Free all the Tx ring sk_buffs */
  1627. dev_kfree_skb_any(tx_buffer_info->skb);
  1628. /* unmap skb header data */
  1629. dma_unmap_single(tx_ring->dev,
  1630. dma_unmap_addr(tx_buffer_info, dma),
  1631. dma_unmap_len(tx_buffer_info, len),
  1632. DMA_TO_DEVICE);
  1633. dma_unmap_len_set(tx_buffer_info, len, 0);
  1634. /* increment Rx/Tx next to clean counters */
  1635. rx_ntc++;
  1636. if (rx_ntc == rx_ring->count)
  1637. rx_ntc = 0;
  1638. tx_ntc++;
  1639. if (tx_ntc == tx_ring->count)
  1640. tx_ntc = 0;
  1641. /* fetch next descriptor */
  1642. rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
  1643. }
  1644. netdev_tx_reset_queue(txring_txq(tx_ring));
  1645. /* re-map buffers to ring, store next to clean values */
  1646. igb_alloc_rx_buffers(rx_ring, count);
  1647. rx_ring->next_to_clean = rx_ntc;
  1648. tx_ring->next_to_clean = tx_ntc;
  1649. return count;
  1650. }
  1651. static int igb_run_loopback_test(struct igb_adapter *adapter)
  1652. {
  1653. struct igb_ring *tx_ring = &adapter->test_tx_ring;
  1654. struct igb_ring *rx_ring = &adapter->test_rx_ring;
  1655. u16 i, j, lc, good_cnt;
  1656. int ret_val = 0;
  1657. unsigned int size = IGB_RX_HDR_LEN;
  1658. netdev_tx_t tx_ret_val;
  1659. struct sk_buff *skb;
  1660. /* allocate test skb */
  1661. skb = alloc_skb(size, GFP_KERNEL);
  1662. if (!skb)
  1663. return 11;
  1664. /* place data into test skb */
  1665. igb_create_lbtest_frame(skb, size);
  1666. skb_put(skb, size);
  1667. /* Calculate the loop count based on the largest descriptor ring
  1668. * The idea is to wrap the largest ring a number of times using 64
  1669. * send/receive pairs during each loop
  1670. */
  1671. if (rx_ring->count <= tx_ring->count)
  1672. lc = ((tx_ring->count / 64) * 2) + 1;
  1673. else
  1674. lc = ((rx_ring->count / 64) * 2) + 1;
  1675. for (j = 0; j <= lc; j++) { /* loop count loop */
  1676. /* reset count of good packets */
  1677. good_cnt = 0;
  1678. /* place 64 packets on the transmit queue*/
  1679. for (i = 0; i < 64; i++) {
  1680. skb_get(skb);
  1681. tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
  1682. if (tx_ret_val == NETDEV_TX_OK)
  1683. good_cnt++;
  1684. }
  1685. if (good_cnt != 64) {
  1686. ret_val = 12;
  1687. break;
  1688. }
  1689. /* allow 200 milliseconds for packets to go from Tx to Rx */
  1690. msleep(200);
  1691. good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
  1692. if (good_cnt != 64) {
  1693. ret_val = 13;
  1694. break;
  1695. }
  1696. } /* end loop count loop */
  1697. /* free the original skb */
  1698. kfree_skb(skb);
  1699. return ret_val;
  1700. }
  1701. static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
  1702. {
  1703. /* PHY loopback cannot be performed if SoL/IDER
  1704. * sessions are active
  1705. */
  1706. if (igb_check_reset_block(&adapter->hw)) {
  1707. dev_err(&adapter->pdev->dev,
  1708. "Cannot do PHY loopback test when SoL/IDER is active.\n");
  1709. *data = 0;
  1710. goto out;
  1711. }
  1712. if (adapter->hw.mac.type == e1000_i354) {
  1713. dev_info(&adapter->pdev->dev,
  1714. "Loopback test not supported on i354.\n");
  1715. *data = 0;
  1716. goto out;
  1717. }
  1718. *data = igb_setup_desc_rings(adapter);
  1719. if (*data)
  1720. goto out;
  1721. *data = igb_setup_loopback_test(adapter);
  1722. if (*data)
  1723. goto err_loopback;
  1724. *data = igb_run_loopback_test(adapter);
  1725. igb_loopback_cleanup(adapter);
  1726. err_loopback:
  1727. igb_free_desc_rings(adapter);
  1728. out:
  1729. return *data;
  1730. }
  1731. static int igb_link_test(struct igb_adapter *adapter, u64 *data)
  1732. {
  1733. struct e1000_hw *hw = &adapter->hw;
  1734. *data = 0;
  1735. if (hw->phy.media_type == e1000_media_type_internal_serdes) {
  1736. int i = 0;
  1737. hw->mac.serdes_has_link = false;
  1738. /* On some blade server designs, link establishment
  1739. * could take as long as 2-3 minutes
  1740. */
  1741. do {
  1742. hw->mac.ops.check_for_link(&adapter->hw);
  1743. if (hw->mac.serdes_has_link)
  1744. return *data;
  1745. msleep(20);
  1746. } while (i++ < 3750);
  1747. *data = 1;
  1748. } else {
  1749. hw->mac.ops.check_for_link(&adapter->hw);
  1750. if (hw->mac.autoneg)
  1751. msleep(5000);
  1752. if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
  1753. *data = 1;
  1754. }
  1755. return *data;
  1756. }
  1757. static void igb_diag_test(struct net_device *netdev,
  1758. struct ethtool_test *eth_test, u64 *data)
  1759. {
  1760. struct igb_adapter *adapter = netdev_priv(netdev);
  1761. u16 autoneg_advertised;
  1762. u8 forced_speed_duplex, autoneg;
  1763. bool if_running = netif_running(netdev);
  1764. set_bit(__IGB_TESTING, &adapter->state);
  1765. /* can't do offline tests on media switching devices */
  1766. if (adapter->hw.dev_spec._82575.mas_capable)
  1767. eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
  1768. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1769. /* Offline tests */
  1770. /* save speed, duplex, autoneg settings */
  1771. autoneg_advertised = adapter->hw.phy.autoneg_advertised;
  1772. forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
  1773. autoneg = adapter->hw.mac.autoneg;
  1774. dev_info(&adapter->pdev->dev, "offline testing starting\n");
  1775. /* power up link for link test */
  1776. igb_power_up_link(adapter);
  1777. /* Link test performed before hardware reset so autoneg doesn't
  1778. * interfere with test result
  1779. */
  1780. if (igb_link_test(adapter, &data[TEST_LINK]))
  1781. eth_test->flags |= ETH_TEST_FL_FAILED;
  1782. if (if_running)
  1783. /* indicate we're in test mode */
  1784. igb_close(netdev);
  1785. else
  1786. igb_reset(adapter);
  1787. if (igb_reg_test(adapter, &data[TEST_REG]))
  1788. eth_test->flags |= ETH_TEST_FL_FAILED;
  1789. igb_reset(adapter);
  1790. if (igb_eeprom_test(adapter, &data[TEST_EEP]))
  1791. eth_test->flags |= ETH_TEST_FL_FAILED;
  1792. igb_reset(adapter);
  1793. if (igb_intr_test(adapter, &data[TEST_IRQ]))
  1794. eth_test->flags |= ETH_TEST_FL_FAILED;
  1795. igb_reset(adapter);
  1796. /* power up link for loopback test */
  1797. igb_power_up_link(adapter);
  1798. if (igb_loopback_test(adapter, &data[TEST_LOOP]))
  1799. eth_test->flags |= ETH_TEST_FL_FAILED;
  1800. /* restore speed, duplex, autoneg settings */
