bnx2.c 217 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865
  1. /* bnx2.c: QLogic bnx2 network driver.
  2. *
  3. * Copyright (c) 2004-2014 Broadcom Corporation
  4. * Copyright (c) 2014-2015 QLogic Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation.
  9. *
  10. * Written by: Michael Chan (mchan@broadcom.com)
  11. */
  12. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/moduleparam.h>
  15. #include <linux/stringify.h>
  16. #include <linux/kernel.h>
  17. #include <linux/timer.h>
  18. #include <linux/errno.h>
  19. #include <linux/ioport.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/pci.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/bitops.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <linux/delay.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/page.h>
  34. #include <linux/time.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/mii.h>
  37. #include <linux/if.h>
  38. #include <linux/if_vlan.h>
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/aer.h>
  49. #include <linux/crash_dump.h>
  50. #if IS_ENABLED(CONFIG_CNIC)
  51. #define BCM_CNIC 1
  52. #include "cnic_if.h"
  53. #endif
  54. #include "bnx2.h"
  55. #include "bnx2_fw.h"
  56. #define DRV_MODULE_NAME "bnx2"
  57. #define DRV_MODULE_VERSION "2.2.6"
  58. #define DRV_MODULE_RELDATE "January 29, 2014"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] =
  68. "QLogic " DRV_MODULE_NAME " Gigabit Ethernet Driver v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("QLogic BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, S_IRUGO);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static const struct pci_device_id bnx2_pci_tbl[] = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static void bnx2_init_napi(struct bnx2 *bp);
  233. static void bnx2_del_napi(struct bnx2 *bp);
  234. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  235. {
  236. u32 diff;
  237. /* The ring uses 256 indices for 255 entries, one of them
  238. * needs to be skipped.
  239. */
  240. diff = READ_ONCE(txr->tx_prod) - READ_ONCE(txr->tx_cons);
  241. if (unlikely(diff >= BNX2_TX_DESC_CNT)) {
  242. diff &= 0xffff;
  243. if (diff == BNX2_TX_DESC_CNT)
  244. diff = BNX2_MAX_TX_DESC_CNT;
  245. }
  246. return bp->tx_ring_size - diff;
  247. }
  248. static u32
  249. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  250. {
  251. unsigned long flags;
  252. u32 val;
  253. spin_lock_irqsave(&bp->indirect_lock, flags);
  254. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  255. val = BNX2_RD(bp, BNX2_PCICFG_REG_WINDOW);
  256. spin_unlock_irqrestore(&bp->indirect_lock, flags);
  257. return val;
  258. }
  259. static void
  260. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  261. {
  262. unsigned long flags;
  263. spin_lock_irqsave(&bp->indirect_lock, flags);
  264. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  265. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  266. spin_unlock_irqrestore(&bp->indirect_lock, flags);
  267. }
  268. static void
  269. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  270. {
  271. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  272. }
  273. static u32
  274. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  275. {
  276. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  277. }
  278. static void
  279. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  280. {
  281. unsigned long flags;
  282. offset += cid_addr;
  283. spin_lock_irqsave(&bp->indirect_lock, flags);
  284. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  285. int i;
  286. BNX2_WR(bp, BNX2_CTX_CTX_DATA, val);
  287. BNX2_WR(bp, BNX2_CTX_CTX_CTRL,
  288. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  289. for (i = 0; i < 5; i++) {
  290. val = BNX2_RD(bp, BNX2_CTX_CTX_CTRL);
  291. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  292. break;
  293. udelay(5);
  294. }
  295. } else {
  296. BNX2_WR(bp, BNX2_CTX_DATA_ADR, offset);
  297. BNX2_WR(bp, BNX2_CTX_DATA, val);
  298. }
  299. spin_unlock_irqrestore(&bp->indirect_lock, flags);
  300. }
  301. #ifdef BCM_CNIC
  302. static int
  303. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  304. {
  305. struct bnx2 *bp = netdev_priv(dev);
  306. struct drv_ctl_io *io = &info->data.io;
  307. switch (info->cmd) {
  308. case DRV_CTL_IO_WR_CMD:
  309. bnx2_reg_wr_ind(bp, io->offset, io->data);
  310. break;
  311. case DRV_CTL_IO_RD_CMD:
  312. io->data = bnx2_reg_rd_ind(bp, io->offset);
  313. break;
  314. case DRV_CTL_CTX_WR_CMD:
  315. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  316. break;
  317. default:
  318. return -EINVAL;
  319. }
  320. return 0;
  321. }
  322. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  323. {
  324. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  325. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  326. int sb_id;
  327. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  328. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  329. bnapi->cnic_present = 0;
  330. sb_id = bp->irq_nvecs;
  331. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  332. } else {
  333. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  334. bnapi->cnic_tag = bnapi->last_status_idx;
  335. bnapi->cnic_present = 1;
  336. sb_id = 0;
  337. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  338. }
  339. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  340. cp->irq_arr[0].status_blk = (void *)
  341. ((unsigned long) bnapi->status_blk.msi +
  342. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  343. cp->irq_arr[0].status_blk_num = sb_id;
  344. cp->num_irq = 1;
  345. }
  346. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  347. void *data)
  348. {
  349. struct bnx2 *bp = netdev_priv(dev);
  350. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  351. if (ops == NULL)
  352. return -EINVAL;
  353. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  354. return -EBUSY;
  355. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  356. return -ENODEV;
  357. bp->cnic_data = data;
  358. rcu_assign_pointer(bp->cnic_ops, ops);
  359. cp->num_irq = 0;
  360. cp->drv_state = CNIC_DRV_STATE_REGD;
  361. bnx2_setup_cnic_irq_info(bp);
  362. return 0;
  363. }
  364. static int bnx2_unregister_cnic(struct net_device *dev)
  365. {
  366. struct bnx2 *bp = netdev_priv(dev);
  367. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  368. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  369. mutex_lock(&bp->cnic_lock);
  370. cp->drv_state = 0;
  371. bnapi->cnic_present = 0;
  372. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  373. mutex_unlock(&bp->cnic_lock);
  374. synchronize_rcu();
  375. return 0;
  376. }
  377. static struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  378. {
  379. struct bnx2 *bp = netdev_priv(dev);
  380. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  381. if (!cp->max_iscsi_conn)
  382. return NULL;
  383. cp->drv_owner = THIS_MODULE;
  384. cp->chip_id = bp->chip_id;
  385. cp->pdev = bp->pdev;
  386. cp->io_base = bp->regview;
  387. cp->drv_ctl = bnx2_drv_ctl;
  388. cp->drv_register_cnic = bnx2_register_cnic;
  389. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  390. return cp;
  391. }
  392. static void
  393. bnx2_cnic_stop(struct bnx2 *bp)
  394. {
  395. struct cnic_ops *c_ops;
  396. struct cnic_ctl_info info;
  397. mutex_lock(&bp->cnic_lock);
  398. c_ops = rcu_dereference_protected(bp->cnic_ops,
  399. lockdep_is_held(&bp->cnic_lock));
  400. if (c_ops) {
  401. info.cmd = CNIC_CTL_STOP_CMD;
  402. c_ops->cnic_ctl(bp->cnic_data, &info);
  403. }
  404. mutex_unlock(&bp->cnic_lock);
  405. }
  406. static void
  407. bnx2_cnic_start(struct bnx2 *bp)
  408. {
  409. struct cnic_ops *c_ops;
  410. struct cnic_ctl_info info;
  411. mutex_lock(&bp->cnic_lock);
  412. c_ops = rcu_dereference_protected(bp->cnic_ops,
  413. lockdep_is_held(&bp->cnic_lock));
  414. if (c_ops) {
  415. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  416. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  417. bnapi->cnic_tag = bnapi->last_status_idx;
  418. }
  419. info.cmd = CNIC_CTL_START_CMD;
  420. c_ops->cnic_ctl(bp->cnic_data, &info);
  421. }
  422. mutex_unlock(&bp->cnic_lock);
  423. }
  424. #else
  425. static void
  426. bnx2_cnic_stop(struct bnx2 *bp)
  427. {
  428. }
  429. static void
  430. bnx2_cnic_start(struct bnx2 *bp)
  431. {
  432. }
  433. #endif
  434. static int
  435. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  436. {
  437. u32 val1;
  438. int i, ret;
  439. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  440. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  441. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  442. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  443. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  444. udelay(40);
  445. }
  446. val1 = (bp->phy_addr << 21) | (reg << 16) |
  447. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  448. BNX2_EMAC_MDIO_COMM_START_BUSY;
  449. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  450. for (i = 0; i < 50; i++) {
  451. udelay(10);
  452. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  453. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  454. udelay(5);
  455. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  456. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  457. break;
  458. }
  459. }
  460. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  461. *val = 0x0;
  462. ret = -EBUSY;
  463. }
  464. else {
  465. *val = val1;
  466. ret = 0;
  467. }
  468. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  469. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  470. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  471. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  472. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  473. udelay(40);
  474. }
  475. return ret;
  476. }
  477. static int
  478. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  479. {
  480. u32 val1;
  481. int i, ret;
  482. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  483. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  484. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  485. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  486. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  487. udelay(40);
  488. }
  489. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  490. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  491. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  492. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  493. for (i = 0; i < 50; i++) {
  494. udelay(10);
  495. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  496. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  497. udelay(5);
  498. break;
  499. }
  500. }
  501. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  502. ret = -EBUSY;
  503. else
  504. ret = 0;
  505. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  506. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  507. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  508. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  509. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  510. udelay(40);
  511. }
  512. return ret;
  513. }
  514. static void
  515. bnx2_disable_int(struct bnx2 *bp)
  516. {
  517. int i;
  518. struct bnx2_napi *bnapi;
  519. for (i = 0; i < bp->irq_nvecs; i++) {
  520. bnapi = &bp->bnx2_napi[i];
  521. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  522. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  523. }
  524. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  525. }
  526. static void
  527. bnx2_enable_int(struct bnx2 *bp)
  528. {
  529. int i;
  530. struct bnx2_napi *bnapi;
  531. for (i = 0; i < bp->irq_nvecs; i++) {
  532. bnapi = &bp->bnx2_napi[i];
  533. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  534. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  535. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  536. bnapi->last_status_idx);
  537. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  538. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  539. bnapi->last_status_idx);
  540. }
  541. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  542. }
  543. static void
  544. bnx2_disable_int_sync(struct bnx2 *bp)
  545. {
  546. int i;
  547. atomic_inc(&bp->intr_sem);
  548. if (!netif_running(bp->dev))
  549. return;
  550. bnx2_disable_int(bp);
  551. for (i = 0; i < bp->irq_nvecs; i++)
  552. synchronize_irq(bp->irq_tbl[i].vector);
  553. }
  554. static void
  555. bnx2_napi_disable(struct bnx2 *bp)
  556. {
  557. int i;
  558. for (i = 0; i < bp->irq_nvecs; i++)
  559. napi_disable(&bp->bnx2_napi[i].napi);
  560. }
  561. static void
  562. bnx2_napi_enable(struct bnx2 *bp)
  563. {
  564. int i;
  565. for (i = 0; i < bp->irq_nvecs; i++)
  566. napi_enable(&bp->bnx2_napi[i].napi);
  567. }
  568. static void
  569. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  570. {
  571. if (stop_cnic)
  572. bnx2_cnic_stop(bp);
  573. if (netif_running(bp->dev)) {
  574. bnx2_napi_disable(bp);
  575. netif_tx_disable(bp->dev);
  576. }
  577. bnx2_disable_int_sync(bp);
  578. netif_carrier_off(bp->dev); /* prevent tx timeout */
  579. }
  580. static void
  581. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  582. {
  583. if (atomic_dec_and_test(&bp->intr_sem)) {
  584. if (netif_running(bp->dev)) {
  585. netif_tx_wake_all_queues(bp->dev);
  586. spin_lock_bh(&bp->phy_lock);
  587. if (bp->link_up)
  588. netif_carrier_on(bp->dev);
  589. spin_unlock_bh(&bp->phy_lock);
  590. bnx2_napi_enable(bp);
  591. bnx2_enable_int(bp);
  592. if (start_cnic)
  593. bnx2_cnic_start(bp);
  594. }
  595. }
  596. }
  597. static void
  598. bnx2_free_tx_mem(struct bnx2 *bp)
  599. {
  600. int i;
  601. for (i = 0; i < bp->num_tx_rings; i++) {
  602. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  603. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  604. if (txr->tx_desc_ring) {
  605. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  606. txr->tx_desc_ring,
  607. txr->tx_desc_mapping);
  608. txr->tx_desc_ring = NULL;
  609. }
  610. kfree(txr->tx_buf_ring);
  611. txr->tx_buf_ring = NULL;
  612. }
  613. }
  614. static void
  615. bnx2_free_rx_mem(struct bnx2 *bp)
  616. {
  617. int i;
  618. for (i = 0; i < bp->num_rx_rings; i++) {
  619. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  620. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  621. int j;
  622. for (j = 0; j < bp->rx_max_ring; j++) {
  623. if (rxr->rx_desc_ring[j])
  624. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  625. rxr->rx_desc_ring[j],
  626. rxr->rx_desc_mapping[j]);
  627. rxr->rx_desc_ring[j] = NULL;
  628. }
  629. vfree(rxr->rx_buf_ring);
  630. rxr->rx_buf_ring = NULL;
  631. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  632. if (rxr->rx_pg_desc_ring[j])
  633. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  634. rxr->rx_pg_desc_ring[j],
  635. rxr->rx_pg_desc_mapping[j]);
  636. rxr->rx_pg_desc_ring[j] = NULL;
  637. }
  638. vfree(rxr->rx_pg_ring);
  639. rxr->rx_pg_ring = NULL;
  640. }
  641. }
  642. static int
  643. bnx2_alloc_tx_mem(struct bnx2 *bp)
  644. {
  645. int i;
  646. for (i = 0; i < bp->num_tx_rings; i++) {
  647. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  648. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  649. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  650. if (txr->tx_buf_ring == NULL)
  651. return -ENOMEM;
  652. txr->tx_desc_ring =
  653. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  654. &txr->tx_desc_mapping, GFP_KERNEL);
  655. if (txr->tx_desc_ring == NULL)
  656. return -ENOMEM;
  657. }
  658. return 0;
  659. }
  660. static int
  661. bnx2_alloc_rx_mem(struct bnx2 *bp)
  662. {
  663. int i;
  664. for (i = 0; i < bp->num_rx_rings; i++) {
  665. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  666. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  667. int j;
  668. rxr->rx_buf_ring =
  669. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  670. if (rxr->rx_buf_ring == NULL)
  671. return -ENOMEM;
  672. for (j = 0; j < bp->rx_max_ring; j++) {
  673. rxr->rx_desc_ring[j] =
  674. dma_alloc_coherent(&bp->pdev->dev,
  675. RXBD_RING_SIZE,
  676. &rxr->rx_desc_mapping[j],
  677. GFP_KERNEL);
  678. if (rxr->rx_desc_ring[j] == NULL)
  679. return -ENOMEM;
  680. }
  681. if (bp->rx_pg_ring_size) {
  682. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  683. bp->rx_max_pg_ring);
  684. if (rxr->rx_pg_ring == NULL)
  685. return -ENOMEM;
  686. }
  687. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  688. rxr->rx_pg_desc_ring[j] =
  689. dma_alloc_coherent(&bp->pdev->dev,
  690. RXBD_RING_SIZE,
  691. &rxr->rx_pg_desc_mapping[j],
  692. GFP_KERNEL);
  693. if (rxr->rx_pg_desc_ring[j] == NULL)
  694. return -ENOMEM;
  695. }
  696. }
  697. return 0;
  698. }
  699. static void
  700. bnx2_free_stats_blk(struct net_device *dev)
  701. {
  702. struct bnx2 *bp = netdev_priv(dev);
  703. if (bp->status_blk) {
  704. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  705. bp->status_blk,
  706. bp->status_blk_mapping);
  707. bp->status_blk = NULL;
  708. bp->stats_blk = NULL;
  709. }
  710. }
  711. static int
  712. bnx2_alloc_stats_blk(struct net_device *dev)
  713. {
  714. int status_blk_size;
  715. void *status_blk;
  716. struct bnx2 *bp = netdev_priv(dev);
  717. /* Combine status and statistics blocks into one allocation. */
  718. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  719. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  720. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  721. BNX2_SBLK_MSIX_ALIGN_SIZE);
  722. bp->status_stats_size = status_blk_size +
  723. sizeof(struct statistics_block);
  724. status_blk = dma_zalloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  725. &bp->status_blk_mapping, GFP_KERNEL);
  726. if (status_blk == NULL)
  727. return -ENOMEM;
  728. bp->status_blk = status_blk;
  729. bp->stats_blk = status_blk + status_blk_size;
  730. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  731. return 0;
  732. }
  733. static void
  734. bnx2_free_mem(struct bnx2 *bp)
  735. {
  736. int i;
  737. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  738. bnx2_free_tx_mem(bp);
  739. bnx2_free_rx_mem(bp);
  740. for (i = 0; i < bp->ctx_pages; i++) {
  741. if (bp->ctx_blk[i]) {
  742. dma_free_coherent(&bp->pdev->dev, BNX2_PAGE_SIZE,
  743. bp->ctx_blk[i],
  744. bp->ctx_blk_mapping[i]);
  745. bp->ctx_blk[i] = NULL;
  746. }
  747. }
  748. if (bnapi->status_blk.msi)
  749. bnapi->status_blk.msi = NULL;
  750. }
  751. static int
  752. bnx2_alloc_mem(struct bnx2 *bp)
  753. {
  754. int i, err;
  755. struct bnx2_napi *bnapi;
  756. bnapi = &bp->bnx2_napi[0];
  757. bnapi->status_blk.msi = bp->status_blk;
