i40e_txrx.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Driver
  4. * Copyright(c) 2013 - 2016 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #ifndef _I40E_TXRX_H_
  27. #define _I40E_TXRX_H_
  28. /* Interrupt Throttling and Rate Limiting Goodies */
  29. #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */
  30. #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */
  31. #define I40E_ITR_100K 0x0005
  32. #define I40E_ITR_50K 0x000A
  33. #define I40E_ITR_20K 0x0019
  34. #define I40E_ITR_18K 0x001B
  35. #define I40E_ITR_8K 0x003E
  36. #define I40E_ITR_4K 0x007A
  37. #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
  38. #define I40E_ITR_RX_DEF I40E_ITR_20K
  39. #define I40E_ITR_TX_DEF I40E_ITR_20K
  40. #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
  41. #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */
  42. #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */
  43. #define I40E_DEFAULT_IRQ_WORK 256
  44. #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
  45. #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
  46. #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
  47. /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  48. * the value of the rate limit is non-zero
  49. */
  50. #define INTRL_ENA BIT(6)
  51. #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  52. /**
  53. * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
  54. * @intrl: interrupt rate limit to convert
  55. *
  56. * This function converts a decimal interrupt rate limit to the appropriate
  57. * register format expected by the firmware when setting interrupt rate limit.
  58. */
  59. static inline u16 i40e_intrl_usec_to_reg(int intrl)
  60. {
  61. if (intrl >> 2)
  62. return ((intrl >> 2) | INTRL_ENA);
  63. else
  64. return 0;
  65. }
  66. #define I40E_INTRL_8K 125 /* 8000 ints/sec */
  67. #define I40E_INTRL_62K 16 /* 62500 ints/sec */
  68. #define I40E_INTRL_83K 12 /* 83333 ints/sec */
  69. #define I40E_QUEUE_END_OF_LIST 0x7FF
  70. /* this enum matches hardware bits and is meant to be used by DYN_CTLN
  71. * registers and QINT registers or more generally anywhere in the manual
  72. * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  73. * register but instead is a special value meaning "don't update" ITR0/1/2.
  74. */
  75. enum i40e_dyn_idx_t {
  76. I40E_IDX_ITR0 = 0,
  77. I40E_IDX_ITR1 = 1,
  78. I40E_IDX_ITR2 = 2,
  79. I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
  80. };
  81. /* these are indexes into ITRN registers */
  82. #define I40E_RX_ITR I40E_IDX_ITR0
  83. #define I40E_TX_ITR I40E_IDX_ITR1
  84. #define I40E_PE_ITR I40E_IDX_ITR2
  85. /* Supported RSS offloads */
  86. #define I40E_DEFAULT_RSS_HENA ( \
  87. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  88. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  89. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  90. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  91. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  92. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  93. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  94. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  95. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  96. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
  97. BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
  98. #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
  99. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  100. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  101. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  102. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  103. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  104. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
  105. #define i40e_pf_get_default_rss_hena(pf) \
  106. (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
  107. I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
  108. /* Supported Rx Buffer Sizes (a multiple of 128) */
  109. #define I40E_RXBUFFER_256 256
  110. #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
  111. #define I40E_RXBUFFER_2048 2048
  112. #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
  113. #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
  114. /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
  115. * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
  116. * this adds up to 512 bytes of extra data meaning the smallest allocation
  117. * we could have is 1K.
  118. * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
  119. * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
  120. */
  121. #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
  122. #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
  123. #define i40e_rx_desc i40e_32byte_rx_desc
  124. #define I40E_RX_DMA_ATTR \
  125. (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
  126. /* Attempt to maximize the headroom available for incoming frames. We
  127. * use a 2K buffer for receives and need 1536/1534 to store the data for
  128. * the frame. This leaves us with 512 bytes of room. From that we need
  129. * to deduct the space needed for the shared info and the padding needed
  130. * to IP align the frame.
  131. *
  132. * Note: For cache line sizes 256 or larger this value is going to end
  133. * up negative. In these cases we should fall back to the legacy
  134. * receive path.
  135. */
  136. #if (PAGE_SIZE < 8192)
  137. #define I40E_2K_TOO_SMALL_WITH_PADDING \
  138. ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
  139. static inline int i40e_compute_pad(int rx_buf_len)
  140. {
  141. int page_size, pad_size;
  142. page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
  143. pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
  144. return pad_size;
  145. }
  146. static inline int i40e_skb_pad(void)
  147. {
  148. int rx_buf_len;
  149. /* If a 2K buffer cannot handle a standard Ethernet frame then
  150. * optimize padding for a 3K buffer instead of a 1.5K buffer.