  1801. adapter->hw.phy.autoneg_advertised = autoneg_advertised;
  1802. adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
  1803. adapter->hw.mac.autoneg = autoneg;
  1804. /* force this routine to wait until autoneg complete/timeout */
  1805. adapter->hw.phy.autoneg_wait_to_complete = true;
  1806. igb_reset(adapter);
  1807. adapter->hw.phy.autoneg_wait_to_complete = false;
  1808. clear_bit(__IGB_TESTING, &adapter->state);
  1809. if (if_running)
  1810. igb_open(netdev);
  1811. } else {
  1812. dev_info(&adapter->pdev->dev, "online testing starting\n");
  1813. /* PHY is powered down when interface is down */
  1814. if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
  1815. eth_test->flags |= ETH_TEST_FL_FAILED;
  1816. else
  1817. data[TEST_LINK] = 0;
  1818. /* Online tests aren't run; pass by default */
  1819. data[TEST_REG] = 0;
  1820. data[TEST_EEP] = 0;
  1821. data[TEST_IRQ] = 0;
  1822. data[TEST_LOOP] = 0;
  1823. clear_bit(__IGB_TESTING, &adapter->state);
  1824. }
  1825. msleep_interruptible(4 * 1000);
  1826. }
  1827. static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1828. {
  1829. struct igb_adapter *adapter = netdev_priv(netdev);
  1830. wol->wolopts = 0;
  1831. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1832. return;
  1833. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1834. WAKE_BCAST | WAKE_MAGIC |
  1835. WAKE_PHY;
  1836. /* apply any specific unsupported masks here */
  1837. switch (adapter->hw.device_id) {
  1838. default:
  1839. break;
  1840. }
  1841. if (adapter->wol & E1000_WUFC_EX)
  1842. wol->wolopts |= WAKE_UCAST;
  1843. if (adapter->wol & E1000_WUFC_MC)
  1844. wol->wolopts |= WAKE_MCAST;
  1845. if (adapter->wol & E1000_WUFC_BC)
  1846. wol->wolopts |= WAKE_BCAST;
  1847. if (adapter->wol & E1000_WUFC_MAG)
  1848. wol->wolopts |= WAKE_MAGIC;
  1849. if (adapter->wol & E1000_WUFC_LNKC)
  1850. wol->wolopts |= WAKE_PHY;
  1851. }
  1852. static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1853. {
  1854. struct igb_adapter *adapter = netdev_priv(netdev);
  1855. if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
  1856. return -EOPNOTSUPP;
  1857. if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
  1858. return wol->wolopts ? -EOPNOTSUPP : 0;
  1859. /* these settings will always override what we currently have */
  1860. adapter->wol = 0;
  1861. if (wol->wolopts & WAKE_UCAST)
  1862. adapter->wol |= E1000_WUFC_EX;
  1863. if (wol->wolopts & WAKE_MCAST)
  1864. adapter->wol |= E1000_WUFC_MC;
  1865. if (wol->wolopts & WAKE_BCAST)
  1866. adapter->wol |= E1000_WUFC_BC;
  1867. if (wol->wolopts & WAKE_MAGIC)
  1868. adapter->wol |= E1000_WUFC_MAG;
  1869. if (wol->wolopts & WAKE_PHY)
  1870. adapter->wol |= E1000_WUFC_LNKC;
  1871. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  1872. return 0;
  1873. }
  1874. /* bit defines for adapter->led_status */
  1875. #define IGB_LED_ON 0
  1876. static int igb_set_phys_id(struct net_device *netdev,
  1877. enum ethtool_phys_id_state state)
  1878. {
  1879. struct igb_adapter *adapter = netdev_priv(netdev);
  1880. struct e1000_hw *hw = &adapter->hw;
  1881. switch (state) {
  1882. case ETHTOOL_ID_ACTIVE:
  1883. igb_blink_led(hw);
  1884. return 2;
  1885. case ETHTOOL_ID_ON:
  1886. igb_blink_led(hw);
  1887. break;
  1888. case ETHTOOL_ID_OFF:
  1889. igb_led_off(hw);
  1890. break;
  1891. case ETHTOOL_ID_INACTIVE:
  1892. igb_led_off(hw);
  1893. clear_bit(IGB_LED_ON, &adapter->led_status);
  1894. igb_cleanup_led(hw);
  1895. break;
  1896. }
  1897. return 0;
  1898. }
  1899. static int igb_set_coalesce(struct net_device *netdev,
  1900. struct ethtool_coalesce *ec)
  1901. {
  1902. struct igb_adapter *adapter = netdev_priv(netdev);
  1903. int i;
  1904. if (ec->rx_max_coalesced_frames ||
  1905. ec->rx_coalesce_usecs_irq ||
  1906. ec->rx_max_coalesced_frames_irq ||
  1907. ec->tx_max_coalesced_frames ||
  1908. ec->tx_coalesce_usecs_irq ||
  1909. ec->stats_block_coalesce_usecs ||
  1910. ec->use_adaptive_rx_coalesce ||
  1911. ec->use_adaptive_tx_coalesce ||
  1912. ec->pkt_rate_low ||
  1913. ec->rx_coalesce_usecs_low ||
  1914. ec->rx_max_coalesced_frames_low ||
  1915. ec->tx_coalesce_usecs_low ||
  1916. ec->tx_max_coalesced_frames_low ||
  1917. ec->pkt_rate_high ||
  1918. ec->rx_coalesce_usecs_high ||
  1919. ec->rx_max_coalesced_frames_high ||
  1920. ec->tx_coalesce_usecs_high ||
  1921. ec->tx_max_coalesced_frames_high ||
  1922. ec->rate_sample_interval)
  1923. return -ENOTSUPP;
  1924. if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1925. ((ec->rx_coalesce_usecs > 3) &&
  1926. (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1927. (ec->rx_coalesce_usecs == 2))
  1928. return -EINVAL;
  1929. if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
  1930. ((ec->tx_coalesce_usecs > 3) &&
  1931. (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
  1932. (ec->tx_coalesce_usecs == 2))
  1933. return -EINVAL;
  1934. if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
  1935. return -EINVAL;
  1936. /* If ITR is disabled, disable DMAC */
  1937. if (ec->rx_coalesce_usecs == 0) {
  1938. if (adapter->flags & IGB_FLAG_DMAC)
  1939. adapter->flags &= ~IGB_FLAG_DMAC;
  1940. }
  1941. /* convert to rate of irq's per second */
  1942. if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
  1943. adapter->rx_itr_setting = ec->rx_coalesce_usecs;
  1944. else
  1945. adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
  1946. /* convert to rate of irq's per second */
  1947. if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
  1948. adapter->tx_itr_setting = adapter->rx_itr_setting;
  1949. else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
  1950. adapter->tx_itr_setting = ec->tx_coalesce_usecs;
  1951. else
  1952. adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
  1953. for (i = 0; i < adapter->num_q_vectors; i++) {
  1954. struct igb_q_vector *q_vector = adapter->q_vector[i];
  1955. q_vector->tx.work_limit = adapter->tx_work_limit;
  1956. if (q_vector->rx.ring)
  1957. q_vector->itr_val = adapter->rx_itr_setting;
  1958. else
  1959. q_vector->itr_val = adapter->tx_itr_setting;
  1960. if (q_vector->itr_val && q_vector->itr_val <= 3)
  1961. q_vector->itr_val = IGB_START_ITR;
  1962. q_vector->set_itr = 1;
  1963. }
  1964. return 0;
  1965. }