  758. bnapi->hw_tx_cons_ptr =
  759. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  760. bnapi->hw_rx_cons_ptr =
  761. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  762. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  763. for (i = 1; i < bp->irq_nvecs; i++) {
  764. struct status_block_msix *sblk;
  765. bnapi = &bp->bnx2_napi[i];
  766. sblk = (bp->status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  767. bnapi->status_blk.msix = sblk;
  768. bnapi->hw_tx_cons_ptr =
  769. &sblk->status_tx_quick_consumer_index;
  770. bnapi->hw_rx_cons_ptr =
  771. &sblk->status_rx_quick_consumer_index;
  772. bnapi->int_num = i << 24;
  773. }
  774. }
  775. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  776. bp->ctx_pages = 0x2000 / BNX2_PAGE_SIZE;
  777. if (bp->ctx_pages == 0)
  778. bp->ctx_pages = 1;
  779. for (i = 0; i < bp->ctx_pages; i++) {
  780. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  781. BNX2_PAGE_SIZE,
  782. &bp->ctx_blk_mapping[i],
  783. GFP_KERNEL);
  784. if (bp->ctx_blk[i] == NULL)
  785. goto alloc_mem_err;
  786. }
  787. }
  788. err = bnx2_alloc_rx_mem(bp);
  789. if (err)
  790. goto alloc_mem_err;
  791. err = bnx2_alloc_tx_mem(bp);
  792. if (err)
  793. goto alloc_mem_err;
  794. return 0;
  795. alloc_mem_err:
  796. bnx2_free_mem(bp);
  797. return -ENOMEM;
  798. }
  799. static void
  800. bnx2_report_fw_link(struct bnx2 *bp)
  801. {
  802. u32 fw_link_status = 0;
  803. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  804. return;
  805. if (bp->link_up) {
  806. u32 bmsr;
  807. switch (bp->line_speed) {
  808. case SPEED_10:
  809. if (bp->duplex == DUPLEX_HALF)
  810. fw_link_status = BNX2_LINK_STATUS_10HALF;
  811. else
  812. fw_link_status = BNX2_LINK_STATUS_10FULL;
  813. break;
  814. case SPEED_100:
  815. if (bp->duplex == DUPLEX_HALF)
  816. fw_link_status = BNX2_LINK_STATUS_100HALF;
  817. else
  818. fw_link_status = BNX2_LINK_STATUS_100FULL;
  819. break;
  820. case SPEED_1000:
  821. if (bp->duplex == DUPLEX_HALF)
  822. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  823. else
  824. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  825. break;
  826. case SPEED_2500:
  827. if (bp->duplex == DUPLEX_HALF)
  828. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  829. else
  830. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  831. break;
  832. }
  833. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  834. if (bp->autoneg) {
  835. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  836. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  837. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  838. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  839. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  840. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  841. else
  842. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  843. }
  844. }
  845. else
  846. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  847. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  848. }
  849. static char *
  850. bnx2_xceiver_str(struct bnx2 *bp)
  851. {
  852. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  853. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  854. "Copper");
  855. }
  856. static void
  857. bnx2_report_link(struct bnx2 *bp)
  858. {
  859. if (bp->link_up) {
  860. netif_carrier_on(bp->dev);
  861. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  862. bnx2_xceiver_str(bp),
  863. bp->line_speed,
  864. bp->duplex == DUPLEX_FULL ? "full" : "half");
  865. if (bp->flow_ctrl) {
  866. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  867. pr_cont(", receive ");
  868. if (bp->flow_ctrl & FLOW_CTRL_TX)
  869. pr_cont("& transmit ");
  870. }
  871. else {
  872. pr_cont(", transmit ");
  873. }
  874. pr_cont("flow control ON");
  875. }
  876. pr_cont("\n");
  877. } else {
  878. netif_carrier_off(bp->dev);
  879. netdev_err(bp->dev, "NIC %s Link is Down\n",
  880. bnx2_xceiver_str(bp));
  881. }
  882. bnx2_report_fw_link(bp);
  883. }
  884. static void
  885. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  886. {
  887. u32 local_adv, remote_adv;
  888. bp->flow_ctrl = 0;
  889. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  890. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  891. if (bp->duplex == DUPLEX_FULL) {
  892. bp->flow_ctrl = bp->req_flow_ctrl;
  893. }
  894. return;
  895. }
  896. if (bp->duplex != DUPLEX_FULL) {
  897. return;
  898. }
  899. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  900. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  901. u32 val;
  902. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  903. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  904. bp->flow_ctrl |= FLOW_CTRL_TX;
  905. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  906. bp->flow_ctrl |= FLOW_CTRL_RX;
  907. return;
  908. }
  909. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  910. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  911. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  912. u32 new_local_adv = 0;
  913. u32 new_remote_adv = 0;
  914. if (local_adv & ADVERTISE_1000XPAUSE)
  915. new_local_adv |= ADVERTISE_PAUSE_CAP;
  916. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  917. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  918. if (remote_adv & ADVERTISE_1000XPAUSE)
  919. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  920. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  921. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  922. local_adv = new_local_adv;
  923. remote_adv = new_remote_adv;
  924. }
  925. /* See Table 28B-3 of 802.3ab-1999 spec. */
  926. if (local_adv & ADVERTISE_PAUSE_CAP) {
  927. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  928. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  929. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  930. }
  931. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  932. bp->flow_ctrl = FLOW_CTRL_RX;
  933. }
  934. }
  935. else {
  936. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  937. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  938. }
  939. }
  940. }
  941. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  942. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  943. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  944. bp->flow_ctrl = FLOW_CTRL_TX;
  945. }
  946. }
  947. }
  948. static int
  949. bnx2_5709s_linkup(struct bnx2 *bp)
  950. {
  951. u32 val, speed;
  952. bp->link_up = 1;
  953. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  954. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  955. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  956. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  957. bp->line_speed = bp->req_line_speed;
  958. bp->duplex = bp->req_duplex;
  959. return 0;
  960. }
  961. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  962. switch (speed) {
  963. case MII_BNX2_GP_TOP_AN_SPEED_10:
  964. bp->line_speed = SPEED_10;
  965. break;
  966. case MII_BNX2_GP_TOP_AN_SPEED_100:
  967. bp->line_speed = SPEED_100;
  968. break;
  969. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  970. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  971. bp->line_speed = SPEED_1000;
  972. break;
  973. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  974. bp->line_speed = SPEED_2500;
  975. break;
  976. }
  977. if (val & MII_BNX2_GP_TOP_AN_FD)
  978. bp->duplex = DUPLEX_FULL;
  979. else
  980. bp->duplex = DUPLEX_HALF;
  981. return 0;
  982. }
  983. static int
  984. bnx2_5708s_linkup(struct bnx2 *bp)
  985. {
  986. u32 val;
  987. bp->link_up = 1;
  988. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  989. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  990. case BCM5708S_1000X_STAT1_SPEED_10:
  991. bp->line_speed = SPEED_10;
  992. break;
  993. case BCM5708S_1000X_STAT1_SPEED_100:
  994. bp->line_speed = SPEED_100;
  995. break;
  996. case BCM5708S_1000X_STAT1_SPEED_1G:
  997. bp->line_speed = SPEED_1000;
  998. break;
  999. case BCM5708S_1000X_STAT1_SPEED_2G5:
  1000. bp->line_speed = SPEED_2500;
  1001. break;
  1002. }
  1003. if (val & BCM5708S_1000X_STAT1_FD)
  1004. bp->duplex = DUPLEX_FULL;
  1005. else
  1006. bp->duplex = DUPLEX_HALF;
  1007. return 0;
  1008. }
  1009. static int
  1010. bnx2_5706s_linkup(struct bnx2 *bp)
  1011. {
  1012. u32 bmcr, local_adv, remote_adv, common;
  1013. bp->link_up = 1;
  1014. bp->line_speed = SPEED_1000;
  1015. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1016. if (bmcr & BMCR_FULLDPLX) {
  1017. bp->duplex = DUPLEX_FULL;
  1018. }
  1019. else {
  1020. bp->duplex = DUPLEX_HALF;
  1021. }
  1022. if (!(bmcr & BMCR_ANENABLE)) {
  1023. return 0;
  1024. }
  1025. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1026. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1027. common = local_adv & remote_adv;
  1028. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1029. if (common & ADVERTISE_1000XFULL) {
  1030. bp->duplex = DUPLEX_FULL;
  1031. }
  1032. else {
  1033. bp->duplex = DUPLEX_HALF;
  1034. }
  1035. }
  1036. return 0;
  1037. }
  1038. static int
  1039. bnx2_copper_linkup(struct bnx2 *bp)
  1040. {
  1041. u32 bmcr;
  1042. bp->phy_flags &= ~BNX2_PHY_FLAG_MDIX;
  1043. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1044. if (bmcr & BMCR_ANENABLE) {
  1045. u32 local_adv, remote_adv, common;
  1046. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1047. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1048. common = local_adv & (remote_adv >> 2);
  1049. if (common & ADVERTISE_1000FULL) {
  1050. bp->line_speed = SPEED_1000;
  1051. bp->duplex = DUPLEX_FULL;
  1052. }
  1053. else if (common & ADVERTISE_1000HALF) {
  1054. bp->line_speed = SPEED_1000;
  1055. bp->duplex = DUPLEX_HALF;
  1056. }
  1057. else {
  1058. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1059. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1060. common = local_adv & remote_adv;
  1061. if (common & ADVERTISE_100FULL) {
  1062. bp->line_speed = SPEED_100;
  1063. bp->duplex = DUPLEX_FULL;
  1064. }
  1065. else if (common & ADVERTISE_100HALF) {
  1066. bp->line_speed = SPEED_100;
  1067. bp->duplex = DUPLEX_HALF;
  1068. }
  1069. else if (common & ADVERTISE_10FULL) {
  1070. bp->line_speed = SPEED_10;
  1071. bp->duplex = DUPLEX_FULL;
  1072. }
  1073. else if (common & ADVERTISE_10HALF) {
  1074. bp->line_speed = SPEED_10;
  1075. bp->duplex = DUPLEX_HALF;
  1076. }
  1077. else {
  1078. bp->line_speed = 0;
  1079. bp->link_up = 0;
  1080. }
  1081. }
  1082. }
  1083. else {
  1084. if (bmcr & BMCR_SPEED100) {
  1085. bp->line_speed = SPEED_100;
  1086. }
  1087. else {
  1088. bp->line_speed = SPEED_10;
  1089. }
  1090. if (bmcr & BMCR_FULLDPLX) {
  1091. bp->duplex = DUPLEX_FULL;
  1092. }
  1093. else {
  1094. bp->duplex = DUPLEX_HALF;
  1095. }
  1096. }
  1097. if (bp->link_up) {
  1098. u32 ext_status;
  1099. bnx2_read_phy(bp, MII_BNX2_EXT_STATUS, &ext_status);
  1100. if (ext_status & EXT_STATUS_MDIX)
  1101. bp->phy_flags |= BNX2_PHY_FLAG_MDIX;
  1102. }
  1103. return 0;
  1104. }
  1105. static void
  1106. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1107. {
  1108. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1109. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1110. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1111. val |= 0x02 << 8;
  1112. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1113. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1114. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1115. }
  1116. static void
  1117. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1118. {
  1119. int i;
  1120. u32 cid;
  1121. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1122. if (i == 1)
  1123. cid = RX_RSS_CID;
  1124. bnx2_init_rx_context(bp, cid);
  1125. }
  1126. }
  1127. static void
  1128. bnx2_set_mac_link(struct bnx2 *bp)
  1129. {
  1130. u32 val;
  1131. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1132. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1133. (bp->duplex == DUPLEX_HALF)) {
  1134. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1135. }
  1136. /* Configure the EMAC mode register. */
  1137. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  1138. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1139. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1140. BNX2_EMAC_MODE_25G_MODE);
  1141. if (bp->link_up) {
  1142. switch (bp->line_speed) {
  1143. case SPEED_10:
  1144. if (BNX2_CHIP(bp) != BNX2_CHIP_5706) {
  1145. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1146. break;
  1147. }
  1148. /* fall through */
  1149. case SPEED_100:
  1150. val |= BNX2_EMAC_MODE_PORT_MII;
  1151. break;
  1152. case SPEED_2500:
  1153. val |= BNX2_EMAC_MODE_25G_MODE;
  1154. /* fall through */
  1155. case SPEED_1000:
  1156. val |= BNX2_EMAC_MODE_PORT_GMII;
  1157. break;
  1158. }
  1159. }
  1160. else {
  1161. val |= BNX2_EMAC_MODE_PORT_GMII;
  1162. }
  1163. /* Set the MAC to operate in the appropriate duplex mode. */
  1164. if (bp->duplex == DUPLEX_HALF)
  1165. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1166. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  1167. /* Enable/disable rx PAUSE. */
  1168. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1169. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1170. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1171. BNX2_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1172. /* Enable/disable tx PAUSE. */
  1173. val = BNX2_RD(bp, BNX2_EMAC_TX_MODE);
  1174. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1175. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1176. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1177. BNX2_WR(bp, BNX2_EMAC_TX_MODE, val);
  1178. /* Acknowledge the interrupt. */
  1179. BNX2_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1180. bnx2_init_all_rx_contexts(bp);
  1181. }
  1182. static void
  1183. bnx2_enable_bmsr1(struct bnx2 *bp)
  1184. {
  1185. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1186. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1187. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1188. MII_BNX2_BLK_ADDR_GP_STATUS);
  1189. }
  1190. static void
  1191. bnx2_disable_bmsr1(struct bnx2 *bp)
  1192. {
  1193. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1194. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1195. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1196. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1197. }
  1198. static int
  1199. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1200. {
  1201. u32 up1;
  1202. int ret = 1;
  1203. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1204. return 0;
  1205. if (bp->autoneg & AUTONEG_SPEED)
  1206. bp->advertising |= ADVERTISED_2500baseX_Full;
  1207. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1208. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1209. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1210. if (!(up1 & BCM5708S_UP1_2G5)) {
  1211. up1 |= BCM5708S_UP1_2G5;
  1212. bnx2_write_phy(bp, bp->mii_up1, up1);
  1213. ret = 0;
  1214. }
  1215. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1216. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1217. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1218. return ret;
  1219. }
  1220. static int
  1221. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1222. {
  1223. u32 up1;
  1224. int ret = 0;
  1225. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1226. return 0;
  1227. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1228. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1229. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1230. if (up1 & BCM5708S_UP1_2G5) {
  1231. up1 &= ~BCM5708S_UP1_2G5;
  1232. bnx2_write_phy(bp, bp->mii_up1, up1);
  1233. ret = 1;
  1234. }
  1235. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1236. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1237. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1238. return ret;
  1239. }
  1240. static void
  1241. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1242. {
  1243. u32 uninitialized_var(bmcr);
  1244. int err;
  1245. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1246. return;
  1247. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1248. u32 val;
  1249. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1250. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1251. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1252. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1253. val |= MII_BNX2_SD_MISC1_FORCE |
  1254. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1255. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1256. }
  1257. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1258. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1259. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1260. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1261. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1262. if (!err)
  1263. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1264. } else {
  1265. return;
  1266. }
  1267. if (err)
  1268. return;
  1269. if (bp->autoneg & AUTONEG_SPEED) {
  1270. bmcr &= ~BMCR_ANENABLE;
  1271. if (bp->req_duplex == DUPLEX_FULL)
  1272. bmcr |= BMCR_FULLDPLX;
  1273. }
  1274. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1275. }
  1276. static void
  1277. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1278. {
  1279. u32 uninitialized_var(bmcr);
  1280. int err;
  1281. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1282. return;
  1283. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1284. u32 val;
  1285. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1286. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1287. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1288. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1289. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1290. }
  1291. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1292. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1293. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1294. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1295. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1296. if (!err)
  1297. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1298. } else {
  1299. return;
  1300. }
  1301. if (err)
  1302. return;
  1303. if (bp->autoneg & AUTONEG_SPEED)
  1304. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1305. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1306. }
  1307. static void
  1308. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1309. {
  1310. u32 val;
  1311. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1312. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1313. if (start)
