bnxt.c 213 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378
  1. /* Broadcom NetXtreme-C/E network driver.
  2. *
  3. * Copyright (c) 2014-2016 Broadcom Corporation
  4. * Copyright (c) 2016-2017 Broadcom Limited
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/stringify.h>
  12. #include <linux/kernel.h>
  13. #include <linux/timer.h>
  14. #include <linux/errno.h>
  15. #include <linux/ioport.h>
  16. #include <linux/slab.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/pci.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/bitops.h>
  25. #include <linux/io.h>
  26. #include <linux/irq.h>
  27. #include <linux/delay.h>
  28. #include <asm/byteorder.h>
  29. #include <asm/page.h>
  30. #include <linux/time.h>
  31. #include <linux/mii.h>
  32. #include <linux/if.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/if_bridge.h>
  35. #include <linux/rtc.h>
  36. #include <linux/bpf.h>
  37. #include <net/ip.h>
  38. #include <net/tcp.h>
  39. #include <net/udp.h>
  40. #include <net/checksum.h>
  41. #include <net/ip6_checksum.h>
  42. #include <net/udp_tunnel.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/log2.h>
  47. #include <linux/aer.h>
  48. #include <linux/bitmap.h>
  49. #include <linux/cpu_rmap.h>
  50. #include <linux/cpumask.h>
  51. #include <net/pkt_cls.h>
  52. #include "bnxt_hsi.h"
  53. #include "bnxt.h"
  54. #include "bnxt_ulp.h"
  55. #include "bnxt_sriov.h"
  56. #include "bnxt_ethtool.h"
  57. #include "bnxt_dcb.h"
  58. #include "bnxt_xdp.h"
  59. #include "bnxt_vfr.h"
  60. #include "bnxt_tc.h"
  61. #define BNXT_TX_TIMEOUT (5 * HZ)
  62. static const char version[] =
  63. "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
  64. MODULE_LICENSE("GPL");
  65. MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
  66. MODULE_VERSION(DRV_MODULE_VERSION);
  67. #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
  68. #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
  69. #define BNXT_RX_COPY_THRESH 256
  70. #define BNXT_TX_PUSH_THRESH 164
  71. enum board_idx {
  72. BCM57301,
  73. BCM57302,
  74. BCM57304,
  75. BCM57417_NPAR,
  76. BCM58700,
  77. BCM57311,
  78. BCM57312,
  79. BCM57402,
  80. BCM57404,
  81. BCM57406,
  82. BCM57402_NPAR,
  83. BCM57407,
  84. BCM57412,
  85. BCM57414,
  86. BCM57416,
  87. BCM57417,
  88. BCM57412_NPAR,
  89. BCM57314,
  90. BCM57417_SFP,
  91. BCM57416_SFP,
  92. BCM57404_NPAR,
  93. BCM57406_NPAR,
  94. BCM57407_SFP,
  95. BCM57407_NPAR,
  96. BCM57414_NPAR,
  97. BCM57416_NPAR,
  98. BCM57452,
  99. BCM57454,
  100. BCM58802,
  101. BCM58808,
  102. NETXTREME_E_VF,
  103. NETXTREME_C_VF,
  104. };
  105. /* indexed by enum above */
  106. static const struct {
  107. char *name;
  108. } board_info[] = {
  109. [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
  110. [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
  111. [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
  112. [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
  113. [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
  114. [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
  115. [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
  116. [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
  117. [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
  118. [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
  119. [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
  120. [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
  121. [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
  122. [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
  123. [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
  124. [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
  125. [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
  126. [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
  127. [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
  128. [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
  129. [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
  130. [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
  131. [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
  132. [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
  133. [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
  134. [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
  135. [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
  136. [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
  137. [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
  138. [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
  139. [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
  140. [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
  141. };
  142. static const struct pci_device_id bnxt_pci_tbl[] = {
  143. { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
  144. { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
  145. { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
  146. { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
  147. { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
  148. { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
  149. { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
  150. { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
  151. { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
  152. { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
  153. { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
  154. { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
  155. { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
  156. { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
  157. { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
  158. { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
  159. { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
  160. { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
  161. { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
  162. { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
  163. { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
  164. { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
  165. { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
  166. { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
  167. { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
  168. { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
  169. { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
  170. { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
  171. { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
  172. { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
  173. { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
  174. { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
  175. { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
  176. { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
  177. #ifdef CONFIG_BNXT_SRIOV
  178. { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
  179. { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
  180. { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
  181. { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
  182. { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
  183. { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
  184. { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
  185. { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
  186. #endif
  187. { 0 }
  188. };
  189. MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
  190. static const u16 bnxt_vf_req_snif[] = {
  191. HWRM_FUNC_CFG,
  192. HWRM_PORT_PHY_QCFG,
  193. HWRM_CFA_L2_FILTER_ALLOC,
  194. };
  195. static const u16 bnxt_async_events_arr[] = {
  196. ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
  197. ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
  198. ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
  199. ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
  200. ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
  201. };
  202. static bool bnxt_vf_pciid(enum board_idx idx)
  203. {
  204. return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
  205. }
  206. #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
  207. #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
  208. #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
  209. #define BNXT_CP_DB_REARM(db, raw_cons) \
  210. writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
  211. #define BNXT_CP_DB(db, raw_cons) \
  212. writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
  213. #define BNXT_CP_DB_IRQ_DIS(db) \
  214. writel(DB_CP_IRQ_DIS_FLAGS, db)
  215. const u16 bnxt_lhint_arr[] = {
  216. TX_BD_FLAGS_LHINT_512_AND_SMALLER,
  217. TX_BD_FLAGS_LHINT_512_TO_1023,
  218. TX_BD_FLAGS_LHINT_1024_TO_2047,
  219. TX_BD_FLAGS_LHINT_1024_TO_2047,
  220. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  221. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  222. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  223. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  224. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  225. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  226. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  227. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  228. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  229. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  230. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  231. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  232. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  233. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  234. TX_BD_FLAGS_LHINT_2048_AND_LARGER,
  235. };
  236. static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
  237. {
  238. struct metadata_dst *md_dst = skb_metadata_dst(skb);
  239. if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
  240. return 0;
  241. return md_dst->u.port_info.port_id;
  242. }
  243. static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
  244. {
  245. struct bnxt *bp = netdev_priv(dev);
  246. struct tx_bd *txbd;
  247. struct tx_bd_ext *txbd1;
  248. struct netdev_queue *txq;
  249. int i;
  250. dma_addr_t mapping;
  251. unsigned int length, pad = 0;
  252. u32 len, free_size, vlan_tag_flags, cfa_action, flags;
  253. u16 prod, last_frag;
  254. struct pci_dev *pdev = bp->pdev;
  255. struct bnxt_tx_ring_info *txr;
  256. struct bnxt_sw_tx_bd *tx_buf;
  257. i = skb_get_queue_mapping(skb);
  258. if (unlikely(i >= bp->tx_nr_rings)) {
  259. dev_kfree_skb_any(skb);
  260. return NETDEV_TX_OK;
  261. }
  262. txq = netdev_get_tx_queue(dev, i);
  263. txr = &bp->tx_ring[bp->tx_ring_map[i]];
  264. prod = txr->tx_prod;
  265. free_size = bnxt_tx_avail(bp, txr);
  266. if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
  267. netif_tx_stop_queue(txq);
  268. return NETDEV_TX_BUSY;
  269. }
  270. length = skb->len;
  271. len = skb_headlen(skb);
  272. last_frag = skb_shinfo(skb)->nr_frags;
  273. txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  274. txbd->tx_bd_opaque = prod;
  275. tx_buf = &txr->tx_buf_ring[prod];
  276. tx_buf->skb = skb;
  277. tx_buf->nr_frags = last_frag;
  278. vlan_tag_flags = 0;
  279. cfa_action = bnxt_xmit_get_cfa_action(skb);
  280. if (skb_vlan_tag_present(skb)) {
  281. vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
  282. skb_vlan_tag_get(skb);
  283. /* Currently supports 8021Q, 8021AD vlan offloads
  284. * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
  285. */
  286. if (skb->vlan_proto == htons(ETH_P_8021Q))
  287. vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
  288. }
  289. if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
  290. struct tx_push_buffer *tx_push_buf = txr->tx_push;
  291. struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
  292. struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
  293. void *pdata = tx_push_buf->data;
  294. u64 *end;
  295. int j, push_len;
  296. /* Set COAL_NOW to be ready quickly for the next push */
  297. tx_push->tx_bd_len_flags_type =
  298. cpu_to_le32((length << TX_BD_LEN_SHIFT) |
  299. TX_BD_TYPE_LONG_TX_BD |
  300. TX_BD_FLAGS_LHINT_512_AND_SMALLER |
  301. TX_BD_FLAGS_COAL_NOW |
  302. TX_BD_FLAGS_PACKET_END |
  303. (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
  304. if (skb->ip_summed == CHECKSUM_PARTIAL)
  305. tx_push1->tx_bd_hsize_lflags =
  306. cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
  307. else
  308. tx_push1->tx_bd_hsize_lflags = 0;
  309. tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
  310. tx_push1->tx_bd_cfa_action =
  311. cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
  312. end = pdata + length;
  313. end = PTR_ALIGN(end, 8) - 1;
  314. *end = 0;
  315. skb_copy_from_linear_data(skb, pdata, len);
  316. pdata += len;
  317. for (j = 0; j < last_frag; j++) {
  318. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  319. void *fptr;
  320. fptr = skb_frag_address_safe(frag);
  321. if (!fptr)
  322. goto normal_tx;
  323. memcpy(pdata, fptr, skb_frag_size(frag));
  324. pdata += skb_frag_size(frag);
  325. }
  326. txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
  327. txbd->tx_bd_haddr = txr->data_mapping;
  328. prod = NEXT_TX(prod);
  329. txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  330. memcpy(txbd, tx_push1, sizeof(*txbd));
  331. prod = NEXT_TX(prod);
  332. tx_push->doorbell =
  333. cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
  334. txr->tx_prod = prod;
  335. tx_buf->is_push = 1;
  336. netdev_tx_sent_queue(txq, skb->len);
  337. wmb(); /* Sync is_push and byte queue before pushing data */
  338. push_len = (length + sizeof(*tx_push) + 7) / 8;
  339. if (push_len > 16) {
  340. __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
  341. __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
  342. (push_len - 16) << 1);
  343. } else {
  344. __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
  345. push_len);
  346. }
  347. goto tx_done;
  348. }
  349. normal_tx:
  350. if (length < BNXT_MIN_PKT_SIZE) {
  351. pad = BNXT_MIN_PKT_SIZE - length;
  352. if (skb_pad(skb, pad)) {
  353. /* SKB already freed. */
  354. tx_buf->skb = NULL;
  355. return NETDEV_TX_OK;
  356. }
  357. length = BNXT_MIN_PKT_SIZE;
  358. }
  359. mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
  360. if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
  361. dev_kfree_skb_any(skb);
  362. tx_buf->skb = NULL;
  363. return NETDEV_TX_OK;
  364. }
  365. dma_unmap_addr_set(tx_buf, mapping, mapping);
  366. flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
  367. ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
  368. txbd->tx_bd_haddr = cpu_to_le64(mapping);
  369. prod = NEXT_TX(prod);
  370. txbd1 = (struct tx_bd_ext *)
  371. &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  372. txbd1->tx_bd_hsize_lflags = 0;
  373. if (skb_is_gso(skb)) {
  374. u32 hdr_len;
  375. if (skb->encapsulation)
  376. hdr_len = skb_inner_network_offset(skb) +
  377. skb_inner_network_header_len(skb) +
  378. inner_tcp_hdrlen(skb);
  379. else
  380. hdr_len = skb_transport_offset(skb) +
  381. tcp_hdrlen(skb);
  382. txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
  383. TX_BD_FLAGS_T_IPID |
  384. (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
  385. length = skb_shinfo(skb)->gso_size;
  386. txbd1->tx_bd_mss = cpu_to_le32(length);
  387. length += hdr_len;
  388. } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
  389. txbd1->tx_bd_hsize_lflags =
  390. cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
  391. txbd1->tx_bd_mss = 0;
  392. }
  393. length >>= 9;
  394. flags |= bnxt_lhint_arr[length];
  395. txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
  396. txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
  397. txbd1->tx_bd_cfa_action =
  398. cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
  399. for (i = 0; i < last_frag; i++) {
  400. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  401. prod = NEXT_TX(prod);
  402. txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
  403. len = skb_frag_size(frag);
  404. mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
  405. DMA_TO_DEVICE);
  406. if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
  407. goto tx_dma_error;
  408. tx_buf = &txr->tx_buf_ring[prod];
  409. dma_unmap_addr_set(tx_buf, mapping, mapping);
  410. txbd->tx_bd_haddr = cpu_to_le64(mapping);
  411. flags = len << TX_BD_LEN_SHIFT;
  412. txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
  413. }
  414. flags &= ~TX_BD_LEN;
  415. txbd->tx_bd_len_flags_type =
  416. cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
  417. TX_BD_FLAGS_PACKET_END);
  418. netdev_tx_sent_queue(txq, skb->len);
  419. /* Sync BD data before updating doorbell */
  420. wmb();
  421. prod = NEXT_TX(prod);
  422. txr->tx_prod = prod;
  423. if (!skb->xmit_more || netif_xmit_stopped(txq))
  424. bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
  425. tx_done:
  426. mmiowb();
  427. if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
  428. if (skb->xmit_more && !tx_buf->is_push)
  429. bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
  430. netif_tx_stop_queue(txq);
  431. /* netif_tx_stop_queue() must be done before checking
  432. * tx index in bnxt_tx_avail() below, because in
  433. * bnxt_tx_int(), we update tx index before checking for
  434. * netif_tx_queue_stopped().
  435. */
  436. smp_mb();
  437. if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
  438. netif_tx_wake_queue(txq);
  439. }
  440. return NETDEV_TX_OK;
  441. tx_dma_error:
  442. last_frag = i;
  443. /* start back at beginning and unmap skb */
  444. prod = txr->tx_prod;
  445. tx_buf = &txr->tx_buf_ring[prod];
  446. tx_buf->skb = NULL;
  447. dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
  448. skb_headlen(skb), PCI_DMA_TODEVICE);
  449. prod = NEXT_TX(prod);
  450. /* unmap remaining mapped pages */
  451. for (i = 0; i < last_frag; i++) {
  452. prod = NEXT_TX(prod);
  453. tx_buf = &txr->tx_buf_ring[prod];
  454. dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
  455. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  456. PCI_DMA_TODEVICE);
  457. }
  458. dev_kfree_skb_any(skb);
  459. return NETDEV_TX_OK;
  460. }
  461. static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
  462. {
  463. struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
  464. struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
  465. u16 cons = txr->tx_cons;
  466. struct pci_dev *pdev = bp->pdev;
  467. int i;
  468. unsigned int tx_bytes = 0;
  469. for (i = 0; i < nr_pkts; i++) {
  470. struct bnxt_sw_tx_bd *tx_buf;
  471. struct sk_buff *skb;
  472. int j, last;
  473. tx_buf = &txr->tx_buf_ring[cons];
  474. cons = NEXT_TX(cons);
  475. skb = tx_buf->skb;
  476. tx_buf->skb = NULL;
  477. if (tx_buf->is_push) {
  478. tx_buf->is_push = 0;
  479. goto next_tx_int;
  480. }
  481. dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
  482. skb_headlen(skb), PCI_DMA_TODEVICE);
  483. last = tx_buf->nr_frags;
  484. for (j = 0; j < last; j++) {
  485. cons = NEXT_TX(cons);
  486. tx_buf = &txr->tx_buf_ring[cons];
  487. dma_unmap_page(
  488. &pdev->dev,
  489. dma_unmap_addr(tx_buf, mapping),
  490. skb_frag_size(&skb_shinfo(skb)->frags[j]),
  491. PCI_DMA_TODEVICE);
  492. }
  493. next_tx_int:
  494. cons = NEXT_TX(cons);
  495. tx_bytes += skb->len;
  496. dev_kfree_skb_any(skb);
  497. }
  498. netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
  499. txr->tx_cons = cons;
  500. /* Need to make the tx_cons update visible to bnxt_start_xmit()
  501. * before checking for netif_tx_queue_stopped(). Without the
  502. * memory barrier, there is a small possibility that bnxt_start_xmit()
  503. * will miss it and cause the queue to be stopped forever.
  504. */
  505. smp_mb();
  506. if (unlikely(netif_tx_queue_stopped(txq)) &&
  507. (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  508. __netif_tx_lock(txq, smp_processor_id());
  509. if (netif_tx_queue_stopped(txq) &&
  510. bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
  511. txr->dev_state != BNXT_DEV_STATE_CLOSING)
  512. netif_tx_wake_queue(txq);
  513. __netif_tx_unlock(txq);
  514. }
  515. }
  516. static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
  517. gfp_t gfp)
  518. {
  519. struct device *dev = &bp->pdev->dev;
  520. struct page *page;
  521. page = alloc_page(gfp);
  522. if (!page)
  523. return NULL;
  524. *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
  525. DMA_ATTR_WEAK_ORDERING);
  526. if (dma_mapping_error(dev, *mapping)) {
  527. __free_page(page);
  528. return NULL;
  529. }
  530. *mapping += bp->rx_dma_offset;
  531. return page;
  532. }
  533. static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
  534. gfp_t gfp)
  535. {
  536. u8 *data;
  537. struct pci_dev *pdev = bp->pdev;
  538. data = kmalloc(bp->rx_buf_size, gfp);
  539. if (!data)
  540. return NULL;
  541. *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
  542. bp->rx_buf_use_size, bp->rx_dir,
  543. DMA_ATTR_WEAK_ORDERING);
  544. if (dma_mapping_error(&pdev->dev, *mapping)) {
  545. kfree(data);
  546. data = NULL;
  547. }
  548. return data;
  549. }
  550. int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
  551. u16 prod, gfp_t gfp)
  552. {
  553. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  554. struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
  555. dma_addr_t mapping;
  556. if (BNXT_RX_PAGE_MODE(bp)) {
  557. struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
  558. if (!page)
  559. return -ENOMEM;
  560. rx_buf->data = page;
  561. rx_buf->data_ptr = page_address(page) + bp->rx_offset;
  562. } else {
  563. u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
  564. if (!data)
  565. return -ENOMEM;
  566. rx_buf->data = data;
  567. rx_buf->data_ptr = data + bp->rx_offset;
  568. }
  569. rx_buf->mapping = mapping;
  570. rxbd->rx_bd_haddr = cpu_to_le64(mapping);
  571. return 0;
  572. }
  573. void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
  574. {
  575. u16 prod = rxr->rx_prod;
  576. struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
  577. struct rx_bd *cons_bd, *prod_bd;
  578. prod_rx_buf = &rxr->rx_buf_ring[prod];
  579. cons_rx_buf = &rxr->rx_buf_ring[cons];
  580. prod_rx_buf->data = data;
  581. prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
  582. prod_rx_buf->mapping = cons_rx_buf->mapping;
  583. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  584. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  585. prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
  586. }
  587. static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
  588. {
  589. u16 next, max = rxr->rx_agg_bmap_size;
  590. next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
  591. if (next >= max)
  592. next = find_first_zero_bit(rxr->rx_agg_bmap, max);
  593. return next;
  594. }
  595. static inline int bnxt_alloc_rx_page(struct bnxt *bp,
  596. struct bnxt_rx_ring_info *rxr,
  597. u16 prod, gfp_t gfp)
  598. {
  599. struct rx_bd *rxbd =
  600. &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  601. struct bnxt_sw_rx_agg_bd *rx_agg_buf;
  602. struct pci_dev *pdev = bp->pdev;
  603. struct page *page;
  604. dma_addr_t mapping;
  605. u16 sw_prod = rxr->rx_sw_agg_prod;
  606. unsigned int offset = 0;
  607. if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
  608. page = rxr->rx_page;
  609. if (!page) {
  610. page = alloc_page(gfp);
  611. if (!page)
  612. return -ENOMEM;
  613. rxr->rx_page = page;
  614. rxr->rx_page_offset = 0;
  615. }
  616. offset = rxr->rx_page_offset;
  617. rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
  618. if (rxr->rx_page_offset == PAGE_SIZE)
  619. rxr->rx_page = NULL;
  620. else
  621. get_page(page);
  622. } else {
  623. page = alloc_page(gfp);
  624. if (!page)
  625. return -ENOMEM;
  626. }
  627. mapping = dma_map_page_attrs(&pdev->dev, page, offset,
  628. BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
  629. DMA_ATTR_WEAK_ORDERING);
  630. if (dma_mapping_error(&pdev->dev, mapping)) {
  631. __free_page(page);
  632. return -EIO;
  633. }
  634. if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
  635. sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
  636. __set_bit(sw_prod, rxr->rx_agg_bmap);
  637. rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
  638. rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
  639. rx_agg_buf->page = page;
  640. rx_agg_buf->offset = offset;
  641. rx_agg_buf->mapping = mapping;
  642. rxbd->rx_bd_haddr = cpu_to_le64(mapping);
  643. rxbd->rx_bd_opaque = sw_prod;
  644. return 0;
  645. }
  646. static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
  647. u32 agg_bufs)
  648. {
  649. struct bnxt *bp = bnapi->bp;
  650. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  651. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  652. u16 prod = rxr->rx_agg_prod;
  653. u16 sw_prod = rxr->rx_sw_agg_prod;
  654. u32 i;
  655. for (i = 0; i < agg_bufs; i++) {
  656. u16 cons;
  657. struct rx_agg_cmp *agg;
  658. struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
  659. struct rx_bd *prod_bd;
  660. struct page *page;
  661. agg = (struct rx_agg_cmp *)
  662. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  663. cons = agg->rx_agg_cmp_opaque;
  664. __clear_bit(cons, rxr->rx_agg_bmap);
  665. if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
  666. sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
  667. __set_bit(sw_prod, rxr->rx_agg_bmap);
  668. prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
  669. cons_rx_buf = &rxr->rx_agg_ring[cons];
  670. /* It is possible for sw_prod to be equal to cons, so
  671. * set cons_rx_buf->page to NULL first.
  672. */
  673. page = cons_rx_buf->page;
  674. cons_rx_buf->page = NULL;
  675. prod_rx_buf->page = page;
  676. prod_rx_buf->offset = cons_rx_buf->offset;
  677. prod_rx_buf->mapping = cons_rx_buf->mapping;
  678. prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  679. prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
  680. prod_bd->rx_bd_opaque = sw_prod;
  681. prod = NEXT_RX_AGG(prod);
  682. sw_prod = NEXT_RX_AGG(sw_prod);
  683. cp_cons = NEXT_CMP(cp_cons);
  684. }
  685. rxr->rx_agg_prod = prod;
  686. rxr->rx_sw_agg_prod = sw_prod;
  687. }
  688. static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
  689. struct bnxt_rx_ring_info *rxr,
  690. u16 cons, void *data, u8 *data_ptr,
  691. dma_addr_t dma_addr,
  692. unsigned int offset_and_len)
  693. {
  694. unsigned int payload = offset_and_len >> 16;
  695. unsigned int len = offset_and_len & 0xffff;
  696. struct skb_frag_struct *frag;
  697. struct page *page = data;
  698. u16 prod = rxr->rx_prod;
  699. struct sk_buff *skb;
  700. int off, err;
  701. err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  702. if (unlikely(err)) {
  703. bnxt_reuse_rx_data(rxr, cons, data);
  704. return NULL;
  705. }
  706. dma_addr -= bp->rx_dma_offset;
  707. dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
  708. DMA_ATTR_WEAK_ORDERING);
  709. if (unlikely(!payload))
  710. payload = eth_get_headlen(data_ptr, len);
  711. skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
  712. if (!skb) {
  713. __free_page(page);
  714. return NULL;
  715. }
  716. off = (void *)data_ptr - page_address(page);
  717. skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
  718. memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
  719. payload + NET_IP_ALIGN);
  720. frag = &skb_shinfo(skb)->frags[0];
  721. skb_frag_size_sub(frag, payload);
  722. frag->page_offset += payload;
  723. skb->data_len -= payload;
  724. skb->tail += payload;
  725. return skb;
  726. }
  727. static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
  728. struct bnxt_rx_ring_info *rxr, u16 cons,
  729. void *data, u8 *data_ptr,
  730. dma_addr_t dma_addr,
  731. unsigned int offset_and_len)
  732. {
  733. u16 prod = rxr->rx_prod;
  734. struct sk_buff *skb;
  735. int err;
  736. err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  737. if (unlikely(err)) {
  738. bnxt_reuse_rx_data(rxr, cons, data);
  739. return NULL;
  740. }
  741. skb = build_skb(data, 0);
  742. dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  743. bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
  744. if (!skb) {
  745. kfree(data);
  746. return NULL;
  747. }
  748. skb_reserve(skb, bp->rx_offset);
  749. skb_put(skb, offset_and_len & 0xffff);
  750. return skb;
  751. }
  752. static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
  753. struct sk_buff *skb, u16 cp_cons,
  754. u32 agg_bufs)
  755. {
  756. struct pci_dev *pdev = bp->pdev;
  757. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  758. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  759. u16 prod = rxr->rx_agg_prod;
  760. u32 i;
  761. for (i = 0; i < agg_bufs; i++) {
  762. u16 cons, frag_len;
  763. struct rx_agg_cmp *agg;
  764. struct bnxt_sw_rx_agg_bd *cons_rx_buf;
  765. struct page *page;
  766. dma_addr_t mapping;
  767. agg = (struct rx_agg_cmp *)
  768. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  769. cons = agg->rx_agg_cmp_opaque;
  770. frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
  771. RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
  772. cons_rx_buf = &rxr->rx_agg_ring[cons];
  773. skb_fill_page_desc(skb, i, cons_rx_buf->page,
  774. cons_rx_buf->offset, frag_len);
  775. __clear_bit(cons, rxr->rx_agg_bmap);
  776. /* It is possible for bnxt_alloc_rx_page() to allocate
  777. * a sw_prod index that equals the cons index, so we
  778. * need to clear the cons entry now.
  779. */
  780. mapping = cons_rx_buf->mapping;
  781. page = cons_rx_buf->page;
  782. cons_rx_buf->page = NULL;
  783. if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
  784. struct skb_shared_info *shinfo;
  785. unsigned int nr_frags;
  786. shinfo = skb_shinfo(skb);
  787. nr_frags = --shinfo->nr_frags;
  788. __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
  789. dev_kfree_skb(skb);
  790. cons_rx_buf->page = page;
  791. /* Update prod since possibly some pages have been
  792. * allocated already.
  793. */
  794. rxr->rx_agg_prod = prod;
  795. bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
  796. return NULL;
  797. }
  798. dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
  799. PCI_DMA_FROMDEVICE,
  800. DMA_ATTR_WEAK_ORDERING);
  801. skb->data_len += frag_len;
  802. skb->len += frag_len;
  803. skb->truesize += PAGE_SIZE;
  804. prod = NEXT_RX_AGG(prod);
  805. cp_cons = NEXT_CMP(cp_cons);
  806. }
  807. rxr->rx_agg_prod = prod;
  808. return skb;
  809. }
  810. static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
  811. u8 agg_bufs, u32 *raw_cons)
  812. {
  813. u16 last;
  814. struct rx_agg_cmp *agg;
  815. *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
  816. last = RING_CMP(*raw_cons);
  817. agg = (struct rx_agg_cmp *)
  818. &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
  819. return RX_AGG_CMP_VALID(agg, *raw_cons);
  820. }
  821. static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
  822. unsigned int len,
  823. dma_addr_t mapping)
  824. {
  825. struct bnxt *bp = bnapi->bp;
  826. struct pci_dev *pdev = bp->pdev;
  827. struct sk_buff *skb;
  828. skb = napi_alloc_skb(&bnapi->napi, len);
  829. if (!skb)
  830. return NULL;
  831. dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
  832. bp->rx_dir);
  833. memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
  834. len + NET_IP_ALIGN);
  835. dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
  836. bp->rx_dir);
  837. skb_put(skb, len);
  838. return skb;
  839. }
  840. static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
  841. u32 *raw_cons, void *cmp)
  842. {
  843. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  844. struct rx_cmp *rxcmp = cmp;
  845. u32 tmp_raw_cons = *raw_cons;
  846. u8 cmp_type, agg_bufs = 0;
  847. cmp_type = RX_CMP_TYPE(rxcmp);
  848. if (cmp_type == CMP_TYPE_RX_L2_CMP) {
  849. agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
  850. RX_CMP_AGG_BUFS) >>
  851. RX_CMP_AGG_BUFS_SHIFT;
  852. } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
  853. struct rx_tpa_end_cmp *tpa_end = cmp;
  854. agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
  855. RX_TPA_END_CMP_AGG_BUFS) >>
  856. RX_TPA_END_CMP_AGG_BUFS_SHIFT;
  857. }
  858. if (agg_bufs) {
  859. if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
  860. return -EBUSY;
  861. }
  862. *raw_cons = tmp_raw_cons;
  863. return 0;
  864. }
  865. static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
  866. {
  867. if (!rxr->bnapi->in_reset) {
  868. rxr->bnapi->in_reset = true;
  869. set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
  870. schedule_work(&bp->sp_task);
  871. }
  872. rxr->rx_next_cons = 0xffff;
  873. }
  874. static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
  875. struct rx_tpa_start_cmp *tpa_start,
  876. struct rx_tpa_start_cmp_ext *tpa_start1)
  877. {
  878. u8 agg_id = TPA_START_AGG_ID(tpa_start);
  879. u16 cons, prod;
  880. struct bnxt_tpa_info *tpa_info;
  881. struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
  882. struct rx_bd *prod_bd;
  883. dma_addr_t mapping;
  884. cons = tpa_start->rx_tpa_start_cmp_opaque;
  885. prod = rxr->rx_prod;
  886. cons_rx_buf = &rxr->rx_buf_ring[cons];
  887. prod_rx_buf = &rxr->rx_buf_ring[prod];
  888. tpa_info = &rxr->rx_tpa[agg_id];
  889. if (unlikely(cons != rxr->rx_next_cons)) {
  890. bnxt_sched_reset(bp, rxr);
  891. return;
  892. }
  893. /* Store cfa_code in tpa_info to use in tpa_end
  894. * completion processing.