  1966. static int igb_get_coalesce(struct net_device *netdev,
  1967. struct ethtool_coalesce *ec)
  1968. {
  1969. struct igb_adapter *adapter = netdev_priv(netdev);
  1970. if (adapter->rx_itr_setting <= 3)
  1971. ec->rx_coalesce_usecs = adapter->rx_itr_setting;
  1972. else
  1973. ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
  1974. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
  1975. if (adapter->tx_itr_setting <= 3)
  1976. ec->tx_coalesce_usecs = adapter->tx_itr_setting;
  1977. else
  1978. ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
  1979. }
  1980. return 0;
  1981. }
  1982. static int igb_nway_reset(struct net_device *netdev)
  1983. {
  1984. struct igb_adapter *adapter = netdev_priv(netdev);
  1985. if (netif_running(netdev))
  1986. igb_reinit_locked(adapter);
  1987. return 0;
  1988. }
  1989. static int igb_get_sset_count(struct net_device *netdev, int sset)
  1990. {
  1991. switch (sset) {
  1992. case ETH_SS_STATS:
  1993. return IGB_STATS_LEN;
  1994. case ETH_SS_TEST:
  1995. return IGB_TEST_LEN;
  1996. case ETH_SS_PRIV_FLAGS:
  1997. return IGB_PRIV_FLAGS_STR_LEN;
  1998. default:
  1999. return -ENOTSUPP;
  2000. }
  2001. }
  2002. static void igb_get_ethtool_stats(struct net_device *netdev,
  2003. struct ethtool_stats *stats, u64 *data)
  2004. {
  2005. struct igb_adapter *adapter = netdev_priv(netdev);
  2006. struct rtnl_link_stats64 *net_stats = &adapter->stats64;
  2007. unsigned int start;
  2008. struct igb_ring *ring;
  2009. int i, j;
  2010. char *p;
  2011. spin_lock(&adapter->stats64_lock);
  2012. igb_update_stats(adapter);
  2013. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2014. p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
  2015. data[i] = (igb_gstrings_stats[i].sizeof_stat ==
  2016. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2017. }
  2018. for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
  2019. p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
  2020. data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
  2021. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2022. }
  2023. for (j = 0; j < adapter->num_tx_queues; j++) {
  2024. u64 restart2;
  2025. ring = adapter->tx_ring[j];
  2026. do {
  2027. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  2028. data[i] = ring->tx_stats.packets;
  2029. data[i+1] = ring->tx_stats.bytes;
  2030. data[i+2] = ring->tx_stats.restart_queue;
  2031. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  2032. do {
  2033. start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
  2034. restart2 = ring->tx_stats.restart_queue2;
  2035. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
  2036. data[i+2] += restart2;
  2037. i += IGB_TX_QUEUE_STATS_LEN;
  2038. }
  2039. for (j = 0; j < adapter->num_rx_queues; j++) {
  2040. ring = adapter->rx_ring[j];
  2041. do {
  2042. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  2043. data[i] = ring->rx_stats.packets;
  2044. data[i+1] = ring->rx_stats.bytes;
  2045. data[i+2] = ring->rx_stats.drops;
  2046. data[i+3] = ring->rx_stats.csum_err;
  2047. data[i+4] = ring->rx_stats.alloc_failed;
  2048. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  2049. i += IGB_RX_QUEUE_STATS_LEN;
  2050. }
  2051. spin_unlock(&adapter->stats64_lock);
  2052. }
  2053. static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2054. {
  2055. struct igb_adapter *adapter = netdev_priv(netdev);
  2056. u8 *p = data;
  2057. int i;
  2058. switch (stringset) {
  2059. case ETH_SS_TEST:
  2060. memcpy(data, *igb_gstrings_test,
  2061. IGB_TEST_LEN*ETH_GSTRING_LEN);
  2062. break;
  2063. case ETH_SS_STATS:
  2064. for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
  2065. memcpy(p, igb_gstrings_stats[i].stat_string,
  2066. ETH_GSTRING_LEN);
  2067. p += ETH_GSTRING_LEN;
  2068. }
  2069. for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
  2070. memcpy(p, igb_gstrings_net_stats[i].stat_string,
  2071. ETH_GSTRING_LEN);
  2072. p += ETH_GSTRING_LEN;
  2073. }
  2074. for (i = 0; i < adapter->num_tx_queues; i++) {
  2075. sprintf(p, "tx_queue_%u_packets", i);
  2076. p += ETH_GSTRING_LEN;
  2077. sprintf(p, "tx_queue_%u_bytes", i);
  2078. p += ETH_GSTRING_LEN;
  2079. sprintf(p, "tx_queue_%u_restart", i);
  2080. p += ETH_GSTRING_LEN;
  2081. }
  2082. for (i = 0; i < adapter->num_rx_queues; i++) {
  2083. sprintf(p, "rx_queue_%u_packets", i);
  2084. p += ETH_GSTRING_LEN;
  2085. sprintf(p, "rx_queue_%u_bytes", i);
  2086. p += ETH_GSTRING_LEN;
  2087. sprintf(p, "rx_queue_%u_drops", i);
  2088. p += ETH_GSTRING_LEN;
  2089. sprintf(p, "rx_queue_%u_csum_err", i);
  2090. p += ETH_GSTRING_LEN;
  2091. sprintf(p, "rx_queue_%u_alloc_failed", i);
  2092. p += ETH_GSTRING_LEN;
  2093. }
  2094. /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
  2095. break;
  2096. case ETH_SS_PRIV_FLAGS:
  2097. memcpy(data, igb_priv_flags_strings,
  2098. IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
  2099. break;
  2100. }
  2101. }
  2102. static int igb_get_ts_info(struct net_device *dev,
  2103. struct ethtool_ts_info *info)
  2104. {
  2105. struct igb_adapter *adapter = netdev_priv(dev);
  2106. if (adapter->ptp_clock)
  2107. info->phc_index = ptp_clock_index(adapter->ptp_clock);
  2108. else
  2109. info->phc_index = -1;
  2110. switch (adapter->hw.mac.type) {
  2111. case e1000_82575:
  2112. info->so_timestamping =
  2113. SOF_TIMESTAMPING_TX_SOFTWARE |
  2114. SOF_TIMESTAMPING_RX_SOFTWARE |
  2115. SOF_TIMESTAMPING_SOFTWARE;
  2116. return 0;
  2117. case e1000_82576:
  2118. case e1000_82580:
  2119. case e1000_i350:
  2120. case e1000_i354:
  2121. case e1000_i210:
  2122. case e1000_i211:
  2123. info->so_timestamping =
  2124. SOF_TIMESTAMPING_TX_SOFTWARE |
  2125. SOF_TIMESTAMPING_RX_SOFTWARE |
  2126. SOF_TIMESTAMPING_SOFTWARE |
  2127. SOF_TIMESTAMPING_TX_HARDWARE |
  2128. SOF_TIMESTAMPING_RX_HARDWARE |
  2129. SOF_TIMESTAMPING_RAW_HARDWARE;
  2130. info->tx_types =
  2131. BIT(HWTSTAMP_TX_OFF) |
  2132. BIT(HWTSTAMP_TX_ON);
  2133. info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
  2134. /* 82576 does not support timestamping all packets. */
  2135. if (adapter->hw.mac.type >= e1000_82580)
  2136. info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
  2137. else
  2138. info->rx_filters |=