  1314. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1315. else
  1316. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1317. }
  1318. static int
  1319. bnx2_set_link(struct bnx2 *bp)
  1320. {
  1321. u32 bmsr;
  1322. u8 link_up;
  1323. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1324. bp->link_up = 1;
  1325. return 0;
  1326. }
  1327. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1328. return 0;
  1329. link_up = bp->link_up;
  1330. bnx2_enable_bmsr1(bp);
  1331. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1332. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1333. bnx2_disable_bmsr1(bp);
  1334. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1335. (BNX2_CHIP(bp) == BNX2_CHIP_5706)) {
  1336. u32 val, an_dbg;
  1337. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1338. bnx2_5706s_force_link_dn(bp, 0);
  1339. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1340. }
  1341. val = BNX2_RD(bp, BNX2_EMAC_STATUS);
  1342. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1343. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1344. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1345. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1346. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1347. bmsr |= BMSR_LSTATUS;
  1348. else
  1349. bmsr &= ~BMSR_LSTATUS;
  1350. }
  1351. if (bmsr & BMSR_LSTATUS) {
  1352. bp->link_up = 1;
  1353. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1354. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1355. bnx2_5706s_linkup(bp);
  1356. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  1357. bnx2_5708s_linkup(bp);
  1358. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1359. bnx2_5709s_linkup(bp);
  1360. }
  1361. else {
  1362. bnx2_copper_linkup(bp);
  1363. }
  1364. bnx2_resolve_flow_ctrl(bp);
  1365. }
  1366. else {
  1367. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1368. (bp->autoneg & AUTONEG_SPEED))
  1369. bnx2_disable_forced_2g5(bp);
  1370. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1371. u32 bmcr;
  1372. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1373. bmcr |= BMCR_ANENABLE;
  1374. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1375. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1376. }
  1377. bp->link_up = 0;
  1378. }
  1379. if (bp->link_up != link_up) {
  1380. bnx2_report_link(bp);
  1381. }
  1382. bnx2_set_mac_link(bp);
  1383. return 0;
  1384. }
  1385. static int
  1386. bnx2_reset_phy(struct bnx2 *bp)
  1387. {
  1388. int i;
  1389. u32 reg;
  1390. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1391. #define PHY_RESET_MAX_WAIT 100
  1392. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1393. udelay(10);
  1394. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1395. if (!(reg & BMCR_RESET)) {
  1396. udelay(20);
  1397. break;
  1398. }
  1399. }
  1400. if (i == PHY_RESET_MAX_WAIT) {
  1401. return -EBUSY;
  1402. }
  1403. return 0;
  1404. }
  1405. static u32
  1406. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1407. {
  1408. u32 adv = 0;
  1409. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1410. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1411. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1412. adv = ADVERTISE_1000XPAUSE;
  1413. }
  1414. else {
  1415. adv = ADVERTISE_PAUSE_CAP;
  1416. }
  1417. }
  1418. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1419. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1420. adv = ADVERTISE_1000XPSE_ASYM;
  1421. }
  1422. else {
  1423. adv = ADVERTISE_PAUSE_ASYM;
  1424. }
  1425. }
  1426. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1427. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1428. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1429. }
  1430. else {
  1431. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1432. }
  1433. }
  1434. return adv;
  1435. }
  1436. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1437. static int
  1438. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1439. __releases(&bp->phy_lock)
  1440. __acquires(&bp->phy_lock)
  1441. {
  1442. u32 speed_arg = 0, pause_adv;
  1443. pause_adv = bnx2_phy_get_pause_adv(bp);
  1444. if (bp->autoneg & AUTONEG_SPEED) {
  1445. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1446. if (bp->advertising & ADVERTISED_10baseT_Half)
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1448. if (bp->advertising & ADVERTISED_10baseT_Full)
  1449. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1450. if (bp->advertising & ADVERTISED_100baseT_Half)
  1451. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1452. if (bp->advertising & ADVERTISED_100baseT_Full)
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1454. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1455. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1456. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1457. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1458. } else {
  1459. if (bp->req_line_speed == SPEED_2500)
  1460. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1461. else if (bp->req_line_speed == SPEED_1000)
  1462. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1463. else if (bp->req_line_speed == SPEED_100) {
  1464. if (bp->req_duplex == DUPLEX_FULL)
  1465. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1466. else
  1467. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1468. } else if (bp->req_line_speed == SPEED_10) {
  1469. if (bp->req_duplex == DUPLEX_FULL)
  1470. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1471. else
  1472. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1473. }
  1474. }
  1475. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1476. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1477. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1478. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1479. if (port == PORT_TP)
  1480. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1481. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1482. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1483. spin_unlock_bh(&bp->phy_lock);
  1484. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1485. spin_lock_bh(&bp->phy_lock);
  1486. return 0;
  1487. }
  1488. static int
  1489. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1490. __releases(&bp->phy_lock)
  1491. __acquires(&bp->phy_lock)
  1492. {
  1493. u32 adv, bmcr;
  1494. u32 new_adv = 0;
  1495. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1496. return bnx2_setup_remote_phy(bp, port);
  1497. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1498. u32 new_bmcr;
  1499. int force_link_down = 0;
  1500. if (bp->req_line_speed == SPEED_2500) {
  1501. if (!bnx2_test_and_enable_2g5(bp))
  1502. force_link_down = 1;
  1503. } else if (bp->req_line_speed == SPEED_1000) {
  1504. if (bnx2_test_and_disable_2g5(bp))
  1505. force_link_down = 1;
  1506. }
  1507. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1508. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1509. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1510. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1511. new_bmcr |= BMCR_SPEED1000;
  1512. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1513. if (bp->req_line_speed == SPEED_2500)
  1514. bnx2_enable_forced_2g5(bp);
  1515. else if (bp->req_line_speed == SPEED_1000) {
  1516. bnx2_disable_forced_2g5(bp);
  1517. new_bmcr &= ~0x2000;
  1518. }
  1519. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1520. if (bp->req_line_speed == SPEED_2500)
  1521. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1522. else
  1523. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1524. }
  1525. if (bp->req_duplex == DUPLEX_FULL) {
  1526. adv |= ADVERTISE_1000XFULL;
  1527. new_bmcr |= BMCR_FULLDPLX;
  1528. }
  1529. else {
  1530. adv |= ADVERTISE_1000XHALF;
  1531. new_bmcr &= ~BMCR_FULLDPLX;
  1532. }
  1533. if ((new_bmcr != bmcr) || (force_link_down)) {
  1534. /* Force a link down visible on the other side */
  1535. if (bp->link_up) {
  1536. bnx2_write_phy(bp, bp->mii_adv, adv &
  1537. ~(ADVERTISE_1000XFULL |
  1538. ADVERTISE_1000XHALF));
  1539. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1540. BMCR_ANRESTART | BMCR_ANENABLE);
  1541. bp->link_up = 0;
  1542. netif_carrier_off(bp->dev);
  1543. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1544. bnx2_report_link(bp);
  1545. }
  1546. bnx2_write_phy(bp, bp->mii_adv, adv);
  1547. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1548. } else {
  1549. bnx2_resolve_flow_ctrl(bp);
  1550. bnx2_set_mac_link(bp);
  1551. }
  1552. return 0;
  1553. }
  1554. bnx2_test_and_enable_2g5(bp);
  1555. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1556. new_adv |= ADVERTISE_1000XFULL;
  1557. new_adv |= bnx2_phy_get_pause_adv(bp);
  1558. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1559. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1560. bp->serdes_an_pending = 0;
  1561. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1562. /* Force a link down visible on the other side */
  1563. if (bp->link_up) {
  1564. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1565. spin_unlock_bh(&bp->phy_lock);
  1566. msleep(20);
  1567. spin_lock_bh(&bp->phy_lock);
  1568. }
  1569. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1570. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1571. BMCR_ANENABLE);
  1572. /* Speed up link-up time when the link partner
  1573. * does not autonegotiate which is very common
  1574. * in blade servers. Some blade servers use
  1575. * IPMI for kerboard input and it's important
  1576. * to minimize link disruptions. Autoneg. involves
  1577. * exchanging base pages plus 3 next pages and
  1578. * normally completes in about 120 msec.
  1579. */
  1580. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1581. bp->serdes_an_pending = 1;
  1582. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1583. } else {
  1584. bnx2_resolve_flow_ctrl(bp);
  1585. bnx2_set_mac_link(bp);
  1586. }
  1587. return 0;
  1588. }
  1589. #define ETHTOOL_ALL_FIBRE_SPEED \
  1590. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1591. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1592. (ADVERTISED_1000baseT_Full)
  1593. #define ETHTOOL_ALL_COPPER_SPEED \
  1594. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1595. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1596. ADVERTISED_1000baseT_Full)
  1597. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1598. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1599. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1600. static void
  1601. bnx2_set_default_remote_link(struct bnx2 *bp)
  1602. {
  1603. u32 link;
  1604. if (bp->phy_port == PORT_TP)
  1605. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1606. else
  1607. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1608. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1609. bp->req_line_speed = 0;
  1610. bp->autoneg |= AUTONEG_SPEED;
  1611. bp->advertising = ADVERTISED_Autoneg;
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1613. bp->advertising |= ADVERTISED_10baseT_Half;
  1614. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1615. bp->advertising |= ADVERTISED_10baseT_Full;
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1617. bp->advertising |= ADVERTISED_100baseT_Half;
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1619. bp->advertising |= ADVERTISED_100baseT_Full;
  1620. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1621. bp->advertising |= ADVERTISED_1000baseT_Full;
  1622. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1623. bp->advertising |= ADVERTISED_2500baseX_Full;
  1624. } else {
  1625. bp->autoneg = 0;
  1626. bp->advertising = 0;
  1627. bp->req_duplex = DUPLEX_FULL;
  1628. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1629. bp->req_line_speed = SPEED_10;
  1630. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1631. bp->req_duplex = DUPLEX_HALF;
  1632. }
  1633. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1634. bp->req_line_speed = SPEED_100;
  1635. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1636. bp->req_duplex = DUPLEX_HALF;
  1637. }
  1638. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1639. bp->req_line_speed = SPEED_1000;
  1640. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1641. bp->req_line_speed = SPEED_2500;
  1642. }
  1643. }
  1644. static void
  1645. bnx2_set_default_link(struct bnx2 *bp)
  1646. {
  1647. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1648. bnx2_set_default_remote_link(bp);
  1649. return;
  1650. }
  1651. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1652. bp->req_line_speed = 0;
  1653. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1654. u32 reg;
  1655. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1656. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1657. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1658. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1659. bp->autoneg = 0;
  1660. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1661. bp->req_duplex = DUPLEX_FULL;
  1662. }
  1663. } else
  1664. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1665. }
  1666. static void
  1667. bnx2_send_heart_beat(struct bnx2 *bp)
  1668. {
  1669. u32 msg;
  1670. u32 addr;
  1671. spin_lock(&bp->indirect_lock);
  1672. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1673. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1674. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1675. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1676. spin_unlock(&bp->indirect_lock);
  1677. }
  1678. static void
  1679. bnx2_remote_phy_event(struct bnx2 *bp)
  1680. {
  1681. u32 msg;
  1682. u8 link_up = bp->link_up;
  1683. u8 old_port;
  1684. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1685. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1686. bnx2_send_heart_beat(bp);
  1687. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1688. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1689. bp->link_up = 0;
  1690. else {
  1691. u32 speed;
  1692. bp->link_up = 1;
  1693. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1694. bp->duplex = DUPLEX_FULL;
  1695. switch (speed) {
  1696. case BNX2_LINK_STATUS_10HALF:
  1697. bp->duplex = DUPLEX_HALF;
  1698. /* fall through */
  1699. case BNX2_LINK_STATUS_10FULL:
  1700. bp->line_speed = SPEED_10;
  1701. break;
  1702. case BNX2_LINK_STATUS_100HALF:
  1703. bp->duplex = DUPLEX_HALF;
  1704. /* fall through */
  1705. case BNX2_LINK_STATUS_100BASE_T4:
  1706. case BNX2_LINK_STATUS_100FULL:
  1707. bp->line_speed = SPEED_100;
  1708. break;
  1709. case BNX2_LINK_STATUS_1000HALF:
  1710. bp->duplex = DUPLEX_HALF;
  1711. /* fall through */
  1712. case BNX2_LINK_STATUS_1000FULL:
  1713. bp->line_speed = SPEED_1000;
  1714. break;
  1715. case BNX2_LINK_STATUS_2500HALF:
  1716. bp->duplex = DUPLEX_HALF;
  1717. /* fall through */
  1718. case BNX2_LINK_STATUS_2500FULL:
  1719. bp->line_speed = SPEED_2500;
  1720. break;
  1721. default:
  1722. bp->line_speed = 0;
  1723. break;
  1724. }
  1725. bp->flow_ctrl = 0;
  1726. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1727. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1728. if (bp->duplex == DUPLEX_FULL)
  1729. bp->flow_ctrl = bp->req_flow_ctrl;
  1730. } else {
  1731. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1732. bp->flow_ctrl |= FLOW_CTRL_TX;
  1733. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1734. bp->flow_ctrl |= FLOW_CTRL_RX;
  1735. }
  1736. old_port = bp->phy_port;
  1737. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1738. bp->phy_port = PORT_FIBRE;
  1739. else
  1740. bp->phy_port = PORT_TP;
  1741. if (old_port != bp->phy_port)
  1742. bnx2_set_default_link(bp);
  1743. }
  1744. if (bp->link_up != link_up)
  1745. bnx2_report_link(bp);
  1746. bnx2_set_mac_link(bp);
  1747. }
  1748. static int
  1749. bnx2_set_remote_link(struct bnx2 *bp)
  1750. {
  1751. u32 evt_code;
  1752. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1753. switch (evt_code) {
  1754. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1755. bnx2_remote_phy_event(bp);
  1756. break;
  1757. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1758. default:
  1759. bnx2_send_heart_beat(bp);
  1760. break;
  1761. }
  1762. return 0;
  1763. }
  1764. static int
  1765. bnx2_setup_copper_phy(struct bnx2 *bp)
  1766. __releases(&bp->phy_lock)
  1767. __acquires(&bp->phy_lock)
  1768. {
  1769. u32 bmcr, adv_reg, new_adv = 0;
  1770. u32 new_bmcr;
  1771. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1772. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1773. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1774. ADVERTISE_PAUSE_ASYM);
  1775. new_adv = ADVERTISE_CSMA | ethtool_adv_to_mii_adv_t(bp->advertising);
  1776. if (bp->autoneg & AUTONEG_SPEED) {
  1777. u32 adv1000_reg;
  1778. u32 new_adv1000 = 0;
  1779. new_adv |= bnx2_phy_get_pause_adv(bp);
  1780. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1781. adv1000_reg &= PHY_ALL_1000_SPEED;
  1782. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1783. if ((adv1000_reg != new_adv1000) ||
  1784. (adv_reg != new_adv) ||
  1785. ((bmcr & BMCR_ANENABLE) == 0)) {
  1786. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1787. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1788. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1789. BMCR_ANENABLE);
  1790. }
  1791. else if (bp->link_up) {
  1792. /* Flow ctrl may have changed from auto to forced */
  1793. /* or vice-versa. */
  1794. bnx2_resolve_flow_ctrl(bp);
  1795. bnx2_set_mac_link(bp);
  1796. }
  1797. return 0;
  1798. }
  1799. /* advertise nothing when forcing speed */
  1800. if (adv_reg != new_adv)
  1801. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1802. new_bmcr = 0;
  1803. if (bp->req_line_speed == SPEED_100) {
  1804. new_bmcr |= BMCR_SPEED100;
  1805. }
  1806. if (bp->req_duplex == DUPLEX_FULL) {
  1807. new_bmcr |= BMCR_FULLDPLX;
  1808. }
  1809. if (new_bmcr != bmcr) {
  1810. u32 bmsr;
  1811. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1812. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1813. if (bmsr & BMSR_LSTATUS) {
  1814. /* Force link down */
  1815. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1816. spin_unlock_bh(&bp->phy_lock);
  1817. msleep(50);
  1818. spin_lock_bh(&bp->phy_lock);
  1819. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1820. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1821. }
  1822. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1823. /* Normally, the new speed is setup after the link has
  1824. * gone down and up again. In some cases, link will not go
  1825. * down so we need to set up the new speed here.