  895. */
  896. tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
  897. prod_rx_buf->data = tpa_info->data;
  898. prod_rx_buf->data_ptr = tpa_info->data_ptr;
  899. mapping = tpa_info->mapping;
  900. prod_rx_buf->mapping = mapping;
  901. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  902. prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
  903. tpa_info->data = cons_rx_buf->data;
  904. tpa_info->data_ptr = cons_rx_buf->data_ptr;
  905. cons_rx_buf->data = NULL;
  906. tpa_info->mapping = cons_rx_buf->mapping;
  907. tpa_info->len =
  908. le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
  909. RX_TPA_START_CMP_LEN_SHIFT;
  910. if (likely(TPA_START_HASH_VALID(tpa_start))) {
  911. u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
  912. tpa_info->hash_type = PKT_HASH_TYPE_L4;
  913. tpa_info->gso_type = SKB_GSO_TCPV4;
  914. /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
  915. if (hash_type == 3)
  916. tpa_info->gso_type = SKB_GSO_TCPV6;
  917. tpa_info->rss_hash =
  918. le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
  919. } else {
  920. tpa_info->hash_type = PKT_HASH_TYPE_NONE;
  921. tpa_info->gso_type = 0;
  922. if (netif_msg_rx_err(bp))
  923. netdev_warn(bp->dev, "TPA packet without valid hash\n");
  924. }
  925. tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
  926. tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
  927. tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
  928. rxr->rx_prod = NEXT_RX(prod);
  929. cons = NEXT_RX(cons);
  930. rxr->rx_next_cons = NEXT_RX(cons);
  931. cons_rx_buf = &rxr->rx_buf_ring[cons];
  932. bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
  933. rxr->rx_prod = NEXT_RX(rxr->rx_prod);
  934. cons_rx_buf->data = NULL;
  935. }
  936. static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
  937. u16 cp_cons, u32 agg_bufs)
  938. {
  939. if (agg_bufs)
  940. bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
  941. }
  942. static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
  943. int payload_off, int tcp_ts,
  944. struct sk_buff *skb)
  945. {
  946. #ifdef CONFIG_INET
  947. struct tcphdr *th;
  948. int len, nw_off;
  949. u16 outer_ip_off, inner_ip_off, inner_mac_off;
  950. u32 hdr_info = tpa_info->hdr_info;
  951. bool loopback = false;
  952. inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
  953. inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
  954. outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
  955. /* If the packet is an internal loopback packet, the offsets will
  956. * have an extra 4 bytes.
  957. */
  958. if (inner_mac_off == 4) {
  959. loopback = true;
  960. } else if (inner_mac_off > 4) {
  961. __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
  962. ETH_HLEN - 2));
  963. /* We only support inner iPv4/ipv6. If we don't see the
  964. * correct protocol ID, it must be a loopback packet where
  965. * the offsets are off by 4.
  966. */
  967. if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
  968. loopback = true;
  969. }
  970. if (loopback) {
  971. /* internal loopback packet, subtract all offsets by 4 */
  972. inner_ip_off -= 4;
  973. inner_mac_off -= 4;
  974. outer_ip_off -= 4;
  975. }
  976. nw_off = inner_ip_off - ETH_HLEN;
  977. skb_set_network_header(skb, nw_off);
  978. if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
  979. struct ipv6hdr *iph = ipv6_hdr(skb);
  980. skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
  981. len = skb->len - skb_transport_offset(skb);
  982. th = tcp_hdr(skb);
  983. th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
  984. } else {
  985. struct iphdr *iph = ip_hdr(skb);
  986. skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
  987. len = skb->len - skb_transport_offset(skb);
  988. th = tcp_hdr(skb);
  989. th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
  990. }
  991. if (inner_mac_off) { /* tunnel */
  992. struct udphdr *uh = NULL;
  993. __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
  994. ETH_HLEN - 2));
  995. if (proto == htons(ETH_P_IP)) {
  996. struct iphdr *iph = (struct iphdr *)skb->data;
  997. if (iph->protocol == IPPROTO_UDP)
  998. uh = (struct udphdr *)(iph + 1);
  999. } else {
  1000. struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
  1001. if (iph->nexthdr == IPPROTO_UDP)
  1002. uh = (struct udphdr *)(iph + 1);
  1003. }
  1004. if (uh) {
  1005. if (uh->check)
  1006. skb_shinfo(skb)->gso_type |=
  1007. SKB_GSO_UDP_TUNNEL_CSUM;
  1008. else
  1009. skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
  1010. }
  1011. }
  1012. #endif
  1013. return skb;
  1014. }
  1015. #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
  1016. #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
  1017. static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
  1018. int payload_off, int tcp_ts,
  1019. struct sk_buff *skb)
  1020. {
  1021. #ifdef CONFIG_INET
  1022. struct tcphdr *th;
  1023. int len, nw_off, tcp_opt_len = 0;
  1024. if (tcp_ts)
  1025. tcp_opt_len = 12;
  1026. if (tpa_info->gso_type == SKB_GSO_TCPV4) {
  1027. struct iphdr *iph;
  1028. nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
  1029. ETH_HLEN;
  1030. skb_set_network_header(skb, nw_off);
  1031. iph = ip_hdr(skb);
  1032. skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
  1033. len = skb->len - skb_transport_offset(skb);
  1034. th = tcp_hdr(skb);
  1035. th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
  1036. } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
  1037. struct ipv6hdr *iph;
  1038. nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
  1039. ETH_HLEN;
  1040. skb_set_network_header(skb, nw_off);
  1041. iph = ipv6_hdr(skb);
  1042. skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
  1043. len = skb->len - skb_transport_offset(skb);
  1044. th = tcp_hdr(skb);
  1045. th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
  1046. } else {
  1047. dev_kfree_skb_any(skb);
  1048. return NULL;
  1049. }
  1050. if (nw_off) { /* tunnel */
  1051. struct udphdr *uh = NULL;
  1052. if (skb->protocol == htons(ETH_P_IP)) {
  1053. struct iphdr *iph = (struct iphdr *)skb->data;
  1054. if (iph->protocol == IPPROTO_UDP)
  1055. uh = (struct udphdr *)(iph + 1);
  1056. } else {
  1057. struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
  1058. if (iph->nexthdr == IPPROTO_UDP)
  1059. uh = (struct udphdr *)(iph + 1);
  1060. }
  1061. if (uh) {
  1062. if (uh->check)
  1063. skb_shinfo(skb)->gso_type |=
  1064. SKB_GSO_UDP_TUNNEL_CSUM;
  1065. else
  1066. skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
  1067. }
  1068. }
  1069. #endif
  1070. return skb;
  1071. }
  1072. static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
  1073. struct bnxt_tpa_info *tpa_info,
  1074. struct rx_tpa_end_cmp *tpa_end,
  1075. struct rx_tpa_end_cmp_ext *tpa_end1,
  1076. struct sk_buff *skb)
  1077. {
  1078. #ifdef CONFIG_INET
  1079. int payload_off;
  1080. u16 segs;
  1081. segs = TPA_END_TPA_SEGS(tpa_end);
  1082. if (segs == 1)
  1083. return skb;
  1084. NAPI_GRO_CB(skb)->count = segs;
  1085. skb_shinfo(skb)->gso_size =
  1086. le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
  1087. skb_shinfo(skb)->gso_type = tpa_info->gso_type;
  1088. payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
  1089. RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
  1090. RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
  1091. skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
  1092. if (likely(skb))
  1093. tcp_gro_complete(skb);
  1094. #endif
  1095. return skb;
  1096. }
  1097. /* Given the cfa_code of a received packet determine which
  1098. * netdev (vf-rep or PF) the packet is destined to.
  1099. */
  1100. static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
  1101. {
  1102. struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
  1103. /* if vf-rep dev is NULL, the must belongs to the PF */
  1104. return dev ? dev : bp->dev;
  1105. }
  1106. static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
  1107. struct bnxt_napi *bnapi,
  1108. u32 *raw_cons,
  1109. struct rx_tpa_end_cmp *tpa_end,
  1110. struct rx_tpa_end_cmp_ext *tpa_end1,
  1111. u8 *event)
  1112. {
  1113. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1114. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1115. u8 agg_id = TPA_END_AGG_ID(tpa_end);
  1116. u8 *data_ptr, agg_bufs;
  1117. u16 cp_cons = RING_CMP(*raw_cons);
  1118. unsigned int len;
  1119. struct bnxt_tpa_info *tpa_info;
  1120. dma_addr_t mapping;
  1121. struct sk_buff *skb;
  1122. void *data;
  1123. if (unlikely(bnapi->in_reset)) {
  1124. int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
  1125. if (rc < 0)
  1126. return ERR_PTR(-EBUSY);
  1127. return NULL;
  1128. }
  1129. tpa_info = &rxr->rx_tpa[agg_id];
  1130. data = tpa_info->data;
  1131. data_ptr = tpa_info->data_ptr;
  1132. prefetch(data_ptr);
  1133. len = tpa_info->len;
  1134. mapping = tpa_info->mapping;
  1135. agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
  1136. RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
  1137. if (agg_bufs) {
  1138. if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
  1139. return ERR_PTR(-EBUSY);
  1140. *event |= BNXT_AGG_EVENT;
  1141. cp_cons = NEXT_CMP(cp_cons);
  1142. }
  1143. if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
  1144. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1145. if (agg_bufs > MAX_SKB_FRAGS)
  1146. netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
  1147. agg_bufs, (int)MAX_SKB_FRAGS);
  1148. return NULL;
  1149. }
  1150. if (len <= bp->rx_copy_thresh) {
  1151. skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
  1152. if (!skb) {
  1153. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1154. return NULL;
  1155. }
  1156. } else {
  1157. u8 *new_data;
  1158. dma_addr_t new_mapping;
  1159. new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
  1160. if (!new_data) {
  1161. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1162. return NULL;
  1163. }
  1164. tpa_info->data = new_data;
  1165. tpa_info->data_ptr = new_data + bp->rx_offset;
  1166. tpa_info->mapping = new_mapping;
  1167. skb = build_skb(data, 0);
  1168. dma_unmap_single_attrs(&bp->pdev->dev, mapping,
  1169. bp->rx_buf_use_size, bp->rx_dir,
  1170. DMA_ATTR_WEAK_ORDERING);
  1171. if (!skb) {
  1172. kfree(data);
  1173. bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
  1174. return NULL;
  1175. }
  1176. skb_reserve(skb, bp->rx_offset);
  1177. skb_put(skb, len);
  1178. }
  1179. if (agg_bufs) {
  1180. skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
  1181. if (!skb) {
  1182. /* Page reuse already handled by bnxt_rx_pages(). */
  1183. return NULL;
  1184. }
  1185. }
  1186. skb->protocol =
  1187. eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
  1188. if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
  1189. skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
  1190. if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
  1191. (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  1192. u16 vlan_proto = tpa_info->metadata >>
  1193. RX_CMP_FLAGS2_METADATA_TPID_SFT;
  1194. u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
  1195. __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
  1196. }
  1197. skb_checksum_none_assert(skb);
  1198. if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
  1199. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1200. skb->csum_level =
  1201. (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
  1202. }
  1203. if (TPA_END_GRO(tpa_end))
  1204. skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
  1205. return skb;
  1206. }
  1207. static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
  1208. struct sk_buff *skb)
  1209. {
  1210. if (skb->dev != bp->dev) {
  1211. /* this packet belongs to a vf-rep */
  1212. bnxt_vf_rep_rx(bp, skb);
  1213. return;
  1214. }
  1215. skb_record_rx_queue(skb, bnapi->index);
  1216. napi_gro_receive(&bnapi->napi, skb);
  1217. }
  1218. /* returns the following:
  1219. * 1 - 1 packet successfully received
  1220. * 0 - successful TPA_START, packet not completed yet
  1221. * -EBUSY - completion ring does not have all the agg buffers yet
  1222. * -ENOMEM - packet aborted due to out of memory
  1223. * -EIO - packet aborted due to hw error indicated in BD
  1224. */
  1225. static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
  1226. u8 *event)
  1227. {
  1228. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1229. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1230. struct net_device *dev = bp->dev;
  1231. struct rx_cmp *rxcmp;
  1232. struct rx_cmp_ext *rxcmp1;
  1233. u32 tmp_raw_cons = *raw_cons;
  1234. u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
  1235. struct bnxt_sw_rx_bd *rx_buf;
  1236. unsigned int len;
  1237. u8 *data_ptr, agg_bufs, cmp_type;
  1238. dma_addr_t dma_addr;
  1239. struct sk_buff *skb;
  1240. void *data;
  1241. int rc = 0;
  1242. u32 misc;
  1243. rxcmp = (struct rx_cmp *)
  1244. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1245. tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
  1246. cp_cons = RING_CMP(tmp_raw_cons);
  1247. rxcmp1 = (struct rx_cmp_ext *)
  1248. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1249. if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
  1250. return -EBUSY;
  1251. cmp_type = RX_CMP_TYPE(rxcmp);
  1252. prod = rxr->rx_prod;
  1253. if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
  1254. bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
  1255. (struct rx_tpa_start_cmp_ext *)rxcmp1);
  1256. *event |= BNXT_RX_EVENT;
  1257. goto next_rx_no_prod;
  1258. } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
  1259. skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
  1260. (struct rx_tpa_end_cmp *)rxcmp,
  1261. (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
  1262. if (unlikely(IS_ERR(skb)))
  1263. return -EBUSY;
  1264. rc = -ENOMEM;
  1265. if (likely(skb)) {
  1266. bnxt_deliver_skb(bp, bnapi, skb);
  1267. rc = 1;
  1268. }
  1269. *event |= BNXT_RX_EVENT;
  1270. goto next_rx_no_prod;
  1271. }
  1272. cons = rxcmp->rx_cmp_opaque;
  1273. rx_buf = &rxr->rx_buf_ring[cons];
  1274. data = rx_buf->data;
  1275. data_ptr = rx_buf->data_ptr;
  1276. if (unlikely(cons != rxr->rx_next_cons)) {
  1277. int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
  1278. bnxt_sched_reset(bp, rxr);
  1279. return rc1;
  1280. }
  1281. prefetch(data_ptr);
  1282. misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
  1283. agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
  1284. if (agg_bufs) {
  1285. if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
  1286. return -EBUSY;
  1287. cp_cons = NEXT_CMP(cp_cons);
  1288. *event |= BNXT_AGG_EVENT;
  1289. }
  1290. *event |= BNXT_RX_EVENT;
  1291. rx_buf->data = NULL;
  1292. if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
  1293. bnxt_reuse_rx_data(rxr, cons, data);
  1294. if (agg_bufs)
  1295. bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
  1296. rc = -EIO;
  1297. goto next_rx;
  1298. }
  1299. len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
  1300. dma_addr = rx_buf->mapping;
  1301. if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
  1302. rc = 1;
  1303. goto next_rx;
  1304. }
  1305. if (len <= bp->rx_copy_thresh) {
  1306. skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
  1307. bnxt_reuse_rx_data(rxr, cons, data);
  1308. if (!skb) {
  1309. rc = -ENOMEM;
  1310. goto next_rx;
  1311. }
  1312. } else {
  1313. u32 payload;
  1314. if (rx_buf->data_ptr == data_ptr)
  1315. payload = misc & RX_CMP_PAYLOAD_OFFSET;
  1316. else
  1317. payload = 0;
  1318. skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
  1319. payload | len);
  1320. if (!skb) {
  1321. rc = -ENOMEM;
  1322. goto next_rx;
  1323. }
  1324. }
  1325. if (agg_bufs) {
  1326. skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
  1327. if (!skb) {
  1328. rc = -ENOMEM;
  1329. goto next_rx;
  1330. }
  1331. }
  1332. if (RX_CMP_HASH_VALID(rxcmp)) {
  1333. u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
  1334. enum pkt_hash_types type = PKT_HASH_TYPE_L4;
  1335. /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
  1336. if (hash_type != 1 && hash_type != 3)
  1337. type = PKT_HASH_TYPE_L3;
  1338. skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
  1339. }
  1340. cfa_code = RX_CMP_CFA_CODE(rxcmp1);
  1341. skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
  1342. if ((rxcmp1->rx_cmp_flags2 &
  1343. cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
  1344. (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
  1345. u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
  1346. u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
  1347. u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
  1348. __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
  1349. }
  1350. skb_checksum_none_assert(skb);
  1351. if (RX_CMP_L4_CS_OK(rxcmp1)) {
  1352. if (dev->features & NETIF_F_RXCSUM) {
  1353. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1354. skb->csum_level = RX_CMP_ENCAP(rxcmp1);
  1355. }
  1356. } else {
  1357. if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
  1358. if (dev->features & NETIF_F_RXCSUM)
  1359. cpr->rx_l4_csum_errors++;
  1360. }
  1361. }
  1362. bnxt_deliver_skb(bp, bnapi, skb);
  1363. rc = 1;
  1364. next_rx:
  1365. rxr->rx_prod = NEXT_RX(prod);
  1366. rxr->rx_next_cons = NEXT_RX(cons);
  1367. next_rx_no_prod:
  1368. *raw_cons = tmp_raw_cons;
  1369. return rc;
  1370. }
  1371. /* In netpoll mode, if we are using a combined completion ring, we need to
  1372. * discard the rx packets and recycle the buffers.
  1373. */
  1374. static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
  1375. u32 *raw_cons, u8 *event)
  1376. {
  1377. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1378. u32 tmp_raw_cons = *raw_cons;
  1379. struct rx_cmp_ext *rxcmp1;
  1380. struct rx_cmp *rxcmp;
  1381. u16 cp_cons;
  1382. u8 cmp_type;
  1383. cp_cons = RING_CMP(tmp_raw_cons);
  1384. rxcmp = (struct rx_cmp *)
  1385. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1386. tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
  1387. cp_cons = RING_CMP(tmp_raw_cons);
  1388. rxcmp1 = (struct rx_cmp_ext *)
  1389. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1390. if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
  1391. return -EBUSY;
  1392. cmp_type = RX_CMP_TYPE(rxcmp);
  1393. if (cmp_type == CMP_TYPE_RX_L2_CMP) {
  1394. rxcmp1->rx_cmp_cfa_code_errors_v2 |=
  1395. cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
  1396. } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
  1397. struct rx_tpa_end_cmp_ext *tpa_end1;
  1398. tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
  1399. tpa_end1->rx_tpa_end_cmp_errors_v2 |=
  1400. cpu_to_le32(RX_TPA_END_CMP_ERRORS);
  1401. }
  1402. return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
  1403. }
  1404. #define BNXT_GET_EVENT_PORT(data) \
  1405. ((data) & \
  1406. ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
  1407. static int bnxt_async_event_process(struct bnxt *bp,
  1408. struct hwrm_async_event_cmpl *cmpl)
  1409. {
  1410. u16 event_id = le16_to_cpu(cmpl->event_id);
  1411. /* TODO CHIMP_FW: Define event id's for link change, error etc */
  1412. switch (event_id) {
  1413. case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
  1414. u32 data1 = le32_to_cpu(cmpl->event_data1);
  1415. struct bnxt_link_info *link_info = &bp->link_info;
  1416. if (BNXT_VF(bp))
  1417. goto async_event_process_exit;
  1418. if (data1 & 0x20000) {
  1419. u16 fw_speed = link_info->force_link_speed;
  1420. u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
  1421. netdev_warn(bp->dev, "Link speed %d no longer supported\n",
  1422. speed);
  1423. }
  1424. set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
  1425. /* fall thru */
  1426. }
  1427. case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
  1428. set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
  1429. break;
  1430. case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
  1431. set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
  1432. break;
  1433. case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
  1434. u32 data1 = le32_to_cpu(cmpl->event_data1);
  1435. u16 port_id = BNXT_GET_EVENT_PORT(data1);
  1436. if (BNXT_VF(bp))
  1437. break;
  1438. if (bp->pf.port_id != port_id)
  1439. break;
  1440. set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
  1441. break;
  1442. }
  1443. case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
  1444. if (BNXT_PF(bp))
  1445. goto async_event_process_exit;
  1446. set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
  1447. break;
  1448. default:
  1449. goto async_event_process_exit;
  1450. }
  1451. schedule_work(&bp->sp_task);
  1452. async_event_process_exit:
  1453. bnxt_ulp_async_events(bp, cmpl);
  1454. return 0;
  1455. }
  1456. static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
  1457. {
  1458. u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
  1459. struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
  1460. struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
  1461. (struct hwrm_fwd_req_cmpl *)txcmp;
  1462. switch (cmpl_type) {
  1463. case CMPL_BASE_TYPE_HWRM_DONE:
  1464. seq_id = le16_to_cpu(h_cmpl->sequence_id);
  1465. if (seq_id == bp->hwrm_intr_seq_id)
  1466. bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
  1467. else
  1468. netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
  1469. break;
  1470. case CMPL_BASE_TYPE_HWRM_FWD_REQ:
  1471. vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
  1472. if ((vf_id < bp->pf.first_vf_id) ||
  1473. (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
  1474. netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
  1475. vf_id);
  1476. return -EINVAL;
  1477. }
  1478. set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
  1479. set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
  1480. schedule_work(&bp->sp_task);
  1481. break;
  1482. case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
  1483. bnxt_async_event_process(bp,
  1484. (struct hwrm_async_event_cmpl *)txcmp);
  1485. default:
  1486. break;
  1487. }
  1488. return 0;
  1489. }
  1490. static irqreturn_t bnxt_msix(int irq, void *dev_instance)
  1491. {
  1492. struct bnxt_napi *bnapi = dev_instance;
  1493. struct bnxt *bp = bnapi->bp;
  1494. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1495. u32 cons = RING_CMP(cpr->cp_raw_cons);
  1496. prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
  1497. napi_schedule(&bnapi->napi);
  1498. return IRQ_HANDLED;
  1499. }
  1500. static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
  1501. {
  1502. u32 raw_cons = cpr->cp_raw_cons;
  1503. u16 cons = RING_CMP(raw_cons);
  1504. struct tx_cmp *txcmp;
  1505. txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
  1506. return TX_CMP_VALID(txcmp, raw_cons);
  1507. }
  1508. static irqreturn_t bnxt_inta(int irq, void *dev_instance)
  1509. {
  1510. struct bnxt_napi *bnapi = dev_instance;
  1511. struct bnxt *bp = bnapi->bp;
  1512. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1513. u32 cons = RING_CMP(cpr->cp_raw_cons);
  1514. u32 int_status;
  1515. prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
  1516. if (!bnxt_has_work(bp, cpr)) {
  1517. int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
  1518. /* return if erroneous interrupt */
  1519. if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
  1520. return IRQ_NONE;
  1521. }
  1522. /* disable ring IRQ */
  1523. BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
  1524. /* Return here if interrupt is shared and is disabled. */
  1525. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1526. return IRQ_HANDLED;
  1527. napi_schedule(&bnapi->napi);
  1528. return IRQ_HANDLED;
  1529. }
  1530. static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
  1531. {
  1532. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1533. u32 raw_cons = cpr->cp_raw_cons;
  1534. u32 cons;
  1535. int tx_pkts = 0;
  1536. int rx_pkts = 0;
  1537. u8 event = 0;
  1538. struct tx_cmp *txcmp;
  1539. while (1) {
  1540. int rc;
  1541. cons = RING_CMP(raw_cons);
  1542. txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
  1543. if (!TX_CMP_VALID(txcmp, raw_cons))
  1544. break;
  1545. /* The valid test of the entry must be done first before
  1546. * reading any further.
  1547. */
  1548. dma_rmb();
  1549. if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
  1550. tx_pkts++;
  1551. /* return full budget so NAPI will complete. */
  1552. if (unlikely(tx_pkts > bp->tx_wake_thresh))
  1553. rx_pkts = budget;
  1554. } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
  1555. if (likely(budget))
  1556. rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
  1557. else
  1558. rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
  1559. &event);
  1560. if (likely(rc >= 0))
  1561. rx_pkts += rc;
  1562. /* Increment rx_pkts when rc is -ENOMEM to count towards
  1563. * the NAPI budget. Otherwise, we may potentially loop
  1564. * here forever if we consistently cannot allocate
  1565. * buffers.
  1566. */
  1567. else if (rc == -ENOMEM)
  1568. rx_pkts++;
  1569. else if (rc == -EBUSY) /* partial completion */
  1570. break;
  1571. } else if (unlikely((TX_CMP_TYPE(txcmp) ==
  1572. CMPL_BASE_TYPE_HWRM_DONE) ||
  1573. (TX_CMP_TYPE(txcmp) ==
  1574. CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
  1575. (TX_CMP_TYPE(txcmp) ==
  1576. CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
  1577. bnxt_hwrm_handler(bp, txcmp);
  1578. }
  1579. raw_cons = NEXT_RAW_CMP(raw_cons);
  1580. if (rx_pkts == budget)
  1581. break;
  1582. }
  1583. if (event & BNXT_TX_EVENT) {
  1584. struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
  1585. void __iomem *db = txr->tx_doorbell;
  1586. u16 prod = txr->tx_prod;
  1587. /* Sync BD data before updating doorbell */
  1588. wmb();
  1589. bnxt_db_write(bp, db, DB_KEY_TX | prod);
  1590. }
  1591. cpr->cp_raw_cons = raw_cons;
  1592. /* ACK completion ring before freeing tx ring and producing new
  1593. * buffers in rx/agg rings to prevent overflowing the completion
  1594. * ring.