  2139. BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  2140. BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  2141. BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
  2142. return 0;
  2143. default:
  2144. return -EOPNOTSUPP;
  2145. }
  2146. }
  2147. #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
  2148. static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
  2149. struct ethtool_rxnfc *cmd)
  2150. {
  2151. struct ethtool_rx_flow_spec *fsp = &cmd->fs;
  2152. struct igb_nfc_filter *rule = NULL;
  2153. /* report total rule count */
  2154. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2155. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2156. if (fsp->location <= rule->sw_idx)
  2157. break;
  2158. }
  2159. if (!rule || fsp->location != rule->sw_idx)
  2160. return -EINVAL;
  2161. if (rule->filter.match_flags) {
  2162. fsp->flow_type = ETHER_FLOW;
  2163. fsp->ring_cookie = rule->action;
  2164. if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2165. fsp->h_u.ether_spec.h_proto = rule->filter.etype;
  2166. fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
  2167. }
  2168. if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
  2169. fsp->flow_type |= FLOW_EXT;
  2170. fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
  2171. fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
  2172. }
  2173. return 0;
  2174. }
  2175. return -EINVAL;
  2176. }
  2177. static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
  2178. struct ethtool_rxnfc *cmd,
  2179. u32 *rule_locs)
  2180. {
  2181. struct igb_nfc_filter *rule;
  2182. int cnt = 0;
  2183. /* report total rule count */
  2184. cmd->data = IGB_MAX_RXNFC_FILTERS;
  2185. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2186. if (cnt == cmd->rule_cnt)
  2187. return -EMSGSIZE;
  2188. rule_locs[cnt] = rule->sw_idx;
  2189. cnt++;
  2190. }
  2191. cmd->rule_cnt = cnt;
  2192. return 0;
  2193. }
  2194. static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
  2195. struct ethtool_rxnfc *cmd)
  2196. {
  2197. cmd->data = 0;
  2198. /* Report default options for RSS on igb */
  2199. switch (cmd->flow_type) {
  2200. case TCP_V4_FLOW:
  2201. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2202. /* Fall through */
  2203. case UDP_V4_FLOW:
  2204. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2205. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2206. /* Fall through */
  2207. case SCTP_V4_FLOW:
  2208. case AH_ESP_V4_FLOW:
  2209. case AH_V4_FLOW:
  2210. case ESP_V4_FLOW:
  2211. case IPV4_FLOW:
  2212. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2213. break;
  2214. case TCP_V6_FLOW:
  2215. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2216. /* Fall through */
  2217. case UDP_V6_FLOW:
  2218. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2219. cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
  2220. /* Fall through */
  2221. case SCTP_V6_FLOW:
  2222. case AH_ESP_V6_FLOW:
  2223. case AH_V6_FLOW:
  2224. case ESP_V6_FLOW:
  2225. case IPV6_FLOW:
  2226. cmd->data |= RXH_IP_SRC | RXH_IP_DST;
  2227. break;
  2228. default:
  2229. return -EINVAL;
  2230. }
  2231. return 0;
  2232. }
  2233. static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  2234. u32 *rule_locs)
  2235. {
  2236. struct igb_adapter *adapter = netdev_priv(dev);
  2237. int ret = -EOPNOTSUPP;
  2238. switch (cmd->cmd) {
  2239. case ETHTOOL_GRXRINGS:
  2240. cmd->data = adapter->num_rx_queues;
  2241. ret = 0;
  2242. break;
  2243. case ETHTOOL_GRXCLSRLCNT:
  2244. cmd->rule_cnt = adapter->nfc_filter_count;
  2245. ret = 0;
  2246. break;
  2247. case ETHTOOL_GRXCLSRULE:
  2248. ret = igb_get_ethtool_nfc_entry(adapter, cmd);
  2249. break;
  2250. case ETHTOOL_GRXCLSRLALL:
  2251. ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
  2252. break;
  2253. case ETHTOOL_GRXFH:
  2254. ret = igb_get_rss_hash_opts(adapter, cmd);
  2255. break;
  2256. default:
  2257. break;
  2258. }
  2259. return ret;
  2260. }
  2261. #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
  2262. IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2263. static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
  2264. struct ethtool_rxnfc *nfc)
  2265. {
  2266. u32 flags = adapter->flags;
  2267. /* RSS does not support anything other than hashing
  2268. * to queues on src and dst IPs and ports
  2269. */
  2270. if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
  2271. RXH_L4_B_0_1 | RXH_L4_B_2_3))
  2272. return -EINVAL;
  2273. switch (nfc->flow_type) {
  2274. case TCP_V4_FLOW:
  2275. case TCP_V6_FLOW:
  2276. if (!(nfc->data & RXH_IP_SRC) ||
  2277. !(nfc->data & RXH_IP_DST) ||
  2278. !(nfc->data & RXH_L4_B_0_1) ||
  2279. !(nfc->data & RXH_L4_B_2_3))
  2280. return -EINVAL;
  2281. break;
  2282. case UDP_V4_FLOW:
  2283. if (!(nfc->data & RXH_IP_SRC) ||
  2284. !(nfc->data & RXH_IP_DST))
  2285. return -EINVAL;
  2286. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2287. case 0:
  2288. flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2289. break;
  2290. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2291. flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
  2292. break;
  2293. default:
  2294. return -EINVAL;
  2295. }
  2296. break;
  2297. case UDP_V6_FLOW:
  2298. if (!(nfc->data & RXH_IP_SRC) ||
  2299. !(nfc->data & RXH_IP_DST))
  2300. return -EINVAL;
  2301. switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
  2302. case 0:
  2303. flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2304. break;
  2305. case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
  2306. flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
  2307. break;
  2308. default:
  2309. return -EINVAL;
  2310. }
  2311. break;
  2312. case AH_ESP_V4_FLOW:
  2313. case AH_V4_FLOW:
  2314. case ESP_V4_FLOW:
  2315. case SCTP_V4_FLOW:
  2316. case AH_ESP_V6_FLOW:
  2317. case AH_V6_FLOW:
  2318. case ESP_V6_FLOW:
  2319. case SCTP_V6_FLOW:
  2320. if (!(nfc->data & RXH_IP_SRC) ||
  2321. !(nfc->data & RXH_IP_DST) ||
  2322. (nfc->data & RXH_L4_B_0_1) ||
  2323. (nfc->data & RXH_L4_B_2_3))
  2324. return -EINVAL;
  2325. break;
  2326. default:
  2327. return -EINVAL;
  2328. }
  2329. /* if we changed something we need to update flags */
  2330. if (flags != adapter->flags) {
  2331. struct e1000_hw *hw = &adapter->hw;
  2332. u32 mrqc = rd32(E1000_MRQC);