  151. *
  152. * For a 3K buffer we need to add enough padding to allow for
  153. * tailroom due to NET_IP_ALIGN possibly shifting us out of
  154. * cache-line alignment.
  155. */
  156. if (I40E_2K_TOO_SMALL_WITH_PADDING)
  157. rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
  158. else
  159. rx_buf_len = I40E_RXBUFFER_1536;
  160. /* if needed make room for NET_IP_ALIGN */
  161. rx_buf_len -= NET_IP_ALIGN;
  162. return i40e_compute_pad(rx_buf_len);
  163. }
  164. #define I40E_SKB_PAD i40e_skb_pad()
  165. #else
  166. #define I40E_2K_TOO_SMALL_WITH_PADDING false
  167. #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
  168. #endif
  169. /**
  170. * i40e_test_staterr - tests bits in Rx descriptor status and error fields
  171. * @rx_desc: pointer to receive descriptor (in le64 format)
  172. * @stat_err_bits: value to mask
  173. *
  174. * This function does some fast chicanery in order to return the
  175. * value of the mask which is really only used for boolean tests.
  176. * The status_error_len doesn't need to be shifted because it begins
  177. * at offset zero.
  178. */
  179. static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
  180. const u64 stat_err_bits)
  181. {
  182. return !!(rx_desc->wb.qword1.status_error_len &
  183. cpu_to_le64(stat_err_bits));
  184. }
  185. /* How many Rx Buffers do we bundle into one write to the hardware ? */
  186. #define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */
  187. #define I40E_RX_INCREMENT(r, i) \
  188. do { \
  189. (i)++; \
  190. if ((i) == (r)->count) \
  191. i = 0; \
  192. r->next_to_clean = i; \
  193. } while (0)
  194. #define I40E_RX_NEXT_DESC(r, i, n) \
  195. do { \
  196. (i)++; \
  197. if ((i) == (r)->count) \
  198. i = 0; \
  199. (n) = I40E_RX_DESC((r), (i)); \
  200. } while (0)
  201. #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
  202. do { \
  203. I40E_RX_NEXT_DESC((r), (i), (n)); \
  204. prefetch((n)); \
  205. } while (0)
  206. #define I40E_MAX_BUFFER_TXD 8
  207. #define I40E_MIN_TX_LEN 17
  208. /* The size limit for a transmit buffer in a descriptor is (16K - 1).
  209. * In order to align with the read requests we will align the value to
  210. * the nearest 4K which represents our maximum read request size.
  211. */
  212. #define I40E_MAX_READ_REQ_SIZE 4096
  213. #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
  214. #define I40E_MAX_DATA_PER_TXD_ALIGNED \
  215. (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
  216. /**
  217. * i40e_txd_use_count - estimate the number of descriptors needed for Tx
  218. * @size: transmit request size in bytes
  219. *
  220. * Due to hardware alignment restrictions (4K alignment), we need to
  221. * assume that we can have no more than 12K of data per descriptor, even
  222. * though each descriptor can take up to 16K - 1 bytes of aligned memory.
  223. * Thus, we need to divide by 12K. But division is slow! Instead,
  224. * we decompose the operation into shifts and one relatively cheap
  225. * multiply operation.
  226. *
  227. * To divide by 12K, we first divide by 4K, then divide by 3:
  228. * To divide by 4K, shift right by 12 bits
  229. * To divide by 3, multiply by 85, then divide by 256
  230. * (Divide by 256 is done by shifting right by 8 bits)
  231. * Finally, we add one to round up. Because 256 isn't an exact multiple of
  232. * 3, we'll underestimate near each multiple of 12K. This is actually more
  233. * accurate as we have 4K - 1 of wiggle room that we can fit into the last
  234. * segment. For our purposes this is accurate out to 1M which is orders of
  235. * magnitude greater than our largest possible GSO size.