  1826. */
  1827. if (bmsr & BMSR_LSTATUS) {
  1828. bp->line_speed = bp->req_line_speed;
  1829. bp->duplex = bp->req_duplex;
  1830. bnx2_resolve_flow_ctrl(bp);
  1831. bnx2_set_mac_link(bp);
  1832. }
  1833. } else {
  1834. bnx2_resolve_flow_ctrl(bp);
  1835. bnx2_set_mac_link(bp);
  1836. }
  1837. return 0;
  1838. }
  1839. static int
  1840. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1841. __releases(&bp->phy_lock)
  1842. __acquires(&bp->phy_lock)
  1843. {
  1844. if (bp->loopback == MAC_LOOPBACK)
  1845. return 0;
  1846. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1847. return bnx2_setup_serdes_phy(bp, port);
  1848. }
  1849. else {
  1850. return bnx2_setup_copper_phy(bp);
  1851. }
  1852. }
  1853. static int
  1854. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1855. {
  1856. u32 val;
  1857. bp->mii_bmcr = MII_BMCR + 0x10;
  1858. bp->mii_bmsr = MII_BMSR + 0x10;
  1859. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1860. bp->mii_adv = MII_ADVERTISE + 0x10;
  1861. bp->mii_lpa = MII_LPA + 0x10;
  1862. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1863. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1864. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1865. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1866. if (reset_phy)
  1867. bnx2_reset_phy(bp);
  1868. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1869. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1870. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1871. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1872. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1873. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1874. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1875. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1876. val |= BCM5708S_UP1_2G5;
  1877. else
  1878. val &= ~BCM5708S_UP1_2G5;
  1879. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1880. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1881. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1882. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1883. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1884. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1885. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1886. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1887. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1888. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1889. return 0;
  1890. }
  1891. static int
  1892. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1893. {
  1894. u32 val;
  1895. if (reset_phy)
  1896. bnx2_reset_phy(bp);
  1897. bp->mii_up1 = BCM5708S_UP1;
  1898. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1899. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1900. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1901. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1902. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1903. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1904. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1905. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1906. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1907. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1908. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1909. val |= BCM5708S_UP1_2G5;
  1910. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1911. }
  1912. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  1913. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  1914. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1)) {
  1915. /* increase tx signal amplitude */
  1916. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1917. BCM5708S_BLK_ADDR_TX_MISC);
  1918. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1919. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1920. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1921. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1922. }
  1923. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1924. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1925. if (val) {
  1926. u32 is_backplane;
  1927. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1928. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1929. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1930. BCM5708S_BLK_ADDR_TX_MISC);
  1931. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1932. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1933. BCM5708S_BLK_ADDR_DIG);
  1934. }
  1935. }
  1936. return 0;
  1937. }
  1938. static int
  1939. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1940. {
  1941. if (reset_phy)
  1942. bnx2_reset_phy(bp);
  1943. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1944. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1945. BNX2_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1946. if (bp->dev->mtu > ETH_DATA_LEN) {
  1947. u32 val;
  1948. /* Set extended packet length bit */
  1949. bnx2_write_phy(bp, 0x18, 0x7);
  1950. bnx2_read_phy(bp, 0x18, &val);
  1951. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1952. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1953. bnx2_read_phy(bp, 0x1c, &val);
  1954. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1955. }
  1956. else {
  1957. u32 val;
  1958. bnx2_write_phy(bp, 0x18, 0x7);
  1959. bnx2_read_phy(bp, 0x18, &val);
  1960. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1961. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1962. bnx2_read_phy(bp, 0x1c, &val);
  1963. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1964. }
  1965. return 0;
  1966. }
  1967. static int
  1968. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1969. {
  1970. u32 val;
  1971. if (reset_phy)
  1972. bnx2_reset_phy(bp);
  1973. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1974. bnx2_write_phy(bp, 0x18, 0x0c00);
  1975. bnx2_write_phy(bp, 0x17, 0x000a);
  1976. bnx2_write_phy(bp, 0x15, 0x310b);
  1977. bnx2_write_phy(bp, 0x17, 0x201f);
  1978. bnx2_write_phy(bp, 0x15, 0x9506);
  1979. bnx2_write_phy(bp, 0x17, 0x401f);
  1980. bnx2_write_phy(bp, 0x15, 0x14e2);
  1981. bnx2_write_phy(bp, 0x18, 0x0400);
  1982. }
  1983. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1984. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1985. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1986. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1987. val &= ~(1 << 8);
  1988. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1989. }
  1990. if (bp->dev->mtu > ETH_DATA_LEN) {
  1991. /* Set extended packet length bit */
  1992. bnx2_write_phy(bp, 0x18, 0x7);
  1993. bnx2_read_phy(bp, 0x18, &val);
  1994. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1995. bnx2_read_phy(bp, 0x10, &val);
  1996. bnx2_write_phy(bp, 0x10, val | 0x1);
  1997. }
  1998. else {
  1999. bnx2_write_phy(bp, 0x18, 0x7);
  2000. bnx2_read_phy(bp, 0x18, &val);
  2001. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  2002. bnx2_read_phy(bp, 0x10, &val);
  2003. bnx2_write_phy(bp, 0x10, val & ~0x1);
  2004. }
  2005. /* ethernet@wirespeed */
  2006. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, AUX_CTL_MISC_CTL);
  2007. bnx2_read_phy(bp, MII_BNX2_AUX_CTL, &val);
  2008. val |= AUX_CTL_MISC_CTL_WR | AUX_CTL_MISC_CTL_WIRESPEED;
  2009. /* auto-mdix */
  2010. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2011. val |= AUX_CTL_MISC_CTL_AUTOMDIX;
  2012. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, val);
  2013. return 0;
  2014. }
  2015. static int
  2016. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  2017. __releases(&bp->phy_lock)
  2018. __acquires(&bp->phy_lock)
  2019. {
  2020. u32 val;
  2021. int rc = 0;
  2022. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2023. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2024. bp->mii_bmcr = MII_BMCR;
  2025. bp->mii_bmsr = MII_BMSR;
  2026. bp->mii_bmsr1 = MII_BMSR;
  2027. bp->mii_adv = MII_ADVERTISE;
  2028. bp->mii_lpa = MII_LPA;
  2029. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2030. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2031. goto setup_phy;
  2032. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2033. bp->phy_id = val << 16;
  2034. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2035. bp->phy_id |= val & 0xffff;
  2036. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2037. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  2038. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2039. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  2040. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2041. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2042. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2043. }
  2044. else {
  2045. rc = bnx2_init_copper_phy(bp, reset_phy);
  2046. }
  2047. setup_phy:
  2048. if (!rc)
  2049. rc = bnx2_setup_phy(bp, bp->phy_port);
  2050. return rc;
  2051. }
  2052. static int
  2053. bnx2_set_mac_loopback(struct bnx2 *bp)
  2054. {
  2055. u32 mac_mode;
  2056. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2057. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2058. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2059. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2060. bp->link_up = 1;
  2061. return 0;
  2062. }
  2063. static int bnx2_test_link(struct bnx2 *);
  2064. static int
  2065. bnx2_set_phy_loopback(struct bnx2 *bp)
  2066. {
  2067. u32 mac_mode;
  2068. int rc, i;
  2069. spin_lock_bh(&bp->phy_lock);
  2070. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2071. BMCR_SPEED1000);
  2072. spin_unlock_bh(&bp->phy_lock);
  2073. if (rc)
  2074. return rc;
  2075. for (i = 0; i < 10; i++) {
  2076. if (bnx2_test_link(bp) == 0)
  2077. break;
  2078. msleep(100);
  2079. }
  2080. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2081. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2082. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2083. BNX2_EMAC_MODE_25G_MODE);
  2084. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2085. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2086. bp->link_up = 1;
  2087. return 0;
  2088. }
  2089. static void
  2090. bnx2_dump_mcp_state(struct bnx2 *bp)
  2091. {
  2092. struct net_device *dev = bp->dev;
  2093. u32 mcp_p0, mcp_p1;
  2094. netdev_err(dev, "<--- start MCP states dump --->\n");
  2095. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  2096. mcp_p0 = BNX2_MCP_STATE_P0;
  2097. mcp_p1 = BNX2_MCP_STATE_P1;
  2098. } else {
  2099. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2100. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2101. }
  2102. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2103. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2104. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2105. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2106. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2107. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2108. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2109. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2110. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2111. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2112. netdev_err(dev, "DEBUG: shmem states:\n");
  2113. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2114. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2115. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2116. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2117. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2118. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2119. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2120. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2121. pr_cont(" condition[%08x]\n",
  2122. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2123. DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
  2124. DP_SHMEM_LINE(bp, 0x3cc);
  2125. DP_SHMEM_LINE(bp, 0x3dc);
  2126. DP_SHMEM_LINE(bp, 0x3ec);
  2127. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2128. netdev_err(dev, "<--- end MCP states dump --->\n");
  2129. }
  2130. static int
  2131. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2132. {
  2133. int i;
  2134. u32 val;
  2135. bp->fw_wr_seq++;
  2136. msg_data |= bp->fw_wr_seq;
  2137. bp->fw_last_msg = msg_data;
  2138. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2139. if (!ack)
  2140. return 0;
  2141. /* wait for an acknowledgement. */
  2142. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2143. msleep(10);
  2144. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2145. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2146. break;
  2147. }
  2148. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2149. return 0;
  2150. /* If we timed out, inform the firmware that this is the case. */
  2151. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2152. msg_data &= ~BNX2_DRV_MSG_CODE;
  2153. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2154. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2155. if (!silent) {
  2156. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2157. bnx2_dump_mcp_state(bp);
  2158. }
  2159. return -EBUSY;
  2160. }
  2161. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2162. return -EIO;
  2163. return 0;
  2164. }
  2165. static int
  2166. bnx2_init_5709_context(struct bnx2 *bp)
  2167. {
  2168. int i, ret = 0;
  2169. u32 val;
  2170. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2171. val |= (BNX2_PAGE_BITS - 8) << 16;
  2172. BNX2_WR(bp, BNX2_CTX_COMMAND, val);
  2173. for (i = 0; i < 10; i++) {
  2174. val = BNX2_RD(bp, BNX2_CTX_COMMAND);
  2175. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2176. break;
  2177. udelay(2);
  2178. }
  2179. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2180. return -EBUSY;
  2181. for (i = 0; i < bp->ctx_pages; i++) {
  2182. int j;
  2183. if (bp->ctx_blk[i])
  2184. memset(bp->ctx_blk[i], 0, BNX2_PAGE_SIZE);
  2185. else
  2186. return -ENOMEM;
  2187. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2188. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2189. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2190. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2191. (u64) bp->ctx_blk_mapping[i] >> 32);
  2192. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2193. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2194. for (j = 0; j < 10; j++) {
  2195. val = BNX2_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2196. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2197. break;
  2198. udelay(5);
  2199. }
  2200. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2201. ret = -EBUSY;
  2202. break;
  2203. }
  2204. }
  2205. return ret;
  2206. }
  2207. static void
  2208. bnx2_init_context(struct bnx2 *bp)
  2209. {
  2210. u32 vcid;
  2211. vcid = 96;
  2212. while (vcid) {
  2213. u32 vcid_addr, pcid_addr, offset;
  2214. int i;
  2215. vcid--;
  2216. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  2217. u32 new_vcid;
  2218. vcid_addr = GET_PCID_ADDR(vcid);
  2219. if (vcid & 0x8) {
  2220. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2221. }
  2222. else {
  2223. new_vcid = vcid;
  2224. }
  2225. pcid_addr = GET_PCID_ADDR(new_vcid);
  2226. }
  2227. else {
  2228. vcid_addr = GET_CID_ADDR(vcid);
  2229. pcid_addr = vcid_addr;
  2230. }
  2231. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2232. vcid_addr += (i << PHY_CTX_SHIFT);
  2233. pcid_addr += (i << PHY_CTX_SHIFT);
  2234. BNX2_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2235. BNX2_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2236. /* Zero out the context. */
  2237. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2238. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2239. }
  2240. }
  2241. }
  2242. static int
  2243. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2244. {
  2245. u16 *good_mbuf;
  2246. u32 good_mbuf_cnt;
  2247. u32 val;
  2248. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2249. if (good_mbuf == NULL)
  2250. return -ENOMEM;
  2251. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2252. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2253. good_mbuf_cnt = 0;
  2254. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2255. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2256. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2257. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2258. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2259. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2260. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2261. /* The addresses with Bit 9 set are bad memory blocks. */
  2262. if (!(val & (1 << 9))) {
  2263. good_mbuf[good_mbuf_cnt] = (u16) val;
  2264. good_mbuf_cnt++;
  2265. }
  2266. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2267. }
  2268. /* Free the good ones back to the mbuf pool thus discarding
  2269. * all the bad ones. */
  2270. while (good_mbuf_cnt) {
  2271. good_mbuf_cnt--;
  2272. val = good_mbuf[good_mbuf_cnt];
  2273. val = (val << 9) | val | 1;
  2274. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2275. }
  2276. kfree(good_mbuf);
  2277. return 0;
  2278. }
  2279. static void
  2280. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2281. {
  2282. u32 val;
  2283. val = (mac_addr[0] << 8) | mac_addr[1];
  2284. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2285. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2286. (mac_addr[4] << 8) | mac_addr[5];
  2287. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2288. }
  2289. static inline int
  2290. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2291. {
  2292. dma_addr_t mapping;
  2293. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2294. struct bnx2_rx_bd *rxbd =
  2295. &rxr->rx_pg_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2296. struct page *page = alloc_page(gfp);
  2297. if (!page)
  2298. return -ENOMEM;
  2299. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2300. PCI_DMA_FROMDEVICE);
  2301. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2302. __free_page(page);
  2303. return -EIO;
  2304. }
  2305. rx_pg->page = page;
  2306. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2307. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2308. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2309. return 0;
  2310. }
  2311. static void
  2312. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2313. {
  2314. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2315. struct page *page = rx_pg->page;
  2316. if (!page)
  2317. return;
  2318. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2319. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2320. __free_page(page);
  2321. rx_pg->page = NULL;
  2322. }
  2323. static inline int
  2324. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2325. {
  2326. u8 *data;
  2327. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2328. dma_addr_t mapping;
  2329. struct bnx2_rx_bd *rxbd =
  2330. &rxr->rx_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2331. data = kmalloc(bp->rx_buf_size, gfp);
  2332. if (!data)
  2333. return -ENOMEM;
  2334. mapping = dma_map_single(&bp->pdev->dev,
  2335. get_l2_fhdr(data),
  2336. bp->rx_buf_use_size,
  2337. PCI_DMA_FROMDEVICE);
  2338. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2339. kfree(data);
  2340. return -EIO;
  2341. }
  2342. rx_buf->data = data;
  2343. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2344. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2345. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2346. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2347. return 0;
  2348. }
  2349. static int
  2350. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2351. {
  2352. struct status_block *sblk = bnapi->status_blk.msi;
  2353. u32 new_link_state, old_link_state;
  2354. int is_set = 1;
  2355. new_link_state = sblk->status_attn_bits & event;
  2356. old_link_state = sblk->status_attn_bits_ack & event;
  2357. if (new_link_state != old_link_state) {
  2358. if (new_link_state)
  2359. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2360. else
  2361. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2362. } else
  2363. is_set = 0;
  2364. return is_set;
  2365. }
  2366. static void
  2367. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2368. {
  2369. spin_lock(&bp->phy_lock);
  2370. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2371. bnx2_set_link(bp);
  2372. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2373. bnx2_set_remote_link(bp);
  2374. spin_unlock(&bp->phy_lock);
  2375. }
  2376. static inline u16
  2377. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2378. {
  2379. u16 cons;
  2380. cons = READ_ONCE(*bnapi->hw_tx_cons_ptr);
  2381. if (unlikely((cons & BNX2_MAX_TX_DESC_CNT) == BNX2_MAX_TX_DESC_CNT))
  2382. cons++;
  2383. return cons;
  2384. }
  2385. static int
  2386. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2387. {
  2388. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2389. u16 hw_cons, sw_cons, sw_ring_cons;
  2390. int tx_pkt = 0, index;
  2391. unsigned int tx_bytes = 0;
  2392. struct netdev_queue *txq;
  2393. index = (bnapi - bp->bnx2_napi);
  2394. txq = netdev_get_tx_queue(bp->dev, index);
  2395. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2396. sw_cons = txr->tx_cons;
  2397. while (sw_cons != hw_cons) {
  2398. struct bnx2_sw_tx_bd *tx_buf;
  2399. struct sk_buff *skb;
  2400. int i, last;
  2401. sw_ring_cons = BNX2_TX_RING_IDX(sw_cons);
  2402. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2403. skb = tx_buf->skb;
  2404. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2405. prefetch(&skb->end);
  2406. /* partial BD completions possible with TSO packets */
  2407. if (tx_buf->is_gso) {
  2408. u16 last_idx, last_ring_idx;
  2409. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2410. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2411. if (unlikely(last_ring_idx >= BNX2_MAX_TX_DESC_CNT)) {
  2412. last_idx++;
  2413. }
  2414. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2415. break;
  2416. }
  2417. }
  2418. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2419. skb_headlen(skb), PCI_DMA_TODEVICE);
  2420. tx_buf->skb = NULL;
  2421. last = tx_buf->nr_frags;
  2422. for (i = 0; i < last; i++) {
  2423. struct bnx2_sw_tx_bd *tx_buf;
  2424. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2425. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(sw_cons)];
  2426. dma_unmap_page(&bp->pdev->dev,
  2427. dma_unmap_addr(tx_buf, mapping),
  2428. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2429. PCI_DMA_TODEVICE);
  2430. }
  2431. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2432. tx_bytes += skb->len;
  2433. dev_kfree_skb_any(skb);
  2434. tx_pkt++;
  2435. if (tx_pkt == budget)
  2436. break;
  2437. if (hw_cons == sw_cons)
  2438. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2439. }
  2440. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2441. txr->hw_tx_cons = hw_cons;
  2442. txr->tx_cons = sw_cons;
  2443. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2444. * before checking for netif_tx_queue_stopped(). Without the
  2445. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2446. * will miss it and cause the queue to be stopped forever.