  2333. if ((flags & UDP_RSS_FLAGS) &&
  2334. !(adapter->flags & UDP_RSS_FLAGS))
  2335. dev_err(&adapter->pdev->dev,
  2336. "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
  2337. adapter->flags = flags;
  2338. /* Perform hash on these packet types */
  2339. mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
  2340. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2341. E1000_MRQC_RSS_FIELD_IPV6 |
  2342. E1000_MRQC_RSS_FIELD_IPV6_TCP;
  2343. mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
  2344. E1000_MRQC_RSS_FIELD_IPV6_UDP);
  2345. if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2346. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2347. if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2348. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2349. wr32(E1000_MRQC, mrqc);
  2350. }
  2351. return 0;
  2352. }
  2353. static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
  2354. struct igb_nfc_filter *input)
  2355. {
  2356. struct e1000_hw *hw = &adapter->hw;
  2357. u8 i;
  2358. u32 etqf;
  2359. u16 etype;
  2360. /* find an empty etype filter register */
  2361. for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
  2362. if (!adapter->etype_bitmap[i])
  2363. break;
  2364. }
  2365. if (i == MAX_ETYPE_FILTER) {
  2366. dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
  2367. return -EINVAL;
  2368. }
  2369. adapter->etype_bitmap[i] = true;
  2370. etqf = rd32(E1000_ETQF(i));
  2371. etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
  2372. etqf |= E1000_ETQF_FILTER_ENABLE;
  2373. etqf &= ~E1000_ETQF_ETYPE_MASK;
  2374. etqf |= (etype & E1000_ETQF_ETYPE_MASK);
  2375. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2376. etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
  2377. & E1000_ETQF_QUEUE_MASK);
  2378. etqf |= E1000_ETQF_QUEUE_ENABLE;
  2379. wr32(E1000_ETQF(i), etqf);
  2380. input->etype_reg_index = i;
  2381. return 0;
  2382. }
  2383. static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
  2384. struct igb_nfc_filter *input)
  2385. {
  2386. struct e1000_hw *hw = &adapter->hw;
  2387. u8 vlan_priority;
  2388. u16 queue_index;
  2389. u32 vlapqf;
  2390. vlapqf = rd32(E1000_VLAPQF);
  2391. vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
  2392. >> VLAN_PRIO_SHIFT;
  2393. queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
  2394. /* check whether this vlan prio is already set */
  2395. if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
  2396. (queue_index != input->action)) {
  2397. dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
  2398. return -EEXIST;
  2399. }
  2400. vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
  2401. vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
  2402. wr32(E1000_VLAPQF, vlapqf);
  2403. return 0;
  2404. }
  2405. int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2406. {
  2407. int err = -EINVAL;
  2408. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
  2409. err = igb_rxnfc_write_etype_filter(adapter, input);
  2410. if (err)
  2411. return err;
  2412. }
  2413. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2414. err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
  2415. return err;
  2416. }
  2417. static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
  2418. u16 reg_index)
  2419. {
  2420. struct e1000_hw *hw = &adapter->hw;
  2421. u32 etqf = rd32(E1000_ETQF(reg_index));
  2422. etqf &= ~E1000_ETQF_QUEUE_ENABLE;
  2423. etqf &= ~E1000_ETQF_QUEUE_MASK;
  2424. etqf &= ~E1000_ETQF_FILTER_ENABLE;
  2425. wr32(E1000_ETQF(reg_index), etqf);
  2426. adapter->etype_bitmap[reg_index] = false;
  2427. }
  2428. static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
  2429. u16 vlan_tci)
  2430. {
  2431. struct e1000_hw *hw = &adapter->hw;
  2432. u8 vlan_priority;
  2433. u32 vlapqf;
  2434. vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
  2435. vlapqf = rd32(E1000_VLAPQF);
  2436. vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
  2437. vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
  2438. E1000_VLAPQF_QUEUE_MASK);
  2439. wr32(E1000_VLAPQF, vlapqf);
  2440. }
  2441. int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
  2442. {
  2443. if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
  2444. igb_clear_etype_filter_regs(adapter,
  2445. input->etype_reg_index);
  2446. if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
  2447. igb_clear_vlan_prio_filter(adapter,
  2448. ntohs(input->filter.vlan_tci));
  2449. return 0;
  2450. }
  2451. static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
  2452. struct igb_nfc_filter *input,
  2453. u16 sw_idx)
  2454. {
  2455. struct igb_nfc_filter *rule, *parent;
  2456. int err = -EINVAL;
  2457. parent = NULL;
  2458. rule = NULL;
  2459. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2460. /* hash found, or no matching entry */
  2461. if (rule->sw_idx >= sw_idx)
  2462. break;
  2463. parent = rule;
  2464. }
  2465. /* if there is an old rule occupying our place remove it */
  2466. if (rule && (rule->sw_idx == sw_idx)) {
  2467. if (!input)
  2468. err = igb_erase_filter(adapter, rule);
  2469. hlist_del(&rule->nfc_node);
  2470. kfree(rule);
  2471. adapter->nfc_filter_count--;
  2472. }
  2473. /* If no input this was a delete, err should be 0 if a rule was
  2474. * successfully found and removed from the list else -EINVAL
  2475. */
  2476. if (!input)
  2477. return err;
  2478. /* initialize node */
  2479. INIT_HLIST_NODE(&input->nfc_node);
  2480. /* add filter to the list */
  2481. if (parent)
  2482. hlist_add_behind(&parent->nfc_node, &input->nfc_node);
  2483. else
  2484. hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
  2485. /* update counts */
  2486. adapter->nfc_filter_count++;
  2487. return 0;
  2488. }
  2489. static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
  2490. struct ethtool_rxnfc *cmd)
  2491. {
  2492. struct net_device *netdev = adapter->netdev;
  2493. struct ethtool_rx_flow_spec *fsp =
  2494. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2495. struct igb_nfc_filter *input, *rule;
  2496. int err = 0;
  2497. if (!(netdev->hw_features & NETIF_F_NTUPLE))
  2498. return -EOPNOTSUPP;
  2499. /* Don't allow programming if the action is a queue greater than
  2500. * the number of online Rx queues.