  1595. */
  1596. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  1597. if (tx_pkts)
  1598. bnapi->tx_int(bp, bnapi, tx_pkts);
  1599. if (event & BNXT_RX_EVENT) {
  1600. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1601. bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
  1602. if (event & BNXT_AGG_EVENT)
  1603. bnxt_db_write(bp, rxr->rx_agg_doorbell,
  1604. DB_KEY_RX | rxr->rx_agg_prod);
  1605. }
  1606. return rx_pkts;
  1607. }
  1608. static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
  1609. {
  1610. struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
  1611. struct bnxt *bp = bnapi->bp;
  1612. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1613. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  1614. struct tx_cmp *txcmp;
  1615. struct rx_cmp_ext *rxcmp1;
  1616. u32 cp_cons, tmp_raw_cons;
  1617. u32 raw_cons = cpr->cp_raw_cons;
  1618. u32 rx_pkts = 0;
  1619. u8 event = 0;
  1620. while (1) {
  1621. int rc;
  1622. cp_cons = RING_CMP(raw_cons);
  1623. txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1624. if (!TX_CMP_VALID(txcmp, raw_cons))
  1625. break;
  1626. if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
  1627. tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
  1628. cp_cons = RING_CMP(tmp_raw_cons);
  1629. rxcmp1 = (struct rx_cmp_ext *)
  1630. &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
  1631. if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
  1632. break;
  1633. /* force an error to recycle the buffer */
  1634. rxcmp1->rx_cmp_cfa_code_errors_v2 |=
  1635. cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
  1636. rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
  1637. if (likely(rc == -EIO))
  1638. rx_pkts++;
  1639. else if (rc == -EBUSY) /* partial completion */
  1640. break;
  1641. } else if (unlikely(TX_CMP_TYPE(txcmp) ==
  1642. CMPL_BASE_TYPE_HWRM_DONE)) {
  1643. bnxt_hwrm_handler(bp, txcmp);
  1644. } else {
  1645. netdev_err(bp->dev,
  1646. "Invalid completion received on special ring\n");
  1647. }
  1648. raw_cons = NEXT_RAW_CMP(raw_cons);
  1649. if (rx_pkts == budget)
  1650. break;
  1651. }
  1652. cpr->cp_raw_cons = raw_cons;
  1653. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  1654. bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
  1655. if (event & BNXT_AGG_EVENT)
  1656. bnxt_db_write(bp, rxr->rx_agg_doorbell,
  1657. DB_KEY_RX | rxr->rx_agg_prod);
  1658. if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
  1659. napi_complete_done(napi, rx_pkts);
  1660. BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
  1661. }
  1662. return rx_pkts;
  1663. }
  1664. static int bnxt_poll(struct napi_struct *napi, int budget)
  1665. {
  1666. struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
  1667. struct bnxt *bp = bnapi->bp;
  1668. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  1669. int work_done = 0;
  1670. while (1) {
  1671. work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
  1672. if (work_done >= budget)
  1673. break;
  1674. if (!bnxt_has_work(bp, cpr)) {
  1675. if (napi_complete_done(napi, work_done))
  1676. BNXT_CP_DB_REARM(cpr->cp_doorbell,
  1677. cpr->cp_raw_cons);
  1678. break;
  1679. }
  1680. }
  1681. mmiowb();
  1682. return work_done;
  1683. }
  1684. static void bnxt_free_tx_skbs(struct bnxt *bp)
  1685. {
  1686. int i, max_idx;
  1687. struct pci_dev *pdev = bp->pdev;
  1688. if (!bp->tx_ring)
  1689. return;
  1690. max_idx = bp->tx_nr_pages * TX_DESC_CNT;
  1691. for (i = 0; i < bp->tx_nr_rings; i++) {
  1692. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  1693. int j;
  1694. for (j = 0; j < max_idx;) {
  1695. struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  1696. struct sk_buff *skb = tx_buf->skb;
  1697. int k, last;
  1698. if (!skb) {
  1699. j++;
  1700. continue;
  1701. }
  1702. tx_buf->skb = NULL;
  1703. if (tx_buf->is_push) {
  1704. dev_kfree_skb(skb);
  1705. j += 2;
  1706. continue;
  1707. }
  1708. dma_unmap_single(&pdev->dev,
  1709. dma_unmap_addr(tx_buf, mapping),
  1710. skb_headlen(skb),
  1711. PCI_DMA_TODEVICE);
  1712. last = tx_buf->nr_frags;
  1713. j += 2;
  1714. for (k = 0; k < last; k++, j++) {
  1715. int ring_idx = j & bp->tx_ring_mask;
  1716. skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
  1717. tx_buf = &txr->tx_buf_ring[ring_idx];
  1718. dma_unmap_page(
  1719. &pdev->dev,
  1720. dma_unmap_addr(tx_buf, mapping),
  1721. skb_frag_size(frag), PCI_DMA_TODEVICE);
  1722. }
  1723. dev_kfree_skb(skb);
  1724. }
  1725. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  1726. }
  1727. }
  1728. static void bnxt_free_rx_skbs(struct bnxt *bp)
  1729. {
  1730. int i, max_idx, max_agg_idx;
  1731. struct pci_dev *pdev = bp->pdev;
  1732. if (!bp->rx_ring)
  1733. return;
  1734. max_idx = bp->rx_nr_pages * RX_DESC_CNT;
  1735. max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
  1736. for (i = 0; i < bp->rx_nr_rings; i++) {
  1737. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  1738. int j;
  1739. if (rxr->rx_tpa) {
  1740. for (j = 0; j < MAX_TPA; j++) {
  1741. struct bnxt_tpa_info *tpa_info =
  1742. &rxr->rx_tpa[j];
  1743. u8 *data = tpa_info->data;
  1744. if (!data)
  1745. continue;
  1746. dma_unmap_single_attrs(&pdev->dev,
  1747. tpa_info->mapping,
  1748. bp->rx_buf_use_size,
  1749. bp->rx_dir,
  1750. DMA_ATTR_WEAK_ORDERING);
  1751. tpa_info->data = NULL;
  1752. kfree(data);
  1753. }
  1754. }
  1755. for (j = 0; j < max_idx; j++) {
  1756. struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
  1757. dma_addr_t mapping = rx_buf->mapping;
  1758. void *data = rx_buf->data;
  1759. if (!data)
  1760. continue;
  1761. rx_buf->data = NULL;
  1762. if (BNXT_RX_PAGE_MODE(bp)) {
  1763. mapping -= bp->rx_dma_offset;
  1764. dma_unmap_page_attrs(&pdev->dev, mapping,
  1765. PAGE_SIZE, bp->rx_dir,
  1766. DMA_ATTR_WEAK_ORDERING);
  1767. __free_page(data);
  1768. } else {
  1769. dma_unmap_single_attrs(&pdev->dev, mapping,
  1770. bp->rx_buf_use_size,
  1771. bp->rx_dir,
  1772. DMA_ATTR_WEAK_ORDERING);
  1773. kfree(data);
  1774. }
  1775. }
  1776. for (j = 0; j < max_agg_idx; j++) {
  1777. struct bnxt_sw_rx_agg_bd *rx_agg_buf =
  1778. &rxr->rx_agg_ring[j];
  1779. struct page *page = rx_agg_buf->page;
  1780. if (!page)
  1781. continue;
  1782. dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
  1783. BNXT_RX_PAGE_SIZE,
  1784. PCI_DMA_FROMDEVICE,
  1785. DMA_ATTR_WEAK_ORDERING);
  1786. rx_agg_buf->page = NULL;
  1787. __clear_bit(j, rxr->rx_agg_bmap);
  1788. __free_page(page);
  1789. }
  1790. if (rxr->rx_page) {
  1791. __free_page(rxr->rx_page);
  1792. rxr->rx_page = NULL;
  1793. }
  1794. }
  1795. }
  1796. static void bnxt_free_skbs(struct bnxt *bp)
  1797. {
  1798. bnxt_free_tx_skbs(bp);
  1799. bnxt_free_rx_skbs(bp);
  1800. }
  1801. static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
  1802. {
  1803. struct pci_dev *pdev = bp->pdev;
  1804. int i;
  1805. for (i = 0; i < ring->nr_pages; i++) {
  1806. if (!ring->pg_arr[i])
  1807. continue;
  1808. dma_free_coherent(&pdev->dev, ring->page_size,
  1809. ring->pg_arr[i], ring->dma_arr[i]);
  1810. ring->pg_arr[i] = NULL;
  1811. }
  1812. if (ring->pg_tbl) {
  1813. dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
  1814. ring->pg_tbl, ring->pg_tbl_map);
  1815. ring->pg_tbl = NULL;
  1816. }
  1817. if (ring->vmem_size && *ring->vmem) {
  1818. vfree(*ring->vmem);
  1819. *ring->vmem = NULL;
  1820. }
  1821. }
  1822. static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
  1823. {
  1824. int i;
  1825. struct pci_dev *pdev = bp->pdev;
  1826. if (ring->nr_pages > 1) {
  1827. ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
  1828. ring->nr_pages * 8,
  1829. &ring->pg_tbl_map,
  1830. GFP_KERNEL);
  1831. if (!ring->pg_tbl)
  1832. return -ENOMEM;
  1833. }
  1834. for (i = 0; i < ring->nr_pages; i++) {
  1835. ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
  1836. ring->page_size,
  1837. &ring->dma_arr[i],
  1838. GFP_KERNEL);
  1839. if (!ring->pg_arr[i])
  1840. return -ENOMEM;
  1841. if (ring->nr_pages > 1)
  1842. ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
  1843. }
  1844. if (ring->vmem_size) {
  1845. *ring->vmem = vzalloc(ring->vmem_size);
  1846. if (!(*ring->vmem))
  1847. return -ENOMEM;
  1848. }
  1849. return 0;
  1850. }
  1851. static void bnxt_free_rx_rings(struct bnxt *bp)
  1852. {
  1853. int i;
  1854. if (!bp->rx_ring)
  1855. return;
  1856. for (i = 0; i < bp->rx_nr_rings; i++) {
  1857. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  1858. struct bnxt_ring_struct *ring;
  1859. if (rxr->xdp_prog)
  1860. bpf_prog_put(rxr->xdp_prog);
  1861. kfree(rxr->rx_tpa);
  1862. rxr->rx_tpa = NULL;
  1863. kfree(rxr->rx_agg_bmap);
  1864. rxr->rx_agg_bmap = NULL;
  1865. ring = &rxr->rx_ring_struct;
  1866. bnxt_free_ring(bp, ring);
  1867. ring = &rxr->rx_agg_ring_struct;
  1868. bnxt_free_ring(bp, ring);
  1869. }
  1870. }
  1871. static int bnxt_alloc_rx_rings(struct bnxt *bp)
  1872. {
  1873. int i, rc, agg_rings = 0, tpa_rings = 0;
  1874. if (!bp->rx_ring)
  1875. return -ENOMEM;
  1876. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  1877. agg_rings = 1;
  1878. if (bp->flags & BNXT_FLAG_TPA)
  1879. tpa_rings = 1;
  1880. for (i = 0; i < bp->rx_nr_rings; i++) {
  1881. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  1882. struct bnxt_ring_struct *ring;
  1883. ring = &rxr->rx_ring_struct;
  1884. rc = bnxt_alloc_ring(bp, ring);
  1885. if (rc)
  1886. return rc;
  1887. if (agg_rings) {
  1888. u16 mem_size;
  1889. ring = &rxr->rx_agg_ring_struct;
  1890. rc = bnxt_alloc_ring(bp, ring);
  1891. if (rc)
  1892. return rc;
  1893. rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
  1894. mem_size = rxr->rx_agg_bmap_size / 8;
  1895. rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
  1896. if (!rxr->rx_agg_bmap)
  1897. return -ENOMEM;
  1898. if (tpa_rings) {
  1899. rxr->rx_tpa = kcalloc(MAX_TPA,
  1900. sizeof(struct bnxt_tpa_info),
  1901. GFP_KERNEL);
  1902. if (!rxr->rx_tpa)
  1903. return -ENOMEM;
  1904. }
  1905. }
  1906. }
  1907. return 0;
  1908. }
  1909. static void bnxt_free_tx_rings(struct bnxt *bp)
  1910. {
  1911. int i;
  1912. struct pci_dev *pdev = bp->pdev;
  1913. if (!bp->tx_ring)
  1914. return;
  1915. for (i = 0; i < bp->tx_nr_rings; i++) {
  1916. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  1917. struct bnxt_ring_struct *ring;
  1918. if (txr->tx_push) {
  1919. dma_free_coherent(&pdev->dev, bp->tx_push_size,
  1920. txr->tx_push, txr->tx_push_mapping);
  1921. txr->tx_push = NULL;
  1922. }
  1923. ring = &txr->tx_ring_struct;
  1924. bnxt_free_ring(bp, ring);
  1925. }
  1926. }
  1927. static int bnxt_alloc_tx_rings(struct bnxt *bp)
  1928. {
  1929. int i, j, rc;
  1930. struct pci_dev *pdev = bp->pdev;
  1931. bp->tx_push_size = 0;
  1932. if (bp->tx_push_thresh) {
  1933. int push_size;
  1934. push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
  1935. bp->tx_push_thresh);
  1936. if (push_size > 256) {
  1937. push_size = 0;
  1938. bp->tx_push_thresh = 0;
  1939. }
  1940. bp->tx_push_size = push_size;
  1941. }
  1942. for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
  1943. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  1944. struct bnxt_ring_struct *ring;
  1945. ring = &txr->tx_ring_struct;
  1946. rc = bnxt_alloc_ring(bp, ring);
  1947. if (rc)
  1948. return rc;
  1949. if (bp->tx_push_size) {
  1950. dma_addr_t mapping;
  1951. /* One pre-allocated DMA buffer to backup
  1952. * TX push operation
  1953. */
  1954. txr->tx_push = dma_alloc_coherent(&pdev->dev,
  1955. bp->tx_push_size,
  1956. &txr->tx_push_mapping,
  1957. GFP_KERNEL);
  1958. if (!txr->tx_push)
  1959. return -ENOMEM;
  1960. mapping = txr->tx_push_mapping +
  1961. sizeof(struct tx_push_bd);
  1962. txr->data_mapping = cpu_to_le64(mapping);
  1963. memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
  1964. }
  1965. ring->queue_id = bp->q_info[j].queue_id;
  1966. if (i < bp->tx_nr_rings_xdp)
  1967. continue;
  1968. if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
  1969. j++;
  1970. }
  1971. return 0;
  1972. }
  1973. static void bnxt_free_cp_rings(struct bnxt *bp)
  1974. {
  1975. int i;
  1976. if (!bp->bnapi)
  1977. return;
  1978. for (i = 0; i < bp->cp_nr_rings; i++) {
  1979. struct bnxt_napi *bnapi = bp->bnapi[i];
  1980. struct bnxt_cp_ring_info *cpr;
  1981. struct bnxt_ring_struct *ring;
  1982. if (!bnapi)
  1983. continue;
  1984. cpr = &bnapi->cp_ring;
  1985. ring = &cpr->cp_ring_struct;
  1986. bnxt_free_ring(bp, ring);
  1987. }
  1988. }
  1989. static int bnxt_alloc_cp_rings(struct bnxt *bp)
  1990. {
  1991. int i, rc;
  1992. for (i = 0; i < bp->cp_nr_rings; i++) {
  1993. struct bnxt_napi *bnapi = bp->bnapi[i];
  1994. struct bnxt_cp_ring_info *cpr;
  1995. struct bnxt_ring_struct *ring;
  1996. if (!bnapi)
  1997. continue;
  1998. cpr = &bnapi->cp_ring;
  1999. ring = &cpr->cp_ring_struct;
  2000. rc = bnxt_alloc_ring(bp, ring);
  2001. if (rc)
  2002. return rc;
  2003. }
  2004. return 0;
  2005. }
  2006. static void bnxt_init_ring_struct(struct bnxt *bp)
  2007. {
  2008. int i;
  2009. for (i = 0; i < bp->cp_nr_rings; i++) {
  2010. struct bnxt_napi *bnapi = bp->bnapi[i];
  2011. struct bnxt_cp_ring_info *cpr;
  2012. struct bnxt_rx_ring_info *rxr;
  2013. struct bnxt_tx_ring_info *txr;
  2014. struct bnxt_ring_struct *ring;
  2015. if (!bnapi)
  2016. continue;
  2017. cpr = &bnapi->cp_ring;
  2018. ring = &cpr->cp_ring_struct;
  2019. ring->nr_pages = bp->cp_nr_pages;
  2020. ring->page_size = HW_CMPD_RING_SIZE;
  2021. ring->pg_arr = (void **)cpr->cp_desc_ring;
  2022. ring->dma_arr = cpr->cp_desc_mapping;
  2023. ring->vmem_size = 0;
  2024. rxr = bnapi->rx_ring;
  2025. if (!rxr)
  2026. goto skip_rx;
  2027. ring = &rxr->rx_ring_struct;
  2028. ring->nr_pages = bp->rx_nr_pages;
  2029. ring->page_size = HW_RXBD_RING_SIZE;
  2030. ring->pg_arr = (void **)rxr->rx_desc_ring;
  2031. ring->dma_arr = rxr->rx_desc_mapping;
  2032. ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
  2033. ring->vmem = (void **)&rxr->rx_buf_ring;
  2034. ring = &rxr->rx_agg_ring_struct;
  2035. ring->nr_pages = bp->rx_agg_nr_pages;
  2036. ring->page_size = HW_RXBD_RING_SIZE;
  2037. ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
  2038. ring->dma_arr = rxr->rx_agg_desc_mapping;
  2039. ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
  2040. ring->vmem = (void **)&rxr->rx_agg_ring;
  2041. skip_rx:
  2042. txr = bnapi->tx_ring;
  2043. if (!txr)
  2044. continue;
  2045. ring = &txr->tx_ring_struct;
  2046. ring->nr_pages = bp->tx_nr_pages;
  2047. ring->page_size = HW_RXBD_RING_SIZE;
  2048. ring->pg_arr = (void **)txr->tx_desc_ring;
  2049. ring->dma_arr = txr->tx_desc_mapping;
  2050. ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
  2051. ring->vmem = (void **)&txr->tx_buf_ring;
  2052. }
  2053. }
  2054. static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
  2055. {
  2056. int i;
  2057. u32 prod;
  2058. struct rx_bd **rx_buf_ring;
  2059. rx_buf_ring = (struct rx_bd **)ring->pg_arr;
  2060. for (i = 0, prod = 0; i < ring->nr_pages; i++) {
  2061. int j;
  2062. struct rx_bd *rxbd;
  2063. rxbd = rx_buf_ring[i];
  2064. if (!rxbd)
  2065. continue;
  2066. for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
  2067. rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
  2068. rxbd->rx_bd_opaque = prod;
  2069. }
  2070. }
  2071. }
  2072. static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
  2073. {
  2074. struct net_device *dev = bp->dev;
  2075. struct bnxt_rx_ring_info *rxr;
  2076. struct bnxt_ring_struct *ring;
  2077. u32 prod, type;
  2078. int i;
  2079. type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
  2080. RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
  2081. if (NET_IP_ALIGN == 2)
  2082. type |= RX_BD_FLAGS_SOP;
  2083. rxr = &bp->rx_ring[ring_nr];
  2084. ring = &rxr->rx_ring_struct;
  2085. bnxt_init_rxbd_pages(ring, type);
  2086. if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
  2087. rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
  2088. if (IS_ERR(rxr->xdp_prog)) {
  2089. int rc = PTR_ERR(rxr->xdp_prog);
  2090. rxr->xdp_prog = NULL;
  2091. return rc;
  2092. }
  2093. }
  2094. prod = rxr->rx_prod;
  2095. for (i = 0; i < bp->rx_ring_size; i++) {
  2096. if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
  2097. netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
  2098. ring_nr, i, bp->rx_ring_size);
  2099. break;
  2100. }
  2101. prod = NEXT_RX(prod);
  2102. }
  2103. rxr->rx_prod = prod;
  2104. ring->fw_ring_id = INVALID_HW_RING_ID;
  2105. ring = &rxr->rx_agg_ring_struct;
  2106. ring->fw_ring_id = INVALID_HW_RING_ID;
  2107. if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
  2108. return 0;
  2109. type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
  2110. RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
  2111. bnxt_init_rxbd_pages(ring, type);
  2112. prod = rxr->rx_agg_prod;
  2113. for (i = 0; i < bp->rx_agg_ring_size; i++) {
  2114. if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
  2115. netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
  2116. ring_nr, i, bp->rx_ring_size);
  2117. break;
  2118. }
  2119. prod = NEXT_RX_AGG(prod);
  2120. }
  2121. rxr->rx_agg_prod = prod;
  2122. if (bp->flags & BNXT_FLAG_TPA) {
  2123. if (rxr->rx_tpa) {
  2124. u8 *data;
  2125. dma_addr_t mapping;
  2126. for (i = 0; i < MAX_TPA; i++) {
  2127. data = __bnxt_alloc_rx_data(bp, &mapping,
  2128. GFP_KERNEL);
  2129. if (!data)
  2130. return -ENOMEM;
  2131. rxr->rx_tpa[i].data = data;
  2132. rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
  2133. rxr->rx_tpa[i].mapping = mapping;
  2134. }
  2135. } else {
  2136. netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
  2137. return -ENOMEM;
  2138. }
  2139. }
  2140. return 0;
  2141. }
  2142. static void bnxt_init_cp_rings(struct bnxt *bp)
  2143. {
  2144. int i;
  2145. for (i = 0; i < bp->cp_nr_rings; i++) {
  2146. struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
  2147. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  2148. ring->fw_ring_id = INVALID_HW_RING_ID;
  2149. }
  2150. }
  2151. static int bnxt_init_rx_rings(struct bnxt *bp)
  2152. {
  2153. int i, rc = 0;
  2154. if (BNXT_RX_PAGE_MODE(bp)) {
  2155. bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
  2156. bp->rx_dma_offset = XDP_PACKET_HEADROOM;
  2157. } else {
  2158. bp->rx_offset = BNXT_RX_OFFSET;
  2159. bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
  2160. }
  2161. for (i = 0; i < bp->rx_nr_rings; i++) {
  2162. rc = bnxt_init_one_rx_ring(bp, i);
  2163. if (rc)
  2164. break;
  2165. }
  2166. return rc;
  2167. }
  2168. static int bnxt_init_tx_rings(struct bnxt *bp)
  2169. {
  2170. u16 i;
  2171. bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
  2172. MAX_SKB_FRAGS + 1);
  2173. for (i = 0; i < bp->tx_nr_rings; i++) {
  2174. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  2175. struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
  2176. ring->fw_ring_id = INVALID_HW_RING_ID;
  2177. }
  2178. return 0;
  2179. }
  2180. static void bnxt_free_ring_grps(struct bnxt *bp)
  2181. {
  2182. kfree(bp->grp_info);
  2183. bp->grp_info = NULL;
  2184. }
  2185. static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
  2186. {
  2187. int i;
  2188. if (irq_re_init) {
  2189. bp->grp_info = kcalloc(bp->cp_nr_rings,
  2190. sizeof(struct bnxt_ring_grp_info),
  2191. GFP_KERNEL);
  2192. if (!bp->grp_info)
  2193. return -ENOMEM;
  2194. }
  2195. for (i = 0; i < bp->cp_nr_rings; i++) {
  2196. if (irq_re_init)
  2197. bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
  2198. bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
  2199. bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
  2200. bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
  2201. bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
  2202. }
  2203. return 0;
  2204. }
  2205. static void bnxt_free_vnics(struct bnxt *bp)
  2206. {
  2207. kfree(bp->vnic_info);
  2208. bp->vnic_info = NULL;
  2209. bp->nr_vnics = 0;
  2210. }
  2211. static int bnxt_alloc_vnics(struct bnxt *bp)
  2212. {
  2213. int num_vnics = 1;
  2214. #ifdef CONFIG_RFS_ACCEL
  2215. if (bp->flags & BNXT_FLAG_RFS)
  2216. num_vnics += bp->rx_nr_rings;
  2217. #endif
  2218. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  2219. num_vnics++;
  2220. bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
  2221. GFP_KERNEL);
  2222. if (!bp->vnic_info)
  2223. return -ENOMEM;
  2224. bp->nr_vnics = num_vnics;
  2225. return 0;
  2226. }
  2227. static void bnxt_init_vnics(struct bnxt *bp)
  2228. {
  2229. int i;
  2230. for (i = 0; i < bp->nr_vnics; i++) {
  2231. struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
  2232. vnic->fw_vnic_id = INVALID_HW_RING_ID;
  2233. vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
  2234. vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
  2235. vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
  2236. if (bp->vnic_info[i].rss_hash_key) {
  2237. if (i == 0)
  2238. prandom_bytes(vnic->rss_hash_key,
  2239. HW_HASH_KEY_SIZE);
  2240. else
  2241. memcpy(vnic->rss_hash_key,
  2242. bp->vnic_info[0].rss_hash_key,
  2243. HW_HASH_KEY_SIZE);
  2244. }
  2245. }
  2246. }
  2247. static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
  2248. {
  2249. int pages;
  2250. pages = ring_size / desc_per_pg;
  2251. if (!pages)
  2252. return 1;
  2253. pages++;
  2254. while (pages & (pages - 1))
  2255. pages++;
  2256. return pages;
  2257. }
  2258. void bnxt_set_tpa_flags(struct bnxt *bp)
  2259. {
  2260. bp->flags &= ~BNXT_FLAG_TPA;
  2261. if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
  2262. return;
  2263. if (bp->dev->features & NETIF_F_LRO)
  2264. bp->flags |= BNXT_FLAG_LRO;
  2265. if (bp->dev->features & NETIF_F_GRO)
  2266. bp->flags |= BNXT_FLAG_GRO;
  2267. }
  2268. /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
  2269. * be set on entry.
  2270. */
  2271. void bnxt_set_ring_params(struct bnxt *bp)
  2272. {
  2273. u32 ring_size, rx_size, rx_space;
  2274. u32 agg_factor = 0, agg_ring_size = 0;
  2275. /* 8 for CRC and VLAN */
  2276. rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
  2277. rx_space = rx_size + NET_SKB_PAD +
  2278. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2279. bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
  2280. ring_size = bp->rx_ring_size;
  2281. bp->rx_agg_ring_size = 0;
  2282. bp->rx_agg_nr_pages = 0;
  2283. if (bp->flags & BNXT_FLAG_TPA)
  2284. agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
  2285. bp->flags &= ~BNXT_FLAG_JUMBO;
  2286. if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
  2287. u32 jumbo_factor;
  2288. bp->flags |= BNXT_FLAG_JUMBO;
  2289. jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  2290. if (jumbo_factor > agg_factor)
  2291. agg_factor = jumbo_factor;
  2292. }
  2293. agg_ring_size = ring_size * agg_factor;
  2294. if (agg_ring_size) {
  2295. bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
  2296. RX_DESC_CNT);
  2297. if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
  2298. u32 tmp = agg_ring_size;
  2299. bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
  2300. agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
  2301. netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
  2302. tmp, agg_ring_size);
  2303. }
  2304. bp->rx_agg_ring_size = agg_ring_size;
  2305. bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
  2306. rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
  2307. rx_space = rx_size + NET_SKB_PAD +
  2308. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2309. }
  2310. bp->rx_buf_use_size = rx_size;
  2311. bp->rx_buf_size = rx_space;
  2312. bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
  2313. bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
  2314. ring_size = bp->tx_ring_size;
  2315. bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
  2316. bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
  2317. ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
  2318. bp->cp_ring_size = ring_size;
  2319. bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
  2320. if (bp->cp_nr_pages > MAX_CP_PAGES) {
  2321. bp->cp_nr_pages = MAX_CP_PAGES;
  2322. bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
  2323. netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
  2324. ring_size, bp->cp_ring_size);
  2325. }
  2326. bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
  2327. bp->cp_ring_mask = bp->cp_bit - 1;
  2328. }
  2329. int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
  2330. {
  2331. if (page_mode) {
  2332. if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
  2333. return -EOPNOTSUPP;
  2334. bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
  2335. bp->flags &= ~BNXT_FLAG_AGG_RINGS;
  2336. bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
  2337. bp->dev->hw_features &= ~NETIF_F_LRO;
  2338. bp->dev->features &= ~NETIF_F_LRO;
  2339. bp->rx_dir = DMA_BIDIRECTIONAL;
  2340. bp->rx_skb_func = bnxt_rx_page_skb;
  2341. } else {
  2342. bp->dev->max_mtu = BNXT_MAX_MTU;
  2343. bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
  2344. bp->rx_dir = DMA_FROM_DEVICE;
  2345. bp->rx_skb_func = bnxt_rx_skb;
  2346. }
  2347. return 0;
  2348. }
  2349. static void bnxt_free_vnic_attributes(struct bnxt *bp)
  2350. {
  2351. int i;
  2352. struct bnxt_vnic_info *vnic;
  2353. struct pci_dev *pdev = bp->pdev;
  2354. if (!bp->vnic_info)
  2355. return;
  2356. for (i = 0; i < bp->nr_vnics; i++) {
  2357. vnic = &bp->vnic_info[i];
  2358. kfree(vnic->fw_grp_ids);
  2359. vnic->fw_grp_ids = NULL;
  2360. kfree(vnic->uc_list);
  2361. vnic->uc_list = NULL;
  2362. if (vnic->mc_list) {
  2363. dma_free_coherent(&pdev->dev, vnic->mc_list_size,
  2364. vnic->mc_list, vnic->mc_list_mapping);
  2365. vnic->mc_list = NULL;
  2366. }
  2367. if (vnic->rss_table) {
  2368. dma_free_coherent(&pdev->dev, PAGE_SIZE,
  2369. vnic->rss_table,
  2370. vnic->rss_table_dma_addr);
  2371. vnic->rss_table = NULL;
  2372. }
  2373. vnic->rss_hash_key = NULL;
  2374. vnic->flags = 0;
  2375. }
  2376. }
  2377. static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
  2378. {
  2379. int i, rc = 0, size;
  2380. struct bnxt_vnic_info *vnic;
  2381. struct pci_dev *pdev = bp->pdev;
  2382. int max_rings;
  2383. for (i = 0; i < bp->nr_vnics; i++) {
  2384. vnic = &bp->vnic_info[i];
  2385. if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
  2386. int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
  2387. if (mem_size > 0) {
  2388. vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
  2389. if (!vnic->uc_list) {
  2390. rc = -ENOMEM;
  2391. goto out;
  2392. }
  2393. }
  2394. }
  2395. if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
  2396. vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
  2397. vnic->mc_list =
  2398. dma_alloc_coherent(&pdev->dev,
  2399. vnic->mc_list_size,
  2400. &vnic->mc_list_mapping,
  2401. GFP_KERNEL);
  2402. if (!vnic->mc_list) {
  2403. rc = -ENOMEM;
  2404. goto out;
  2405. }
  2406. }
  2407. if (vnic->flags & BNXT_VNIC_RSS_FLAG)
  2408. max_rings = bp->rx_nr_rings;
  2409. else
  2410. max_rings = 1;
  2411. vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
  2412. if (!vnic->fw_grp_ids) {
  2413. rc = -ENOMEM;
  2414. goto out;
  2415. }
  2416. if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
  2417. !(vnic->flags & BNXT_VNIC_RSS_FLAG))
  2418. continue;
  2419. /* Allocate rss table and hash key */
  2420. vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  2421. &vnic->rss_table_dma_addr,
  2422. GFP_KERNEL);
  2423. if (!vnic->rss_table) {
  2424. rc = -ENOMEM;
  2425. goto out;
  2426. }
  2427. size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
  2428. vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
  2429. vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
  2430. }
  2431. return 0;
  2432. out:
  2433. return rc;
  2434. }
  2435. static void bnxt_free_hwrm_resources(struct bnxt *bp)
  2436. {
  2437. struct pci_dev *pdev = bp->pdev;
  2438. dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
  2439. bp->hwrm_cmd_resp_dma_addr);
  2440. bp->hwrm_cmd_resp_addr = NULL;
  2441. if (bp->hwrm_dbg_resp_addr) {
  2442. dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
  2443. bp->hwrm_dbg_resp_addr,
  2444. bp->hwrm_dbg_resp_dma_addr);
  2445. bp->hwrm_dbg_resp_addr = NULL;
  2446. }
  2447. }
  2448. static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
  2449. {
  2450. struct pci_dev *pdev = bp->pdev;
  2451. bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  2452. &bp->hwrm_cmd_resp_dma_addr,
  2453. GFP_KERNEL);
  2454. if (!bp->hwrm_cmd_resp_addr)
  2455. return -ENOMEM;
  2456. bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
  2457. HWRM_DBG_REG_BUF_SIZE,
  2458. &bp->hwrm_dbg_resp_dma_addr,
  2459. GFP_KERNEL);
  2460. if (!bp->hwrm_dbg_resp_addr)
  2461. netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
  2462. return 0;
  2463. }
  2464. static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
  2465. {
  2466. if (bp->hwrm_short_cmd_req_addr) {
  2467. struct pci_dev *pdev = bp->pdev;
  2468. dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
  2469. bp->hwrm_short_cmd_req_addr,
  2470. bp->hwrm_short_cmd_req_dma_addr);
  2471. bp->hwrm_short_cmd_req_addr = NULL;
  2472. }
  2473. }
  2474. static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
  2475. {
  2476. struct pci_dev *pdev = bp->pdev;
  2477. bp->hwrm_short_cmd_req_addr =
  2478. dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
  2479. &bp->hwrm_short_cmd_req_dma_addr,
  2480. GFP_KERNEL);
  2481. if (!bp->hwrm_short_cmd_req_addr)
  2482. return -ENOMEM;
  2483. return 0;
  2484. }
  2485. static void bnxt_free_stats(struct bnxt *bp)
  2486. {
  2487. u32 size, i;
  2488. struct pci_dev *pdev = bp->pdev;
  2489. if (bp->hw_rx_port_stats) {
  2490. dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
  2491. bp->hw_rx_port_stats,
  2492. bp->hw_rx_port_stats_map);
  2493. bp->hw_rx_port_stats = NULL;
  2494. bp->flags &= ~BNXT_FLAG_PORT_STATS;
  2495. }
  2496. if (!bp->bnapi)
  2497. return;
  2498. size = sizeof(struct ctx_hw_stats);
  2499. for (i = 0; i < bp->cp_nr_rings; i++) {
  2500. struct bnxt_napi *bnapi = bp->bnapi[i];
  2501. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2502. if (cpr->hw_stats) {
  2503. dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
  2504. cpr->hw_stats_map);
  2505. cpr->hw_stats = NULL;
  2506. }
  2507. }
  2508. }
  2509. static int bnxt_alloc_stats(struct bnxt *bp)
  2510. {
  2511. u32 size, i;
  2512. struct pci_dev *pdev = bp->pdev;
  2513. size = sizeof(struct ctx_hw_stats);
  2514. for (i = 0; i < bp->cp_nr_rings; i++) {
  2515. struct bnxt_napi *bnapi = bp->bnapi[i];
  2516. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2517. cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
  2518. &cpr->hw_stats_map,
  2519. GFP_KERNEL);
  2520. if (!cpr->hw_stats)
  2521. return -ENOMEM;
  2522. cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
  2523. }
  2524. if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
  2525. bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
  2526. sizeof(struct tx_port_stats) + 1024;
  2527. bp->hw_rx_port_stats =
  2528. dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
  2529. &bp->hw_rx_port_stats_map,
  2530. GFP_KERNEL);
  2531. if (!bp->hw_rx_port_stats)
  2532. return -ENOMEM;
  2533. bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
  2534. 512;
  2535. bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
  2536. sizeof(struct rx_port_stats) + 512;
  2537. bp->flags |= BNXT_FLAG_PORT_STATS;
  2538. }
  2539. return 0;
  2540. }
  2541. static void bnxt_clear_ring_indices(struct bnxt *bp)
  2542. {
  2543. int i;
  2544. if (!bp->bnapi)
  2545. return;
  2546. for (i = 0; i < bp->cp_nr_rings; i++) {
  2547. struct bnxt_napi *bnapi = bp->bnapi[i];
  2548. struct bnxt_cp_ring_info *cpr;
  2549. struct bnxt_rx_ring_info *rxr;
  2550. struct bnxt_tx_ring_info *txr;
  2551. if (!bnapi)
  2552. continue;
  2553. cpr = &bnapi->cp_ring;
  2554. cpr->cp_raw_cons = 0;
  2555. txr = bnapi->tx_ring;
  2556. if (txr) {
  2557. txr->tx_prod = 0;
  2558. txr->tx_cons = 0;
  2559. }
  2560. rxr = bnapi->rx_ring;
  2561. if (rxr) {
  2562. rxr->rx_prod = 0;
  2563. rxr->rx_agg_prod = 0;
  2564. rxr->rx_sw_agg_prod = 0;
  2565. rxr->rx_next_cons = 0;
  2566. }
  2567. }
  2568. }
  2569. static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
  2570. {
  2571. #ifdef CONFIG_RFS_ACCEL
  2572. int i;
  2573. /* Under rtnl_lock and all our NAPIs have been disabled. It's
  2574. * safe to delete the hash table.