  2447. */
  2448. smp_mb();
  2449. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2450. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2451. __netif_tx_lock(txq, smp_processor_id());
  2452. if ((netif_tx_queue_stopped(txq)) &&
  2453. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2454. netif_tx_wake_queue(txq);
  2455. __netif_tx_unlock(txq);
  2456. }
  2457. return tx_pkt;
  2458. }
  2459. static void
  2460. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2461. struct sk_buff *skb, int count)
  2462. {
  2463. struct bnx2_sw_pg *cons_rx_pg, *prod_rx_pg;
  2464. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2465. int i;
  2466. u16 hw_prod, prod;
  2467. u16 cons = rxr->rx_pg_cons;
  2468. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2469. /* The caller was unable to allocate a new page to replace the
  2470. * last one in the frags array, so we need to recycle that page
  2471. * and then free the skb.
  2472. */
  2473. if (skb) {
  2474. struct page *page;
  2475. struct skb_shared_info *shinfo;
  2476. shinfo = skb_shinfo(skb);
  2477. shinfo->nr_frags--;
  2478. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2479. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2480. cons_rx_pg->page = page;
  2481. dev_kfree_skb(skb);
  2482. }
  2483. hw_prod = rxr->rx_pg_prod;
  2484. for (i = 0; i < count; i++) {
  2485. prod = BNX2_RX_PG_RING_IDX(hw_prod);
  2486. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2487. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2488. cons_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(cons)]
  2489. [BNX2_RX_IDX(cons)];
  2490. prod_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(prod)]
  2491. [BNX2_RX_IDX(prod)];
  2492. if (prod != cons) {
  2493. prod_rx_pg->page = cons_rx_pg->page;
  2494. cons_rx_pg->page = NULL;
  2495. dma_unmap_addr_set(prod_rx_pg, mapping,
  2496. dma_unmap_addr(cons_rx_pg, mapping));
  2497. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2498. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2499. }
  2500. cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons));
  2501. hw_prod = BNX2_NEXT_RX_BD(hw_prod);
  2502. }
  2503. rxr->rx_pg_prod = hw_prod;
  2504. rxr->rx_pg_cons = cons;
  2505. }
  2506. static inline void
  2507. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2508. u8 *data, u16 cons, u16 prod)
  2509. {
  2510. struct bnx2_sw_bd *cons_rx_buf, *prod_rx_buf;
  2511. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2512. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2513. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2514. dma_sync_single_for_device(&bp->pdev->dev,
  2515. dma_unmap_addr(cons_rx_buf, mapping),
  2516. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2517. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2518. prod_rx_buf->data = data;
  2519. if (cons == prod)
  2520. return;
  2521. dma_unmap_addr_set(prod_rx_buf, mapping,
  2522. dma_unmap_addr(cons_rx_buf, mapping));
  2523. cons_bd = &rxr->rx_desc_ring[BNX2_RX_RING(cons)][BNX2_RX_IDX(cons)];
  2524. prod_bd = &rxr->rx_desc_ring[BNX2_RX_RING(prod)][BNX2_RX_IDX(prod)];
  2525. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2526. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2527. }
  2528. static struct sk_buff *
  2529. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2530. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2531. u32 ring_idx)
  2532. {
  2533. int err;
  2534. u16 prod = ring_idx & 0xffff;
  2535. struct sk_buff *skb;
  2536. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2537. if (unlikely(err)) {
  2538. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2539. error:
  2540. if (hdr_len) {
  2541. unsigned int raw_len = len + 4;
  2542. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2543. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2544. }
  2545. return NULL;
  2546. }
  2547. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2548. PCI_DMA_FROMDEVICE);
  2549. skb = build_skb(data, 0);
  2550. if (!skb) {
  2551. kfree(data);
  2552. goto error;
  2553. }
  2554. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2555. if (hdr_len == 0) {
  2556. skb_put(skb, len);
  2557. return skb;
  2558. } else {
  2559. unsigned int i, frag_len, frag_size, pages;
  2560. struct bnx2_sw_pg *rx_pg;
  2561. u16 pg_cons = rxr->rx_pg_cons;
  2562. u16 pg_prod = rxr->rx_pg_prod;
  2563. frag_size = len + 4 - hdr_len;
  2564. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2565. skb_put(skb, hdr_len);
  2566. for (i = 0; i < pages; i++) {
  2567. dma_addr_t mapping_old;
  2568. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2569. if (unlikely(frag_len <= 4)) {
  2570. unsigned int tail = 4 - frag_len;
  2571. rxr->rx_pg_cons = pg_cons;
  2572. rxr->rx_pg_prod = pg_prod;
  2573. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2574. pages - i);
  2575. skb->len -= tail;
  2576. if (i == 0) {
  2577. skb->tail -= tail;
  2578. } else {
  2579. skb_frag_t *frag =
  2580. &skb_shinfo(skb)->frags[i - 1];
  2581. skb_frag_size_sub(frag, tail);
  2582. skb->data_len -= tail;
  2583. }
  2584. return skb;
  2585. }
  2586. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2587. /* Don't unmap yet. If we're unable to allocate a new
  2588. * page, we need to recycle the page and the DMA addr.
  2589. */
  2590. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2591. if (i == pages - 1)
  2592. frag_len -= 4;
  2593. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2594. rx_pg->page = NULL;
  2595. err = bnx2_alloc_rx_page(bp, rxr,
  2596. BNX2_RX_PG_RING_IDX(pg_prod),
  2597. GFP_ATOMIC);
  2598. if (unlikely(err)) {
  2599. rxr->rx_pg_cons = pg_cons;
  2600. rxr->rx_pg_prod = pg_prod;
  2601. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2602. pages - i);
  2603. return NULL;
  2604. }
  2605. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2606. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2607. frag_size -= frag_len;
  2608. skb->data_len += frag_len;
  2609. skb->truesize += PAGE_SIZE;
  2610. skb->len += frag_len;
  2611. pg_prod = BNX2_NEXT_RX_BD(pg_prod);
  2612. pg_cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons));
  2613. }
  2614. rxr->rx_pg_prod = pg_prod;
  2615. rxr->rx_pg_cons = pg_cons;
  2616. }
  2617. return skb;
  2618. }
  2619. static inline u16
  2620. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2621. {
  2622. u16 cons;
  2623. cons = READ_ONCE(*bnapi->hw_rx_cons_ptr);
  2624. if (unlikely((cons & BNX2_MAX_RX_DESC_CNT) == BNX2_MAX_RX_DESC_CNT))
  2625. cons++;
  2626. return cons;
  2627. }
  2628. static int
  2629. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2630. {
  2631. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2632. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2633. struct l2_fhdr *rx_hdr;
  2634. int rx_pkt = 0, pg_ring_used = 0;
  2635. if (budget <= 0)
  2636. return rx_pkt;
  2637. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2638. sw_cons = rxr->rx_cons;
  2639. sw_prod = rxr->rx_prod;
  2640. /* Memory barrier necessary as speculative reads of the rx
  2641. * buffer can be ahead of the index in the status block
  2642. */
  2643. rmb();
  2644. while (sw_cons != hw_cons) {
  2645. unsigned int len, hdr_len;
  2646. u32 status;
  2647. struct bnx2_sw_bd *rx_buf, *next_rx_buf;
  2648. struct sk_buff *skb;
  2649. dma_addr_t dma_addr;
  2650. u8 *data;
  2651. u16 next_ring_idx;
  2652. sw_ring_cons = BNX2_RX_RING_IDX(sw_cons);
  2653. sw_ring_prod = BNX2_RX_RING_IDX(sw_prod);
  2654. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2655. data = rx_buf->data;
  2656. rx_buf->data = NULL;
  2657. rx_hdr = get_l2_fhdr(data);
  2658. prefetch(rx_hdr);
  2659. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2660. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2661. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2662. PCI_DMA_FROMDEVICE);
  2663. next_ring_idx = BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons));
  2664. next_rx_buf = &rxr->rx_buf_ring[next_ring_idx];
  2665. prefetch(get_l2_fhdr(next_rx_buf->data));
  2666. len = rx_hdr->l2_fhdr_pkt_len;
  2667. status = rx_hdr->l2_fhdr_status;
  2668. hdr_len = 0;
  2669. if (status & L2_FHDR_STATUS_SPLIT) {
  2670. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2671. pg_ring_used = 1;
  2672. } else if (len > bp->rx_jumbo_thresh) {
  2673. hdr_len = bp->rx_jumbo_thresh;
  2674. pg_ring_used = 1;
  2675. }
  2676. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2677. L2_FHDR_ERRORS_PHY_DECODE |
  2678. L2_FHDR_ERRORS_ALIGNMENT |
  2679. L2_FHDR_ERRORS_TOO_SHORT |
  2680. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2681. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2682. sw_ring_prod);
  2683. if (pg_ring_used) {
  2684. int pages;
  2685. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2686. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2687. }
  2688. goto next_rx;
  2689. }
  2690. len -= 4;
  2691. if (len <= bp->rx_copy_thresh) {
  2692. skb = netdev_alloc_skb(bp->dev, len + 6);
  2693. if (skb == NULL) {
  2694. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2695. sw_ring_prod);
  2696. goto next_rx;
  2697. }
  2698. /* aligned copy */
  2699. memcpy(skb->data,
  2700. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2701. len + 6);
  2702. skb_reserve(skb, 6);
  2703. skb_put(skb, len);
  2704. bnx2_reuse_rx_data(bp, rxr, data,
  2705. sw_ring_cons, sw_ring_prod);
  2706. } else {
  2707. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2708. (sw_ring_cons << 16) | sw_ring_prod);
  2709. if (!skb)
  2710. goto next_rx;
  2711. }
  2712. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2713. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2714. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), rx_hdr->l2_fhdr_vlan_tag);
  2715. skb->protocol = eth_type_trans(skb, bp->dev);
  2716. if (len > (bp->dev->mtu + ETH_HLEN) &&
  2717. skb->protocol != htons(0x8100) &&
  2718. skb->protocol != htons(ETH_P_8021AD)) {
  2719. dev_kfree_skb(skb);
  2720. goto next_rx;
  2721. }
  2722. skb_checksum_none_assert(skb);
  2723. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2724. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2725. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2726. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2727. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2728. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2729. }
  2730. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2731. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2732. L2_FHDR_STATUS_USE_RXHASH))
  2733. skb_set_hash(skb, rx_hdr->l2_fhdr_hash,
  2734. PKT_HASH_TYPE_L3);
  2735. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2736. napi_gro_receive(&bnapi->napi, skb);
  2737. rx_pkt++;
  2738. next_rx:
  2739. sw_cons = BNX2_NEXT_RX_BD(sw_cons);
  2740. sw_prod = BNX2_NEXT_RX_BD(sw_prod);
  2741. if ((rx_pkt == budget))
  2742. break;
  2743. /* Refresh hw_cons to see if there is new work */
  2744. if (sw_cons == hw_cons) {
  2745. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2746. rmb();
  2747. }
  2748. }
  2749. rxr->rx_cons = sw_cons;
  2750. rxr->rx_prod = sw_prod;
  2751. if (pg_ring_used)
  2752. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2753. BNX2_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2754. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2755. mmiowb();
  2756. return rx_pkt;
  2757. }
  2758. /* MSI ISR - The only difference between this and the INTx ISR
  2759. * is that the MSI interrupt is always serviced.