  2501. */
  2502. if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
  2503. (fsp->ring_cookie >= adapter->num_rx_queues)) {
  2504. dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
  2505. return -EINVAL;
  2506. }
  2507. /* Don't allow indexes to exist outside of available space */
  2508. if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
  2509. dev_err(&adapter->pdev->dev, "Location out of range\n");
  2510. return -EINVAL;
  2511. }
  2512. if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
  2513. return -EINVAL;
  2514. if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
  2515. fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
  2516. return -EINVAL;
  2517. input = kzalloc(sizeof(*input), GFP_KERNEL);
  2518. if (!input)
  2519. return -ENOMEM;
  2520. if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
  2521. input->filter.etype = fsp->h_u.ether_spec.h_proto;
  2522. input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
  2523. }
  2524. if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
  2525. if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
  2526. err = -EINVAL;
  2527. goto err_out;
  2528. }
  2529. input->filter.vlan_tci = fsp->h_ext.vlan_tci;
  2530. input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
  2531. }
  2532. input->action = fsp->ring_cookie;
  2533. input->sw_idx = fsp->location;
  2534. spin_lock(&adapter->nfc_lock);
  2535. hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
  2536. if (!memcmp(&input->filter, &rule->filter,
  2537. sizeof(input->filter))) {
  2538. err = -EEXIST;
  2539. dev_err(&adapter->pdev->dev,
  2540. "ethtool: this filter is already set\n");
  2541. goto err_out_w_lock;
  2542. }
  2543. }
  2544. err = igb_add_filter(adapter, input);
  2545. if (err)
  2546. goto err_out_w_lock;
  2547. igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
  2548. spin_unlock(&adapter->nfc_lock);
  2549. return 0;
  2550. err_out_w_lock:
  2551. spin_unlock(&adapter->nfc_lock);
  2552. err_out:
  2553. kfree(input);
  2554. return err;
  2555. }
  2556. static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
  2557. struct ethtool_rxnfc *cmd)
  2558. {
  2559. struct ethtool_rx_flow_spec *fsp =
  2560. (struct ethtool_rx_flow_spec *)&cmd->fs;
  2561. int err;
  2562. spin_lock(&adapter->nfc_lock);
  2563. err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
  2564. spin_unlock(&adapter->nfc_lock);
  2565. return err;
  2566. }
  2567. static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  2568. {
  2569. struct igb_adapter *adapter = netdev_priv(dev);
  2570. int ret = -EOPNOTSUPP;
  2571. switch (cmd->cmd) {
  2572. case ETHTOOL_SRXFH:
  2573. ret = igb_set_rss_hash_opt(adapter, cmd);
  2574. break;
  2575. case ETHTOOL_SRXCLSRLINS:
  2576. ret = igb_add_ethtool_nfc_entry(adapter, cmd);
  2577. break;
  2578. case ETHTOOL_SRXCLSRLDEL:
  2579. ret = igb_del_ethtool_nfc_entry(adapter, cmd);
  2580. default:
  2581. break;
  2582. }
  2583. return ret;
  2584. }
  2585. static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
  2586. {
  2587. struct igb_adapter *adapter = netdev_priv(netdev);
  2588. struct e1000_hw *hw = &adapter->hw;
  2589. u32 ret_val;
  2590. u16 phy_data;
  2591. if ((hw->mac.type < e1000_i350) ||
  2592. (hw->phy.media_type != e1000_media_type_copper))
  2593. return -EOPNOTSUPP;
  2594. edata->supported = (SUPPORTED_1000baseT_Full |
  2595. SUPPORTED_100baseT_Full);
  2596. if (!hw->dev_spec._82575.eee_disable)
  2597. edata->advertised =
  2598. mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
  2599. /* The IPCNFG and EEER registers are not supported on I354. */
  2600. if (hw->mac.type == e1000_i354) {
  2601. igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
  2602. } else {
  2603. u32 eeer;
  2604. eeer = rd32(E1000_EEER);
  2605. /* EEE status on negotiated link */
  2606. if (eeer & E1000_EEER_EEE_NEG)
  2607. edata->eee_active = true;
  2608. if (eeer & E1000_EEER_TX_LPI_EN)
  2609. edata->tx_lpi_enabled = true;
  2610. }
  2611. /* EEE Link Partner Advertised */
  2612. switch (hw->mac.type) {
  2613. case e1000_i350:
  2614. ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
  2615. &phy_data);
  2616. if (ret_val)
  2617. return -ENODATA;
  2618. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2619. break;
  2620. case e1000_i354:
  2621. case e1000_i210:
  2622. case e1000_i211:
  2623. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
  2624. E1000_EEE_LP_ADV_DEV_I210,
  2625. &phy_data);
  2626. if (ret_val)
  2627. return -ENODATA;
  2628. edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
  2629. break;
  2630. default:
  2631. break;
  2632. }
  2633. edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
  2634. if ((hw->mac.type == e1000_i354) &&
  2635. (edata->eee_enabled))
  2636. edata->tx_lpi_enabled = true;
  2637. /* Report correct negotiated EEE status for devices that
  2638. * wrongly report EEE at half-duplex
  2639. */
  2640. if (adapter->link_duplex == HALF_DUPLEX) {
  2641. edata->eee_enabled = false;
  2642. edata->eee_active = false;
  2643. edata->tx_lpi_enabled = false;
  2644. edata->advertised &= ~edata->advertised;
  2645. }
  2646. return 0;
  2647. }
  2648. static int igb_set_eee(struct net_device *netdev,
  2649. struct ethtool_eee *edata)
  2650. {
  2651. struct igb_adapter *adapter = netdev_priv(netdev);
  2652. struct e1000_hw *hw = &adapter->hw;
  2653. struct ethtool_eee eee_curr;
  2654. bool adv1g_eee = true, adv100m_eee = true;
  2655. s32 ret_val;
  2656. if ((hw->mac.type < e1000_i350) ||
  2657. (hw->phy.media_type != e1000_media_type_copper))
  2658. return -EOPNOTSUPP;
  2659. memset(&eee_curr, 0, sizeof(struct ethtool_eee));
  2660. ret_val = igb_get_eee(netdev, &eee_curr);
  2661. if (ret_val)
  2662. return ret_val;
  2663. if (eee_curr.eee_enabled) {
  2664. if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
  2665. dev_err(&adapter->pdev->dev,