  2575. */
  2576. for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
  2577. struct hlist_head *head;
  2578. struct hlist_node *tmp;
  2579. struct bnxt_ntuple_filter *fltr;
  2580. head = &bp->ntp_fltr_hash_tbl[i];
  2581. hlist_for_each_entry_safe(fltr, tmp, head, hash) {
  2582. hlist_del(&fltr->hash);
  2583. kfree(fltr);
  2584. }
  2585. }
  2586. if (irq_reinit) {
  2587. kfree(bp->ntp_fltr_bmap);
  2588. bp->ntp_fltr_bmap = NULL;
  2589. }
  2590. bp->ntp_fltr_count = 0;
  2591. #endif
  2592. }
  2593. static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
  2594. {
  2595. #ifdef CONFIG_RFS_ACCEL
  2596. int i, rc = 0;
  2597. if (!(bp->flags & BNXT_FLAG_RFS))
  2598. return 0;
  2599. for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
  2600. INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
  2601. bp->ntp_fltr_count = 0;
  2602. bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
  2603. sizeof(long),
  2604. GFP_KERNEL);
  2605. if (!bp->ntp_fltr_bmap)
  2606. rc = -ENOMEM;
  2607. return rc;
  2608. #else
  2609. return 0;
  2610. #endif
  2611. }
  2612. static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
  2613. {
  2614. bnxt_free_vnic_attributes(bp);
  2615. bnxt_free_tx_rings(bp);
  2616. bnxt_free_rx_rings(bp);
  2617. bnxt_free_cp_rings(bp);
  2618. bnxt_free_ntp_fltrs(bp, irq_re_init);
  2619. if (irq_re_init) {
  2620. bnxt_free_stats(bp);
  2621. bnxt_free_ring_grps(bp);
  2622. bnxt_free_vnics(bp);
  2623. kfree(bp->tx_ring_map);
  2624. bp->tx_ring_map = NULL;
  2625. kfree(bp->tx_ring);
  2626. bp->tx_ring = NULL;
  2627. kfree(bp->rx_ring);
  2628. bp->rx_ring = NULL;
  2629. kfree(bp->bnapi);
  2630. bp->bnapi = NULL;
  2631. } else {
  2632. bnxt_clear_ring_indices(bp);
  2633. }
  2634. }
  2635. static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
  2636. {
  2637. int i, j, rc, size, arr_size;
  2638. void *bnapi;
  2639. if (irq_re_init) {
  2640. /* Allocate bnapi mem pointer array and mem block for
  2641. * all queues
  2642. */
  2643. arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
  2644. bp->cp_nr_rings);
  2645. size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
  2646. bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
  2647. if (!bnapi)
  2648. return -ENOMEM;
  2649. bp->bnapi = bnapi;
  2650. bnapi += arr_size;
  2651. for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
  2652. bp->bnapi[i] = bnapi;
  2653. bp->bnapi[i]->index = i;
  2654. bp->bnapi[i]->bp = bp;
  2655. }
  2656. bp->rx_ring = kcalloc(bp->rx_nr_rings,
  2657. sizeof(struct bnxt_rx_ring_info),
  2658. GFP_KERNEL);
  2659. if (!bp->rx_ring)
  2660. return -ENOMEM;
  2661. for (i = 0; i < bp->rx_nr_rings; i++) {
  2662. bp->rx_ring[i].bnapi = bp->bnapi[i];
  2663. bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
  2664. }
  2665. bp->tx_ring = kcalloc(bp->tx_nr_rings,
  2666. sizeof(struct bnxt_tx_ring_info),
  2667. GFP_KERNEL);
  2668. if (!bp->tx_ring)
  2669. return -ENOMEM;
  2670. bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
  2671. GFP_KERNEL);
  2672. if (!bp->tx_ring_map)
  2673. return -ENOMEM;
  2674. if (bp->flags & BNXT_FLAG_SHARED_RINGS)
  2675. j = 0;
  2676. else
  2677. j = bp->rx_nr_rings;
  2678. for (i = 0; i < bp->tx_nr_rings; i++, j++) {
  2679. bp->tx_ring[i].bnapi = bp->bnapi[j];
  2680. bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
  2681. bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
  2682. if (i >= bp->tx_nr_rings_xdp) {
  2683. bp->tx_ring[i].txq_index = i -
  2684. bp->tx_nr_rings_xdp;
  2685. bp->bnapi[j]->tx_int = bnxt_tx_int;
  2686. } else {
  2687. bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
  2688. bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
  2689. }
  2690. }
  2691. rc = bnxt_alloc_stats(bp);
  2692. if (rc)
  2693. goto alloc_mem_err;
  2694. rc = bnxt_alloc_ntp_fltrs(bp);
  2695. if (rc)
  2696. goto alloc_mem_err;
  2697. rc = bnxt_alloc_vnics(bp);
  2698. if (rc)
  2699. goto alloc_mem_err;
  2700. }
  2701. bnxt_init_ring_struct(bp);
  2702. rc = bnxt_alloc_rx_rings(bp);
  2703. if (rc)
  2704. goto alloc_mem_err;
  2705. rc = bnxt_alloc_tx_rings(bp);
  2706. if (rc)
  2707. goto alloc_mem_err;
  2708. rc = bnxt_alloc_cp_rings(bp);
  2709. if (rc)
  2710. goto alloc_mem_err;
  2711. bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
  2712. BNXT_VNIC_UCAST_FLAG;
  2713. rc = bnxt_alloc_vnic_attributes(bp);
  2714. if (rc)
  2715. goto alloc_mem_err;
  2716. return 0;
  2717. alloc_mem_err:
  2718. bnxt_free_mem(bp, true);
  2719. return rc;
  2720. }
  2721. static void bnxt_disable_int(struct bnxt *bp)
  2722. {
  2723. int i;
  2724. if (!bp->bnapi)
  2725. return;
  2726. for (i = 0; i < bp->cp_nr_rings; i++) {
  2727. struct bnxt_napi *bnapi = bp->bnapi[i];
  2728. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2729. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  2730. if (ring->fw_ring_id != INVALID_HW_RING_ID)
  2731. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  2732. }
  2733. }
  2734. static void bnxt_disable_int_sync(struct bnxt *bp)
  2735. {
  2736. int i;
  2737. atomic_inc(&bp->intr_sem);
  2738. bnxt_disable_int(bp);
  2739. for (i = 0; i < bp->cp_nr_rings; i++)
  2740. synchronize_irq(bp->irq_tbl[i].vector);
  2741. }
  2742. static void bnxt_enable_int(struct bnxt *bp)
  2743. {
  2744. int i;
  2745. atomic_set(&bp->intr_sem, 0);
  2746. for (i = 0; i < bp->cp_nr_rings; i++) {
  2747. struct bnxt_napi *bnapi = bp->bnapi[i];
  2748. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  2749. BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
  2750. }
  2751. }
  2752. void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
  2753. u16 cmpl_ring, u16 target_id)
  2754. {
  2755. struct input *req = request;
  2756. req->req_type = cpu_to_le16(req_type);
  2757. req->cmpl_ring = cpu_to_le16(cmpl_ring);
  2758. req->target_id = cpu_to_le16(target_id);
  2759. req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
  2760. }
  2761. static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
  2762. int timeout, bool silent)
  2763. {
  2764. int i, intr_process, rc, tmo_count;
  2765. struct input *req = msg;
  2766. u32 *data = msg;
  2767. __le32 *resp_len, *valid;
  2768. u16 cp_ring_id, len = 0;
  2769. struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
  2770. u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
  2771. req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
  2772. memset(resp, 0, PAGE_SIZE);
  2773. cp_ring_id = le16_to_cpu(req->cmpl_ring);
  2774. intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
  2775. if (bp->flags & BNXT_FLAG_SHORT_CMD) {
  2776. void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
  2777. struct hwrm_short_input short_input = {0};
  2778. memcpy(short_cmd_req, req, msg_len);
  2779. memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
  2780. msg_len);
  2781. short_input.req_type = req->req_type;
  2782. short_input.signature =
  2783. cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
  2784. short_input.size = cpu_to_le16(msg_len);
  2785. short_input.req_addr =
  2786. cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
  2787. data = (u32 *)&short_input;
  2788. msg_len = sizeof(short_input);
  2789. /* Sync memory write before updating doorbell */
  2790. wmb();
  2791. max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
  2792. }
  2793. /* Write request msg to hwrm channel */
  2794. __iowrite32_copy(bp->bar0, data, msg_len / 4);
  2795. for (i = msg_len; i < max_req_len; i += 4)
  2796. writel(0, bp->bar0 + i);
  2797. /* currently supports only one outstanding message */
  2798. if (intr_process)
  2799. bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
  2800. /* Ring channel doorbell */
  2801. writel(1, bp->bar0 + 0x100);
  2802. if (!timeout)
  2803. timeout = DFLT_HWRM_CMD_TIMEOUT;
  2804. i = 0;
  2805. tmo_count = timeout * 40;
  2806. if (intr_process) {
  2807. /* Wait until hwrm response cmpl interrupt is processed */
  2808. while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
  2809. i++ < tmo_count) {
  2810. usleep_range(25, 40);
  2811. }
  2812. if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
  2813. netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
  2814. le16_to_cpu(req->req_type));
  2815. return -1;
  2816. }
  2817. } else {
  2818. /* Check if response len is updated */
  2819. resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
  2820. for (i = 0; i < tmo_count; i++) {
  2821. len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
  2822. HWRM_RESP_LEN_SFT;
  2823. if (len)
  2824. break;
  2825. usleep_range(25, 40);
  2826. }
  2827. if (i >= tmo_count) {
  2828. netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
  2829. timeout, le16_to_cpu(req->req_type),
  2830. le16_to_cpu(req->seq_id), len);
  2831. return -1;
  2832. }
  2833. /* Last word of resp contains valid bit */
  2834. valid = bp->hwrm_cmd_resp_addr + len - 4;
  2835. for (i = 0; i < 5; i++) {
  2836. if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
  2837. break;
  2838. udelay(1);
  2839. }
  2840. if (i >= 5) {
  2841. netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
  2842. timeout, le16_to_cpu(req->req_type),
  2843. le16_to_cpu(req->seq_id), len, *valid);
  2844. return -1;
  2845. }
  2846. }
  2847. rc = le16_to_cpu(resp->error_code);
  2848. if (rc && !silent)
  2849. netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
  2850. le16_to_cpu(resp->req_type),
  2851. le16_to_cpu(resp->seq_id), rc);
  2852. return rc;
  2853. }
  2854. int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
  2855. {
  2856. return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
  2857. }
  2858. int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
  2859. {
  2860. int rc;
  2861. mutex_lock(&bp->hwrm_cmd_lock);
  2862. rc = _hwrm_send_message(bp, msg, msg_len, timeout);
  2863. mutex_unlock(&bp->hwrm_cmd_lock);
  2864. return rc;
  2865. }
  2866. int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
  2867. int timeout)
  2868. {
  2869. int rc;
  2870. mutex_lock(&bp->hwrm_cmd_lock);
  2871. rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
  2872. mutex_unlock(&bp->hwrm_cmd_lock);
  2873. return rc;
  2874. }
  2875. int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
  2876. int bmap_size)
  2877. {
  2878. struct hwrm_func_drv_rgtr_input req = {0};
  2879. DECLARE_BITMAP(async_events_bmap, 256);
  2880. u32 *events = (u32 *)async_events_bmap;
  2881. int i;
  2882. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
  2883. req.enables =
  2884. cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
  2885. memset(async_events_bmap, 0, sizeof(async_events_bmap));
  2886. for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
  2887. __set_bit(bnxt_async_events_arr[i], async_events_bmap);
  2888. if (bmap && bmap_size) {
  2889. for (i = 0; i < bmap_size; i++) {
  2890. if (test_bit(i, bmap))
  2891. __set_bit(i, async_events_bmap);
  2892. }
  2893. }
  2894. for (i = 0; i < 8; i++)
  2895. req.async_event_fwd[i] |= cpu_to_le32(events[i]);
  2896. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  2897. }
  2898. static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
  2899. {
  2900. struct hwrm_func_drv_rgtr_input req = {0};
  2901. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
  2902. req.enables =
  2903. cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
  2904. FUNC_DRV_RGTR_REQ_ENABLES_VER);
  2905. req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
  2906. req.ver_maj = DRV_VER_MAJ;
  2907. req.ver_min = DRV_VER_MIN;
  2908. req.ver_upd = DRV_VER_UPD;
  2909. if (BNXT_PF(bp)) {
  2910. u32 data[8];
  2911. int i;
  2912. memset(data, 0, sizeof(data));
  2913. for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
  2914. u16 cmd = bnxt_vf_req_snif[i];
  2915. unsigned int bit, idx;
  2916. idx = cmd / 32;
  2917. bit = cmd % 32;
  2918. data[idx] |= 1 << bit;
  2919. }
  2920. for (i = 0; i < 8; i++)
  2921. req.vf_req_fwd[i] = cpu_to_le32(data[i]);
  2922. req.enables |=
  2923. cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
  2924. }
  2925. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  2926. }
  2927. static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
  2928. {
  2929. struct hwrm_func_drv_unrgtr_input req = {0};
  2930. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
  2931. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  2932. }
  2933. static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
  2934. {
  2935. u32 rc = 0;
  2936. struct hwrm_tunnel_dst_port_free_input req = {0};
  2937. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
  2938. req.tunnel_type = tunnel_type;
  2939. switch (tunnel_type) {
  2940. case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
  2941. req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
  2942. break;
  2943. case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
  2944. req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
  2945. break;
  2946. default:
  2947. break;
  2948. }
  2949. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  2950. if (rc)
  2951. netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
  2952. rc);
  2953. return rc;
  2954. }
  2955. static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
  2956. u8 tunnel_type)
  2957. {
  2958. u32 rc = 0;
  2959. struct hwrm_tunnel_dst_port_alloc_input req = {0};
  2960. struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  2961. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
  2962. req.tunnel_type = tunnel_type;
  2963. req.tunnel_dst_port_val = port;
  2964. mutex_lock(&bp->hwrm_cmd_lock);
  2965. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  2966. if (rc) {
  2967. netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
  2968. rc);
  2969. goto err_out;
  2970. }
  2971. switch (tunnel_type) {
  2972. case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
  2973. bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
  2974. break;
  2975. case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
  2976. bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
  2977. break;
  2978. default:
  2979. break;
  2980. }
  2981. err_out:
  2982. mutex_unlock(&bp->hwrm_cmd_lock);
  2983. return rc;
  2984. }
  2985. static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
  2986. {
  2987. struct hwrm_cfa_l2_set_rx_mask_input req = {0};
  2988. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  2989. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
  2990. req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
  2991. req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
  2992. req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
  2993. req.mask = cpu_to_le32(vnic->rx_mask);
  2994. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  2995. }
  2996. #ifdef CONFIG_RFS_ACCEL
  2997. static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
  2998. struct bnxt_ntuple_filter *fltr)
  2999. {
  3000. struct hwrm_cfa_ntuple_filter_free_input req = {0};
  3001. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
  3002. req.ntuple_filter_id = fltr->filter_id;
  3003. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3004. }
  3005. #define BNXT_NTP_FLTR_FLAGS \
  3006. (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
  3007. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
  3008. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
  3009. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
  3010. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
  3011. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
  3012. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
  3013. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
  3014. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
  3015. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
  3016. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
  3017. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
  3018. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
  3019. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
  3020. #define BNXT_NTP_TUNNEL_FLTR_FLAG \
  3021. CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
  3022. static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
  3023. struct bnxt_ntuple_filter *fltr)
  3024. {
  3025. int rc = 0;
  3026. struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
  3027. struct hwrm_cfa_ntuple_filter_alloc_output *resp =
  3028. bp->hwrm_cmd_resp_addr;
  3029. struct flow_keys *keys = &fltr->fkeys;
  3030. struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
  3031. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
  3032. req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
  3033. req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
  3034. req.ethertype = htons(ETH_P_IP);
  3035. memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
  3036. req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
  3037. req.ip_protocol = keys->basic.ip_proto;
  3038. if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
  3039. int i;
  3040. req.ethertype = htons(ETH_P_IPV6);
  3041. req.ip_addr_type =
  3042. CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
  3043. *(struct in6_addr *)&req.src_ipaddr[0] =
  3044. keys->addrs.v6addrs.src;
  3045. *(struct in6_addr *)&req.dst_ipaddr[0] =
  3046. keys->addrs.v6addrs.dst;
  3047. for (i = 0; i < 4; i++) {
  3048. req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
  3049. req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
  3050. }
  3051. } else {
  3052. req.src_ipaddr[0] = keys->addrs.v4addrs.src;
  3053. req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
  3054. req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
  3055. req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
  3056. }
  3057. if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
  3058. req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
  3059. req.tunnel_type =
  3060. CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
  3061. }
  3062. req.src_port = keys->ports.src;
  3063. req.src_port_mask = cpu_to_be16(0xffff);
  3064. req.dst_port = keys->ports.dst;
  3065. req.dst_port_mask = cpu_to_be16(0xffff);
  3066. req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
  3067. mutex_lock(&bp->hwrm_cmd_lock);
  3068. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3069. if (!rc)
  3070. fltr->filter_id = resp->ntuple_filter_id;
  3071. mutex_unlock(&bp->hwrm_cmd_lock);
  3072. return rc;
  3073. }
  3074. #endif
  3075. static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
  3076. u8 *mac_addr)
  3077. {
  3078. u32 rc = 0;
  3079. struct hwrm_cfa_l2_filter_alloc_input req = {0};
  3080. struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3081. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
  3082. req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
  3083. if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
  3084. req.flags |=
  3085. cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
  3086. req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
  3087. req.enables =
  3088. cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
  3089. CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
  3090. CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
  3091. memcpy(req.l2_addr, mac_addr, ETH_ALEN);
  3092. req.l2_addr_mask[0] = 0xff;
  3093. req.l2_addr_mask[1] = 0xff;
  3094. req.l2_addr_mask[2] = 0xff;
  3095. req.l2_addr_mask[3] = 0xff;
  3096. req.l2_addr_mask[4] = 0xff;
  3097. req.l2_addr_mask[5] = 0xff;
  3098. mutex_lock(&bp->hwrm_cmd_lock);
  3099. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3100. if (!rc)
  3101. bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
  3102. resp->l2_filter_id;
  3103. mutex_unlock(&bp->hwrm_cmd_lock);
  3104. return rc;
  3105. }
  3106. static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
  3107. {
  3108. u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
  3109. int rc = 0;
  3110. /* Any associated ntuple filters will also be cleared by firmware. */
  3111. mutex_lock(&bp->hwrm_cmd_lock);
  3112. for (i = 0; i < num_of_vnics; i++) {
  3113. struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
  3114. for (j = 0; j < vnic->uc_filter_count; j++) {
  3115. struct hwrm_cfa_l2_filter_free_input req = {0};
  3116. bnxt_hwrm_cmd_hdr_init(bp, &req,
  3117. HWRM_CFA_L2_FILTER_FREE, -1, -1);
  3118. req.l2_filter_id = vnic->fw_l2_filter_id[j];
  3119. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3120. HWRM_CMD_TIMEOUT);
  3121. }
  3122. vnic->uc_filter_count = 0;
  3123. }
  3124. mutex_unlock(&bp->hwrm_cmd_lock);
  3125. return rc;
  3126. }
  3127. static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
  3128. {
  3129. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3130. struct hwrm_vnic_tpa_cfg_input req = {0};
  3131. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
  3132. if (tpa_flags) {
  3133. u16 mss = bp->dev->mtu - 40;
  3134. u32 nsegs, n, segs = 0, flags;
  3135. flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
  3136. VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
  3137. VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
  3138. VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
  3139. VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
  3140. if (tpa_flags & BNXT_FLAG_GRO)
  3141. flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
  3142. req.flags = cpu_to_le32(flags);
  3143. req.enables =
  3144. cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
  3145. VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
  3146. VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
  3147. /* Number of segs are log2 units, and first packet is not
  3148. * included as part of this units.
  3149. */
  3150. if (mss <= BNXT_RX_PAGE_SIZE) {
  3151. n = BNXT_RX_PAGE_SIZE / mss;
  3152. nsegs = (MAX_SKB_FRAGS - 1) * n;
  3153. } else {
  3154. n = mss / BNXT_RX_PAGE_SIZE;
  3155. if (mss & (BNXT_RX_PAGE_SIZE - 1))
  3156. n++;
  3157. nsegs = (MAX_SKB_FRAGS - n) / n;
  3158. }
  3159. segs = ilog2(nsegs);
  3160. req.max_agg_segs = cpu_to_le16(segs);
  3161. req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
  3162. req.min_agg_len = cpu_to_le32(512);
  3163. }
  3164. req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
  3165. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3166. }
  3167. static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
  3168. {
  3169. u32 i, j, max_rings;
  3170. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3171. struct hwrm_vnic_rss_cfg_input req = {0};
  3172. if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
  3173. return 0;
  3174. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
  3175. if (set_rss) {
  3176. req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
  3177. if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
  3178. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  3179. max_rings = bp->rx_nr_rings - 1;
  3180. else
  3181. max_rings = bp->rx_nr_rings;
  3182. } else {
  3183. max_rings = 1;
  3184. }
  3185. /* Fill the RSS indirection table with ring group ids */
  3186. for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
  3187. if (j == max_rings)
  3188. j = 0;
  3189. vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
  3190. }
  3191. req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
  3192. req.hash_key_tbl_addr =
  3193. cpu_to_le64(vnic->rss_hash_key_dma_addr);
  3194. }
  3195. req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
  3196. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3197. }
  3198. static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
  3199. {
  3200. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3201. struct hwrm_vnic_plcmodes_cfg_input req = {0};
  3202. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
  3203. req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
  3204. VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
  3205. VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
  3206. req.enables =
  3207. cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
  3208. VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
  3209. /* thresholds not implemented in firmware yet */
  3210. req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
  3211. req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
  3212. req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
  3213. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3214. }
  3215. static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
  3216. u16 ctx_idx)
  3217. {
  3218. struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
  3219. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
  3220. req.rss_cos_lb_ctx_id =
  3221. cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
  3222. hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3223. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
  3224. }
  3225. static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
  3226. {
  3227. int i, j;
  3228. for (i = 0; i < bp->nr_vnics; i++) {
  3229. struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
  3230. for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
  3231. if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
  3232. bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
  3233. }
  3234. }
  3235. bp->rsscos_nr_ctxs = 0;
  3236. }
  3237. static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
  3238. {
  3239. int rc;
  3240. struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
  3241. struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
  3242. bp->hwrm_cmd_resp_addr;
  3243. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
  3244. -1);
  3245. mutex_lock(&bp->hwrm_cmd_lock);
  3246. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3247. if (!rc)
  3248. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
  3249. le16_to_cpu(resp->rss_cos_lb_ctx_id);
  3250. mutex_unlock(&bp->hwrm_cmd_lock);
  3251. return rc;
  3252. }
  3253. int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
  3254. {
  3255. unsigned int ring = 0, grp_idx;
  3256. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  3257. struct hwrm_vnic_cfg_input req = {0};
  3258. u16 def_vlan = 0;
  3259. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
  3260. req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
  3261. /* Only RSS support for now TBD: COS & LB */
  3262. if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
  3263. req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
  3264. req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
  3265. VNIC_CFG_REQ_ENABLES_MRU);
  3266. } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
  3267. req.rss_rule =
  3268. cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
  3269. req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
  3270. VNIC_CFG_REQ_ENABLES_MRU);
  3271. req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
  3272. } else {
  3273. req.rss_rule = cpu_to_le16(0xffff);
  3274. }
  3275. if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
  3276. (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
  3277. req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
  3278. req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
  3279. } else {
  3280. req.cos_rule = cpu_to_le16(0xffff);
  3281. }
  3282. if (vnic->flags & BNXT_VNIC_RSS_FLAG)
  3283. ring = 0;
  3284. else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
  3285. ring = vnic_id - 1;
  3286. else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
  3287. ring = bp->rx_nr_rings - 1;
  3288. grp_idx = bp->rx_ring[ring].bnapi->index;
  3289. req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
  3290. req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
  3291. req.lb_rule = cpu_to_le16(0xffff);
  3292. req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
  3293. VLAN_HLEN);
  3294. #ifdef CONFIG_BNXT_SRIOV
  3295. if (BNXT_VF(bp))
  3296. def_vlan = bp->vf.vlan;
  3297. #endif
  3298. if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
  3299. req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
  3300. if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
  3301. req.flags |=
  3302. cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
  3303. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3304. }
  3305. static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
  3306. {
  3307. u32 rc = 0;
  3308. if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
  3309. struct hwrm_vnic_free_input req = {0};
  3310. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
  3311. req.vnic_id =
  3312. cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
  3313. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3314. if (rc)
  3315. return rc;
  3316. bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
  3317. }
  3318. return rc;
  3319. }
  3320. static void bnxt_hwrm_vnic_free(struct bnxt *bp)
  3321. {
  3322. u16 i;
  3323. for (i = 0; i < bp->nr_vnics; i++)
  3324. bnxt_hwrm_vnic_free_one(bp, i);
  3325. }
  3326. static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
  3327. unsigned int start_rx_ring_idx,
  3328. unsigned int nr_rings)
  3329. {
  3330. int rc = 0;
  3331. unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
  3332. struct hwrm_vnic_alloc_input req = {0};
  3333. struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3334. /* map ring groups to this vnic */
  3335. for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
  3336. grp_idx = bp->rx_ring[i].bnapi->index;
  3337. if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
  3338. netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
  3339. j, nr_rings);
  3340. break;
  3341. }
  3342. bp->vnic_info[vnic_id].fw_grp_ids[j] =
  3343. bp->grp_info[grp_idx].fw_grp_id;
  3344. }
  3345. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
  3346. bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
  3347. if (vnic_id == 0)
  3348. req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
  3349. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
  3350. mutex_lock(&bp->hwrm_cmd_lock);
  3351. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3352. if (!rc)
  3353. bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
  3354. mutex_unlock(&bp->hwrm_cmd_lock);
  3355. return rc;
  3356. }
  3357. static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
  3358. {
  3359. struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  3360. struct hwrm_vnic_qcaps_input req = {0};
  3361. int rc;
  3362. if (bp->hwrm_spec_code < 0x10600)
  3363. return 0;
  3364. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
  3365. mutex_lock(&bp->hwrm_cmd_lock);
  3366. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3367. if (!rc) {
  3368. if (resp->flags &
  3369. cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
  3370. bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
  3371. }
  3372. mutex_unlock(&bp->hwrm_cmd_lock);
  3373. return rc;
  3374. }
  3375. static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
  3376. {
  3377. u16 i;
  3378. u32 rc = 0;
  3379. mutex_lock(&bp->hwrm_cmd_lock);
  3380. for (i = 0; i < bp->rx_nr_rings; i++) {
  3381. struct hwrm_ring_grp_alloc_input req = {0};
  3382. struct hwrm_ring_grp_alloc_output *resp =
  3383. bp->hwrm_cmd_resp_addr;
  3384. unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
  3385. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
  3386. req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
  3387. req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
  3388. req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
  3389. req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
  3390. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3391. HWRM_CMD_TIMEOUT);
  3392. if (rc)
  3393. break;
  3394. bp->grp_info[grp_idx].fw_grp_id =
  3395. le32_to_cpu(resp->ring_group_id);
  3396. }
  3397. mutex_unlock(&bp->hwrm_cmd_lock);
  3398. return rc;
  3399. }
  3400. static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
  3401. {
  3402. u16 i;
  3403. u32 rc = 0;
  3404. struct hwrm_ring_grp_free_input req = {0};
  3405. if (!bp->grp_info)
  3406. return 0;
  3407. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
  3408. mutex_lock(&bp->hwrm_cmd_lock);
  3409. for (i = 0; i < bp->cp_nr_rings; i++) {
  3410. if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
  3411. continue;
  3412. req.ring_group_id =
  3413. cpu_to_le32(bp->grp_info[i].fw_grp_id);
  3414. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3415. HWRM_CMD_TIMEOUT);
  3416. if (rc)
  3417. break;
  3418. bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
  3419. }
  3420. mutex_unlock(&bp->hwrm_cmd_lock);
  3421. return rc;
  3422. }
  3423. static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
  3424. struct bnxt_ring_struct *ring,
  3425. u32 ring_type, u32 map_index,
  3426. u32 stats_ctx_id)
  3427. {
  3428. int rc = 0, err = 0;
  3429. struct hwrm_ring_alloc_input req = {0};
  3430. struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3431. u16 ring_id;
  3432. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
  3433. req.enables = 0;
  3434. if (ring->nr_pages > 1) {
  3435. req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
  3436. /* Page size is in log2 units */
  3437. req.page_size = BNXT_PAGE_SHIFT;
  3438. req.page_tbl_depth = 1;
  3439. } else {
  3440. req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
  3441. }
  3442. req.fbo = 0;
  3443. /* Association of ring index with doorbell index and MSIX number */
  3444. req.logical_id = cpu_to_le16(map_index);
  3445. switch (ring_type) {
  3446. case HWRM_RING_ALLOC_TX:
  3447. req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
  3448. /* Association of transmit ring with completion ring */
  3449. req.cmpl_ring_id =
  3450. cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
  3451. req.length = cpu_to_le32(bp->tx_ring_mask + 1);
  3452. req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
  3453. req.queue_id = cpu_to_le16(ring->queue_id);
  3454. break;
  3455. case HWRM_RING_ALLOC_RX:
  3456. req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
  3457. req.length = cpu_to_le32(bp->rx_ring_mask + 1);
  3458. break;
  3459. case HWRM_RING_ALLOC_AGG:
  3460. req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
  3461. req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
  3462. break;
  3463. case HWRM_RING_ALLOC_CMPL:
  3464. req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
  3465. req.length = cpu_to_le32(bp->cp_ring_mask + 1);
  3466. if (bp->flags & BNXT_FLAG_USING_MSIX)
  3467. req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
  3468. break;
  3469. default:
  3470. netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
  3471. ring_type);
  3472. return -1;
  3473. }
  3474. mutex_lock(&bp->hwrm_cmd_lock);
  3475. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3476. err = le16_to_cpu(resp->error_code);
  3477. ring_id = le16_to_cpu(resp->ring_id);
  3478. mutex_unlock(&bp->hwrm_cmd_lock);
  3479. if (rc || err) {
  3480. switch (ring_type) {
  3481. case RING_FREE_REQ_RING_TYPE_L2_CMPL:
  3482. netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
  3483. rc, err);
  3484. return -1;
  3485. case RING_FREE_REQ_RING_TYPE_RX:
  3486. netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
  3487. rc, err);
  3488. return -1;
  3489. case RING_FREE_REQ_RING_TYPE_TX:
  3490. netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
  3491. rc, err);
  3492. return -1;
  3493. default:
  3494. netdev_err(bp->dev, "Invalid ring\n");
  3495. return -1;
  3496. }
  3497. }
  3498. ring->fw_ring_id = ring_id;
  3499. return rc;
  3500. }
  3501. static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
  3502. {
  3503. int rc;
  3504. if (BNXT_PF(bp)) {
  3505. struct hwrm_func_cfg_input req = {0};
  3506. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
  3507. req.fid = cpu_to_le16(0xffff);
  3508. req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
  3509. req.async_event_cr = cpu_to_le16(idx);
  3510. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3511. } else {
  3512. struct hwrm_func_vf_cfg_input req = {0};
  3513. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
  3514. req.enables =
  3515. cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
  3516. req.async_event_cr = cpu_to_le16(idx);
  3517. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3518. }
  3519. return rc;
  3520. }
  3521. static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
  3522. {
  3523. int i, rc = 0;
  3524. for (i = 0; i < bp->cp_nr_rings; i++) {
  3525. struct bnxt_napi *bnapi = bp->bnapi[i];
  3526. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  3527. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  3528. cpr->cp_doorbell = bp->bar1 + i * 0x80;
  3529. rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
  3530. INVALID_STATS_CTX_ID);
  3531. if (rc)
  3532. goto err_out;
  3533. BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
  3534. bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
  3535. if (!i) {
  3536. rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
  3537. if (rc)
  3538. netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
  3539. }
  3540. }
  3541. for (i = 0; i < bp->tx_nr_rings; i++) {
  3542. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  3543. struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
  3544. u32 map_idx = txr->bnapi->index;
  3545. u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
  3546. rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
  3547. map_idx, fw_stats_ctx);
  3548. if (rc)
  3549. goto err_out;
  3550. txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
  3551. }
  3552. for (i = 0; i < bp->rx_nr_rings; i++) {
  3553. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3554. struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
  3555. u32 map_idx = rxr->bnapi->index;
  3556. rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
  3557. map_idx, INVALID_STATS_CTX_ID);
  3558. if (rc)
  3559. goto err_out;
  3560. rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
  3561. writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
  3562. bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
  3563. }
  3564. if (bp->flags & BNXT_FLAG_AGG_RINGS) {
  3565. for (i = 0; i < bp->rx_nr_rings; i++) {
  3566. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3567. struct bnxt_ring_struct *ring =
  3568. &rxr->rx_agg_ring_struct;
  3569. u32 grp_idx = rxr->bnapi->index;
  3570. u32 map_idx = grp_idx + bp->rx_nr_rings;
  3571. rc = hwrm_ring_alloc_send_msg(bp, ring,
  3572. HWRM_RING_ALLOC_AGG,
  3573. map_idx,
  3574. INVALID_STATS_CTX_ID);
  3575. if (rc)
  3576. goto err_out;
  3577. rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
  3578. writel(DB_KEY_RX | rxr->rx_agg_prod,
  3579. rxr->rx_agg_doorbell);
  3580. bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
  3581. }
  3582. }
  3583. err_out:
  3584. return rc;
  3585. }
  3586. static int hwrm_ring_free_send_msg(struct bnxt *bp,
  3587. struct bnxt_ring_struct *ring,
  3588. u32 ring_type, int cmpl_ring_id)
  3589. {
  3590. int rc;
  3591. struct hwrm_ring_free_input req = {0};
  3592. struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
  3593. u16 error_code;
  3594. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
  3595. req.ring_type = ring_type;
  3596. req.ring_id = cpu_to_le16(ring->fw_ring_id);
  3597. mutex_lock(&bp->hwrm_cmd_lock);
  3598. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3599. error_code = le16_to_cpu(resp->error_code);
  3600. mutex_unlock(&bp->hwrm_cmd_lock);
  3601. if (rc || error_code) {
  3602. switch (ring_type) {
  3603. case RING_FREE_REQ_RING_TYPE_L2_CMPL:
  3604. netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
  3605. rc);
  3606. return rc;
  3607. case RING_FREE_REQ_RING_TYPE_RX:
  3608. netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
  3609. rc);
  3610. return rc;
  3611. case RING_FREE_REQ_RING_TYPE_TX:
  3612. netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
  3613. rc);
  3614. return rc;
  3615. default:
  3616. netdev_err(bp->dev, "Invalid ring\n");
  3617. return -1;
  3618. }
  3619. }
  3620. return 0;
  3621. }
  3622. static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
  3623. {
  3624. int i;
  3625. if (!bp->bnapi)
  3626. return;
  3627. for (i = 0; i < bp->tx_nr_rings; i++) {
  3628. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  3629. struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
  3630. u32 grp_idx = txr->bnapi->index;
  3631. u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
  3632. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3633. hwrm_ring_free_send_msg(bp, ring,
  3634. RING_FREE_REQ_RING_TYPE_TX,
  3635. close_path ? cmpl_ring_id :
  3636. INVALID_HW_RING_ID);
  3637. ring->fw_ring_id = INVALID_HW_RING_ID;
  3638. }
  3639. }
  3640. for (i = 0; i < bp->rx_nr_rings; i++) {
  3641. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3642. struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
  3643. u32 grp_idx = rxr->bnapi->index;
  3644. u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
  3645. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3646. hwrm_ring_free_send_msg(bp, ring,
  3647. RING_FREE_REQ_RING_TYPE_RX,
  3648. close_path ? cmpl_ring_id :
  3649. INVALID_HW_RING_ID);
  3650. ring->fw_ring_id = INVALID_HW_RING_ID;
  3651. bp->grp_info[grp_idx].rx_fw_ring_id =
  3652. INVALID_HW_RING_ID;
  3653. }
  3654. }
  3655. for (i = 0; i < bp->rx_nr_rings; i++) {
  3656. struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
  3657. struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
  3658. u32 grp_idx = rxr->bnapi->index;
  3659. u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
  3660. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3661. hwrm_ring_free_send_msg(bp, ring,
  3662. RING_FREE_REQ_RING_TYPE_RX,
  3663. close_path ? cmpl_ring_id :
  3664. INVALID_HW_RING_ID);
  3665. ring->fw_ring_id = INVALID_HW_RING_ID;
  3666. bp->grp_info[grp_idx].agg_fw_ring_id =
  3667. INVALID_HW_RING_ID;
  3668. }
  3669. }
  3670. /* The completion rings are about to be freed. After that the
  3671. * IRQ doorbell will not work anymore. So we need to disable
  3672. * IRQ here.