  2760. */
  2761. static irqreturn_t
  2762. bnx2_msi(int irq, void *dev_instance)
  2763. {
  2764. struct bnx2_napi *bnapi = dev_instance;
  2765. struct bnx2 *bp = bnapi->bp;
  2766. prefetch(bnapi->status_blk.msi);
  2767. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2768. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2769. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2770. /* Return here if interrupt is disabled. */
  2771. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2772. return IRQ_HANDLED;
  2773. napi_schedule(&bnapi->napi);
  2774. return IRQ_HANDLED;
  2775. }
  2776. static irqreturn_t
  2777. bnx2_msi_1shot(int irq, void *dev_instance)
  2778. {
  2779. struct bnx2_napi *bnapi = dev_instance;
  2780. struct bnx2 *bp = bnapi->bp;
  2781. prefetch(bnapi->status_blk.msi);
  2782. /* Return here if interrupt is disabled. */
  2783. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2784. return IRQ_HANDLED;
  2785. napi_schedule(&bnapi->napi);
  2786. return IRQ_HANDLED;
  2787. }
  2788. static irqreturn_t
  2789. bnx2_interrupt(int irq, void *dev_instance)
  2790. {
  2791. struct bnx2_napi *bnapi = dev_instance;
  2792. struct bnx2 *bp = bnapi->bp;
  2793. struct status_block *sblk = bnapi->status_blk.msi;
  2794. /* When using INTx, it is possible for the interrupt to arrive
  2795. * at the CPU before the status block posted prior to the
  2796. * interrupt. Reading a register will flush the status block.
  2797. * When using MSI, the MSI message will always complete after
  2798. * the status block write.
  2799. */
  2800. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2801. (BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2802. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2803. return IRQ_NONE;
  2804. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2805. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2806. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2807. /* Read back to deassert IRQ immediately to avoid too many
  2808. * spurious interrupts.
  2809. */
  2810. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2811. /* Return here if interrupt is shared and is disabled. */
  2812. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2813. return IRQ_HANDLED;
  2814. if (napi_schedule_prep(&bnapi->napi)) {
  2815. bnapi->last_status_idx = sblk->status_idx;
  2816. __napi_schedule(&bnapi->napi);
  2817. }
  2818. return IRQ_HANDLED;
  2819. }
  2820. static inline int
  2821. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2822. {
  2823. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2824. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2825. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2826. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2827. return 1;
  2828. return 0;
  2829. }
  2830. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2831. STATUS_ATTN_BITS_TIMER_ABORT)
  2832. static inline int
  2833. bnx2_has_work(struct bnx2_napi *bnapi)
  2834. {
  2835. struct status_block *sblk = bnapi->status_blk.msi;
  2836. if (bnx2_has_fast_work(bnapi))
  2837. return 1;
  2838. #ifdef BCM_CNIC
  2839. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2840. return 1;
  2841. #endif
  2842. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2843. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2844. return 1;
  2845. return 0;
  2846. }
  2847. static void
  2848. bnx2_chk_missed_msi(struct bnx2 *bp)
  2849. {
  2850. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2851. u32 msi_ctrl;
  2852. if (bnx2_has_work(bnapi)) {
  2853. msi_ctrl = BNX2_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2854. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2855. return;
  2856. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2857. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2858. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2859. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2860. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2861. }
  2862. }
  2863. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2864. }
  2865. #ifdef BCM_CNIC
  2866. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2867. {
  2868. struct cnic_ops *c_ops;
  2869. if (!bnapi->cnic_present)
  2870. return;
  2871. rcu_read_lock();
  2872. c_ops = rcu_dereference(bp->cnic_ops);
  2873. if (c_ops)
  2874. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2875. bnapi->status_blk.msi);
  2876. rcu_read_unlock();
  2877. }
  2878. #endif
  2879. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2880. {
  2881. struct status_block *sblk = bnapi->status_blk.msi;
  2882. u32 status_attn_bits = sblk->status_attn_bits;
  2883. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2884. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2885. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2886. bnx2_phy_int(bp, bnapi);
  2887. /* This is needed to take care of transient status
  2888. * during link changes.
  2889. */
  2890. BNX2_WR(bp, BNX2_HC_COMMAND,
  2891. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2892. BNX2_RD(bp, BNX2_HC_COMMAND);
  2893. }
  2894. }
  2895. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2896. int work_done, int budget)
  2897. {
  2898. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2899. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2900. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2901. bnx2_tx_int(bp, bnapi, 0);
  2902. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2903. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2904. return work_done;
  2905. }
  2906. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2907. {
  2908. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2909. struct bnx2 *bp = bnapi->bp;
  2910. int work_done = 0;
  2911. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2912. while (1) {
  2913. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2914. if (unlikely(work_done >= budget))
  2915. break;
  2916. bnapi->last_status_idx = sblk->status_idx;
  2917. /* status idx must be read before checking for more work. */
  2918. rmb();
  2919. if (likely(!bnx2_has_fast_work(bnapi))) {
  2920. napi_complete_done(napi, work_done);
  2921. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2922. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2923. bnapi->last_status_idx);
  2924. break;
  2925. }
  2926. }
  2927. return work_done;
  2928. }
  2929. static int bnx2_poll(struct napi_struct *napi, int budget)
  2930. {
  2931. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2932. struct bnx2 *bp = bnapi->bp;
  2933. int work_done = 0;
  2934. struct status_block *sblk = bnapi->status_blk.msi;
  2935. while (1) {
  2936. bnx2_poll_link(bp, bnapi);
  2937. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2938. #ifdef BCM_CNIC
  2939. bnx2_poll_cnic(bp, bnapi);
  2940. #endif
  2941. /* bnapi->last_status_idx is used below to tell the hw how
  2942. * much work has been processed, so we must read it before
  2943. * checking for more work.
  2944. */
  2945. bnapi->last_status_idx = sblk->status_idx;
  2946. if (unlikely(work_done >= budget))
  2947. break;
  2948. rmb();
  2949. if (likely(!bnx2_has_work(bnapi))) {
  2950. napi_complete_done(napi, work_done);
  2951. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2952. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2953. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2954. bnapi->last_status_idx);
  2955. break;
  2956. }
  2957. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2958. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2959. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2960. bnapi->last_status_idx);
  2961. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2962. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2963. bnapi->last_status_idx);
  2964. break;
  2965. }
  2966. }
  2967. return work_done;
  2968. }
  2969. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2970. * from set_multicast.
  2971. */
  2972. static void
  2973. bnx2_set_rx_mode(struct net_device *dev)
  2974. {
  2975. struct bnx2 *bp = netdev_priv(dev);
  2976. u32 rx_mode, sort_mode;
  2977. struct netdev_hw_addr *ha;
  2978. int i;
  2979. if (!netif_running(dev))
  2980. return;
  2981. spin_lock_bh(&bp->phy_lock);
  2982. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2983. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2984. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2985. if (!(dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  2986. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2987. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2988. if (dev->flags & IFF_PROMISC) {
  2989. /* Promiscuous mode. */
  2990. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2991. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2992. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2993. }
  2994. else if (dev->flags & IFF_ALLMULTI) {
  2995. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2996. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2997. 0xffffffff);
  2998. }
  2999. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  3000. }
  3001. else {
  3002. /* Accept one or more multicast(s). */
  3003. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  3004. u32 regidx;
  3005. u32 bit;
  3006. u32 crc;
  3007. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  3008. netdev_for_each_mc_addr(ha, dev) {
  3009. crc = ether_crc_le(ETH_ALEN, ha->addr);
  3010. bit = crc & 0xff;
  3011. regidx = (bit & 0xe0) >> 5;
  3012. bit &= 0x1f;
  3013. mc_filter[regidx] |= (1 << bit);
  3014. }
  3015. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3016. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3017. mc_filter[i]);
  3018. }
  3019. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  3020. }
  3021. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  3022. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  3023. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  3024. BNX2_RPM_SORT_USER0_PROM_VLAN;
  3025. } else if (!(dev->flags & IFF_PROMISC)) {
  3026. /* Add all entries into to the match filter list */
  3027. i = 0;
  3028. netdev_for_each_uc_addr(ha, dev) {
  3029. bnx2_set_mac_addr(bp, ha->addr,
  3030. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3031. sort_mode |= (1 <<
  3032. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3033. i++;
  3034. }
  3035. }
  3036. if (rx_mode != bp->rx_mode) {
  3037. bp->rx_mode = rx_mode;
  3038. BNX2_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3039. }
  3040. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3041. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3042. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3043. spin_unlock_bh(&bp->phy_lock);
  3044. }
  3045. static int
  3046. check_fw_section(const struct firmware *fw,
  3047. const struct bnx2_fw_file_section *section,
  3048. u32 alignment, bool non_empty)
  3049. {
  3050. u32 offset = be32_to_cpu(section->offset);
  3051. u32 len = be32_to_cpu(section->len);
  3052. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3053. return -EINVAL;
  3054. if ((non_empty && len == 0) || len > fw->size - offset ||
  3055. len & (alignment - 1))
  3056. return -EINVAL;
  3057. return 0;
  3058. }
  3059. static int
  3060. check_mips_fw_entry(const struct firmware *fw,
  3061. const struct bnx2_mips_fw_file_entry *entry)
  3062. {
  3063. if (check_fw_section(fw, &entry->text, 4, true) ||
  3064. check_fw_section(fw, &entry->data, 4, false) ||
  3065. check_fw_section(fw, &entry->rodata, 4, false))
  3066. return -EINVAL;
  3067. return 0;
  3068. }
  3069. static void bnx2_release_firmware(struct bnx2 *bp)
  3070. {
  3071. if (bp->rv2p_firmware) {
  3072. release_firmware(bp->mips_firmware);
  3073. release_firmware(bp->rv2p_firmware);
  3074. bp->rv2p_firmware = NULL;
  3075. }
  3076. }
  3077. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3078. {
  3079. const char *mips_fw_file, *rv2p_fw_file;
  3080. const struct bnx2_mips_fw_file *mips_fw;
  3081. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3082. int rc;
  3083. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3084. mips_fw_file = FW_MIPS_FILE_09;
  3085. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A0) ||
  3086. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A1))
  3087. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3088. else
  3089. rv2p_fw_file = FW_RV2P_FILE_09;
  3090. } else {
  3091. mips_fw_file = FW_MIPS_FILE_06;
  3092. rv2p_fw_file = FW_RV2P_FILE_06;
  3093. }
  3094. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3095. if (rc) {
  3096. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3097. goto out;
  3098. }
  3099. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3100. if (rc) {
  3101. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3102. goto err_release_mips_firmware;
  3103. }
  3104. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3105. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3106. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3107. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3108. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3109. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3110. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3111. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3112. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3113. rc = -EINVAL;
  3114. goto err_release_firmware;
  3115. }
  3116. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3117. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3118. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3119. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3120. rc = -EINVAL;
  3121. goto err_release_firmware;
  3122. }
  3123. out:
  3124. return rc;
  3125. err_release_firmware:
  3126. release_firmware(bp->rv2p_firmware);
  3127. bp->rv2p_firmware = NULL;
  3128. err_release_mips_firmware:
  3129. release_firmware(bp->mips_firmware);
  3130. goto out;
  3131. }
  3132. static int bnx2_request_firmware(struct bnx2 *bp)
  3133. {
  3134. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3135. }
  3136. static u32
  3137. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3138. {
  3139. switch (idx) {
  3140. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3141. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3142. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3143. break;
  3144. }
  3145. return rv2p_code;
  3146. }
  3147. static int
  3148. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3149. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3150. {
  3151. u32 rv2p_code_len, file_offset;
  3152. __be32 *rv2p_code;
  3153. int i;
  3154. u32 val, cmd, addr;
  3155. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3156. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3157. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3158. if (rv2p_proc == RV2P_PROC1) {
  3159. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3160. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3161. } else {
  3162. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3163. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3164. }
  3165. for (i = 0; i < rv2p_code_len; i += 8) {
  3166. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3167. rv2p_code++;
  3168. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3169. rv2p_code++;
  3170. val = (i / 8) | cmd;
  3171. BNX2_WR(bp, addr, val);
  3172. }
  3173. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3174. for (i = 0; i < 8; i++) {
  3175. u32 loc, code;
  3176. loc = be32_to_cpu(fw_entry->fixup[i]);
  3177. if (loc && ((loc * 4) < rv2p_code_len)) {
  3178. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3179. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3180. code = be32_to_cpu(*(rv2p_code + loc));
  3181. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3182. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3183. val = (loc / 2) | cmd;
  3184. BNX2_WR(bp, addr, val);
  3185. }
  3186. }
  3187. /* Reset the processor, un-stall is done later. */
  3188. if (rv2p_proc == RV2P_PROC1) {
  3189. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3190. }
  3191. else {
  3192. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3193. }
  3194. return 0;
  3195. }
  3196. static int
  3197. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3198. const struct bnx2_mips_fw_file_entry *fw_entry)
  3199. {
  3200. u32 addr, len, file_offset;
  3201. __be32 *data;
  3202. u32 offset;
  3203. u32 val;
  3204. /* Halt the CPU. */
  3205. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3206. val |= cpu_reg->mode_value_halt;
  3207. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3208. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3209. /* Load the Text area. */
  3210. addr = be32_to_cpu(fw_entry->text.addr);
  3211. len = be32_to_cpu(fw_entry->text.len);
  3212. file_offset = be32_to_cpu(fw_entry->text.offset);
  3213. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3214. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3215. if (len) {
  3216. int j;
  3217. for (j = 0; j < (len / 4); j++, offset += 4)
  3218. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3219. }
  3220. /* Load the Data area. */
  3221. addr = be32_to_cpu(fw_entry->data.addr);
  3222. len = be32_to_cpu(fw_entry->data.len);
  3223. file_offset = be32_to_cpu(fw_entry->data.offset);
  3224. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3225. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3226. if (len) {
  3227. int j;
  3228. for (j = 0; j < (len / 4); j++, offset += 4)
  3229. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3230. }
  3231. /* Load the Read-Only area. */
  3232. addr = be32_to_cpu(fw_entry->rodata.addr);
  3233. len = be32_to_cpu(fw_entry->rodata.len);
  3234. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3235. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3236. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3237. if (len) {
  3238. int j;
  3239. for (j = 0; j < (len / 4); j++, offset += 4)
  3240. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3241. }
  3242. /* Clear the pre-fetch instruction. */
  3243. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3244. val = be32_to_cpu(fw_entry->start_addr);
  3245. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3246. /* Start the CPU. */
  3247. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3248. val &= ~cpu_reg->mode_value_halt;
  3249. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3250. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3251. return 0;
  3252. }
  3253. static int
  3254. bnx2_init_cpus(struct bnx2 *bp)
  3255. {
  3256. const struct bnx2_mips_fw_file *mips_fw =
  3257. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3258. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3259. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3260. int rc;
  3261. /* Initialize the RV2P processor. */
  3262. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3263. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3264. /* Initialize the RX Processor. */
  3265. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3266. if (rc)
  3267. goto init_cpu_err;
  3268. /* Initialize the TX Processor. */
  3269. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3270. if (rc)
  3271. goto init_cpu_err;
  3272. /* Initialize the TX Patch-up Processor. */
  3273. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3274. if (rc)
  3275. goto init_cpu_err;
  3276. /* Initialize the Completion Processor. */
  3277. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3278. if (rc)
  3279. goto init_cpu_err;
  3280. /* Initialize the Command Processor. */
  3281. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3282. init_cpu_err:
  3283. return rc;
  3284. }
  3285. static void
  3286. bnx2_setup_wol(struct bnx2 *bp)
  3287. {
  3288. int i;
  3289. u32 val, wol_msg;
  3290. if (bp->wol) {
  3291. u32 advertising;
  3292. u8 autoneg;
  3293. autoneg = bp->autoneg;
  3294. advertising = bp->advertising;
  3295. if (bp->phy_port == PORT_TP) {
  3296. bp->autoneg = AUTONEG_SPEED;
  3297. bp->advertising = ADVERTISED_10baseT_Half |
  3298. ADVERTISED_10baseT_Full |
  3299. ADVERTISED_100baseT_Half |
  3300. ADVERTISED_100baseT_Full |
  3301. ADVERTISED_Autoneg;
  3302. }
  3303. spin_lock_bh(&bp->phy_lock);
  3304. bnx2_setup_phy(bp, bp->phy_port);
  3305. spin_unlock_bh(&bp->phy_lock);
  3306. bp->autoneg = autoneg;
  3307. bp->advertising = advertising;
  3308. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3309. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3310. /* Enable port mode. */
  3311. val &= ~BNX2_EMAC_MODE_PORT;
  3312. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3313. BNX2_EMAC_MODE_ACPI_RCVD |
  3314. BNX2_EMAC_MODE_MPKT;
  3315. if (bp->phy_port == PORT_TP) {
  3316. val |= BNX2_EMAC_MODE_PORT_MII;
  3317. } else {
  3318. val |= BNX2_EMAC_MODE_PORT_GMII;
  3319. if (bp->line_speed == SPEED_2500)
  3320. val |= BNX2_EMAC_MODE_25G_MODE;
  3321. }
  3322. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3323. /* receive all multicast */
  3324. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3325. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3326. 0xffffffff);
  3327. }
  3328. BNX2_WR(bp, BNX2_EMAC_RX_MODE, BNX2_EMAC_RX_MODE_SORT_MODE);
  3329. val = 1 | BNX2_RPM_SORT_USER0_BC_EN | BNX2_RPM_SORT_USER0_MC_EN;
  3330. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3331. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val);
  3332. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val | BNX2_RPM_SORT_USER0_ENA);
  3333. /* Need to enable EMAC and RPM for WOL. */
  3334. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3335. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3336. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3337. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3338. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3339. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3340. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3341. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3342. } else {
  3343. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3344. }
  3345. if (!(bp->flags & BNX2_FLAG_NO_WOL)) {
  3346. u32 val;
  3347. wol_msg |= BNX2_DRV_MSG_DATA_WAIT3;
  3348. if (bp->fw_last_msg || BNX2_CHIP(bp) != BNX2_CHIP_5709) {
  3349. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3350. return;
  3351. }
  3352. /* Tell firmware not to power down the PHY yet, otherwise
  3353. * the chip will take a long time to respond to MMIO reads.