  236. *
  237. * This would then be implemented as:
  238. * return (((size >> 12) * 85) >> 8) + 1;
  239. *
  240. * Since multiplication and division are commutative, we can reorder
  241. * operations into:
  242. * return ((size * 85) >> 20) + 1;
  243. */
  244. static inline unsigned int i40e_txd_use_count(unsigned int size)
  245. {
  246. return ((size * 85) >> 20) + 1;
  247. }
  248. /* Tx Descriptors needed, worst case */
  249. #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
  250. #define I40E_MIN_DESC_PENDING 4
  251. #define I40E_TX_FLAGS_HW_VLAN BIT(1)
  252. #define I40E_TX_FLAGS_SW_VLAN BIT(2)
  253. #define I40E_TX_FLAGS_TSO BIT(3)
  254. #define I40E_TX_FLAGS_IPV4 BIT(4)
  255. #define I40E_TX_FLAGS_IPV6 BIT(5)
  256. #define I40E_TX_FLAGS_FCCRC BIT(6)
  257. #define I40E_TX_FLAGS_FSO BIT(7)
  258. #define I40E_TX_FLAGS_TSYN BIT(8)
  259. #define I40E_TX_FLAGS_FD_SB BIT(9)
  260. #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
  261. #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
  262. #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
  263. #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
  264. #define I40E_TX_FLAGS_VLAN_SHIFT 16
  265. struct i40e_tx_buffer {
  266. struct i40e_tx_desc *next_to_watch;
  267. union {
  268. struct sk_buff *skb;
  269. void *raw_buf;
  270. };
  271. unsigned int bytecount;
  272. unsigned short gso_segs;
  273. DEFINE_DMA_UNMAP_ADDR(dma);
  274. DEFINE_DMA_UNMAP_LEN(len);
  275. u32 tx_flags;
  276. };
  277. struct i40e_rx_buffer {
  278. dma_addr_t dma;
  279. struct page *page;
  280. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  281. __u32 page_offset;
  282. #else
  283. __u16 page_offset;
  284. #endif
  285. __u16 pagecnt_bias;
  286. };
  287. struct i40e_queue_stats {
  288. u64 packets;
  289. u64 bytes;
  290. };
  291. struct i40e_tx_queue_stats {
  292. u64 restart_queue;
  293. u64 tx_busy;
  294. u64 tx_done_old;
  295. u64 tx_linearize;
  296. u64 tx_force_wb;
  297. };
  298. struct i40e_rx_queue_stats {
  299. u64 non_eop_descs;
  300. u64 alloc_page_failed;
  301. u64 alloc_buff_failed;
  302. u64 page_reuse_count;
  303. u64 realloc_count;
  304. };
  305. enum i40e_ring_state_t {
  306. __I40E_TX_FDIR_INIT_DONE,
  307. __I40E_TX_XPS_INIT_DONE,
  308. };
  309. /* some useful defines for virtchannel interface, which
  310. * is the only remaining user of header split
  311. */
  312. #define I40E_RX_DTYPE_NO_SPLIT 0
  313. #define I40E_RX_DTYPE_HEADER_SPLIT 1
  314. #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
  315. #define I40E_RX_SPLIT_L2 0x1
  316. #define I40E_RX_SPLIT_IP 0x2
  317. #define I40E_RX_SPLIT_TCP_UDP 0x4
  318. #define I40E_RX_SPLIT_SCTP 0x8
  319. /* struct that defines a descriptor ring, associated with a VSI */
  320. struct i40e_ring {
  321. struct i40e_ring *next; /* pointer to next ring in q_vector */
  322. void *desc; /* Descriptor ring memory */
  323. struct device *dev; /* Used for DMA mapping */
  324. struct net_device *netdev; /* netdev ring maps to */
  325. struct bpf_prog *xdp_prog;
  326. union {
  327. struct i40e_tx_buffer *tx_bi;
  328. struct i40e_rx_buffer *rx_bi;
  329. };
  330. unsigned long state;
  331. u16 queue_index; /* Queue number of ring */
  332. u8 dcb_tc; /* Traffic class of ring */
  333. u8 __iomem *tail;
  334. /* high bit set means dynamic, use accessor routines to read/write.
  335. * hardware only supports 2us resolution for the ITR registers.
  336. * these values always store the USER setting, and must be converted
  337. * before programming to a register.
  338. */
  339. u16 rx_itr_setting;
  340. u16 tx_itr_setting;
  341. u16 count; /* Number of descriptors */
  342. u16 reg_idx; /* HW register index of the ring */
  343. u16 rx_buf_len;
  344. /* used in interrupt processing */
  345. u16 next_to_use;
  346. u16 next_to_clean;
  347. u8 atr_sample_rate;
  348. u8 atr_count;
  349. bool ring_active; /* is ring online or not */
  350. bool arm_wb; /* do something to arm write back */
  351. u8 packet_stride;
  352. u16 flags;
  353. #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
  354. #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
  355. #define I40E_TXR_FLAGS_XDP BIT(2)
  356. /* stats structs */
  357. struct i40e_queue_stats stats;
  358. struct u64_stats_sync syncp;
  359. union {
  360. struct i40e_tx_queue_stats tx_stats;
  361. struct i40e_rx_queue_stats rx_stats;
  362. };
  363. unsigned int size; /* length of descriptor ring in bytes */
  364. dma_addr_t dma; /* physical address of ring */
  365. struct i40e_vsi *vsi; /* Backreference to associated VSI */
  366. struct i40e_q_vector *q_vector; /* Backreference to associated vector */
  367. struct rcu_head rcu; /* to avoid race on free */
  368. u16 next_to_alloc;
  369. struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must
  370. * return before it sees the EOP for
  371. * the current packet, we save that skb
  372. * here and resume receiving this
  373. * packet the next time
  374. * i40e_clean_rx_ring_irq() is called
  375. * for this ring.