  3673. */
  3674. bnxt_disable_int_sync(bp);
  3675. for (i = 0; i < bp->cp_nr_rings; i++) {
  3676. struct bnxt_napi *bnapi = bp->bnapi[i];
  3677. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  3678. struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
  3679. if (ring->fw_ring_id != INVALID_HW_RING_ID) {
  3680. hwrm_ring_free_send_msg(bp, ring,
  3681. RING_FREE_REQ_RING_TYPE_L2_CMPL,
  3682. INVALID_HW_RING_ID);
  3683. ring->fw_ring_id = INVALID_HW_RING_ID;
  3684. bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
  3685. }
  3686. }
  3687. }
  3688. /* Caller must hold bp->hwrm_cmd_lock */
  3689. int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
  3690. {
  3691. struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  3692. struct hwrm_func_qcfg_input req = {0};
  3693. int rc;
  3694. if (bp->hwrm_spec_code < 0x10601)
  3695. return 0;
  3696. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
  3697. req.fid = cpu_to_le16(fid);
  3698. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3699. if (!rc)
  3700. *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
  3701. return rc;
  3702. }
  3703. static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
  3704. {
  3705. struct hwrm_func_cfg_input req = {0};
  3706. int rc;
  3707. if (bp->hwrm_spec_code < 0x10601)
  3708. return 0;
  3709. if (BNXT_VF(bp))
  3710. return 0;
  3711. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
  3712. req.fid = cpu_to_le16(0xffff);
  3713. req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
  3714. req.num_tx_rings = cpu_to_le16(*tx_rings);
  3715. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3716. if (rc)
  3717. return rc;
  3718. mutex_lock(&bp->hwrm_cmd_lock);
  3719. rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
  3720. mutex_unlock(&bp->hwrm_cmd_lock);
  3721. if (!rc)
  3722. bp->tx_reserved_rings = *tx_rings;
  3723. return rc;
  3724. }
  3725. static int bnxt_hwrm_check_tx_rings(struct bnxt *bp, int tx_rings)
  3726. {
  3727. struct hwrm_func_cfg_input req = {0};
  3728. int rc;
  3729. if (bp->hwrm_spec_code < 0x10801)
  3730. return 0;
  3731. if (BNXT_VF(bp))
  3732. return 0;
  3733. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
  3734. req.fid = cpu_to_le16(0xffff);
  3735. req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST);
  3736. req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
  3737. req.num_tx_rings = cpu_to_le16(tx_rings);
  3738. rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3739. if (rc)
  3740. return -ENOMEM;
  3741. return 0;
  3742. }
  3743. static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
  3744. u32 buf_tmrs, u16 flags,
  3745. struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
  3746. {
  3747. req->flags = cpu_to_le16(flags);
  3748. req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
  3749. req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
  3750. req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
  3751. req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
  3752. /* Minimum time between 2 interrupts set to buf_tmr x 2 */
  3753. req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
  3754. req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
  3755. req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
  3756. }
  3757. int bnxt_hwrm_set_coal(struct bnxt *bp)
  3758. {
  3759. int i, rc = 0;
  3760. struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
  3761. req_tx = {0}, *req;
  3762. u16 max_buf, max_buf_irq;
  3763. u16 buf_tmr, buf_tmr_irq;
  3764. u32 flags;
  3765. bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
  3766. HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
  3767. bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
  3768. HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
  3769. /* Each rx completion (2 records) should be DMAed immediately.
  3770. * DMA 1/4 of the completion buffers at a time.
  3771. */
  3772. max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
  3773. /* max_buf must not be zero */
  3774. max_buf = clamp_t(u16, max_buf, 1, 63);
  3775. max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
  3776. buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
  3777. /* buf timer set to 1/4 of interrupt timer */
  3778. buf_tmr = max_t(u16, buf_tmr / 4, 1);
  3779. buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
  3780. buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
  3781. flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
  3782. /* RING_IDLE generates more IRQs for lower latency. Enable it only
  3783. * if coal_ticks is less than 25 us.
  3784. */
  3785. if (bp->rx_coal_ticks < 25)
  3786. flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
  3787. bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
  3788. buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
  3789. /* max_buf must not be zero */
  3790. max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
  3791. max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
  3792. buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
  3793. /* buf timer set to 1/4 of interrupt timer */
  3794. buf_tmr = max_t(u16, buf_tmr / 4, 1);
  3795. buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
  3796. buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
  3797. flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
  3798. bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
  3799. buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
  3800. mutex_lock(&bp->hwrm_cmd_lock);
  3801. for (i = 0; i < bp->cp_nr_rings; i++) {
  3802. struct bnxt_napi *bnapi = bp->bnapi[i];
  3803. req = &req_rx;
  3804. if (!bnapi->rx_ring)
  3805. req = &req_tx;
  3806. req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
  3807. rc = _hwrm_send_message(bp, req, sizeof(*req),
  3808. HWRM_CMD_TIMEOUT);
  3809. if (rc)
  3810. break;
  3811. }
  3812. mutex_unlock(&bp->hwrm_cmd_lock);
  3813. return rc;
  3814. }
  3815. static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
  3816. {
  3817. int rc = 0, i;
  3818. struct hwrm_stat_ctx_free_input req = {0};
  3819. if (!bp->bnapi)
  3820. return 0;
  3821. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  3822. return 0;
  3823. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
  3824. mutex_lock(&bp->hwrm_cmd_lock);
  3825. for (i = 0; i < bp->cp_nr_rings; i++) {
  3826. struct bnxt_napi *bnapi = bp->bnapi[i];
  3827. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  3828. if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
  3829. req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
  3830. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3831. HWRM_CMD_TIMEOUT);
  3832. if (rc)
  3833. break;
  3834. cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
  3835. }
  3836. }
  3837. mutex_unlock(&bp->hwrm_cmd_lock);
  3838. return rc;
  3839. }
  3840. static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
  3841. {
  3842. int rc = 0, i;
  3843. struct hwrm_stat_ctx_alloc_input req = {0};
  3844. struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  3845. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  3846. return 0;
  3847. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
  3848. req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
  3849. mutex_lock(&bp->hwrm_cmd_lock);
  3850. for (i = 0; i < bp->cp_nr_rings; i++) {
  3851. struct bnxt_napi *bnapi = bp->bnapi[i];
  3852. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  3853. req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
  3854. rc = _hwrm_send_message(bp, &req, sizeof(req),
  3855. HWRM_CMD_TIMEOUT);
  3856. if (rc)
  3857. break;
  3858. cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
  3859. bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
  3860. }
  3861. mutex_unlock(&bp->hwrm_cmd_lock);
  3862. return rc;
  3863. }
  3864. static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
  3865. {
  3866. struct hwrm_func_qcfg_input req = {0};
  3867. struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  3868. u16 flags;
  3869. int rc;
  3870. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
  3871. req.fid = cpu_to_le16(0xffff);
  3872. mutex_lock(&bp->hwrm_cmd_lock);
  3873. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3874. if (rc)
  3875. goto func_qcfg_exit;
  3876. #ifdef CONFIG_BNXT_SRIOV
  3877. if (BNXT_VF(bp)) {
  3878. struct bnxt_vf_info *vf = &bp->vf;
  3879. vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
  3880. }
  3881. #endif
  3882. flags = le16_to_cpu(resp->flags);
  3883. if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
  3884. FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
  3885. bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
  3886. if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
  3887. bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
  3888. }
  3889. if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
  3890. bp->flags |= BNXT_FLAG_MULTI_HOST;
  3891. switch (resp->port_partition_type) {
  3892. case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
  3893. case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
  3894. case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
  3895. bp->port_partition_type = resp->port_partition_type;
  3896. break;
  3897. }
  3898. if (bp->hwrm_spec_code < 0x10707 ||
  3899. resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
  3900. bp->br_mode = BRIDGE_MODE_VEB;
  3901. else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
  3902. bp->br_mode = BRIDGE_MODE_VEPA;
  3903. else
  3904. bp->br_mode = BRIDGE_MODE_UNDEF;
  3905. func_qcfg_exit:
  3906. mutex_unlock(&bp->hwrm_cmd_lock);
  3907. return rc;
  3908. }
  3909. static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
  3910. {
  3911. int rc = 0;
  3912. struct hwrm_func_qcaps_input req = {0};
  3913. struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  3914. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
  3915. req.fid = cpu_to_le16(0xffff);
  3916. mutex_lock(&bp->hwrm_cmd_lock);
  3917. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3918. if (rc)
  3919. goto hwrm_func_qcaps_exit;
  3920. if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
  3921. bp->flags |= BNXT_FLAG_ROCEV1_CAP;
  3922. if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
  3923. bp->flags |= BNXT_FLAG_ROCEV2_CAP;
  3924. bp->tx_push_thresh = 0;
  3925. if (resp->flags &
  3926. cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
  3927. bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
  3928. if (BNXT_PF(bp)) {
  3929. struct bnxt_pf_info *pf = &bp->pf;
  3930. pf->fw_fid = le16_to_cpu(resp->fid);
  3931. pf->port_id = le16_to_cpu(resp->port_id);
  3932. bp->dev->dev_port = pf->port_id;
  3933. memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
  3934. pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
  3935. pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
  3936. pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
  3937. pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
  3938. pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
  3939. if (!pf->max_hw_ring_grps)
  3940. pf->max_hw_ring_grps = pf->max_tx_rings;
  3941. pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
  3942. pf->max_vnics = le16_to_cpu(resp->max_vnics);
  3943. pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
  3944. pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
  3945. pf->max_vfs = le16_to_cpu(resp->max_vfs);
  3946. pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
  3947. pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
  3948. pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
  3949. pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
  3950. pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
  3951. pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
  3952. if (resp->flags &
  3953. cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
  3954. bp->flags |= BNXT_FLAG_WOL_CAP;
  3955. } else {
  3956. #ifdef CONFIG_BNXT_SRIOV
  3957. struct bnxt_vf_info *vf = &bp->vf;
  3958. vf->fw_fid = le16_to_cpu(resp->fid);
  3959. vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
  3960. vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
  3961. vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
  3962. vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
  3963. vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
  3964. if (!vf->max_hw_ring_grps)
  3965. vf->max_hw_ring_grps = vf->max_tx_rings;
  3966. vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
  3967. vf->max_vnics = le16_to_cpu(resp->max_vnics);
  3968. vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
  3969. memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
  3970. #endif
  3971. }
  3972. hwrm_func_qcaps_exit:
  3973. mutex_unlock(&bp->hwrm_cmd_lock);
  3974. return rc;
  3975. }
  3976. static int bnxt_hwrm_func_reset(struct bnxt *bp)
  3977. {
  3978. struct hwrm_func_reset_input req = {0};
  3979. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
  3980. req.enables = 0;
  3981. return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
  3982. }
  3983. static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
  3984. {
  3985. int rc = 0;
  3986. struct hwrm_queue_qportcfg_input req = {0};
  3987. struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
  3988. u8 i, *qptr;
  3989. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
  3990. mutex_lock(&bp->hwrm_cmd_lock);
  3991. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  3992. if (rc)
  3993. goto qportcfg_exit;
  3994. if (!resp->max_configurable_queues) {
  3995. rc = -EINVAL;
  3996. goto qportcfg_exit;
  3997. }
  3998. bp->max_tc = resp->max_configurable_queues;
  3999. bp->max_lltc = resp->max_configurable_lossless_queues;
  4000. if (bp->max_tc > BNXT_MAX_QUEUE)
  4001. bp->max_tc = BNXT_MAX_QUEUE;
  4002. if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
  4003. bp->max_tc = 1;
  4004. if (bp->max_lltc > bp->max_tc)
  4005. bp->max_lltc = bp->max_tc;
  4006. qptr = &resp->queue_id0;
  4007. for (i = 0; i < bp->max_tc; i++) {
  4008. bp->q_info[i].queue_id = *qptr++;
  4009. bp->q_info[i].queue_profile = *qptr++;
  4010. }
  4011. qportcfg_exit:
  4012. mutex_unlock(&bp->hwrm_cmd_lock);
  4013. return rc;
  4014. }
  4015. static int bnxt_hwrm_ver_get(struct bnxt *bp)
  4016. {
  4017. int rc;
  4018. struct hwrm_ver_get_input req = {0};
  4019. struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
  4020. u32 dev_caps_cfg;
  4021. bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
  4022. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
  4023. req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
  4024. req.hwrm_intf_min = HWRM_VERSION_MINOR;
  4025. req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
  4026. mutex_lock(&bp->hwrm_cmd_lock);
  4027. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4028. if (rc)
  4029. goto hwrm_ver_get_exit;
  4030. memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
  4031. bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
  4032. resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
  4033. if (resp->hwrm_intf_maj < 1) {
  4034. netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
  4035. resp->hwrm_intf_maj, resp->hwrm_intf_min,
  4036. resp->hwrm_intf_upd);
  4037. netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
  4038. }
  4039. snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
  4040. resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
  4041. resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
  4042. bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
  4043. if (!bp->hwrm_cmd_timeout)
  4044. bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
  4045. if (resp->hwrm_intf_maj >= 1)
  4046. bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
  4047. bp->chip_num = le16_to_cpu(resp->chip_num);
  4048. if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
  4049. !resp->chip_metal)
  4050. bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
  4051. dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
  4052. if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
  4053. (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
  4054. bp->flags |= BNXT_FLAG_SHORT_CMD;
  4055. hwrm_ver_get_exit:
  4056. mutex_unlock(&bp->hwrm_cmd_lock);
  4057. return rc;
  4058. }
  4059. int bnxt_hwrm_fw_set_time(struct bnxt *bp)
  4060. {
  4061. #if IS_ENABLED(CONFIG_RTC_LIB)
  4062. struct hwrm_fw_set_time_input req = {0};
  4063. struct rtc_time tm;
  4064. struct timeval tv;
  4065. if (bp->hwrm_spec_code < 0x10400)
  4066. return -EOPNOTSUPP;
  4067. do_gettimeofday(&tv);
  4068. rtc_time_to_tm(tv.tv_sec, &tm);
  4069. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
  4070. req.year = cpu_to_le16(1900 + tm.tm_year);
  4071. req.month = 1 + tm.tm_mon;
  4072. req.day = tm.tm_mday;
  4073. req.hour = tm.tm_hour;
  4074. req.minute = tm.tm_min;
  4075. req.second = tm.tm_sec;
  4076. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4077. #else
  4078. return -EOPNOTSUPP;
  4079. #endif
  4080. }
  4081. static int bnxt_hwrm_port_qstats(struct bnxt *bp)
  4082. {
  4083. int rc;
  4084. struct bnxt_pf_info *pf = &bp->pf;
  4085. struct hwrm_port_qstats_input req = {0};
  4086. if (!(bp->flags & BNXT_FLAG_PORT_STATS))
  4087. return 0;
  4088. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
  4089. req.port_id = cpu_to_le16(pf->port_id);
  4090. req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
  4091. req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
  4092. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4093. return rc;
  4094. }
  4095. static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
  4096. {
  4097. if (bp->vxlan_port_cnt) {
  4098. bnxt_hwrm_tunnel_dst_port_free(
  4099. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
  4100. }
  4101. bp->vxlan_port_cnt = 0;
  4102. if (bp->nge_port_cnt) {
  4103. bnxt_hwrm_tunnel_dst_port_free(
  4104. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
  4105. }
  4106. bp->nge_port_cnt = 0;
  4107. }
  4108. static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
  4109. {
  4110. int rc, i;
  4111. u32 tpa_flags = 0;
  4112. if (set_tpa)
  4113. tpa_flags = bp->flags & BNXT_FLAG_TPA;
  4114. for (i = 0; i < bp->nr_vnics; i++) {
  4115. rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
  4116. if (rc) {
  4117. netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
  4118. i, rc);
  4119. return rc;
  4120. }
  4121. }
  4122. return 0;
  4123. }
  4124. static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
  4125. {
  4126. int i;
  4127. for (i = 0; i < bp->nr_vnics; i++)
  4128. bnxt_hwrm_vnic_set_rss(bp, i, false);
  4129. }
  4130. static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
  4131. bool irq_re_init)
  4132. {
  4133. if (bp->vnic_info) {
  4134. bnxt_hwrm_clear_vnic_filter(bp);
  4135. /* clear all RSS setting before free vnic ctx */
  4136. bnxt_hwrm_clear_vnic_rss(bp);
  4137. bnxt_hwrm_vnic_ctx_free(bp);
  4138. /* before free the vnic, undo the vnic tpa settings */
  4139. if (bp->flags & BNXT_FLAG_TPA)
  4140. bnxt_set_tpa(bp, false);
  4141. bnxt_hwrm_vnic_free(bp);
  4142. }
  4143. bnxt_hwrm_ring_free(bp, close_path);
  4144. bnxt_hwrm_ring_grp_free(bp);
  4145. if (irq_re_init) {
  4146. bnxt_hwrm_stat_ctx_free(bp);
  4147. bnxt_hwrm_free_tunnel_ports(bp);
  4148. }
  4149. }
  4150. static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
  4151. {
  4152. struct hwrm_func_cfg_input req = {0};
  4153. int rc;
  4154. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
  4155. req.fid = cpu_to_le16(0xffff);
  4156. req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
  4157. if (br_mode == BRIDGE_MODE_VEB)
  4158. req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
  4159. else if (br_mode == BRIDGE_MODE_VEPA)
  4160. req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
  4161. else
  4162. return -EINVAL;
  4163. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4164. if (rc)
  4165. rc = -EIO;
  4166. return rc;
  4167. }
  4168. static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
  4169. {
  4170. struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
  4171. int rc;
  4172. if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
  4173. goto skip_rss_ctx;
  4174. /* allocate context for vnic */
  4175. rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
  4176. if (rc) {
  4177. netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
  4178. vnic_id, rc);
  4179. goto vnic_setup_err;
  4180. }
  4181. bp->rsscos_nr_ctxs++;
  4182. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  4183. rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
  4184. if (rc) {
  4185. netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
  4186. vnic_id, rc);
  4187. goto vnic_setup_err;
  4188. }
  4189. bp->rsscos_nr_ctxs++;
  4190. }
  4191. skip_rss_ctx:
  4192. /* configure default vnic, ring grp */
  4193. rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
  4194. if (rc) {
  4195. netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
  4196. vnic_id, rc);
  4197. goto vnic_setup_err;
  4198. }
  4199. /* Enable RSS hashing on vnic */
  4200. rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
  4201. if (rc) {
  4202. netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
  4203. vnic_id, rc);
  4204. goto vnic_setup_err;
  4205. }
  4206. if (bp->flags & BNXT_FLAG_AGG_RINGS) {
  4207. rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
  4208. if (rc) {
  4209. netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
  4210. vnic_id, rc);
  4211. }
  4212. }
  4213. vnic_setup_err:
  4214. return rc;
  4215. }
  4216. static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
  4217. {
  4218. #ifdef CONFIG_RFS_ACCEL
  4219. int i, rc = 0;
  4220. for (i = 0; i < bp->rx_nr_rings; i++) {
  4221. struct bnxt_vnic_info *vnic;
  4222. u16 vnic_id = i + 1;
  4223. u16 ring_id = i;
  4224. if (vnic_id >= bp->nr_vnics)
  4225. break;
  4226. vnic = &bp->vnic_info[vnic_id];
  4227. vnic->flags |= BNXT_VNIC_RFS_FLAG;
  4228. if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
  4229. vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
  4230. rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
  4231. if (rc) {
  4232. netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
  4233. vnic_id, rc);
  4234. break;
  4235. }
  4236. rc = bnxt_setup_vnic(bp, vnic_id);
  4237. if (rc)
  4238. break;
  4239. }
  4240. return rc;
  4241. #else
  4242. return 0;
  4243. #endif
  4244. }
  4245. /* Allow PF and VF with default VLAN to be in promiscuous mode */
  4246. static bool bnxt_promisc_ok(struct bnxt *bp)
  4247. {
  4248. #ifdef CONFIG_BNXT_SRIOV
  4249. if (BNXT_VF(bp) && !bp->vf.vlan)
  4250. return false;
  4251. #endif
  4252. return true;
  4253. }
  4254. static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
  4255. {
  4256. unsigned int rc = 0;
  4257. rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
  4258. if (rc) {
  4259. netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
  4260. rc);
  4261. return rc;
  4262. }
  4263. rc = bnxt_hwrm_vnic_cfg(bp, 1);
  4264. if (rc) {
  4265. netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
  4266. rc);
  4267. return rc;
  4268. }
  4269. return rc;
  4270. }
  4271. static int bnxt_cfg_rx_mode(struct bnxt *);
  4272. static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
  4273. static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
  4274. {
  4275. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  4276. int rc = 0;
  4277. unsigned int rx_nr_rings = bp->rx_nr_rings;
  4278. if (irq_re_init) {
  4279. rc = bnxt_hwrm_stat_ctx_alloc(bp);
  4280. if (rc) {
  4281. netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
  4282. rc);
  4283. goto err_out;
  4284. }
  4285. if (bp->tx_reserved_rings != bp->tx_nr_rings) {
  4286. int tx = bp->tx_nr_rings;
  4287. if (bnxt_hwrm_reserve_tx_rings(bp, &tx) ||
  4288. tx < bp->tx_nr_rings) {
  4289. rc = -ENOMEM;
  4290. goto err_out;
  4291. }
  4292. }
  4293. }
  4294. rc = bnxt_hwrm_ring_alloc(bp);
  4295. if (rc) {
  4296. netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
  4297. goto err_out;
  4298. }
  4299. rc = bnxt_hwrm_ring_grp_alloc(bp);
  4300. if (rc) {
  4301. netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
  4302. goto err_out;
  4303. }
  4304. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  4305. rx_nr_rings--;
  4306. /* default vnic 0 */
  4307. rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
  4308. if (rc) {
  4309. netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
  4310. goto err_out;
  4311. }
  4312. rc = bnxt_setup_vnic(bp, 0);
  4313. if (rc)
  4314. goto err_out;
  4315. if (bp->flags & BNXT_FLAG_RFS) {
  4316. rc = bnxt_alloc_rfs_vnics(bp);
  4317. if (rc)
  4318. goto err_out;
  4319. }
  4320. if (bp->flags & BNXT_FLAG_TPA) {
  4321. rc = bnxt_set_tpa(bp, true);
  4322. if (rc)
  4323. goto err_out;
  4324. }
  4325. if (BNXT_VF(bp))
  4326. bnxt_update_vf_mac(bp);
  4327. /* Filter for default vnic 0 */
  4328. rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
  4329. if (rc) {
  4330. netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
  4331. goto err_out;
  4332. }
  4333. vnic->uc_filter_count = 1;
  4334. vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
  4335. if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
  4336. vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
  4337. if (bp->dev->flags & IFF_ALLMULTI) {
  4338. vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
  4339. vnic->mc_list_count = 0;
  4340. } else {
  4341. u32 mask = 0;
  4342. bnxt_mc_list_updated(bp, &mask);
  4343. vnic->rx_mask |= mask;
  4344. }
  4345. rc = bnxt_cfg_rx_mode(bp);
  4346. if (rc)
  4347. goto err_out;
  4348. rc = bnxt_hwrm_set_coal(bp);
  4349. if (rc)
  4350. netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
  4351. rc);
  4352. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  4353. rc = bnxt_setup_nitroa0_vnic(bp);
  4354. if (rc)
  4355. netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
  4356. rc);
  4357. }
  4358. if (BNXT_VF(bp)) {
  4359. bnxt_hwrm_func_qcfg(bp);
  4360. netdev_update_features(bp->dev);
  4361. }
  4362. return 0;
  4363. err_out:
  4364. bnxt_hwrm_resource_free(bp, 0, true);
  4365. return rc;
  4366. }
  4367. static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
  4368. {
  4369. bnxt_hwrm_resource_free(bp, 1, irq_re_init);
  4370. return 0;
  4371. }
  4372. static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
  4373. {
  4374. bnxt_init_cp_rings(bp);
  4375. bnxt_init_rx_rings(bp);
  4376. bnxt_init_tx_rings(bp);
  4377. bnxt_init_ring_grps(bp, irq_re_init);
  4378. bnxt_init_vnics(bp);
  4379. return bnxt_init_chip(bp, irq_re_init);
  4380. }
  4381. static int bnxt_set_real_num_queues(struct bnxt *bp)
  4382. {
  4383. int rc;
  4384. struct net_device *dev = bp->dev;
  4385. rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
  4386. bp->tx_nr_rings_xdp);
  4387. if (rc)
  4388. return rc;
  4389. rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
  4390. if (rc)
  4391. return rc;
  4392. #ifdef CONFIG_RFS_ACCEL
  4393. if (bp->flags & BNXT_FLAG_RFS)
  4394. dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
  4395. #endif
  4396. return rc;
  4397. }
  4398. static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
  4399. bool shared)
  4400. {
  4401. int _rx = *rx, _tx = *tx;
  4402. if (shared) {
  4403. *rx = min_t(int, _rx, max);
  4404. *tx = min_t(int, _tx, max);
  4405. } else {
  4406. if (max < 2)
  4407. return -ENOMEM;
  4408. while (_rx + _tx > max) {
  4409. if (_rx > _tx && _rx > 1)
  4410. _rx--;
  4411. else if (_tx > 1)
  4412. _tx--;
  4413. }
  4414. *rx = _rx;
  4415. *tx = _tx;
  4416. }
  4417. return 0;
  4418. }
  4419. static void bnxt_setup_msix(struct bnxt *bp)
  4420. {
  4421. const int len = sizeof(bp->irq_tbl[0].name);
  4422. struct net_device *dev = bp->dev;
  4423. int tcs, i;
  4424. tcs = netdev_get_num_tc(dev);
  4425. if (tcs > 1) {
  4426. int i, off, count;
  4427. for (i = 0; i < tcs; i++) {
  4428. count = bp->tx_nr_rings_per_tc;
  4429. off = i * count;
  4430. netdev_set_tc_queue(dev, i, count, off);
  4431. }
  4432. }
  4433. for (i = 0; i < bp->cp_nr_rings; i++) {
  4434. char *attr;
  4435. if (bp->flags & BNXT_FLAG_SHARED_RINGS)
  4436. attr = "TxRx";
  4437. else if (i < bp->rx_nr_rings)
  4438. attr = "rx";
  4439. else
  4440. attr = "tx";
  4441. snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
  4442. i);
  4443. bp->irq_tbl[i].handler = bnxt_msix;
  4444. }
  4445. }
  4446. static void bnxt_setup_inta(struct bnxt *bp)
  4447. {
  4448. const int len = sizeof(bp->irq_tbl[0].name);
  4449. if (netdev_get_num_tc(bp->dev))
  4450. netdev_reset_tc(bp->dev);
  4451. snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
  4452. 0);
  4453. bp->irq_tbl[0].handler = bnxt_inta;
  4454. }
  4455. static int bnxt_setup_int_mode(struct bnxt *bp)
  4456. {
  4457. int rc;
  4458. if (bp->flags & BNXT_FLAG_USING_MSIX)
  4459. bnxt_setup_msix(bp);
  4460. else
  4461. bnxt_setup_inta(bp);
  4462. rc = bnxt_set_real_num_queues(bp);
  4463. return rc;
  4464. }
  4465. #ifdef CONFIG_RFS_ACCEL
  4466. static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
  4467. {
  4468. #if defined(CONFIG_BNXT_SRIOV)
  4469. if (BNXT_VF(bp))
  4470. return bp->vf.max_rsscos_ctxs;
  4471. #endif
  4472. return bp->pf.max_rsscos_ctxs;
  4473. }
  4474. static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
  4475. {
  4476. #if defined(CONFIG_BNXT_SRIOV)
  4477. if (BNXT_VF(bp))
  4478. return bp->vf.max_vnics;
  4479. #endif
  4480. return bp->pf.max_vnics;
  4481. }
  4482. #endif
  4483. unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
  4484. {
  4485. #if defined(CONFIG_BNXT_SRIOV)
  4486. if (BNXT_VF(bp))
  4487. return bp->vf.max_stat_ctxs;
  4488. #endif
  4489. return bp->pf.max_stat_ctxs;
  4490. }
  4491. void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
  4492. {
  4493. #if defined(CONFIG_BNXT_SRIOV)
  4494. if (BNXT_VF(bp))
  4495. bp->vf.max_stat_ctxs = max;
  4496. else
  4497. #endif
  4498. bp->pf.max_stat_ctxs = max;
  4499. }
  4500. unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
  4501. {
  4502. #if defined(CONFIG_BNXT_SRIOV)
  4503. if (BNXT_VF(bp))
  4504. return bp->vf.max_cp_rings;
  4505. #endif
  4506. return bp->pf.max_cp_rings;
  4507. }
  4508. void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
  4509. {
  4510. #if defined(CONFIG_BNXT_SRIOV)
  4511. if (BNXT_VF(bp))
  4512. bp->vf.max_cp_rings = max;
  4513. else
  4514. #endif
  4515. bp->pf.max_cp_rings = max;
  4516. }
  4517. static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
  4518. {
  4519. #if defined(CONFIG_BNXT_SRIOV)
  4520. if (BNXT_VF(bp))
  4521. return min_t(unsigned int, bp->vf.max_irqs,
  4522. bp->vf.max_cp_rings);
  4523. #endif
  4524. return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
  4525. }
  4526. void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
  4527. {
  4528. #if defined(CONFIG_BNXT_SRIOV)
  4529. if (BNXT_VF(bp))
  4530. bp->vf.max_irqs = max_irqs;
  4531. else
  4532. #endif
  4533. bp->pf.max_irqs = max_irqs;
  4534. }
  4535. static int bnxt_init_msix(struct bnxt *bp)
  4536. {
  4537. int i, total_vecs, rc = 0, min = 1;
  4538. struct msix_entry *msix_ent;
  4539. total_vecs = bnxt_get_max_func_irqs(bp);
  4540. msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
  4541. if (!msix_ent)
  4542. return -ENOMEM;
  4543. for (i = 0; i < total_vecs; i++) {
  4544. msix_ent[i].entry = i;
  4545. msix_ent[i].vector = 0;
  4546. }
  4547. if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
  4548. min = 2;
  4549. total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
  4550. if (total_vecs < 0) {
  4551. rc = -ENODEV;
  4552. goto msix_setup_exit;
  4553. }
  4554. bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
  4555. if (bp->irq_tbl) {
  4556. for (i = 0; i < total_vecs; i++)
  4557. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4558. bp->total_irqs = total_vecs;
  4559. /* Trim rings based upon num of vectors allocated */
  4560. rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
  4561. total_vecs, min == 1);
  4562. if (rc)
  4563. goto msix_setup_exit;
  4564. bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
  4565. bp->cp_nr_rings = (min == 1) ?