  3354. */
  3355. val = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  3356. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE,
  3357. val | BNX2_PORT_FEATURE_ASF_ENABLED);
  3358. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3359. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE, val);
  3360. }
  3361. }
  3362. static int
  3363. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3364. {
  3365. switch (state) {
  3366. case PCI_D0: {
  3367. u32 val;
  3368. pci_enable_wake(bp->pdev, PCI_D0, false);
  3369. pci_set_power_state(bp->pdev, PCI_D0);
  3370. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3371. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3372. val &= ~BNX2_EMAC_MODE_MPKT;
  3373. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3374. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3375. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3376. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3377. break;
  3378. }
  3379. case PCI_D3hot: {
  3380. bnx2_setup_wol(bp);
  3381. pci_wake_from_d3(bp->pdev, bp->wol);
  3382. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3383. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)) {
  3384. if (bp->wol)
  3385. pci_set_power_state(bp->pdev, PCI_D3hot);
  3386. break;
  3387. }
  3388. if (!bp->fw_last_msg && BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3389. u32 val;
  3390. /* Tell firmware not to power down the PHY yet,
  3391. * otherwise the other port may not respond to
  3392. * MMIO reads.
  3393. */
  3394. val = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  3395. val &= ~BNX2_CONDITION_PM_STATE_MASK;
  3396. val |= BNX2_CONDITION_PM_STATE_UNPREP;
  3397. bnx2_shmem_wr(bp, BNX2_BC_STATE_CONDITION, val);
  3398. }
  3399. pci_set_power_state(bp->pdev, PCI_D3hot);
  3400. /* No more memory access after this point until
  3401. * device is brought back to D0.
  3402. */
  3403. break;
  3404. }
  3405. default:
  3406. return -EINVAL;
  3407. }
  3408. return 0;
  3409. }
  3410. static int
  3411. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3412. {
  3413. u32 val;
  3414. int j;
  3415. /* Request access to the flash interface. */
  3416. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3417. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3418. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3419. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3420. break;
  3421. udelay(5);
  3422. }
  3423. if (j >= NVRAM_TIMEOUT_COUNT)
  3424. return -EBUSY;
  3425. return 0;
  3426. }
  3427. static int
  3428. bnx2_release_nvram_lock(struct bnx2 *bp)
  3429. {
  3430. int j;
  3431. u32 val;
  3432. /* Relinquish nvram interface. */
  3433. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3434. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3435. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3436. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3437. break;
  3438. udelay(5);
  3439. }
  3440. if (j >= NVRAM_TIMEOUT_COUNT)
  3441. return -EBUSY;
  3442. return 0;
  3443. }
  3444. static int
  3445. bnx2_enable_nvram_write(struct bnx2 *bp)
  3446. {
  3447. u32 val;
  3448. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3449. BNX2_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3450. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3451. int j;
  3452. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3453. BNX2_WR(bp, BNX2_NVM_COMMAND,
  3454. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3455. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3456. udelay(5);
  3457. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3458. if (val & BNX2_NVM_COMMAND_DONE)
  3459. break;
  3460. }
  3461. if (j >= NVRAM_TIMEOUT_COUNT)
  3462. return -EBUSY;
  3463. }
  3464. return 0;
  3465. }
  3466. static void
  3467. bnx2_disable_nvram_write(struct bnx2 *bp)
  3468. {
  3469. u32 val;
  3470. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3471. BNX2_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3472. }
  3473. static void
  3474. bnx2_enable_nvram_access(struct bnx2 *bp)
  3475. {
  3476. u32 val;
  3477. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3478. /* Enable both bits, even on read. */
  3479. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3480. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3481. }
  3482. static void
  3483. bnx2_disable_nvram_access(struct bnx2 *bp)
  3484. {
  3485. u32 val;
  3486. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3487. /* Disable both bits, even after read. */
  3488. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3489. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3490. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3491. }
  3492. static int
  3493. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3494. {
  3495. u32 cmd;
  3496. int j;
  3497. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3498. /* Buffered flash, no erase needed */
  3499. return 0;
  3500. /* Build an erase command */
  3501. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3502. BNX2_NVM_COMMAND_DOIT;
  3503. /* Need to clear DONE bit separately. */
  3504. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3505. /* Address of the NVRAM to read from. */
  3506. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3507. /* Issue an erase command. */
  3508. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3509. /* Wait for completion. */
  3510. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3511. u32 val;
  3512. udelay(5);
  3513. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3514. if (val & BNX2_NVM_COMMAND_DONE)
  3515. break;
  3516. }
  3517. if (j >= NVRAM_TIMEOUT_COUNT)
  3518. return -EBUSY;
  3519. return 0;
  3520. }
  3521. static int
  3522. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3523. {
  3524. u32 cmd;
  3525. int j;
  3526. /* Build the command word. */
  3527. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3528. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3529. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3530. offset = ((offset / bp->flash_info->page_size) <<
  3531. bp->flash_info->page_bits) +
  3532. (offset % bp->flash_info->page_size);
  3533. }
  3534. /* Need to clear DONE bit separately. */
  3535. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3536. /* Address of the NVRAM to read from. */
  3537. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3538. /* Issue a read command. */
  3539. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3540. /* Wait for completion. */
  3541. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3542. u32 val;
  3543. udelay(5);
  3544. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3545. if (val & BNX2_NVM_COMMAND_DONE) {
  3546. __be32 v = cpu_to_be32(BNX2_RD(bp, BNX2_NVM_READ));
  3547. memcpy(ret_val, &v, 4);
  3548. break;
  3549. }
  3550. }
  3551. if (j >= NVRAM_TIMEOUT_COUNT)
  3552. return -EBUSY;
  3553. return 0;
  3554. }
  3555. static int
  3556. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3557. {
  3558. u32 cmd;
  3559. __be32 val32;
  3560. int j;
  3561. /* Build the command word. */
  3562. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3563. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3564. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3565. offset = ((offset / bp->flash_info->page_size) <<
  3566. bp->flash_info->page_bits) +
  3567. (offset % bp->flash_info->page_size);
  3568. }
  3569. /* Need to clear DONE bit separately. */
  3570. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3571. memcpy(&val32, val, 4);
  3572. /* Write the data. */
  3573. BNX2_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3574. /* Address of the NVRAM to write to. */
  3575. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3576. /* Issue the write command. */
  3577. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3578. /* Wait for completion. */
  3579. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3580. udelay(5);
  3581. if (BNX2_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3582. break;
  3583. }
  3584. if (j >= NVRAM_TIMEOUT_COUNT)
  3585. return -EBUSY;
  3586. return 0;
  3587. }
  3588. static int
  3589. bnx2_init_nvram(struct bnx2 *bp)
  3590. {
  3591. u32 val;
  3592. int j, entry_count, rc = 0;
  3593. const struct flash_spec *flash;
  3594. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3595. bp->flash_info = &flash_5709;
  3596. goto get_flash_size;
  3597. }
  3598. /* Determine the selected interface. */
  3599. val = BNX2_RD(bp, BNX2_NVM_CFG1);
  3600. entry_count = ARRAY_SIZE(flash_table);
  3601. if (val & 0x40000000) {
  3602. /* Flash interface has been reconfigured */
  3603. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3604. j++, flash++) {
  3605. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3606. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3607. bp->flash_info = flash;
  3608. break;
  3609. }
  3610. }
  3611. }
  3612. else {
  3613. u32 mask;
  3614. /* Not yet been reconfigured */
  3615. if (val & (1 << 23))
  3616. mask = FLASH_BACKUP_STRAP_MASK;
  3617. else
  3618. mask = FLASH_STRAP_MASK;
  3619. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3620. j++, flash++) {
  3621. if ((val & mask) == (flash->strapping & mask)) {
  3622. bp->flash_info = flash;
  3623. /* Request access to the flash interface. */
  3624. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3625. return rc;
  3626. /* Enable access to flash interface */
  3627. bnx2_enable_nvram_access(bp);
  3628. /* Reconfigure the flash interface */
  3629. BNX2_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3630. BNX2_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3631. BNX2_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3632. BNX2_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3633. /* Disable access to flash interface */
  3634. bnx2_disable_nvram_access(bp);
  3635. bnx2_release_nvram_lock(bp);
  3636. break;
  3637. }
  3638. }
  3639. } /* if (val & 0x40000000) */
  3640. if (j == entry_count) {
  3641. bp->flash_info = NULL;
  3642. pr_alert("Unknown flash/EEPROM type\n");
  3643. return -ENODEV;
  3644. }
  3645. get_flash_size:
  3646. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3647. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3648. if (val)
  3649. bp->flash_size = val;
  3650. else
  3651. bp->flash_size = bp->flash_info->total_size;
  3652. return rc;
  3653. }
  3654. static int
  3655. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3656. int buf_size)
  3657. {
  3658. int rc = 0;
  3659. u32 cmd_flags, offset32, len32, extra;
  3660. if (buf_size == 0)
  3661. return 0;
  3662. /* Request access to the flash interface. */
  3663. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3664. return rc;
  3665. /* Enable access to flash interface */
  3666. bnx2_enable_nvram_access(bp);
  3667. len32 = buf_size;
  3668. offset32 = offset;
  3669. extra = 0;
  3670. cmd_flags = 0;
  3671. if (offset32 & 3) {
  3672. u8 buf[4];
  3673. u32 pre_len;
  3674. offset32 &= ~3;
  3675. pre_len = 4 - (offset & 3);
  3676. if (pre_len >= len32) {
  3677. pre_len = len32;
  3678. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3679. BNX2_NVM_COMMAND_LAST;
  3680. }
  3681. else {
  3682. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3683. }
  3684. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3685. if (rc)
  3686. return rc;
  3687. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3688. offset32 += 4;
  3689. ret_buf += pre_len;
  3690. len32 -= pre_len;
  3691. }
  3692. if (len32 & 3) {
  3693. extra = 4 - (len32 & 3);
  3694. len32 = (len32 + 4) & ~3;
  3695. }
  3696. if (len32 == 4) {
  3697. u8 buf[4];
  3698. if (cmd_flags)
  3699. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3700. else
  3701. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3702. BNX2_NVM_COMMAND_LAST;
  3703. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3704. memcpy(ret_buf, buf, 4 - extra);
  3705. }
  3706. else if (len32 > 0) {
  3707. u8 buf[4];
  3708. /* Read the first word. */
  3709. if (cmd_flags)
  3710. cmd_flags = 0;
  3711. else
  3712. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3713. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3714. /* Advance to the next dword. */
  3715. offset32 += 4;
  3716. ret_buf += 4;
  3717. len32 -= 4;
  3718. while (len32 > 4 && rc == 0) {
  3719. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3720. /* Advance to the next dword. */
  3721. offset32 += 4;
  3722. ret_buf += 4;
  3723. len32 -= 4;
  3724. }
  3725. if (rc)
  3726. return rc;
  3727. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3728. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3729. memcpy(ret_buf, buf, 4 - extra);
  3730. }
  3731. /* Disable access to flash interface */
  3732. bnx2_disable_nvram_access(bp);
  3733. bnx2_release_nvram_lock(bp);
  3734. return rc;
  3735. }
  3736. static int
  3737. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3738. int buf_size)
  3739. {
  3740. u32 written, offset32, len32;
  3741. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3742. int rc = 0;
  3743. int align_start, align_end;
  3744. buf = data_buf;
  3745. offset32 = offset;
  3746. len32 = buf_size;
  3747. align_start = align_end = 0;
  3748. if ((align_start = (offset32 & 3))) {
  3749. offset32 &= ~3;
  3750. len32 += align_start;
  3751. if (len32 < 4)
  3752. len32 = 4;
  3753. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3754. return rc;
  3755. }
  3756. if (len32 & 3) {
  3757. align_end = 4 - (len32 & 3);
  3758. len32 += align_end;
  3759. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3760. return rc;
  3761. }
  3762. if (align_start || align_end) {
  3763. align_buf = kmalloc(len32, GFP_KERNEL);
  3764. if (align_buf == NULL)
  3765. return -ENOMEM;
  3766. if (align_start) {
  3767. memcpy(align_buf, start, 4);
  3768. }
  3769. if (align_end) {
  3770. memcpy(align_buf + len32 - 4, end, 4);
  3771. }
  3772. memcpy(align_buf + align_start, data_buf, buf_size);
  3773. buf = align_buf;
  3774. }
  3775. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3776. flash_buffer = kmalloc(264, GFP_KERNEL);
  3777. if (flash_buffer == NULL) {
  3778. rc = -ENOMEM;
  3779. goto nvram_write_end;
  3780. }
  3781. }
  3782. written = 0;
  3783. while ((written < len32) && (rc == 0)) {
  3784. u32 page_start, page_end, data_start, data_end;
  3785. u32 addr, cmd_flags;
  3786. int i;
  3787. /* Find the page_start addr */
  3788. page_start = offset32 + written;
  3789. page_start -= (page_start % bp->flash_info->page_size);
  3790. /* Find the page_end addr */
  3791. page_end = page_start + bp->flash_info->page_size;
  3792. /* Find the data_start addr */
  3793. data_start = (written == 0) ? offset32 : page_start;
  3794. /* Find the data_end addr */
  3795. data_end = (page_end > offset32 + len32) ?