  376. */
  377. } ____cacheline_internodealigned_in_smp;
  378. static inline bool ring_uses_build_skb(struct i40e_ring *ring)
  379. {
  380. return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
  381. }
  382. static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
  383. {
  384. ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  385. }
  386. static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
  387. {
  388. ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  389. }
  390. static inline bool ring_is_xdp(struct i40e_ring *ring)
  391. {
  392. return !!(ring->flags & I40E_TXR_FLAGS_XDP);
  393. }
  394. static inline void set_ring_xdp(struct i40e_ring *ring)
  395. {
  396. ring->flags |= I40E_TXR_FLAGS_XDP;
  397. }
  398. enum i40e_latency_range {
  399. I40E_LOWEST_LATENCY = 0,
  400. I40E_LOW_LATENCY = 1,
  401. I40E_BULK_LATENCY = 2,
  402. };
  403. struct i40e_ring_container {
  404. /* array of pointers to rings */
  405. struct i40e_ring *ring;
  406. unsigned int total_bytes; /* total bytes processed this int */
  407. unsigned int total_packets; /* total packets processed this int */
  408. unsigned long last_itr_update; /* jiffies of last ITR update */
  409. u16 count;
  410. enum i40e_latency_range latency_range;
  411. u16 itr;
  412. };
  413. /* iterator for handling rings in ring container */
  414. #define i40e_for_each_ring(pos, head) \
  415. for (pos = (head).ring; pos != NULL; pos = pos->next)
  416. static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
  417. {
  418. #if (PAGE_SIZE < 8192)
  419. if (ring->rx_buf_len > (PAGE_SIZE / 2))
  420. return 1;
  421. #endif
  422. return 0;
  423. }
  424. #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
  425. bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
  426. netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  427. void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
  428. void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
  429. int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
  430. int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
  431. void i40e_free_tx_resources(struct i40e_ring *tx_ring);
  432. void i40e_free_rx_resources(struct i40e_ring *rx_ring);
  433. int i40e_napi_poll(struct napi_struct *napi, int budget);
  434. void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
  435. u32 i40e_get_tx_pending(struct i40e_ring *ring);
  436. int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
  437. bool __i40e_chk_linearize(struct sk_buff *skb);
  438. /**
  439. * i40e_get_head - Retrieve head from head writeback
  440. * @tx_ring: tx ring to fetch head of
  441. *
  442. * Returns value of Tx ring head based on value stored
  443. * in head write-back location
  444. **/
  445. static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
  446. {
  447. void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
  448. return le32_to_cpu(*(volatile __le32 *)head);
  449. }
  450. /**
  451. * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
  452. * @skb: send buffer
  453. * @tx_ring: ring to send buffer on
  454. *
  455. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  456. * there is not enough descriptors available in this ring since we need at least
  457. * one descriptor.
  458. **/
  459. static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
  460. {
  461. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  462. unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
  463. int count = 0, size = skb_headlen(skb);
  464. for (;;) {
  465. count += i40e_txd_use_count(size);
  466. if (!nr_frags--)
  467. break;
  468. size = skb_frag_size(frag++);
  469. }
  470. return count;
  471. }
  472. /**
  473. * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
  474. * @tx_ring: the ring to be checked
  475. * @size: the size buffer we want to assure is available
  476. *
  477. * Returns 0 if stop is not needed
  478. **/
  479. static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  480. {
  481. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  482. return 0;
  483. return __i40e_maybe_stop_tx(tx_ring, size);
  484. }
  485. /**
  486. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  487. * @skb: send buffer
  488. * @count: number of buffers used
  489. *
  490. * Note: Our HW can't scatter-gather more than 8 fragments to build
  491. * a packet on the wire and so we need to figure out the cases where we
  492. * need to linearize the skb.
  493. **/
  494. static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
  495. {
  496. /* Both TSO and single send will work if count is less than 8 */
  497. if (likely(count < I40E_MAX_BUFFER_TXD))
  498. return false;
  499. if (skb_is_gso(skb))
  500. return __i40e_chk_linearize(skb);
  501. /* we can support up to 8 data buffers for a single send */
  502. return count != I40E_MAX_BUFFER_TXD;
  503. }
  504. /**
  505. * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
  506. * @ring: Tx ring to find the netdev equivalent of
  507. **/
  508. static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
  509. {
  510. return netdev_get_tx_queue(ring->netdev, ring->queue_index);
  511. }
  512. #endif /* _I40E_TXRX_H_ */