  4566. max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
  4567. bp->tx_nr_rings + bp->rx_nr_rings;
  4568. } else {
  4569. rc = -ENOMEM;
  4570. goto msix_setup_exit;
  4571. }
  4572. bp->flags |= BNXT_FLAG_USING_MSIX;
  4573. kfree(msix_ent);
  4574. return 0;
  4575. msix_setup_exit:
  4576. netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
  4577. kfree(bp->irq_tbl);
  4578. bp->irq_tbl = NULL;
  4579. pci_disable_msix(bp->pdev);
  4580. kfree(msix_ent);
  4581. return rc;
  4582. }
  4583. static int bnxt_init_inta(struct bnxt *bp)
  4584. {
  4585. bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
  4586. if (!bp->irq_tbl)
  4587. return -ENOMEM;
  4588. bp->total_irqs = 1;
  4589. bp->rx_nr_rings = 1;
  4590. bp->tx_nr_rings = 1;
  4591. bp->cp_nr_rings = 1;
  4592. bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
  4593. bp->flags |= BNXT_FLAG_SHARED_RINGS;
  4594. bp->irq_tbl[0].vector = bp->pdev->irq;
  4595. return 0;
  4596. }
  4597. static int bnxt_init_int_mode(struct bnxt *bp)
  4598. {
  4599. int rc = 0;
  4600. if (bp->flags & BNXT_FLAG_MSIX_CAP)
  4601. rc = bnxt_init_msix(bp);
  4602. if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
  4603. /* fallback to INTA */
  4604. rc = bnxt_init_inta(bp);
  4605. }
  4606. return rc;
  4607. }
  4608. static void bnxt_clear_int_mode(struct bnxt *bp)
  4609. {
  4610. if (bp->flags & BNXT_FLAG_USING_MSIX)
  4611. pci_disable_msix(bp->pdev);
  4612. kfree(bp->irq_tbl);
  4613. bp->irq_tbl = NULL;
  4614. bp->flags &= ~BNXT_FLAG_USING_MSIX;
  4615. }
  4616. static void bnxt_free_irq(struct bnxt *bp)
  4617. {
  4618. struct bnxt_irq *irq;
  4619. int i;
  4620. #ifdef CONFIG_RFS_ACCEL
  4621. free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
  4622. bp->dev->rx_cpu_rmap = NULL;
  4623. #endif
  4624. if (!bp->irq_tbl)
  4625. return;
  4626. for (i = 0; i < bp->cp_nr_rings; i++) {
  4627. irq = &bp->irq_tbl[i];
  4628. if (irq->requested) {
  4629. if (irq->have_cpumask) {
  4630. irq_set_affinity_hint(irq->vector, NULL);
  4631. free_cpumask_var(irq->cpu_mask);
  4632. irq->have_cpumask = 0;
  4633. }
  4634. free_irq(irq->vector, bp->bnapi[i]);
  4635. }
  4636. irq->requested = 0;
  4637. }
  4638. }
  4639. static int bnxt_request_irq(struct bnxt *bp)
  4640. {
  4641. int i, j, rc = 0;
  4642. unsigned long flags = 0;
  4643. #ifdef CONFIG_RFS_ACCEL
  4644. struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
  4645. #endif
  4646. if (!(bp->flags & BNXT_FLAG_USING_MSIX))
  4647. flags = IRQF_SHARED;
  4648. for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
  4649. struct bnxt_irq *irq = &bp->irq_tbl[i];
  4650. #ifdef CONFIG_RFS_ACCEL
  4651. if (rmap && bp->bnapi[i]->rx_ring) {
  4652. rc = irq_cpu_rmap_add(rmap, irq->vector);
  4653. if (rc)
  4654. netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
  4655. j);
  4656. j++;
  4657. }
  4658. #endif
  4659. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4660. bp->bnapi[i]);
  4661. if (rc)
  4662. break;
  4663. irq->requested = 1;
  4664. if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
  4665. int numa_node = dev_to_node(&bp->pdev->dev);
  4666. irq->have_cpumask = 1;
  4667. cpumask_set_cpu(cpumask_local_spread(i, numa_node),
  4668. irq->cpu_mask);
  4669. rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
  4670. if (rc) {
  4671. netdev_warn(bp->dev,
  4672. "Set affinity failed, IRQ = %d\n",
  4673. irq->vector);
  4674. break;
  4675. }
  4676. }
  4677. }
  4678. return rc;
  4679. }
  4680. static void bnxt_del_napi(struct bnxt *bp)
  4681. {
  4682. int i;
  4683. if (!bp->bnapi)
  4684. return;
  4685. for (i = 0; i < bp->cp_nr_rings; i++) {
  4686. struct bnxt_napi *bnapi = bp->bnapi[i];
  4687. napi_hash_del(&bnapi->napi);
  4688. netif_napi_del(&bnapi->napi);
  4689. }
  4690. /* We called napi_hash_del() before netif_napi_del(), we need
  4691. * to respect an RCU grace period before freeing napi structures.
  4692. */
  4693. synchronize_net();
  4694. }
  4695. static void bnxt_init_napi(struct bnxt *bp)
  4696. {
  4697. int i;
  4698. unsigned int cp_nr_rings = bp->cp_nr_rings;
  4699. struct bnxt_napi *bnapi;
  4700. if (bp->flags & BNXT_FLAG_USING_MSIX) {
  4701. if (BNXT_CHIP_TYPE_NITRO_A0(bp))
  4702. cp_nr_rings--;
  4703. for (i = 0; i < cp_nr_rings; i++) {
  4704. bnapi = bp->bnapi[i];
  4705. netif_napi_add(bp->dev, &bnapi->napi,
  4706. bnxt_poll, 64);
  4707. }
  4708. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  4709. bnapi = bp->bnapi[cp_nr_rings];
  4710. netif_napi_add(bp->dev, &bnapi->napi,
  4711. bnxt_poll_nitroa0, 64);
  4712. }
  4713. } else {
  4714. bnapi = bp->bnapi[0];
  4715. netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
  4716. }
  4717. }
  4718. static void bnxt_disable_napi(struct bnxt *bp)
  4719. {
  4720. int i;
  4721. if (!bp->bnapi)
  4722. return;
  4723. for (i = 0; i < bp->cp_nr_rings; i++)
  4724. napi_disable(&bp->bnapi[i]->napi);
  4725. }
  4726. static void bnxt_enable_napi(struct bnxt *bp)
  4727. {
  4728. int i;
  4729. for (i = 0; i < bp->cp_nr_rings; i++) {
  4730. bp->bnapi[i]->in_reset = false;
  4731. napi_enable(&bp->bnapi[i]->napi);
  4732. }
  4733. }
  4734. void bnxt_tx_disable(struct bnxt *bp)
  4735. {
  4736. int i;
  4737. struct bnxt_tx_ring_info *txr;
  4738. if (bp->tx_ring) {
  4739. for (i = 0; i < bp->tx_nr_rings; i++) {
  4740. txr = &bp->tx_ring[i];
  4741. txr->dev_state = BNXT_DEV_STATE_CLOSING;
  4742. }
  4743. }
  4744. /* Stop all TX queues */
  4745. netif_tx_disable(bp->dev);
  4746. netif_carrier_off(bp->dev);
  4747. }
  4748. void bnxt_tx_enable(struct bnxt *bp)
  4749. {
  4750. int i;
  4751. struct bnxt_tx_ring_info *txr;
  4752. for (i = 0; i < bp->tx_nr_rings; i++) {
  4753. txr = &bp->tx_ring[i];
  4754. txr->dev_state = 0;
  4755. }
  4756. netif_tx_wake_all_queues(bp->dev);
  4757. if (bp->link_info.link_up)
  4758. netif_carrier_on(bp->dev);
  4759. }
  4760. static void bnxt_report_link(struct bnxt *bp)
  4761. {
  4762. if (bp->link_info.link_up) {
  4763. const char *duplex;
  4764. const char *flow_ctrl;
  4765. u32 speed;
  4766. u16 fec;
  4767. netif_carrier_on(bp->dev);
  4768. if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
  4769. duplex = "full";
  4770. else
  4771. duplex = "half";
  4772. if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
  4773. flow_ctrl = "ON - receive & transmit";
  4774. else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
  4775. flow_ctrl = "ON - transmit";
  4776. else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
  4777. flow_ctrl = "ON - receive";
  4778. else
  4779. flow_ctrl = "none";
  4780. speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
  4781. netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
  4782. speed, duplex, flow_ctrl);
  4783. if (bp->flags & BNXT_FLAG_EEE_CAP)
  4784. netdev_info(bp->dev, "EEE is %s\n",
  4785. bp->eee.eee_active ? "active" :
  4786. "not active");
  4787. fec = bp->link_info.fec_cfg;
  4788. if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
  4789. netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
  4790. (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
  4791. (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
  4792. (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
  4793. } else {
  4794. netif_carrier_off(bp->dev);
  4795. netdev_err(bp->dev, "NIC Link is Down\n");
  4796. }
  4797. }
  4798. static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
  4799. {
  4800. int rc = 0;
  4801. struct hwrm_port_phy_qcaps_input req = {0};
  4802. struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  4803. struct bnxt_link_info *link_info = &bp->link_info;
  4804. if (bp->hwrm_spec_code < 0x10201)
  4805. return 0;
  4806. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
  4807. mutex_lock(&bp->hwrm_cmd_lock);
  4808. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4809. if (rc)
  4810. goto hwrm_phy_qcaps_exit;
  4811. if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
  4812. struct ethtool_eee *eee = &bp->eee;
  4813. u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
  4814. bp->flags |= BNXT_FLAG_EEE_CAP;
  4815. eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
  4816. bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
  4817. PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
  4818. bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
  4819. PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
  4820. }
  4821. if (resp->supported_speeds_auto_mode)
  4822. link_info->support_auto_speeds =
  4823. le16_to_cpu(resp->supported_speeds_auto_mode);
  4824. bp->port_count = resp->port_cnt;
  4825. hwrm_phy_qcaps_exit:
  4826. mutex_unlock(&bp->hwrm_cmd_lock);
  4827. return rc;
  4828. }
  4829. static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
  4830. {
  4831. int rc = 0;
  4832. struct bnxt_link_info *link_info = &bp->link_info;
  4833. struct hwrm_port_phy_qcfg_input req = {0};
  4834. struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  4835. u8 link_up = link_info->link_up;
  4836. u16 diff;
  4837. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
  4838. mutex_lock(&bp->hwrm_cmd_lock);
  4839. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  4840. if (rc) {
  4841. mutex_unlock(&bp->hwrm_cmd_lock);
  4842. return rc;
  4843. }
  4844. memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
  4845. link_info->phy_link_status = resp->link;
  4846. link_info->duplex = resp->duplex_cfg;
  4847. if (bp->hwrm_spec_code >= 0x10800)
  4848. link_info->duplex = resp->duplex_state;
  4849. link_info->pause = resp->pause;
  4850. link_info->auto_mode = resp->auto_mode;
  4851. link_info->auto_pause_setting = resp->auto_pause;
  4852. link_info->lp_pause = resp->link_partner_adv_pause;
  4853. link_info->force_pause_setting = resp->force_pause;
  4854. link_info->duplex_setting = resp->duplex_cfg;
  4855. if (link_info->phy_link_status == BNXT_LINK_LINK)
  4856. link_info->link_speed = le16_to_cpu(resp->link_speed);
  4857. else
  4858. link_info->link_speed = 0;
  4859. link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
  4860. link_info->support_speeds = le16_to_cpu(resp->support_speeds);
  4861. link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
  4862. link_info->lp_auto_link_speeds =
  4863. le16_to_cpu(resp->link_partner_adv_speeds);
  4864. link_info->preemphasis = le32_to_cpu(resp->preemphasis);
  4865. link_info->phy_ver[0] = resp->phy_maj;
  4866. link_info->phy_ver[1] = resp->phy_min;
  4867. link_info->phy_ver[2] = resp->phy_bld;
  4868. link_info->media_type = resp->media_type;
  4869. link_info->phy_type = resp->phy_type;
  4870. link_info->transceiver = resp->xcvr_pkg_type;
  4871. link_info->phy_addr = resp->eee_config_phy_addr &
  4872. PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
  4873. link_info->module_status = resp->module_status;
  4874. if (bp->flags & BNXT_FLAG_EEE_CAP) {
  4875. struct ethtool_eee *eee = &bp->eee;
  4876. u16 fw_speeds;
  4877. eee->eee_active = 0;
  4878. if (resp->eee_config_phy_addr &
  4879. PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
  4880. eee->eee_active = 1;
  4881. fw_speeds = le16_to_cpu(
  4882. resp->link_partner_adv_eee_link_speed_mask);
  4883. eee->lp_advertised =
  4884. _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
  4885. }
  4886. /* Pull initial EEE config */
  4887. if (!chng_link_state) {
  4888. if (resp->eee_config_phy_addr &
  4889. PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
  4890. eee->eee_enabled = 1;
  4891. fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
  4892. eee->advertised =
  4893. _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
  4894. if (resp->eee_config_phy_addr &
  4895. PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
  4896. __le32 tmr;
  4897. eee->tx_lpi_enabled = 1;
  4898. tmr = resp->xcvr_identifier_type_tx_lpi_timer;
  4899. eee->tx_lpi_timer = le32_to_cpu(tmr) &
  4900. PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
  4901. }
  4902. }
  4903. }
  4904. link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
  4905. if (bp->hwrm_spec_code >= 0x10504)
  4906. link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
  4907. /* TODO: need to add more logic to report VF link */
  4908. if (chng_link_state) {
  4909. if (link_info->phy_link_status == BNXT_LINK_LINK)
  4910. link_info->link_up = 1;
  4911. else
  4912. link_info->link_up = 0;
  4913. if (link_up != link_info->link_up)
  4914. bnxt_report_link(bp);
  4915. } else {
  4916. /* alwasy link down if not require to update link state */
  4917. link_info->link_up = 0;
  4918. }
  4919. mutex_unlock(&bp->hwrm_cmd_lock);
  4920. diff = link_info->support_auto_speeds ^ link_info->advertising;
  4921. if ((link_info->support_auto_speeds | diff) !=
  4922. link_info->support_auto_speeds) {
  4923. /* An advertised speed is no longer supported, so we need to
  4924. * update the advertisement settings. Caller holds RTNL
  4925. * so we can modify link settings.
  4926. */
  4927. link_info->advertising = link_info->support_auto_speeds;
  4928. if (link_info->autoneg & BNXT_AUTONEG_SPEED)
  4929. bnxt_hwrm_set_link_setting(bp, true, false);
  4930. }
  4931. return 0;
  4932. }
  4933. static void bnxt_get_port_module_status(struct bnxt *bp)
  4934. {
  4935. struct bnxt_link_info *link_info = &bp->link_info;
  4936. struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
  4937. u8 module_status;
  4938. if (bnxt_update_link(bp, true))
  4939. return;
  4940. module_status = link_info->module_status;
  4941. switch (module_status) {
  4942. case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
  4943. case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
  4944. case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
  4945. netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
  4946. bp->pf.port_id);
  4947. if (bp->hwrm_spec_code >= 0x10201) {
  4948. netdev_warn(bp->dev, "Module part number %s\n",
  4949. resp->phy_vendor_partnumber);
  4950. }
  4951. if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
  4952. netdev_warn(bp->dev, "TX is disabled\n");
  4953. if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
  4954. netdev_warn(bp->dev, "SFP+ module is shutdown\n");
  4955. }
  4956. }
  4957. static void
  4958. bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
  4959. {
  4960. if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
  4961. if (bp->hwrm_spec_code >= 0x10201)
  4962. req->auto_pause =
  4963. PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
  4964. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
  4965. req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
  4966. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
  4967. req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
  4968. req->enables |=
  4969. cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
  4970. } else {
  4971. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
  4972. req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
  4973. if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
  4974. req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
  4975. req->enables |=
  4976. cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
  4977. if (bp->hwrm_spec_code >= 0x10201) {
  4978. req->auto_pause = req->force_pause;
  4979. req->enables |= cpu_to_le32(
  4980. PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
  4981. }
  4982. }
  4983. }
  4984. static void bnxt_hwrm_set_link_common(struct bnxt *bp,
  4985. struct hwrm_port_phy_cfg_input *req)
  4986. {
  4987. u8 autoneg = bp->link_info.autoneg;
  4988. u16 fw_link_speed = bp->link_info.req_link_speed;
  4989. u16 advertising = bp->link_info.advertising;
  4990. if (autoneg & BNXT_AUTONEG_SPEED) {
  4991. req->auto_mode |=
  4992. PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
  4993. req->enables |= cpu_to_le32(
  4994. PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
  4995. req->auto_link_speed_mask = cpu_to_le16(advertising);
  4996. req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
  4997. req->flags |=
  4998. cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
  4999. } else {
  5000. req->force_link_speed = cpu_to_le16(fw_link_speed);
  5001. req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
  5002. }
  5003. /* tell chimp that the setting takes effect immediately */
  5004. req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
  5005. }
  5006. int bnxt_hwrm_set_pause(struct bnxt *bp)
  5007. {
  5008. struct hwrm_port_phy_cfg_input req = {0};
  5009. int rc;
  5010. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
  5011. bnxt_hwrm_set_pause_common(bp, &req);
  5012. if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
  5013. bp->link_info.force_link_chng)
  5014. bnxt_hwrm_set_link_common(bp, &req);
  5015. mutex_lock(&bp->hwrm_cmd_lock);
  5016. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5017. if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
  5018. /* since changing of pause setting doesn't trigger any link
  5019. * change event, the driver needs to update the current pause
  5020. * result upon successfully return of the phy_cfg command
  5021. */
  5022. bp->link_info.pause =
  5023. bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
  5024. bp->link_info.auto_pause_setting = 0;
  5025. if (!bp->link_info.force_link_chng)
  5026. bnxt_report_link(bp);
  5027. }
  5028. bp->link_info.force_link_chng = false;
  5029. mutex_unlock(&bp->hwrm_cmd_lock);
  5030. return rc;
  5031. }
  5032. static void bnxt_hwrm_set_eee(struct bnxt *bp,
  5033. struct hwrm_port_phy_cfg_input *req)
  5034. {
  5035. struct ethtool_eee *eee = &bp->eee;
  5036. if (eee->eee_enabled) {
  5037. u16 eee_speeds;
  5038. u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
  5039. if (eee->tx_lpi_enabled)
  5040. flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
  5041. else
  5042. flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
  5043. req->flags |= cpu_to_le32(flags);
  5044. eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
  5045. req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
  5046. req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
  5047. } else {
  5048. req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
  5049. }
  5050. }
  5051. int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
  5052. {
  5053. struct hwrm_port_phy_cfg_input req = {0};
  5054. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
  5055. if (set_pause)
  5056. bnxt_hwrm_set_pause_common(bp, &req);
  5057. bnxt_hwrm_set_link_common(bp, &req);
  5058. if (set_eee)
  5059. bnxt_hwrm_set_eee(bp, &req);
  5060. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5061. }
  5062. static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
  5063. {
  5064. struct hwrm_port_phy_cfg_input req = {0};
  5065. if (!BNXT_SINGLE_PF(bp))
  5066. return 0;
  5067. if (pci_num_vf(bp->pdev))
  5068. return 0;
  5069. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
  5070. req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
  5071. return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5072. }
  5073. static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
  5074. {
  5075. struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
  5076. struct hwrm_port_led_qcaps_input req = {0};
  5077. struct bnxt_pf_info *pf = &bp->pf;
  5078. int rc;
  5079. if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
  5080. return 0;
  5081. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
  5082. req.port_id = cpu_to_le16(pf->port_id);
  5083. mutex_lock(&bp->hwrm_cmd_lock);
  5084. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5085. if (rc) {
  5086. mutex_unlock(&bp->hwrm_cmd_lock);
  5087. return rc;
  5088. }
  5089. if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
  5090. int i;
  5091. bp->num_leds = resp->num_leds;
  5092. memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
  5093. bp->num_leds);
  5094. for (i = 0; i < bp->num_leds; i++) {
  5095. struct bnxt_led_info *led = &bp->leds[i];
  5096. __le16 caps = led->led_state_caps;
  5097. if (!led->led_group_id ||
  5098. !BNXT_LED_ALT_BLINK_CAP(caps)) {
  5099. bp->num_leds = 0;
  5100. break;
  5101. }
  5102. }
  5103. }
  5104. mutex_unlock(&bp->hwrm_cmd_lock);
  5105. return 0;
  5106. }
  5107. int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
  5108. {
  5109. struct hwrm_wol_filter_alloc_input req = {0};
  5110. struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
  5111. int rc;
  5112. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
  5113. req.port_id = cpu_to_le16(bp->pf.port_id);
  5114. req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
  5115. req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
  5116. memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
  5117. mutex_lock(&bp->hwrm_cmd_lock);
  5118. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5119. if (!rc)
  5120. bp->wol_filter_id = resp->wol_filter_id;
  5121. mutex_unlock(&bp->hwrm_cmd_lock);
  5122. return rc;
  5123. }
  5124. int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
  5125. {
  5126. struct hwrm_wol_filter_free_input req = {0};
  5127. int rc;
  5128. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
  5129. req.port_id = cpu_to_le16(bp->pf.port_id);
  5130. req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
  5131. req.wol_filter_id = bp->wol_filter_id;
  5132. rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5133. return rc;
  5134. }
  5135. static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
  5136. {
  5137. struct hwrm_wol_filter_qcfg_input req = {0};
  5138. struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
  5139. u16 next_handle = 0;
  5140. int rc;
  5141. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
  5142. req.port_id = cpu_to_le16(bp->pf.port_id);
  5143. req.handle = cpu_to_le16(handle);
  5144. mutex_lock(&bp->hwrm_cmd_lock);
  5145. rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
  5146. if (!rc) {
  5147. next_handle = le16_to_cpu(resp->next_handle);
  5148. if (next_handle != 0) {
  5149. if (resp->wol_type ==
  5150. WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
  5151. bp->wol = 1;
  5152. bp->wol_filter_id = resp->wol_filter_id;
  5153. }
  5154. }
  5155. }
  5156. mutex_unlock(&bp->hwrm_cmd_lock);
  5157. return next_handle;
  5158. }
  5159. static void bnxt_get_wol_settings(struct bnxt *bp)
  5160. {
  5161. u16 handle = 0;
  5162. if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
  5163. return;
  5164. do {
  5165. handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
  5166. } while (handle && handle != 0xffff);
  5167. }
  5168. static bool bnxt_eee_config_ok(struct bnxt *bp)
  5169. {
  5170. struct ethtool_eee *eee = &bp->eee;
  5171. struct bnxt_link_info *link_info = &bp->link_info;
  5172. if (!(bp->flags & BNXT_FLAG_EEE_CAP))
  5173. return true;
  5174. if (eee->eee_enabled) {
  5175. u32 advertising =
  5176. _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
  5177. if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
  5178. eee->eee_enabled = 0;
  5179. return false;
  5180. }
  5181. if (eee->advertised & ~advertising) {
  5182. eee->advertised = advertising & eee->supported;
  5183. return false;
  5184. }
  5185. }
  5186. return true;
  5187. }
  5188. static int bnxt_update_phy_setting(struct bnxt *bp)
  5189. {
  5190. int rc;
  5191. bool update_link = false;
  5192. bool update_pause = false;
  5193. bool update_eee = false;
  5194. struct bnxt_link_info *link_info = &bp->link_info;
  5195. rc = bnxt_update_link(bp, true);
  5196. if (rc) {
  5197. netdev_err(bp->dev, "failed to update link (rc: %x)\n",
  5198. rc);
  5199. return rc;
  5200. }
  5201. if (!BNXT_SINGLE_PF(bp))
  5202. return 0;
  5203. if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
  5204. (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
  5205. link_info->req_flow_ctrl)
  5206. update_pause = true;
  5207. if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
  5208. link_info->force_pause_setting != link_info->req_flow_ctrl)
  5209. update_pause = true;
  5210. if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
  5211. if (BNXT_AUTO_MODE(link_info->auto_mode))
  5212. update_link = true;
  5213. if (link_info->req_link_speed != link_info->force_link_speed)
  5214. update_link = true;
  5215. if (link_info->req_duplex != link_info->duplex_setting)
  5216. update_link = true;
  5217. } else {
  5218. if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
  5219. update_link = true;
  5220. if (link_info->advertising != link_info->auto_link_speeds)
  5221. update_link = true;
  5222. }
  5223. /* The last close may have shutdown the link, so need to call
  5224. * PHY_CFG to bring it back up.
  5225. */
  5226. if (!netif_carrier_ok(bp->dev))
  5227. update_link = true;
  5228. if (!bnxt_eee_config_ok(bp))
  5229. update_eee = true;
  5230. if (update_link)
  5231. rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
  5232. else if (update_pause)
  5233. rc = bnxt_hwrm_set_pause(bp);
  5234. if (rc) {
  5235. netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
  5236. rc);
  5237. return rc;
  5238. }
  5239. return rc;
  5240. }
  5241. /* Common routine to pre-map certain register block to different GRC window.
  5242. * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
  5243. * in PF and 3 windows in VF that can be customized to map in different
  5244. * register blocks.
  5245. */
  5246. static void bnxt_preset_reg_win(struct bnxt *bp)
  5247. {
  5248. if (BNXT_PF(bp)) {
  5249. /* CAG registers map to GRC window #4 */
  5250. writel(BNXT_CAG_REG_BASE,
  5251. bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
  5252. }
  5253. }
  5254. static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
  5255. {
  5256. int rc = 0;
  5257. bnxt_preset_reg_win(bp);
  5258. netif_carrier_off(bp->dev);
  5259. if (irq_re_init) {
  5260. rc = bnxt_setup_int_mode(bp);
  5261. if (rc) {
  5262. netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
  5263. rc);
  5264. return rc;
  5265. }
  5266. }
  5267. if ((bp->flags & BNXT_FLAG_RFS) &&
  5268. !(bp->flags & BNXT_FLAG_USING_MSIX)) {
  5269. /* disable RFS if falling back to INTA */
  5270. bp->dev->hw_features &= ~NETIF_F_NTUPLE;
  5271. bp->flags &= ~BNXT_FLAG_RFS;
  5272. }
  5273. rc = bnxt_alloc_mem(bp, irq_re_init);
  5274. if (rc) {
  5275. netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
  5276. goto open_err_free_mem;
  5277. }
  5278. if (irq_re_init) {
  5279. bnxt_init_napi(bp);
  5280. rc = bnxt_request_irq(bp);
  5281. if (rc) {
  5282. netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
  5283. goto open_err;
  5284. }
  5285. }
  5286. bnxt_enable_napi(bp);
  5287. rc = bnxt_init_nic(bp, irq_re_init);
  5288. if (rc) {
  5289. netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
  5290. goto open_err;
  5291. }
  5292. if (link_re_init) {
  5293. rc = bnxt_update_phy_setting(bp);
  5294. if (rc)
  5295. netdev_warn(bp->dev, "failed to update phy settings\n");
  5296. }
  5297. if (irq_re_init)
  5298. udp_tunnel_get_rx_info(bp->dev);
  5299. set_bit(BNXT_STATE_OPEN, &bp->state);
  5300. bnxt_enable_int(bp);
  5301. /* Enable TX queues */
  5302. bnxt_tx_enable(bp);
  5303. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5304. /* Poll link status and check for SFP+ module status */
  5305. bnxt_get_port_module_status(bp);
  5306. /* VF-reps may need to be re-opened after the PF is re-opened */
  5307. if (BNXT_PF(bp))
  5308. bnxt_vf_reps_open(bp);
  5309. return 0;
  5310. open_err:
  5311. bnxt_disable_napi(bp);
  5312. bnxt_del_napi(bp);
  5313. open_err_free_mem:
  5314. bnxt_free_skbs(bp);
  5315. bnxt_free_irq(bp);
  5316. bnxt_free_mem(bp, true);
  5317. return rc;
  5318. }
  5319. /* rtnl_lock held */
  5320. int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
  5321. {
  5322. int rc = 0;
  5323. rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
  5324. if (rc) {
  5325. netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
  5326. dev_close(bp->dev);
  5327. }
  5328. return rc;
  5329. }
  5330. /* rtnl_lock held, open the NIC half way by allocating all resources, but
  5331. * NAPI, IRQ, and TX are not enabled. This is mainly used for offline
  5332. * self tests.