  2666. "Setting EEE tx-lpi is not supported\n");
  2667. return -EINVAL;
  2668. }
  2669. /* Tx LPI timer is not implemented currently */
  2670. if (edata->tx_lpi_timer) {
  2671. dev_err(&adapter->pdev->dev,
  2672. "Setting EEE Tx LPI timer is not supported\n");
  2673. return -EINVAL;
  2674. }
  2675. if (!edata->advertised || (edata->advertised &
  2676. ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
  2677. dev_err(&adapter->pdev->dev,
  2678. "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
  2679. return -EINVAL;
  2680. }
  2681. adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
  2682. adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
  2683. } else if (!edata->eee_enabled) {
  2684. dev_err(&adapter->pdev->dev,
  2685. "Setting EEE options are not supported with EEE disabled\n");
  2686. return -EINVAL;
  2687. }
  2688. adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
  2689. if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
  2690. hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
  2691. adapter->flags |= IGB_FLAG_EEE;
  2692. /* reset link */
  2693. if (netif_running(netdev))
  2694. igb_reinit_locked(adapter);
  2695. else
  2696. igb_reset(adapter);
  2697. }
  2698. if (hw->mac.type == e1000_i354)
  2699. ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
  2700. else
  2701. ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
  2702. if (ret_val) {
  2703. dev_err(&adapter->pdev->dev,
  2704. "Problem setting EEE advertisement options\n");
  2705. return -EINVAL;
  2706. }
  2707. return 0;
  2708. }
  2709. static int igb_get_module_info(struct net_device *netdev,
  2710. struct ethtool_modinfo *modinfo)
  2711. {
  2712. struct igb_adapter *adapter = netdev_priv(netdev);
  2713. struct e1000_hw *hw = &adapter->hw;
  2714. u32 status = 0;
  2715. u16 sff8472_rev, addr_mode;
  2716. bool page_swap = false;
  2717. if ((hw->phy.media_type == e1000_media_type_copper) ||
  2718. (hw->phy.media_type == e1000_media_type_unknown))
  2719. return -EOPNOTSUPP;
  2720. /* Check whether we support SFF-8472 or not */
  2721. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
  2722. if (status)
  2723. return -EIO;
  2724. /* addressing mode is not supported */
  2725. status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
  2726. if (status)
  2727. return -EIO;
  2728. /* addressing mode is not supported */
  2729. if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
  2730. hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
  2731. page_swap = true;
  2732. }
  2733. if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
  2734. /* We have an SFP, but it does not support SFF-8472 */
  2735. modinfo->type = ETH_MODULE_SFF_8079;
  2736. modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
  2737. } else {
  2738. /* We have an SFP which supports a revision of SFF-8472 */
  2739. modinfo->type = ETH_MODULE_SFF_8472;
  2740. modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
  2741. }
  2742. return 0;
  2743. }
  2744. static int igb_get_module_eeprom(struct net_device *netdev,
  2745. struct ethtool_eeprom *ee, u8 *data)
  2746. {
  2747. struct igb_adapter *adapter = netdev_priv(netdev);
  2748. struct e1000_hw *hw = &adapter->hw;
  2749. u32 status = 0;
  2750. u16 *dataword;
  2751. u16 first_word, last_word;
  2752. int i = 0;
  2753. if (ee->len == 0)
  2754. return -EINVAL;
  2755. first_word = ee->offset >> 1;
  2756. last_word = (ee->offset + ee->len - 1) >> 1;
  2757. dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
  2758. GFP_KERNEL);
  2759. if (!dataword)
  2760. return -ENOMEM;
  2761. /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
  2762. for (i = 0; i < last_word - first_word + 1; i++) {
  2763. status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
  2764. &dataword[i]);
  2765. if (status) {
  2766. /* Error occurred while reading module */
  2767. kfree(dataword);
  2768. return -EIO;
  2769. }
  2770. be16_to_cpus(&dataword[i]);
  2771. }
  2772. memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
  2773. kfree(dataword);
  2774. return 0;
  2775. }
  2776. static int igb_ethtool_begin(struct net_device *netdev)
  2777. {
  2778. struct igb_adapter *adapter = netdev_priv(netdev);
  2779. pm_runtime_get_sync(&adapter->pdev->dev);
  2780. return 0;
  2781. }
  2782. static void igb_ethtool_complete(struct net_device *netdev)
  2783. {
  2784. struct igb_adapter *adapter = netdev_priv(netdev);
  2785. pm_runtime_put(&adapter->pdev->dev);
  2786. }
  2787. static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
  2788. {
  2789. return IGB_RETA_SIZE;
  2790. }
  2791. static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
  2792. u8 *hfunc)
  2793. {
  2794. struct igb_adapter *adapter = netdev_priv(netdev);
  2795. int i;
  2796. if (hfunc)
  2797. *hfunc = ETH_RSS_HASH_TOP;
  2798. if (!indir)
  2799. return 0;
  2800. for (i = 0; i < IGB_RETA_SIZE; i++)
  2801. indir[i] = adapter->rss_indir_tbl[i];
  2802. return 0;
  2803. }
  2804. void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
  2805. {
  2806. struct e1000_hw *hw = &adapter->hw;
  2807. u32 reg = E1000_RETA(0);
  2808. u32 shift = 0;
  2809. int i = 0;
  2810. switch (hw->mac.type) {
  2811. case e1000_82575:
  2812. shift = 6;
  2813. break;
  2814. case e1000_82576:
  2815. /* 82576 supports 2 RSS queues for SR-IOV */
  2816. if (adapter->vfs_allocated_count)
  2817. shift = 3;
  2818. break;
  2819. default:
  2820. break;
  2821. }
  2822. while (i < IGB_RETA_SIZE) {
  2823. u32 val = 0;
  2824. int j;
  2825. for (j = 3; j >= 0; j--) {
  2826. val <<= 8;
  2827. val |= adapter->rss_indir_tbl[i + j];
  2828. }
  2829. wr32(reg, val << shift);
  2830. reg += 4;
  2831. i += 4;
  2832. }
  2833. }
  2834. static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
  2835. const u8 *key, const u8 hfunc)
  2836. {
  2837. struct igb_adapter *adapter = netdev_priv(netdev);
  2838. struct e1000_hw *hw = &adapter->hw;