  5333. */
  5334. int bnxt_half_open_nic(struct bnxt *bp)
  5335. {
  5336. int rc = 0;
  5337. rc = bnxt_alloc_mem(bp, false);
  5338. if (rc) {
  5339. netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
  5340. goto half_open_err;
  5341. }
  5342. rc = bnxt_init_nic(bp, false);
  5343. if (rc) {
  5344. netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
  5345. goto half_open_err;
  5346. }
  5347. return 0;
  5348. half_open_err:
  5349. bnxt_free_skbs(bp);
  5350. bnxt_free_mem(bp, false);
  5351. dev_close(bp->dev);
  5352. return rc;
  5353. }
  5354. /* rtnl_lock held, this call can only be made after a previous successful
  5355. * call to bnxt_half_open_nic().
  5356. */
  5357. void bnxt_half_close_nic(struct bnxt *bp)
  5358. {
  5359. bnxt_hwrm_resource_free(bp, false, false);
  5360. bnxt_free_skbs(bp);
  5361. bnxt_free_mem(bp, false);
  5362. }
  5363. static int bnxt_open(struct net_device *dev)
  5364. {
  5365. struct bnxt *bp = netdev_priv(dev);
  5366. return __bnxt_open_nic(bp, true, true);
  5367. }
  5368. static bool bnxt_drv_busy(struct bnxt *bp)
  5369. {
  5370. return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
  5371. test_bit(BNXT_STATE_READ_STATS, &bp->state));
  5372. }
  5373. int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
  5374. {
  5375. int rc = 0;
  5376. #ifdef CONFIG_BNXT_SRIOV
  5377. if (bp->sriov_cfg) {
  5378. rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
  5379. !bp->sriov_cfg,
  5380. BNXT_SRIOV_CFG_WAIT_TMO);
  5381. if (rc)
  5382. netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
  5383. }
  5384. /* Close the VF-reps before closing PF */
  5385. if (BNXT_PF(bp))
  5386. bnxt_vf_reps_close(bp);
  5387. #endif
  5388. /* Change device state to avoid TX queue wake up's */
  5389. bnxt_tx_disable(bp);
  5390. clear_bit(BNXT_STATE_OPEN, &bp->state);
  5391. smp_mb__after_atomic();
  5392. while (bnxt_drv_busy(bp))
  5393. msleep(20);
  5394. /* Flush rings and and disable interrupts */
  5395. bnxt_shutdown_nic(bp, irq_re_init);
  5396. /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
  5397. bnxt_disable_napi(bp);
  5398. del_timer_sync(&bp->timer);
  5399. bnxt_free_skbs(bp);
  5400. if (irq_re_init) {
  5401. bnxt_free_irq(bp);
  5402. bnxt_del_napi(bp);
  5403. }
  5404. bnxt_free_mem(bp, irq_re_init);
  5405. return rc;
  5406. }
  5407. static int bnxt_close(struct net_device *dev)
  5408. {
  5409. struct bnxt *bp = netdev_priv(dev);
  5410. bnxt_close_nic(bp, true, true);
  5411. bnxt_hwrm_shutdown_link(bp);
  5412. return 0;
  5413. }
  5414. /* rtnl_lock held */
  5415. static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5416. {
  5417. switch (cmd) {
  5418. case SIOCGMIIPHY:
  5419. /* fallthru */
  5420. case SIOCGMIIREG: {
  5421. if (!netif_running(dev))
  5422. return -EAGAIN;
  5423. return 0;
  5424. }
  5425. case SIOCSMIIREG:
  5426. if (!netif_running(dev))
  5427. return -EAGAIN;
  5428. return 0;
  5429. default:
  5430. /* do nothing */
  5431. break;
  5432. }
  5433. return -EOPNOTSUPP;
  5434. }
  5435. static void
  5436. bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
  5437. {
  5438. u32 i;
  5439. struct bnxt *bp = netdev_priv(dev);
  5440. set_bit(BNXT_STATE_READ_STATS, &bp->state);
  5441. /* Make sure bnxt_close_nic() sees that we are reading stats before
  5442. * we check the BNXT_STATE_OPEN flag.
  5443. */
  5444. smp_mb__after_atomic();
  5445. if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
  5446. clear_bit(BNXT_STATE_READ_STATS, &bp->state);
  5447. return;
  5448. }
  5449. /* TODO check if we need to synchronize with bnxt_close path */
  5450. for (i = 0; i < bp->cp_nr_rings; i++) {
  5451. struct bnxt_napi *bnapi = bp->bnapi[i];
  5452. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  5453. struct ctx_hw_stats *hw_stats = cpr->hw_stats;
  5454. stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
  5455. stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
  5456. stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
  5457. stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
  5458. stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
  5459. stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
  5460. stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
  5461. stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
  5462. stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
  5463. stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
  5464. stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
  5465. stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
  5466. stats->rx_missed_errors +=
  5467. le64_to_cpu(hw_stats->rx_discard_pkts);
  5468. stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
  5469. stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
  5470. }
  5471. if (bp->flags & BNXT_FLAG_PORT_STATS) {
  5472. struct rx_port_stats *rx = bp->hw_rx_port_stats;
  5473. struct tx_port_stats *tx = bp->hw_tx_port_stats;
  5474. stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
  5475. stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
  5476. stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
  5477. le64_to_cpu(rx->rx_ovrsz_frames) +
  5478. le64_to_cpu(rx->rx_runt_frames);
  5479. stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
  5480. le64_to_cpu(rx->rx_jbr_frames);
  5481. stats->collisions = le64_to_cpu(tx->tx_total_collisions);
  5482. stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
  5483. stats->tx_errors = le64_to_cpu(tx->tx_err);
  5484. }
  5485. clear_bit(BNXT_STATE_READ_STATS, &bp->state);
  5486. }
  5487. static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
  5488. {
  5489. struct net_device *dev = bp->dev;
  5490. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  5491. struct netdev_hw_addr *ha;
  5492. u8 *haddr;
  5493. int mc_count = 0;
  5494. bool update = false;
  5495. int off = 0;
  5496. netdev_for_each_mc_addr(ha, dev) {
  5497. if (mc_count >= BNXT_MAX_MC_ADDRS) {
  5498. *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
  5499. vnic->mc_list_count = 0;
  5500. return false;
  5501. }
  5502. haddr = ha->addr;
  5503. if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
  5504. memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
  5505. update = true;
  5506. }
  5507. off += ETH_ALEN;
  5508. mc_count++;
  5509. }
  5510. if (mc_count)
  5511. *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
  5512. if (mc_count != vnic->mc_list_count) {
  5513. vnic->mc_list_count = mc_count;
  5514. update = true;
  5515. }
  5516. return update;
  5517. }
  5518. static bool bnxt_uc_list_updated(struct bnxt *bp)
  5519. {
  5520. struct net_device *dev = bp->dev;
  5521. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  5522. struct netdev_hw_addr *ha;
  5523. int off = 0;
  5524. if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
  5525. return true;
  5526. netdev_for_each_uc_addr(ha, dev) {
  5527. if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
  5528. return true;
  5529. off += ETH_ALEN;
  5530. }
  5531. return false;
  5532. }
  5533. static void bnxt_set_rx_mode(struct net_device *dev)
  5534. {
  5535. struct bnxt *bp = netdev_priv(dev);
  5536. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  5537. u32 mask = vnic->rx_mask;
  5538. bool mc_update = false;
  5539. bool uc_update;
  5540. if (!netif_running(dev))
  5541. return;
  5542. mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
  5543. CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
  5544. CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
  5545. if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
  5546. mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
  5547. uc_update = bnxt_uc_list_updated(bp);
  5548. if (dev->flags & IFF_ALLMULTI) {
  5549. mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
  5550. vnic->mc_list_count = 0;
  5551. } else {
  5552. mc_update = bnxt_mc_list_updated(bp, &mask);
  5553. }
  5554. if (mask != vnic->rx_mask || uc_update || mc_update) {
  5555. vnic->rx_mask = mask;
  5556. set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
  5557. schedule_work(&bp->sp_task);
  5558. }
  5559. }
  5560. static int bnxt_cfg_rx_mode(struct bnxt *bp)
  5561. {
  5562. struct net_device *dev = bp->dev;
  5563. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  5564. struct netdev_hw_addr *ha;
  5565. int i, off = 0, rc;
  5566. bool uc_update;
  5567. netif_addr_lock_bh(dev);
  5568. uc_update = bnxt_uc_list_updated(bp);
  5569. netif_addr_unlock_bh(dev);
  5570. if (!uc_update)
  5571. goto skip_uc;
  5572. mutex_lock(&bp->hwrm_cmd_lock);
  5573. for (i = 1; i < vnic->uc_filter_count; i++) {
  5574. struct hwrm_cfa_l2_filter_free_input req = {0};
  5575. bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
  5576. -1);
  5577. req.l2_filter_id = vnic->fw_l2_filter_id[i];
  5578. rc = _hwrm_send_message(bp, &req, sizeof(req),
  5579. HWRM_CMD_TIMEOUT);
  5580. }
  5581. mutex_unlock(&bp->hwrm_cmd_lock);
  5582. vnic->uc_filter_count = 1;
  5583. netif_addr_lock_bh(dev);
  5584. if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
  5585. vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
  5586. } else {
  5587. netdev_for_each_uc_addr(ha, dev) {
  5588. memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
  5589. off += ETH_ALEN;
  5590. vnic->uc_filter_count++;
  5591. }
  5592. }
  5593. netif_addr_unlock_bh(dev);
  5594. for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
  5595. rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
  5596. if (rc) {
  5597. netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
  5598. rc);
  5599. vnic->uc_filter_count = i;
  5600. return rc;
  5601. }
  5602. }
  5603. skip_uc:
  5604. rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
  5605. if (rc)
  5606. netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
  5607. rc);
  5608. return rc;
  5609. }
  5610. /* If the chip and firmware supports RFS */
  5611. static bool bnxt_rfs_supported(struct bnxt *bp)
  5612. {
  5613. if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
  5614. return true;
  5615. if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
  5616. return true;
  5617. return false;
  5618. }
  5619. /* If runtime conditions support RFS */
  5620. static bool bnxt_rfs_capable(struct bnxt *bp)
  5621. {
  5622. #ifdef CONFIG_RFS_ACCEL
  5623. int vnics, max_vnics, max_rss_ctxs;
  5624. if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
  5625. return false;
  5626. vnics = 1 + bp->rx_nr_rings;
  5627. max_vnics = bnxt_get_max_func_vnics(bp);
  5628. max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
  5629. /* RSS contexts not a limiting factor */
  5630. if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
  5631. max_rss_ctxs = max_vnics;
  5632. if (vnics > max_vnics || vnics > max_rss_ctxs) {
  5633. netdev_warn(bp->dev,
  5634. "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
  5635. min(max_rss_ctxs - 1, max_vnics - 1));
  5636. return false;
  5637. }
  5638. return true;
  5639. #else
  5640. return false;
  5641. #endif
  5642. }
  5643. static netdev_features_t bnxt_fix_features(struct net_device *dev,
  5644. netdev_features_t features)
  5645. {
  5646. struct bnxt *bp = netdev_priv(dev);
  5647. if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
  5648. features &= ~NETIF_F_NTUPLE;
  5649. /* Both CTAG and STAG VLAN accelaration on the RX side have to be
  5650. * turned on or off together.
  5651. */
  5652. if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
  5653. (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
  5654. if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
  5655. features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
  5656. NETIF_F_HW_VLAN_STAG_RX);
  5657. else
  5658. features |= NETIF_F_HW_VLAN_CTAG_RX |
  5659. NETIF_F_HW_VLAN_STAG_RX;
  5660. }
  5661. #ifdef CONFIG_BNXT_SRIOV
  5662. if (BNXT_VF(bp)) {
  5663. if (bp->vf.vlan) {
  5664. features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
  5665. NETIF_F_HW_VLAN_STAG_RX);
  5666. }
  5667. }
  5668. #endif
  5669. return features;
  5670. }
  5671. static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
  5672. {
  5673. struct bnxt *bp = netdev_priv(dev);
  5674. u32 flags = bp->flags;
  5675. u32 changes;
  5676. int rc = 0;
  5677. bool re_init = false;
  5678. bool update_tpa = false;
  5679. flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
  5680. if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
  5681. flags |= BNXT_FLAG_GRO;
  5682. if (features & NETIF_F_LRO)
  5683. flags |= BNXT_FLAG_LRO;
  5684. if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
  5685. flags &= ~BNXT_FLAG_TPA;
  5686. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  5687. flags |= BNXT_FLAG_STRIP_VLAN;
  5688. if (features & NETIF_F_NTUPLE)
  5689. flags |= BNXT_FLAG_RFS;
  5690. changes = flags ^ bp->flags;
  5691. if (changes & BNXT_FLAG_TPA) {
  5692. update_tpa = true;
  5693. if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
  5694. (flags & BNXT_FLAG_TPA) == 0)
  5695. re_init = true;
  5696. }
  5697. if (changes & ~BNXT_FLAG_TPA)
  5698. re_init = true;
  5699. if (flags != bp->flags) {
  5700. u32 old_flags = bp->flags;
  5701. bp->flags = flags;
  5702. if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
  5703. if (update_tpa)
  5704. bnxt_set_ring_params(bp);
  5705. return rc;
  5706. }
  5707. if (re_init) {
  5708. bnxt_close_nic(bp, false, false);
  5709. if (update_tpa)
  5710. bnxt_set_ring_params(bp);
  5711. return bnxt_open_nic(bp, false, false);
  5712. }
  5713. if (update_tpa) {
  5714. rc = bnxt_set_tpa(bp,
  5715. (flags & BNXT_FLAG_TPA) ?
  5716. true : false);
  5717. if (rc)
  5718. bp->flags = old_flags;
  5719. }
  5720. }
  5721. return rc;
  5722. }
  5723. static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
  5724. {
  5725. struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
  5726. int i = bnapi->index;
  5727. if (!txr)
  5728. return;
  5729. netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
  5730. i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
  5731. txr->tx_cons);
  5732. }
  5733. static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
  5734. {
  5735. struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
  5736. int i = bnapi->index;
  5737. if (!rxr)
  5738. return;
  5739. netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
  5740. i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
  5741. rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
  5742. rxr->rx_sw_agg_prod);
  5743. }
  5744. static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
  5745. {
  5746. struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
  5747. int i = bnapi->index;
  5748. netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
  5749. i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
  5750. }
  5751. static void bnxt_dbg_dump_states(struct bnxt *bp)
  5752. {
  5753. int i;
  5754. struct bnxt_napi *bnapi;
  5755. for (i = 0; i < bp->cp_nr_rings; i++) {
  5756. bnapi = bp->bnapi[i];
  5757. if (netif_msg_drv(bp)) {
  5758. bnxt_dump_tx_sw_state(bnapi);
  5759. bnxt_dump_rx_sw_state(bnapi);
  5760. bnxt_dump_cp_sw_state(bnapi);
  5761. }
  5762. }
  5763. }
  5764. static void bnxt_reset_task(struct bnxt *bp, bool silent)
  5765. {
  5766. if (!silent)
  5767. bnxt_dbg_dump_states(bp);
  5768. if (netif_running(bp->dev)) {
  5769. int rc;
  5770. if (!silent)
  5771. bnxt_ulp_stop(bp);
  5772. bnxt_close_nic(bp, false, false);
  5773. rc = bnxt_open_nic(bp, false, false);
  5774. if (!silent && !rc)
  5775. bnxt_ulp_start(bp);
  5776. }
  5777. }
  5778. static void bnxt_tx_timeout(struct net_device *dev)
  5779. {
  5780. struct bnxt *bp = netdev_priv(dev);
  5781. netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
  5782. set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
  5783. schedule_work(&bp->sp_task);
  5784. }
  5785. #ifdef CONFIG_NET_POLL_CONTROLLER
  5786. static void bnxt_poll_controller(struct net_device *dev)
  5787. {
  5788. struct bnxt *bp = netdev_priv(dev);
  5789. int i;
  5790. /* Only process tx rings/combined rings in netpoll mode. */
  5791. for (i = 0; i < bp->tx_nr_rings; i++) {
  5792. struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
  5793. napi_schedule(&txr->bnapi->napi);
  5794. }
  5795. }
  5796. #endif
  5797. static void bnxt_timer(unsigned long data)
  5798. {
  5799. struct bnxt *bp = (struct bnxt *)data;
  5800. struct net_device *dev = bp->dev;
  5801. if (!netif_running(dev))
  5802. return;
  5803. if (atomic_read(&bp->intr_sem) != 0)
  5804. goto bnxt_restart_timer;
  5805. if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
  5806. bp->stats_coal_ticks) {
  5807. set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
  5808. schedule_work(&bp->sp_task);
  5809. }
  5810. bnxt_restart_timer:
  5811. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5812. }
  5813. static void bnxt_rtnl_lock_sp(struct bnxt *bp)
  5814. {
  5815. /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
  5816. * set. If the device is being closed, bnxt_close() may be holding
  5817. * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
  5818. * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
  5819. */
  5820. clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  5821. rtnl_lock();
  5822. }
  5823. static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
  5824. {
  5825. set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  5826. rtnl_unlock();
  5827. }
  5828. /* Only called from bnxt_sp_task() */
  5829. static void bnxt_reset(struct bnxt *bp, bool silent)
  5830. {
  5831. bnxt_rtnl_lock_sp(bp);
  5832. if (test_bit(BNXT_STATE_OPEN, &bp->state))
  5833. bnxt_reset_task(bp, silent);
  5834. bnxt_rtnl_unlock_sp(bp);
  5835. }
  5836. static void bnxt_cfg_ntp_filters(struct bnxt *);
  5837. static void bnxt_sp_task(struct work_struct *work)
  5838. {
  5839. struct bnxt *bp = container_of(work, struct bnxt, sp_task);
  5840. set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  5841. smp_mb__after_atomic();
  5842. if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
  5843. clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  5844. return;
  5845. }
  5846. if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
  5847. bnxt_cfg_rx_mode(bp);
  5848. if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
  5849. bnxt_cfg_ntp_filters(bp);
  5850. if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
  5851. bnxt_hwrm_exec_fwd_req(bp);
  5852. if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
  5853. bnxt_hwrm_tunnel_dst_port_alloc(
  5854. bp, bp->vxlan_port,
  5855. TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
  5856. }
  5857. if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
  5858. bnxt_hwrm_tunnel_dst_port_free(
  5859. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
  5860. }
  5861. if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
  5862. bnxt_hwrm_tunnel_dst_port_alloc(
  5863. bp, bp->nge_port,
  5864. TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
  5865. }
  5866. if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
  5867. bnxt_hwrm_tunnel_dst_port_free(
  5868. bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
  5869. }
  5870. if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
  5871. bnxt_hwrm_port_qstats(bp);
  5872. /* These functions below will clear BNXT_STATE_IN_SP_TASK. They
  5873. * must be the last functions to be called before exiting.
  5874. */
  5875. if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
  5876. int rc = 0;
  5877. if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
  5878. &bp->sp_event))
  5879. bnxt_hwrm_phy_qcaps(bp);
  5880. bnxt_rtnl_lock_sp(bp);
  5881. if (test_bit(BNXT_STATE_OPEN, &bp->state))
  5882. rc = bnxt_update_link(bp, true);
  5883. bnxt_rtnl_unlock_sp(bp);
  5884. if (rc)
  5885. netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
  5886. rc);
  5887. }
  5888. if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
  5889. bnxt_rtnl_lock_sp(bp);
  5890. if (test_bit(BNXT_STATE_OPEN, &bp->state))
  5891. bnxt_get_port_module_status(bp);
  5892. bnxt_rtnl_unlock_sp(bp);
  5893. }
  5894. if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
  5895. bnxt_reset(bp, false);
  5896. if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
  5897. bnxt_reset(bp, true);
  5898. smp_mb__before_atomic();
  5899. clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
  5900. }
  5901. /* Under rtnl_lock */
  5902. int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
  5903. int tx_xdp)
  5904. {
  5905. int max_rx, max_tx, tx_sets = 1;
  5906. int tx_rings_needed;
  5907. int rc;
  5908. if (tcs)
  5909. tx_sets = tcs;
  5910. rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
  5911. if (rc)
  5912. return rc;
  5913. if (max_rx < rx)
  5914. return -ENOMEM;
  5915. tx_rings_needed = tx * tx_sets + tx_xdp;
  5916. if (max_tx < tx_rings_needed)
  5917. return -ENOMEM;
  5918. return bnxt_hwrm_check_tx_rings(bp, tx_rings_needed);
  5919. }
  5920. static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
  5921. {
  5922. if (bp->bar2) {
  5923. pci_iounmap(pdev, bp->bar2);
  5924. bp->bar2 = NULL;
  5925. }
  5926. if (bp->bar1) {
  5927. pci_iounmap(pdev, bp->bar1);
  5928. bp->bar1 = NULL;
  5929. }
  5930. if (bp->bar0) {
  5931. pci_iounmap(pdev, bp->bar0);
  5932. bp->bar0 = NULL;
  5933. }
  5934. }
  5935. static void bnxt_cleanup_pci(struct bnxt *bp)
  5936. {
  5937. bnxt_unmap_bars(bp, bp->pdev);
  5938. pci_release_regions(bp->pdev);
  5939. pci_disable_device(bp->pdev);
  5940. }
  5941. static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
  5942. {
  5943. int rc;
  5944. struct bnxt *bp = netdev_priv(dev);
  5945. SET_NETDEV_DEV(dev, &pdev->dev);
  5946. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  5947. rc = pci_enable_device(pdev);
  5948. if (rc) {
  5949. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  5950. goto init_err;
  5951. }
  5952. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  5953. dev_err(&pdev->dev,
  5954. "Cannot find PCI device base address, aborting\n");
  5955. rc = -ENODEV;
  5956. goto init_err_disable;
  5957. }
  5958. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  5959. if (rc) {
  5960. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  5961. goto init_err_disable;
  5962. }
  5963. if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
  5964. dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
  5965. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  5966. goto init_err_disable;
  5967. }
  5968. pci_set_master(pdev);
  5969. bp->dev = dev;
  5970. bp->pdev = pdev;
  5971. bp->bar0 = pci_ioremap_bar(pdev, 0);
  5972. if (!bp->bar0) {
  5973. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  5974. rc = -ENOMEM;
  5975. goto init_err_release;
  5976. }
  5977. bp->bar1 = pci_ioremap_bar(pdev, 2);
  5978. if (!bp->bar1) {
  5979. dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
  5980. rc = -ENOMEM;
  5981. goto init_err_release;
  5982. }
  5983. bp->bar2 = pci_ioremap_bar(pdev, 4);
  5984. if (!bp->bar2) {
  5985. dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
  5986. rc = -ENOMEM;
  5987. goto init_err_release;
  5988. }
  5989. pci_enable_pcie_error_reporting(pdev);
  5990. INIT_WORK(&bp->sp_task, bnxt_sp_task);
  5991. spin_lock_init(&bp->ntp_fltr_lock);
  5992. bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
  5993. bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
  5994. /* tick values in micro seconds */
  5995. bp->rx_coal_ticks = 12;
  5996. bp->rx_coal_bufs = 30;
  5997. bp->rx_coal_ticks_irq = 1;
  5998. bp->rx_coal_bufs_irq = 2;
  5999. bp->tx_coal_ticks = 25;
  6000. bp->tx_coal_bufs = 30;
  6001. bp->tx_coal_ticks_irq = 2;
  6002. bp->tx_coal_bufs_irq = 2;
  6003. bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
  6004. init_timer(&bp->timer);
  6005. bp->timer.data = (unsigned long)bp;
  6006. bp->timer.function = bnxt_timer;
  6007. bp->current_interval = BNXT_TIMER_INTERVAL;
  6008. clear_bit(BNXT_STATE_OPEN, &bp->state);
  6009. return 0;
  6010. init_err_release:
  6011. bnxt_unmap_bars(bp, pdev);
  6012. pci_release_regions(pdev);
  6013. init_err_disable:
  6014. pci_disable_device(pdev);
  6015. init_err:
  6016. return rc;
  6017. }
  6018. /* rtnl_lock held */
  6019. static int bnxt_change_mac_addr(struct net_device *dev, void *p)
  6020. {
  6021. struct sockaddr *addr = p;
  6022. struct bnxt *bp = netdev_priv(dev);
  6023. int rc = 0;
  6024. if (!is_valid_ether_addr(addr->sa_data))
  6025. return -EADDRNOTAVAIL;
  6026. rc = bnxt_approve_mac(bp, addr->sa_data);
  6027. if (rc)
  6028. return rc;
  6029. if (ether_addr_equal(addr->sa_data, dev->dev_addr))
  6030. return 0;
  6031. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6032. if (netif_running(dev)) {
  6033. bnxt_close_nic(bp, false, false);
  6034. rc = bnxt_open_nic(bp, false, false);
  6035. }
  6036. return rc;
  6037. }
  6038. /* rtnl_lock held */
  6039. static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
  6040. {
  6041. struct bnxt *bp = netdev_priv(dev);
  6042. if (netif_running(dev))
  6043. bnxt_close_nic(bp, false, false);
  6044. dev->mtu = new_mtu;
  6045. bnxt_set_ring_params(bp);
  6046. if (netif_running(dev))
  6047. return bnxt_open_nic(bp, false, false);
  6048. return 0;
  6049. }
  6050. int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
  6051. {
  6052. struct bnxt *bp = netdev_priv(dev);
  6053. bool sh = false;
  6054. int rc;
  6055. if (tc > bp->max_tc) {
  6056. netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
  6057. tc, bp->max_tc);
  6058. return -EINVAL;
  6059. }
  6060. if (netdev_get_num_tc(dev) == tc)
  6061. return 0;
  6062. if (bp->flags & BNXT_FLAG_SHARED_RINGS)
  6063. sh = true;
  6064. rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
  6065. sh, tc, bp->tx_nr_rings_xdp);
  6066. if (rc)
  6067. return rc;
  6068. /* Needs to close the device and do hw resource re-allocations */
  6069. if (netif_running(bp->dev))
  6070. bnxt_close_nic(bp, true, false);
  6071. if (tc) {
  6072. bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
  6073. netdev_set_num_tc(dev, tc);
  6074. } else {
  6075. bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
  6076. netdev_reset_tc(dev);
  6077. }
  6078. bp->tx_nr_rings += bp->tx_nr_rings_xdp;
  6079. bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
  6080. bp->tx_nr_rings + bp->rx_nr_rings;
  6081. bp->num_stat_ctxs = bp->cp_nr_rings;
  6082. if (netif_running(bp->dev))
  6083. return bnxt_open_nic(bp, true, false);
  6084. return 0;
  6085. }
  6086. static int bnxt_setup_flower(struct net_device *dev,
  6087. struct tc_cls_flower_offload *cls_flower)
  6088. {
  6089. struct bnxt *bp = netdev_priv(dev);
  6090. if (BNXT_VF(bp))
  6091. return -EOPNOTSUPP;
  6092. return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, cls_flower);
  6093. }
  6094. static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
  6095. void *type_data)
  6096. {
  6097. switch (type) {
  6098. case TC_SETUP_CLSFLOWER:
  6099. return bnxt_setup_flower(dev, type_data);
  6100. case TC_SETUP_MQPRIO: {
  6101. struct tc_mqprio_qopt *mqprio = type_data;
  6102. mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
  6103. return bnxt_setup_mq_tc(dev, mqprio->num_tc);
  6104. }
  6105. default:
  6106. return -EOPNOTSUPP;
  6107. }
  6108. }
  6109. #ifdef CONFIG_RFS_ACCEL
  6110. static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
  6111. struct bnxt_ntuple_filter *f2)
  6112. {
  6113. struct flow_keys *keys1 = &f1->fkeys;
  6114. struct flow_keys *keys2 = &f2->fkeys;
  6115. if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
  6116. keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
  6117. keys1->ports.ports == keys2->ports.ports &&
  6118. keys1->basic.ip_proto == keys2->basic.ip_proto &&
  6119. keys1->basic.n_proto == keys2->basic.n_proto &&
  6120. keys1->control.flags == keys2->control.flags &&
  6121. ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
  6122. ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
  6123. return true;
  6124. return false;
  6125. }
  6126. static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
  6127. u16 rxq_index, u32 flow_id)
  6128. {
  6129. struct bnxt *bp = netdev_priv(dev);
  6130. struct bnxt_ntuple_filter *fltr, *new_fltr;
  6131. struct flow_keys *fkeys;
  6132. struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
  6133. int rc = 0, idx, bit_id, l2_idx = 0;
  6134. struct hlist_head *head;
  6135. if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
  6136. struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
  6137. int off = 0, j;
  6138. netif_addr_lock_bh(dev);
  6139. for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
  6140. if (ether_addr_equal(eth->h_dest,
  6141. vnic->uc_list + off)) {
  6142. l2_idx = j + 1;
  6143. break;
  6144. }
  6145. }
  6146. netif_addr_unlock_bh(dev);
  6147. if (!l2_idx)
  6148. return -EINVAL;
  6149. }
  6150. new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
  6151. if (!new_fltr)
  6152. return -ENOMEM;
  6153. fkeys = &new_fltr->fkeys;
  6154. if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
  6155. rc = -EPROTONOSUPPORT;
  6156. goto err_free;
  6157. }