  2839. int i;
  2840. u32 num_queues;
  2841. /* We do not allow change in unsupported parameters */
  2842. if (key ||
  2843. (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
  2844. return -EOPNOTSUPP;
  2845. if (!indir)
  2846. return 0;
  2847. num_queues = adapter->rss_queues;
  2848. switch (hw->mac.type) {
  2849. case e1000_82576:
  2850. /* 82576 supports 2 RSS queues for SR-IOV */
  2851. if (adapter->vfs_allocated_count)
  2852. num_queues = 2;
  2853. break;
  2854. default:
  2855. break;
  2856. }
  2857. /* Verify user input. */
  2858. for (i = 0; i < IGB_RETA_SIZE; i++)
  2859. if (indir[i] >= num_queues)
  2860. return -EINVAL;
  2861. for (i = 0; i < IGB_RETA_SIZE; i++)
  2862. adapter->rss_indir_tbl[i] = indir[i];
  2863. igb_write_rss_indir_tbl(adapter);
  2864. return 0;
  2865. }
  2866. static unsigned int igb_max_channels(struct igb_adapter *adapter)
  2867. {
  2868. struct e1000_hw *hw = &adapter->hw;
  2869. unsigned int max_combined = 0;
  2870. switch (hw->mac.type) {
  2871. case e1000_i211:
  2872. max_combined = IGB_MAX_RX_QUEUES_I211;
  2873. break;
  2874. case e1000_82575:
  2875. case e1000_i210:
  2876. max_combined = IGB_MAX_RX_QUEUES_82575;
  2877. break;
  2878. case e1000_i350:
  2879. if (!!adapter->vfs_allocated_count) {
  2880. max_combined = 1;
  2881. break;
  2882. }
  2883. /* fall through */
  2884. case e1000_82576:
  2885. if (!!adapter->vfs_allocated_count) {
  2886. max_combined = 2;
  2887. break;
  2888. }
  2889. /* fall through */
  2890. case e1000_82580:
  2891. case e1000_i354:
  2892. default:
  2893. max_combined = IGB_MAX_RX_QUEUES;
  2894. break;
  2895. }
  2896. return max_combined;
  2897. }
  2898. static void igb_get_channels(struct net_device *netdev,
  2899. struct ethtool_channels *ch)
  2900. {
  2901. struct igb_adapter *adapter = netdev_priv(netdev);
  2902. /* Report maximum channels */
  2903. ch->max_combined = igb_max_channels(adapter);
  2904. /* Report info for other vector */
  2905. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  2906. ch->max_other = NON_Q_VECTORS;
  2907. ch->other_count = NON_Q_VECTORS;
  2908. }
  2909. ch->combined_count = adapter->rss_queues;
  2910. }
  2911. static int igb_set_channels(struct net_device *netdev,
  2912. struct ethtool_channels *ch)
  2913. {
  2914. struct igb_adapter *adapter = netdev_priv(netdev);
  2915. unsigned int count = ch->combined_count;
  2916. unsigned int max_combined = 0;
  2917. /* Verify they are not requesting separate vectors */
  2918. if (!count || ch->rx_count || ch->tx_count)
  2919. return -EINVAL;
  2920. /* Verify other_count is valid and has not been changed */
  2921. if (ch->other_count != NON_Q_VECTORS)
  2922. return -EINVAL;
  2923. /* Verify the number of channels doesn't exceed hw limits */
  2924. max_combined = igb_max_channels(adapter);
  2925. if (count > max_combined)
  2926. return -EINVAL;
  2927. if (count != adapter->rss_queues) {
  2928. adapter->rss_queues = count;
  2929. igb_set_flag_queue_pairs(adapter, max_combined);
  2930. /* Hardware has to reinitialize queues and interrupts to
  2931. * match the new configuration.
  2932. */
  2933. return igb_reinit_queues(adapter);
  2934. }
  2935. return 0;
  2936. }
  2937. static u32 igb_get_priv_flags(struct net_device *netdev)
  2938. {
  2939. struct igb_adapter *adapter = netdev_priv(netdev);
  2940. u32 priv_flags = 0;
  2941. if (adapter->flags & IGB_FLAG_RX_LEGACY)
  2942. priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
  2943. return priv_flags;
  2944. }
  2945. static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
  2946. {
  2947. struct igb_adapter *adapter = netdev_priv(netdev);
  2948. unsigned int flags = adapter->flags;
  2949. flags &= ~IGB_FLAG_RX_LEGACY;
  2950. if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
  2951. flags |= IGB_FLAG_RX_LEGACY;
  2952. if (flags != adapter->flags) {
  2953. adapter->flags = flags;
  2954. /* reset interface to repopulate queues */
  2955. if (netif_running(netdev))
  2956. igb_reinit_locked(adapter);
  2957. }
  2958. return 0;
  2959. }
  2960. static const struct ethtool_ops igb_ethtool_ops = {
  2961. .get_drvinfo = igb_get_drvinfo,
  2962. .get_regs_len = igb_get_regs_len,
  2963. .get_regs = igb_get_regs,
  2964. .get_wol = igb_get_wol,
  2965. .set_wol = igb_set_wol,
  2966. .get_msglevel = igb_get_msglevel,
  2967. .set_msglevel = igb_set_msglevel,
  2968. .nway_reset = igb_nway_reset,
  2969. .get_link = igb_get_link,
  2970. .get_eeprom_len = igb_get_eeprom_len,
  2971. .get_eeprom = igb_get_eeprom,
  2972. .set_eeprom = igb_set_eeprom,
  2973. .get_ringparam = igb_get_ringparam,
  2974. .set_ringparam = igb_set_ringparam,
  2975. .get_pauseparam = igb_get_pauseparam,
  2976. .set_pauseparam = igb_set_pauseparam,
  2977. .self_test = igb_diag_test,
  2978. .get_strings = igb_get_strings,
  2979. .set_phys_id = igb_set_phys_id,
  2980. .get_sset_count = igb_get_sset_count,
  2981. .get_ethtool_stats = igb_get_ethtool_stats,
  2982. .get_coalesce = igb_get_coalesce,
  2983. .set_coalesce = igb_set_coalesce,
  2984. .get_ts_info = igb_get_ts_info,
  2985. .get_rxnfc = igb_get_rxnfc,
  2986. .set_rxnfc = igb_set_rxnfc,
  2987. .get_eee = igb_get_eee,
  2988. .set_eee = igb_set_eee,
  2989. .get_module_info = igb_get_module_info,
  2990. .get_module_eeprom = igb_get_module_eeprom,
  2991. .get_rxfh_indir_size = igb_get_rxfh_indir_size,
  2992. .get_rxfh = igb_get_rxfh,
  2993. .set_rxfh = igb_set_rxfh,
  2994. .get_channels = igb_get_channels,
  2995. .set_channels = igb_set_channels,
  2996. .get_priv_flags = igb_get_priv_flags,
  2997. .set_priv_flags = igb_set_priv_flags,
  2998. .begin = igb_ethtool_begin,
  2999. .complete = igb_ethtool_complete,
  3000. .get_link_ksettings = igb_get_link_ksettings,
  3001. .set_link_ksettings = igb_set_link_ksettings,
  3002. };
  3003. void igb_set_ethtool_ops(struct net_device *netdev)
  3004. {
  3005. netdev->ethtool_ops = &igb_ethtool_ops;
  3006. }