  6158. if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
  6159. fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
  6160. ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
  6161. (fkeys->basic.ip_proto != IPPROTO_UDP))) {
  6162. rc = -EPROTONOSUPPORT;
  6163. goto err_free;
  6164. }
  6165. if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
  6166. bp->hwrm_spec_code < 0x10601) {
  6167. rc = -EPROTONOSUPPORT;
  6168. goto err_free;
  6169. }
  6170. if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
  6171. bp->hwrm_spec_code < 0x10601) {
  6172. rc = -EPROTONOSUPPORT;
  6173. goto err_free;
  6174. }
  6175. memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
  6176. memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
  6177. idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
  6178. head = &bp->ntp_fltr_hash_tbl[idx];
  6179. rcu_read_lock();
  6180. hlist_for_each_entry_rcu(fltr, head, hash) {
  6181. if (bnxt_fltr_match(fltr, new_fltr)) {
  6182. rcu_read_unlock();
  6183. rc = 0;
  6184. goto err_free;
  6185. }
  6186. }
  6187. rcu_read_unlock();
  6188. spin_lock_bh(&bp->ntp_fltr_lock);
  6189. bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
  6190. BNXT_NTP_FLTR_MAX_FLTR, 0);
  6191. if (bit_id < 0) {
  6192. spin_unlock_bh(&bp->ntp_fltr_lock);
  6193. rc = -ENOMEM;
  6194. goto err_free;
  6195. }
  6196. new_fltr->sw_id = (u16)bit_id;
  6197. new_fltr->flow_id = flow_id;
  6198. new_fltr->l2_fltr_idx = l2_idx;
  6199. new_fltr->rxq = rxq_index;
  6200. hlist_add_head_rcu(&new_fltr->hash, head);
  6201. bp->ntp_fltr_count++;
  6202. spin_unlock_bh(&bp->ntp_fltr_lock);
  6203. set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
  6204. schedule_work(&bp->sp_task);
  6205. return new_fltr->sw_id;
  6206. err_free:
  6207. kfree(new_fltr);
  6208. return rc;
  6209. }
  6210. static void bnxt_cfg_ntp_filters(struct bnxt *bp)
  6211. {
  6212. int i;
  6213. for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
  6214. struct hlist_head *head;
  6215. struct hlist_node *tmp;
  6216. struct bnxt_ntuple_filter *fltr;
  6217. int rc;
  6218. head = &bp->ntp_fltr_hash_tbl[i];
  6219. hlist_for_each_entry_safe(fltr, tmp, head, hash) {
  6220. bool del = false;
  6221. if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
  6222. if (rps_may_expire_flow(bp->dev, fltr->rxq,
  6223. fltr->flow_id,
  6224. fltr->sw_id)) {
  6225. bnxt_hwrm_cfa_ntuple_filter_free(bp,
  6226. fltr);
  6227. del = true;
  6228. }
  6229. } else {
  6230. rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
  6231. fltr);
  6232. if (rc)
  6233. del = true;
  6234. else
  6235. set_bit(BNXT_FLTR_VALID, &fltr->state);
  6236. }
  6237. if (del) {
  6238. spin_lock_bh(&bp->ntp_fltr_lock);
  6239. hlist_del_rcu(&fltr->hash);
  6240. bp->ntp_fltr_count--;
  6241. spin_unlock_bh(&bp->ntp_fltr_lock);
  6242. synchronize_rcu();
  6243. clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
  6244. kfree(fltr);
  6245. }
  6246. }
  6247. }
  6248. if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
  6249. netdev_info(bp->dev, "Receive PF driver unload event!");
  6250. }
  6251. #else
  6252. static void bnxt_cfg_ntp_filters(struct bnxt *bp)
  6253. {
  6254. }
  6255. #endif /* CONFIG_RFS_ACCEL */
  6256. static void bnxt_udp_tunnel_add(struct net_device *dev,
  6257. struct udp_tunnel_info *ti)
  6258. {
  6259. struct bnxt *bp = netdev_priv(dev);
  6260. if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
  6261. return;
  6262. if (!netif_running(dev))
  6263. return;
  6264. switch (ti->type) {
  6265. case UDP_TUNNEL_TYPE_VXLAN:
  6266. if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
  6267. return;
  6268. bp->vxlan_port_cnt++;
  6269. if (bp->vxlan_port_cnt == 1) {
  6270. bp->vxlan_port = ti->port;
  6271. set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
  6272. schedule_work(&bp->sp_task);
  6273. }
  6274. break;
  6275. case UDP_TUNNEL_TYPE_GENEVE:
  6276. if (bp->nge_port_cnt && bp->nge_port != ti->port)
  6277. return;
  6278. bp->nge_port_cnt++;
  6279. if (bp->nge_port_cnt == 1) {
  6280. bp->nge_port = ti->port;
  6281. set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
  6282. }
  6283. break;
  6284. default:
  6285. return;
  6286. }
  6287. schedule_work(&bp->sp_task);
  6288. }
  6289. static void bnxt_udp_tunnel_del(struct net_device *dev,
  6290. struct udp_tunnel_info *ti)
  6291. {
  6292. struct bnxt *bp = netdev_priv(dev);
  6293. if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
  6294. return;
  6295. if (!netif_running(dev))
  6296. return;
  6297. switch (ti->type) {
  6298. case UDP_TUNNEL_TYPE_VXLAN:
  6299. if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
  6300. return;
  6301. bp->vxlan_port_cnt--;
  6302. if (bp->vxlan_port_cnt != 0)
  6303. return;
  6304. set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
  6305. break;
  6306. case UDP_TUNNEL_TYPE_GENEVE:
  6307. if (!bp->nge_port_cnt || bp->nge_port != ti->port)
  6308. return;
  6309. bp->nge_port_cnt--;
  6310. if (bp->nge_port_cnt != 0)
  6311. return;
  6312. set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
  6313. break;
  6314. default:
  6315. return;
  6316. }
  6317. schedule_work(&bp->sp_task);
  6318. }
  6319. static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  6320. struct net_device *dev, u32 filter_mask,
  6321. int nlflags)
  6322. {
  6323. struct bnxt *bp = netdev_priv(dev);
  6324. return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
  6325. nlflags, filter_mask, NULL);
  6326. }
  6327. static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
  6328. u16 flags)
  6329. {
  6330. struct bnxt *bp = netdev_priv(dev);
  6331. struct nlattr *attr, *br_spec;
  6332. int rem, rc = 0;
  6333. if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
  6334. return -EOPNOTSUPP;
  6335. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  6336. if (!br_spec)
  6337. return -EINVAL;
  6338. nla_for_each_nested(attr, br_spec, rem) {
  6339. u16 mode;
  6340. if (nla_type(attr) != IFLA_BRIDGE_MODE)
  6341. continue;
  6342. if (nla_len(attr) < sizeof(mode))
  6343. return -EINVAL;
  6344. mode = nla_get_u16(attr);
  6345. if (mode == bp->br_mode)
  6346. break;
  6347. rc = bnxt_hwrm_set_br_mode(bp, mode);
  6348. if (!rc)
  6349. bp->br_mode = mode;
  6350. break;
  6351. }
  6352. return rc;
  6353. }
  6354. static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
  6355. size_t len)
  6356. {
  6357. struct bnxt *bp = netdev_priv(dev);
  6358. int rc;
  6359. /* The PF and it's VF-reps only support the switchdev framework */
  6360. if (!BNXT_PF(bp))
  6361. return -EOPNOTSUPP;
  6362. rc = snprintf(buf, len, "p%d", bp->pf.port_id);
  6363. if (rc >= len)
  6364. return -EOPNOTSUPP;
  6365. return 0;
  6366. }
  6367. int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
  6368. {
  6369. if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
  6370. return -EOPNOTSUPP;
  6371. /* The PF and it's VF-reps only support the switchdev framework */
  6372. if (!BNXT_PF(bp))
  6373. return -EOPNOTSUPP;
  6374. switch (attr->id) {
  6375. case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
  6376. /* In SRIOV each PF-pool (PF + child VFs) serves as a
  6377. * switching domain, the PF's perm mac-addr can be used
  6378. * as the unique parent-id
  6379. */
  6380. attr->u.ppid.id_len = ETH_ALEN;
  6381. ether_addr_copy(attr->u.ppid.id, bp->pf.mac_addr);
  6382. break;
  6383. default:
  6384. return -EOPNOTSUPP;
  6385. }
  6386. return 0;
  6387. }
  6388. static int bnxt_swdev_port_attr_get(struct net_device *dev,
  6389. struct switchdev_attr *attr)
  6390. {
  6391. return bnxt_port_attr_get(netdev_priv(dev), attr);
  6392. }
  6393. static const struct switchdev_ops bnxt_switchdev_ops = {
  6394. .switchdev_port_attr_get = bnxt_swdev_port_attr_get
  6395. };
  6396. static const struct net_device_ops bnxt_netdev_ops = {
  6397. .ndo_open = bnxt_open,
  6398. .ndo_start_xmit = bnxt_start_xmit,
  6399. .ndo_stop = bnxt_close,
  6400. .ndo_get_stats64 = bnxt_get_stats64,
  6401. .ndo_set_rx_mode = bnxt_set_rx_mode,
  6402. .ndo_do_ioctl = bnxt_ioctl,
  6403. .ndo_validate_addr = eth_validate_addr,
  6404. .ndo_set_mac_address = bnxt_change_mac_addr,
  6405. .ndo_change_mtu = bnxt_change_mtu,
  6406. .ndo_fix_features = bnxt_fix_features,
  6407. .ndo_set_features = bnxt_set_features,
  6408. .ndo_tx_timeout = bnxt_tx_timeout,
  6409. #ifdef CONFIG_BNXT_SRIOV
  6410. .ndo_get_vf_config = bnxt_get_vf_config,
  6411. .ndo_set_vf_mac = bnxt_set_vf_mac,
  6412. .ndo_set_vf_vlan = bnxt_set_vf_vlan,
  6413. .ndo_set_vf_rate = bnxt_set_vf_bw,
  6414. .ndo_set_vf_link_state = bnxt_set_vf_link_state,
  6415. .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
  6416. #endif
  6417. #ifdef CONFIG_NET_POLL_CONTROLLER
  6418. .ndo_poll_controller = bnxt_poll_controller,
  6419. #endif
  6420. .ndo_setup_tc = bnxt_setup_tc,
  6421. #ifdef CONFIG_RFS_ACCEL
  6422. .ndo_rx_flow_steer = bnxt_rx_flow_steer,
  6423. #endif
  6424. .ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
  6425. .ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
  6426. .ndo_xdp = bnxt_xdp,
  6427. .ndo_bridge_getlink = bnxt_bridge_getlink,
  6428. .ndo_bridge_setlink = bnxt_bridge_setlink,
  6429. .ndo_get_phys_port_name = bnxt_get_phys_port_name
  6430. };
  6431. static void bnxt_remove_one(struct pci_dev *pdev)
  6432. {
  6433. struct net_device *dev = pci_get_drvdata(pdev);
  6434. struct bnxt *bp = netdev_priv(dev);
  6435. if (BNXT_PF(bp)) {
  6436. bnxt_sriov_disable(bp);
  6437. bnxt_dl_unregister(bp);
  6438. }
  6439. pci_disable_pcie_error_reporting(pdev);
  6440. unregister_netdev(dev);
  6441. bnxt_shutdown_tc(bp);
  6442. cancel_work_sync(&bp->sp_task);
  6443. bp->sp_event = 0;
  6444. bnxt_clear_int_mode(bp);
  6445. bnxt_hwrm_func_drv_unrgtr(bp);
  6446. bnxt_free_hwrm_resources(bp);
  6447. bnxt_free_hwrm_short_cmd_req(bp);
  6448. bnxt_ethtool_free(bp);
  6449. bnxt_dcb_free(bp);
  6450. kfree(bp->edev);
  6451. bp->edev = NULL;
  6452. if (bp->xdp_prog)
  6453. bpf_prog_put(bp->xdp_prog);
  6454. bnxt_cleanup_pci(bp);
  6455. free_netdev(dev);
  6456. }
  6457. static int bnxt_probe_phy(struct bnxt *bp)
  6458. {
  6459. int rc = 0;
  6460. struct bnxt_link_info *link_info = &bp->link_info;
  6461. rc = bnxt_hwrm_phy_qcaps(bp);
  6462. if (rc) {
  6463. netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
  6464. rc);
  6465. return rc;
  6466. }
  6467. rc = bnxt_update_link(bp, false);
  6468. if (rc) {
  6469. netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
  6470. rc);
  6471. return rc;
  6472. }
  6473. /* Older firmware does not have supported_auto_speeds, so assume
  6474. * that all supported speeds can be autonegotiated.
  6475. */
  6476. if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
  6477. link_info->support_auto_speeds = link_info->support_speeds;
  6478. /*initialize the ethool setting copy with NVM settings */
  6479. if (BNXT_AUTO_MODE(link_info->auto_mode)) {
  6480. link_info->autoneg = BNXT_AUTONEG_SPEED;
  6481. if (bp->hwrm_spec_code >= 0x10201) {
  6482. if (link_info->auto_pause_setting &
  6483. PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
  6484. link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
  6485. } else {
  6486. link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
  6487. }
  6488. link_info->advertising = link_info->auto_link_speeds;
  6489. } else {
  6490. link_info->req_link_speed = link_info->force_link_speed;
  6491. link_info->req_duplex = link_info->duplex_setting;
  6492. }
  6493. if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
  6494. link_info->req_flow_ctrl =
  6495. link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
  6496. else
  6497. link_info->req_flow_ctrl = link_info->force_pause_setting;
  6498. return rc;
  6499. }
  6500. static int bnxt_get_max_irq(struct pci_dev *pdev)
  6501. {
  6502. u16 ctrl;
  6503. if (!pdev->msix_cap)
  6504. return 1;
  6505. pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
  6506. return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
  6507. }
  6508. static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
  6509. int *max_cp)
  6510. {
  6511. int max_ring_grps = 0;
  6512. #ifdef CONFIG_BNXT_SRIOV
  6513. if (!BNXT_PF(bp)) {
  6514. *max_tx = bp->vf.max_tx_rings;
  6515. *max_rx = bp->vf.max_rx_rings;
  6516. *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
  6517. *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
  6518. max_ring_grps = bp->vf.max_hw_ring_grps;
  6519. } else
  6520. #endif
  6521. {
  6522. *max_tx = bp->pf.max_tx_rings;
  6523. *max_rx = bp->pf.max_rx_rings;
  6524. *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
  6525. *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
  6526. max_ring_grps = bp->pf.max_hw_ring_grps;
  6527. }
  6528. if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
  6529. *max_cp -= 1;
  6530. *max_rx -= 2;
  6531. }
  6532. if (bp->flags & BNXT_FLAG_AGG_RINGS)
  6533. *max_rx >>= 1;
  6534. *max_rx = min_t(int, *max_rx, max_ring_grps);
  6535. }
  6536. int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
  6537. {
  6538. int rx, tx, cp;
  6539. _bnxt_get_max_rings(bp, &rx, &tx, &cp);
  6540. if (!rx || !tx || !cp)
  6541. return -ENOMEM;
  6542. *max_rx = rx;
  6543. *max_tx = tx;
  6544. return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
  6545. }
  6546. static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
  6547. bool shared)
  6548. {
  6549. int rc;
  6550. rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
  6551. if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
  6552. /* Not enough rings, try disabling agg rings. */
  6553. bp->flags &= ~BNXT_FLAG_AGG_RINGS;
  6554. rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
  6555. if (rc)
  6556. return rc;
  6557. bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
  6558. bp->dev->hw_features &= ~NETIF_F_LRO;
  6559. bp->dev->features &= ~NETIF_F_LRO;
  6560. bnxt_set_ring_params(bp);
  6561. }
  6562. if (bp->flags & BNXT_FLAG_ROCE_CAP) {
  6563. int max_cp, max_stat, max_irq;
  6564. /* Reserve minimum resources for RoCE */
  6565. max_cp = bnxt_get_max_func_cp_rings(bp);
  6566. max_stat = bnxt_get_max_func_stat_ctxs(bp);
  6567. max_irq = bnxt_get_max_func_irqs(bp);
  6568. if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
  6569. max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
  6570. max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
  6571. return 0;
  6572. max_cp -= BNXT_MIN_ROCE_CP_RINGS;
  6573. max_irq -= BNXT_MIN_ROCE_CP_RINGS;
  6574. max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
  6575. max_cp = min_t(int, max_cp, max_irq);
  6576. max_cp = min_t(int, max_cp, max_stat);
  6577. rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
  6578. if (rc)
  6579. rc = 0;
  6580. }
  6581. return rc;
  6582. }
  6583. static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
  6584. {
  6585. int dflt_rings, max_rx_rings, max_tx_rings, rc;
  6586. if (sh)
  6587. bp->flags |= BNXT_FLAG_SHARED_RINGS;
  6588. dflt_rings = netif_get_num_default_rss_queues();
  6589. /* Reduce default rings to reduce memory usage on multi-port cards */
  6590. if (bp->port_count > 1)
  6591. dflt_rings = min_t(int, dflt_rings, 4);
  6592. rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
  6593. if (rc)
  6594. return rc;
  6595. bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
  6596. bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
  6597. rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
  6598. if (rc)
  6599. netdev_warn(bp->dev, "Unable to reserve tx rings\n");
  6600. bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
  6601. bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
  6602. bp->tx_nr_rings + bp->rx_nr_rings;
  6603. bp->num_stat_ctxs = bp->cp_nr_rings;
  6604. if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
  6605. bp->rx_nr_rings++;
  6606. bp->cp_nr_rings++;
  6607. }
  6608. return rc;
  6609. }
  6610. void bnxt_restore_pf_fw_resources(struct bnxt *bp)
  6611. {
  6612. ASSERT_RTNL();
  6613. bnxt_hwrm_func_qcaps(bp);
  6614. bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
  6615. }
  6616. static int bnxt_init_mac_addr(struct bnxt *bp)
  6617. {
  6618. int rc = 0;
  6619. if (BNXT_PF(bp)) {
  6620. memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
  6621. } else {
  6622. #ifdef CONFIG_BNXT_SRIOV
  6623. struct bnxt_vf_info *vf = &bp->vf;
  6624. if (is_valid_ether_addr(vf->mac_addr)) {
  6625. /* overwrite netdev dev_adr with admin VF MAC */
  6626. memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
  6627. } else {
  6628. eth_hw_addr_random(bp->dev);
  6629. rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
  6630. }
  6631. #endif
  6632. }
  6633. return rc;
  6634. }
  6635. static void bnxt_parse_log_pcie_link(struct bnxt *bp)
  6636. {
  6637. enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
  6638. enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
  6639. if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
  6640. speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
  6641. netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
  6642. else
  6643. netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
  6644. speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
  6645. speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
  6646. speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
  6647. "Unknown", width);
  6648. }
  6649. static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6650. {
  6651. static int version_printed;
  6652. struct net_device *dev;
  6653. struct bnxt *bp;
  6654. int rc, max_irqs;
  6655. if (pci_is_bridge(pdev))
  6656. return -ENODEV;
  6657. if (version_printed++ == 0)
  6658. pr_info("%s", version);
  6659. max_irqs = bnxt_get_max_irq(pdev);
  6660. dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
  6661. if (!dev)
  6662. return -ENOMEM;
  6663. bp = netdev_priv(dev);
  6664. if (bnxt_vf_pciid(ent->driver_data))
  6665. bp->flags |= BNXT_FLAG_VF;
  6666. if (pdev->msix_cap)
  6667. bp->flags |= BNXT_FLAG_MSIX_CAP;
  6668. rc = bnxt_init_board(pdev, dev);
  6669. if (rc < 0)
  6670. goto init_err_free;
  6671. dev->netdev_ops = &bnxt_netdev_ops;
  6672. dev->watchdog_timeo = BNXT_TX_TIMEOUT;
  6673. dev->ethtool_ops = &bnxt_ethtool_ops;
  6674. SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
  6675. pci_set_drvdata(pdev, dev);
  6676. rc = bnxt_alloc_hwrm_resources(bp);
  6677. if (rc)
  6678. goto init_err_pci_clean;
  6679. mutex_init(&bp->hwrm_cmd_lock);
  6680. rc = bnxt_hwrm_ver_get(bp);
  6681. if (rc)
  6682. goto init_err_pci_clean;
  6683. if (bp->flags & BNXT_FLAG_SHORT_CMD) {
  6684. rc = bnxt_alloc_hwrm_short_cmd_req(bp);
  6685. if (rc)
  6686. goto init_err_pci_clean;
  6687. }
  6688. rc = bnxt_hwrm_func_reset(bp);
  6689. if (rc)
  6690. goto init_err_pci_clean;
  6691. bnxt_hwrm_fw_set_time(bp);
  6692. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
  6693. NETIF_F_TSO | NETIF_F_TSO6 |
  6694. NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
  6695. NETIF_F_GSO_IPXIP4 |
  6696. NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
  6697. NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
  6698. NETIF_F_RXCSUM | NETIF_F_GRO;
  6699. if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
  6700. dev->hw_features |= NETIF_F_LRO;
  6701. dev->hw_enc_features =
  6702. NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
  6703. NETIF_F_TSO | NETIF_F_TSO6 |
  6704. NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
  6705. NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
  6706. NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
  6707. dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
  6708. NETIF_F_GSO_GRE_CSUM;
  6709. dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
  6710. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
  6711. NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
  6712. dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
  6713. dev->priv_flags |= IFF_UNICAST_FLT;
  6714. /* MTU range: 60 - 9500 */
  6715. dev->min_mtu = ETH_ZLEN;
  6716. dev->max_mtu = BNXT_MAX_MTU;
  6717. #ifdef CONFIG_BNXT_SRIOV
  6718. init_waitqueue_head(&bp->sriov_cfg_wait);
  6719. mutex_init(&bp->sriov_lock);
  6720. #endif
  6721. bp->gro_func = bnxt_gro_func_5730x;
  6722. if (BNXT_CHIP_P4_PLUS(bp))
  6723. bp->gro_func = bnxt_gro_func_5731x;
  6724. else
  6725. bp->flags |= BNXT_FLAG_DOUBLE_DB;
  6726. rc = bnxt_hwrm_func_drv_rgtr(bp);
  6727. if (rc)
  6728. goto init_err_pci_clean;
  6729. rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
  6730. if (rc)
  6731. goto init_err_pci_clean;
  6732. bp->ulp_probe = bnxt_ulp_probe;
  6733. /* Get the MAX capabilities for this function */
  6734. rc = bnxt_hwrm_func_qcaps(bp);
  6735. if (rc) {
  6736. netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
  6737. rc);
  6738. rc = -1;
  6739. goto init_err_pci_clean;
  6740. }
  6741. rc = bnxt_init_mac_addr(bp);
  6742. if (rc) {
  6743. dev_err(&pdev->dev, "Unable to initialize mac address.\n");
  6744. rc = -EADDRNOTAVAIL;
  6745. goto init_err_pci_clean;
  6746. }
  6747. rc = bnxt_hwrm_queue_qportcfg(bp);
  6748. if (rc) {
  6749. netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
  6750. rc);
  6751. rc = -1;
  6752. goto init_err_pci_clean;
  6753. }
  6754. bnxt_hwrm_func_qcfg(bp);
  6755. bnxt_hwrm_port_led_qcaps(bp);
  6756. bnxt_ethtool_init(bp);
  6757. bnxt_dcb_init(bp);
  6758. rc = bnxt_probe_phy(bp);
  6759. if (rc)
  6760. goto init_err_pci_clean;
  6761. bnxt_set_rx_skb_mode(bp, false);
  6762. bnxt_set_tpa_flags(bp);
  6763. bnxt_set_ring_params(bp);
  6764. bnxt_set_max_func_irqs(bp, max_irqs);
  6765. rc = bnxt_set_dflt_rings(bp, true);
  6766. if (rc) {
  6767. netdev_err(bp->dev, "Not enough rings available.\n");
  6768. rc = -ENOMEM;
  6769. goto init_err_pci_clean;
  6770. }
  6771. /* Default RSS hash cfg. */
  6772. bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
  6773. VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
  6774. VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
  6775. VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
  6776. if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
  6777. bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
  6778. bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
  6779. VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
  6780. }
  6781. bnxt_hwrm_vnic_qcaps(bp);
  6782. if (bnxt_rfs_supported(bp)) {
  6783. dev->hw_features |= NETIF_F_NTUPLE;
  6784. if (bnxt_rfs_capable(bp)) {
  6785. bp->flags |= BNXT_FLAG_RFS;
  6786. dev->features |= NETIF_F_NTUPLE;
  6787. }
  6788. }
  6789. if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
  6790. bp->flags |= BNXT_FLAG_STRIP_VLAN;
  6791. rc = bnxt_init_int_mode(bp);
  6792. if (rc)
  6793. goto init_err_pci_clean;
  6794. bnxt_get_wol_settings(bp);
  6795. if (bp->flags & BNXT_FLAG_WOL_CAP)
  6796. device_set_wakeup_enable(&pdev->dev, bp->wol);
  6797. else
  6798. device_set_wakeup_capable(&pdev->dev, false);
  6799. if (BNXT_PF(bp))
  6800. bnxt_init_tc(bp);
  6801. rc = register_netdev(dev);
  6802. if (rc)
  6803. goto init_err_cleanup_tc;
  6804. if (BNXT_PF(bp))
  6805. bnxt_dl_register(bp);
  6806. netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
  6807. board_info[ent->driver_data].name,
  6808. (long)pci_resource_start(pdev, 0), dev->dev_addr);
  6809. bnxt_parse_log_pcie_link(bp);
  6810. return 0;
  6811. init_err_cleanup_tc:
  6812. bnxt_shutdown_tc(bp);
  6813. bnxt_clear_int_mode(bp);
  6814. init_err_pci_clean:
  6815. bnxt_cleanup_pci(bp);
  6816. init_err_free:
  6817. free_netdev(dev);
  6818. return rc;
  6819. }
  6820. static void bnxt_shutdown(struct pci_dev *pdev)
  6821. {
  6822. struct net_device *dev = pci_get_drvdata(pdev);
  6823. struct bnxt *bp;
  6824. if (!dev)
  6825. return;
  6826. rtnl_lock();
  6827. bp = netdev_priv(dev);
  6828. if (!bp)
  6829. goto shutdown_exit;
  6830. if (netif_running(dev))
  6831. dev_close(dev);
  6832. if (system_state == SYSTEM_POWER_OFF) {
  6833. bnxt_ulp_shutdown(bp);
  6834. bnxt_clear_int_mode(bp);
  6835. pci_wake_from_d3(pdev, bp->wol);
  6836. pci_set_power_state(pdev, PCI_D3hot);
  6837. }
  6838. shutdown_exit:
  6839. rtnl_unlock();
  6840. }
  6841. #ifdef CONFIG_PM_SLEEP
  6842. static int bnxt_suspend(struct device *device)
  6843. {
  6844. struct pci_dev *pdev = to_pci_dev(device);
  6845. struct net_device *dev = pci_get_drvdata(pdev);
  6846. struct bnxt *bp = netdev_priv(dev);
  6847. int rc = 0;
  6848. rtnl_lock();
  6849. if (netif_running(dev)) {
  6850. netif_device_detach(dev);
  6851. rc = bnxt_close(dev);
  6852. }
  6853. bnxt_hwrm_func_drv_unrgtr(bp);
  6854. rtnl_unlock();
  6855. return rc;
  6856. }
  6857. static int bnxt_resume(struct device *device)
  6858. {
  6859. struct pci_dev *pdev = to_pci_dev(device);
  6860. struct net_device *dev = pci_get_drvdata(pdev);
  6861. struct bnxt *bp = netdev_priv(dev);
  6862. int rc = 0;
  6863. rtnl_lock();
  6864. if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
  6865. rc = -ENODEV;
  6866. goto resume_exit;
  6867. }
  6868. rc = bnxt_hwrm_func_reset(bp);
  6869. if (rc) {
  6870. rc = -EBUSY;
  6871. goto resume_exit;
  6872. }
  6873. bnxt_get_wol_settings(bp);
  6874. if (netif_running(dev)) {
  6875. rc = bnxt_open(dev);
  6876. if (!rc)
  6877. netif_device_attach(dev);
  6878. }
  6879. resume_exit:
  6880. rtnl_unlock();
  6881. return rc;
  6882. }
  6883. static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
  6884. #define BNXT_PM_OPS (&bnxt_pm_ops)
  6885. #else
  6886. #define BNXT_PM_OPS NULL
  6887. #endif /* CONFIG_PM_SLEEP */
  6888. /**
  6889. * bnxt_io_error_detected - called when PCI error is detected
  6890. * @pdev: Pointer to PCI device
  6891. * @state: The current pci connection state
  6892. *
  6893. * This function is called after a PCI bus error affecting
  6894. * this device has been detected.
  6895. */
  6896. static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
  6897. pci_channel_state_t state)
  6898. {
  6899. struct net_device *netdev = pci_get_drvdata(pdev);
  6900. struct bnxt *bp = netdev_priv(netdev);
  6901. netdev_info(netdev, "PCI I/O error detected\n");
  6902. rtnl_lock();
  6903. netif_device_detach(netdev);
  6904. bnxt_ulp_stop(bp);
  6905. if (state == pci_channel_io_perm_failure) {
  6906. rtnl_unlock();
  6907. return PCI_ERS_RESULT_DISCONNECT;
  6908. }
  6909. if (netif_running(netdev))
  6910. bnxt_close(netdev);
  6911. pci_disable_device(pdev);
  6912. rtnl_unlock();
  6913. /* Request a slot slot reset. */
  6914. return PCI_ERS_RESULT_NEED_RESET;
  6915. }
  6916. /**
  6917. * bnxt_io_slot_reset - called after the pci bus has been reset.
  6918. * @pdev: Pointer to PCI device
  6919. *
  6920. * Restart the card from scratch, as if from a cold-boot.
  6921. * At this point, the card has exprienced a hard reset,
  6922. * followed by fixups by BIOS, and has its config space
  6923. * set up identically to what it was at cold boot.
  6924. */
  6925. static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
  6926. {
  6927. struct net_device *netdev = pci_get_drvdata(pdev);
  6928. struct bnxt *bp = netdev_priv(netdev);
  6929. int err = 0;
  6930. pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
  6931. netdev_info(bp->dev, "PCI Slot Reset\n");
  6932. rtnl_lock();
  6933. if (pci_enable_device(pdev)) {
  6934. dev_err(&pdev->dev,
  6935. "Cannot re-enable PCI device after reset.\n");
  6936. } else {
  6937. pci_set_master(pdev);
  6938. err = bnxt_hwrm_func_reset(bp);
  6939. if (!err && netif_running(netdev))
  6940. err = bnxt_open(netdev);
  6941. if (!err) {
  6942. result = PCI_ERS_RESULT_RECOVERED;
  6943. bnxt_ulp_start(bp);
  6944. }
  6945. }
  6946. if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
  6947. dev_close(netdev);
  6948. rtnl_unlock();
  6949. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  6950. if (err) {
  6951. dev_err(&pdev->dev,
  6952. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  6953. err); /* non-fatal, continue */
  6954. }
  6955. return PCI_ERS_RESULT_RECOVERED;
  6956. }
  6957. /**
  6958. * bnxt_io_resume - called when traffic can start flowing again.
  6959. * @pdev: Pointer to PCI device
  6960. *
  6961. * This callback is called when the error recovery driver tells
  6962. * us that its OK to resume normal operation.
  6963. */
  6964. static void bnxt_io_resume(struct pci_dev *pdev)
  6965. {
  6966. struct net_device *netdev = pci_get_drvdata(pdev);
  6967. rtnl_lock();
  6968. netif_device_attach(netdev);
  6969. rtnl_unlock();
  6970. }
  6971. static const struct pci_error_handlers bnxt_err_handler = {
  6972. .error_detected = bnxt_io_error_detected,
  6973. .slot_reset = bnxt_io_slot_reset,
  6974. .resume = bnxt_io_resume
  6975. };
  6976. static struct pci_driver bnxt_pci_driver = {
  6977. .name = DRV_MODULE_NAME,
  6978. .id_table = bnxt_pci_tbl,
  6979. .probe = bnxt_init_one,
  6980. .remove = bnxt_remove_one,
  6981. .shutdown = bnxt_shutdown,
  6982. .driver.pm = BNXT_PM_OPS,
  6983. .err_handler = &bnxt_err_handler,
  6984. #if defined(CONFIG_BNXT_SRIOV)
  6985. .sriov_configure = bnxt_sriov_configure,
  6986. #endif
  6987. };
  6988. module_pci_driver(bnxt_pci_driver);