  3796. (offset32 + len32) : page_end;
  3797. /* Request access to the flash interface. */
  3798. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3799. goto nvram_write_end;
  3800. /* Enable access to flash interface */
  3801. bnx2_enable_nvram_access(bp);
  3802. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3803. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3804. int j;
  3805. /* Read the whole page into the buffer
  3806. * (non-buffer flash only) */
  3807. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3808. if (j == (bp->flash_info->page_size - 4)) {
  3809. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3810. }
  3811. rc = bnx2_nvram_read_dword(bp,
  3812. page_start + j,
  3813. &flash_buffer[j],
  3814. cmd_flags);
  3815. if (rc)
  3816. goto nvram_write_end;
  3817. cmd_flags = 0;
  3818. }
  3819. }
  3820. /* Enable writes to flash interface (unlock write-protect) */
  3821. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3822. goto nvram_write_end;
  3823. /* Loop to write back the buffer data from page_start to
  3824. * data_start */
  3825. i = 0;
  3826. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3827. /* Erase the page */
  3828. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3829. goto nvram_write_end;
  3830. /* Re-enable the write again for the actual write */
  3831. bnx2_enable_nvram_write(bp);
  3832. for (addr = page_start; addr < data_start;
  3833. addr += 4, i += 4) {
  3834. rc = bnx2_nvram_write_dword(bp, addr,
  3835. &flash_buffer[i], cmd_flags);
  3836. if (rc != 0)
  3837. goto nvram_write_end;
  3838. cmd_flags = 0;
  3839. }
  3840. }
  3841. /* Loop to write the new data from data_start to data_end */
  3842. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3843. if ((addr == page_end - 4) ||
  3844. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3845. (addr == data_end - 4))) {
  3846. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3847. }
  3848. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3849. cmd_flags);
  3850. if (rc != 0)
  3851. goto nvram_write_end;
  3852. cmd_flags = 0;
  3853. buf += 4;
  3854. }
  3855. /* Loop to write back the buffer data from data_end
  3856. * to page_end */
  3857. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3858. for (addr = data_end; addr < page_end;
  3859. addr += 4, i += 4) {
  3860. if (addr == page_end-4) {
  3861. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3862. }
  3863. rc = bnx2_nvram_write_dword(bp, addr,
  3864. &flash_buffer[i], cmd_flags);
  3865. if (rc != 0)
  3866. goto nvram_write_end;
  3867. cmd_flags = 0;
  3868. }
  3869. }
  3870. /* Disable writes to flash interface (lock write-protect) */
  3871. bnx2_disable_nvram_write(bp);
  3872. /* Disable access to flash interface */
  3873. bnx2_disable_nvram_access(bp);
  3874. bnx2_release_nvram_lock(bp);
  3875. /* Increment written */
  3876. written += data_end - data_start;
  3877. }
  3878. nvram_write_end:
  3879. kfree(flash_buffer);
  3880. kfree(align_buf);
  3881. return rc;
  3882. }
  3883. static void
  3884. bnx2_init_fw_cap(struct bnx2 *bp)
  3885. {
  3886. u32 val, sig = 0;
  3887. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3888. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3889. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3890. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3891. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3892. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3893. return;
  3894. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3895. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3896. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3897. }
  3898. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3899. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3900. u32 link;
  3901. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3902. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3903. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3904. bp->phy_port = PORT_FIBRE;
  3905. else
  3906. bp->phy_port = PORT_TP;
  3907. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3908. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3909. }
  3910. if (netif_running(bp->dev) && sig)
  3911. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3912. }
  3913. static void
  3914. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3915. {
  3916. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3917. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3918. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3919. }
  3920. static void
  3921. bnx2_wait_dma_complete(struct bnx2 *bp)
  3922. {
  3923. u32 val;
  3924. int i;
  3925. /*
  3926. * Wait for the current PCI transaction to complete before
  3927. * issuing a reset.
  3928. */
  3929. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  3930. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  3931. BNX2_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3932. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3933. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3934. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3935. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3936. val = BNX2_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3937. udelay(5);
  3938. } else { /* 5709 */
  3939. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3940. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3941. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3942. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3943. for (i = 0; i < 100; i++) {
  3944. msleep(1);
  3945. val = BNX2_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3946. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3947. break;
  3948. }
  3949. }
  3950. return;
  3951. }
  3952. static int
  3953. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3954. {
  3955. u32 val;
  3956. int i, rc = 0;
  3957. u8 old_port;
  3958. /* Wait for the current PCI transaction to complete before
  3959. * issuing a reset. */
  3960. bnx2_wait_dma_complete(bp);
  3961. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3962. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3963. /* Deposit a driver reset signature so the firmware knows that
  3964. * this is a soft reset. */
  3965. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3966. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3967. /* Do a dummy read to force the chip to complete all current transaction
  3968. * before we issue a reset. */
  3969. val = BNX2_RD(bp, BNX2_MISC_ID);
  3970. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3971. BNX2_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3972. BNX2_RD(bp, BNX2_MISC_COMMAND);
  3973. udelay(5);
  3974. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3975. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3976. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3977. } else {
  3978. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3979. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3980. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3981. /* Chip reset. */
  3982. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3983. /* Reading back any register after chip reset will hang the
  3984. * bus on 5706 A0 and A1. The msleep below provides plenty
  3985. * of margin for write posting.
  3986. */
  3987. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3988. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1))
  3989. msleep(20);
  3990. /* Reset takes approximate 30 usec */
  3991. for (i = 0; i < 10; i++) {
  3992. val = BNX2_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3993. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3994. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3995. break;
  3996. udelay(10);
  3997. }
  3998. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3999. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  4000. pr_err("Chip reset did not complete\n");
  4001. return -EBUSY;
  4002. }
  4003. }
  4004. /* Make sure byte swapping is properly configured. */
  4005. val = BNX2_RD(bp, BNX2_PCI_SWAP_DIAG0);
  4006. if (val != 0x01020304) {
  4007. pr_err("Chip not in correct endian mode\n");
  4008. return -ENODEV;
  4009. }
  4010. /* Wait for the firmware to finish its initialization. */
  4011. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  4012. if (rc)
  4013. return rc;
  4014. spin_lock_bh(&bp->phy_lock);
  4015. old_port = bp->phy_port;
  4016. bnx2_init_fw_cap(bp);
  4017. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  4018. old_port != bp->phy_port)
  4019. bnx2_set_default_remote_link(bp);
  4020. spin_unlock_bh(&bp->phy_lock);
  4021. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4022. /* Adjust the voltage regular to two steps lower. The default
  4023. * of this register is 0x0000000e. */
  4024. BNX2_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  4025. /* Remove bad rbuf memory from the free pool. */
  4026. rc = bnx2_alloc_bad_rbuf(bp);
  4027. }
  4028. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4029. bnx2_setup_msix_tbl(bp);
  4030. /* Prevent MSIX table reads and write from timing out */
  4031. BNX2_WR(bp, BNX2_MISC_ECO_HW_CTL,
  4032. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  4033. }
  4034. return rc;
  4035. }
  4036. static int
  4037. bnx2_init_chip(struct bnx2 *bp)
  4038. {
  4039. u32 val, mtu;
  4040. int rc, i;
  4041. /* Make sure the interrupt is not active. */
  4042. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  4043. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  4044. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  4045. #ifdef __BIG_ENDIAN
  4046. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  4047. #endif
  4048. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  4049. DMA_READ_CHANS << 12 |
  4050. DMA_WRITE_CHANS << 16;
  4051. val |= (0x2 << 20) | (1 << 11);
  4052. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  4053. val |= (1 << 23);
  4054. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) &&
  4055. (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0) &&
  4056. !(bp->flags & BNX2_FLAG_PCIX))
  4057. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4058. BNX2_WR(bp, BNX2_DMA_CONFIG, val);
  4059. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4060. val = BNX2_RD(bp, BNX2_TDMA_CONFIG);
  4061. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4062. BNX2_WR(bp, BNX2_TDMA_CONFIG, val);
  4063. }
  4064. if (bp->flags & BNX2_FLAG_PCIX) {
  4065. u16 val16;
  4066. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4067. &val16);
  4068. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4069. val16 & ~PCI_X_CMD_ERO);
  4070. }
  4071. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4072. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4073. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4074. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4075. /* Initialize context mapping and zero out the quick contexts. The
  4076. * context block must have already been enabled. */
  4077. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4078. rc = bnx2_init_5709_context(bp);
  4079. if (rc)
  4080. return rc;
  4081. } else
  4082. bnx2_init_context(bp);
  4083. if ((rc = bnx2_init_cpus(bp)) != 0)
  4084. return rc;
  4085. bnx2_init_nvram(bp);
  4086. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4087. val = BNX2_RD(bp, BNX2_MQ_CONFIG);
  4088. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4089. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4090. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4091. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4092. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  4093. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4094. }
  4095. BNX2_WR(bp, BNX2_MQ_CONFIG, val);
  4096. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4097. BNX2_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4098. BNX2_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4099. val = (BNX2_PAGE_BITS - 8) << 24;
  4100. BNX2_WR(bp, BNX2_RV2P_CONFIG, val);
  4101. /* Configure page size. */
  4102. val = BNX2_RD(bp, BNX2_TBDR_CONFIG);
  4103. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4104. val |= (BNX2_PAGE_BITS - 8) << 24 | 0x40;
  4105. BNX2_WR(bp, BNX2_TBDR_CONFIG, val);
  4106. val = bp->mac_addr[0] +
  4107. (bp->mac_addr[1] << 8) +
  4108. (bp->mac_addr[2] << 16) +
  4109. bp->mac_addr[3] +
  4110. (bp->mac_addr[4] << 8) +
  4111. (bp->mac_addr[5] << 16);
  4112. BNX2_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4113. /* Program the MTU. Also include 4 bytes for CRC32. */
  4114. mtu = bp->dev->mtu;
  4115. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4116. if (val > (MAX_ETHERNET_PACKET_SIZE + ETH_HLEN + 4))
  4117. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4118. BNX2_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4119. if (mtu < ETH_DATA_LEN)
  4120. mtu = ETH_DATA_LEN;
  4121. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4122. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4123. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4124. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4125. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4126. bp->bnx2_napi[i].last_status_idx = 0;
  4127. bp->idle_chk_status_idx = 0xffff;
  4128. /* Set up how to generate a link change interrupt. */
  4129. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4130. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4131. (u64) bp->status_blk_mapping & 0xffffffff);
  4132. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4133. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4134. (u64) bp->stats_blk_mapping & 0xffffffff);
  4135. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4136. (u64) bp->stats_blk_mapping >> 32);
  4137. BNX2_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4138. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4139. BNX2_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4140. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4141. BNX2_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4142. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4143. BNX2_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4144. BNX2_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4145. BNX2_WR(bp, BNX2_HC_COM_TICKS,
  4146. (bp->com_ticks_int << 16) | bp->com_ticks);
  4147. BNX2_WR(bp, BNX2_HC_CMD_TICKS,
  4148. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4149. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4150. BNX2_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4151. else
  4152. BNX2_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4153. BNX2_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4154. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)
  4155. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4156. else {
  4157. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4158. BNX2_HC_CONFIG_COLLECT_STATS;
  4159. }
  4160. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4161. BNX2_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4162. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4163. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4164. }
  4165. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4166. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4167. BNX2_WR(bp, BNX2_HC_CONFIG, val);
  4168. if (bp->rx_ticks < 25)
  4169. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4170. else
  4171. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4172. for (i = 1; i < bp->irq_nvecs; i++) {
  4173. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4174. BNX2_HC_SB_CONFIG_1;
  4175. BNX2_WR(bp, base,
  4176. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4177. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4178. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4179. BNX2_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4180. (bp->tx_quick_cons_trip_int << 16) |
  4181. bp->tx_quick_cons_trip);
  4182. BNX2_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4183. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4184. BNX2_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4185. (bp->rx_quick_cons_trip_int << 16) |
  4186. bp->rx_quick_cons_trip);
  4187. BNX2_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4188. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4189. }
  4190. /* Clear internal stats counters. */
  4191. BNX2_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4192. BNX2_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4193. /* Initialize the receive filter. */
  4194. bnx2_set_rx_mode(bp->dev);
  4195. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4196. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4197. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4198. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4199. }
  4200. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4201. 1, 0);
  4202. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4203. BNX2_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4204. udelay(20);
  4205. bp->hc_cmd = BNX2_RD(bp, BNX2_HC_COMMAND);
  4206. return rc;
  4207. }
  4208. static void
  4209. bnx2_clear_ring_states(struct bnx2 *bp)
  4210. {
  4211. struct bnx2_napi *bnapi;
  4212. struct bnx2_tx_ring_info *txr;
  4213. struct bnx2_rx_ring_info *rxr;
  4214. int i;
  4215. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4216. bnapi = &bp->bnx2_napi[i];
  4217. txr = &bnapi->tx_ring;
  4218. rxr = &bnapi->rx_ring;
  4219. txr->tx_cons = 0;
  4220. txr->hw_tx_cons = 0;
  4221. rxr->rx_prod_bseq = 0;
  4222. rxr->rx_prod = 0;
  4223. rxr->rx_cons = 0;
  4224. rxr->rx_pg_prod = 0;
  4225. rxr->rx_pg_cons = 0;
  4226. }
  4227. }
  4228. static void
  4229. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4230. {
  4231. u32 val, offset0, offset1, offset2, offset3;
  4232. u32 cid_addr = GET_CID_ADDR(cid);
  4233. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4234. offset0 = BNX2_L2CTX_TYPE_XI;
  4235. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4236. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4237. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4238. } else {
  4239. offset0 = BNX2_L2CTX_TYPE;
  4240. offset1 = BNX2_L2CTX_CMD_TYPE;
  4241. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4242. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4243. }
  4244. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4245. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4246. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4247. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4248. val = (u64) txr->tx_desc_mapping >> 32;
  4249. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4250. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4251. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4252. }
  4253. static void
  4254. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4255. {
  4256. struct bnx2_tx_bd *txbd;
  4257. u32 cid = TX_CID;
  4258. struct bnx2_napi *bnapi;
  4259. struct bnx2_tx_ring_info *txr;
  4260. bnapi = &bp->bnx2_napi[ring_num];
  4261. txr = &bnapi->tx_ring;
  4262. if (ring_num == 0)
  4263. cid = TX_CID;
  4264. else
  4265. cid = TX_TSS_CID + ring_num - 1;
  4266. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4267. txbd = &txr->tx_desc_ring[BNX2_MAX_TX_DESC_CNT];
  4268. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4269. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4270. txr->tx_prod = 0;
  4271. txr->tx_prod_bseq = 0;
  4272. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4273. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4274. bnx2_init_tx_context(bp, cid, txr);
  4275. }
  4276. static void
  4277. bnx2_init_rxbd_rings(struct bnx2_rx_bd *rx_ring[], dma_addr_t dma[],
  4278. u32 buf_size, int num_rings)
  4279. {
  4280. int i;
  4281. struct bnx2_rx_bd *rxbd;
  4282. for (i = 0; i < num_rings; i++) {
  4283. int j;
  4284. rxbd = &rx_ring[i][0];
  4285. for (j = 0; j < BNX2_MAX_RX_DESC_CNT; j++, rxbd++) {
  4286. rxbd->rx_bd_len = buf_size;
  4287. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4288. }
  4289. if (i == (num_rings - 1))
  4290. j = 0;
  4291. else
  4292. j = i + 1;
  4293. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4294. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4295. }
  4296. }
  4297. static void
  4298. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4299. {
  4300. int i;
  4301. u16 prod, ring_prod;
  4302. u32 cid, rx_cid_addr, val;
  4303. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4304. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4305. if (ring_num == 0)
  4306. cid = RX_CID;
  4307. else
  4308. cid = RX_RSS_CID + ring_num - 1;
  4309. rx_cid_addr = GET_CID_ADDR(cid);
  4310. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4311. bp->rx_buf_use_size, bp->rx_max_ring);
  4312. bnx2_init_rx_context(bp, cid);
  4313. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4314. val = BNX2_RD(bp, BNX2_MQ_MAP_L2_5);
  4315. BNX2_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4316. }
  4317. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4318. if (bp->rx_pg_ring_size) {
  4319. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4320. rxr->rx_pg_desc_mapping,
  4321. PAGE_SIZE, bp->rx_max_pg_ring);
  4322. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4323. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4324. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4325. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4326. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4327. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4328. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4329. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4330. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4331. BNX2_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4332. }
  4333. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4334. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4335. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4336. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4337. ring_prod = prod = rxr->rx_pg_prod;
  4338. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4339. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4340. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4341. ring_num, i, bp->rx_pg_ring_size);
  4342. break;
  4343. }
  4344. prod = BNX2_NEXT_RX_BD(prod);
  4345. ring_prod = BNX2_RX_PG_RING_IDX(prod);
  4346. }
  4347. rxr->rx_pg_prod = prod;
  4348. ring_prod = prod = rxr->rx_prod;
  4349. for (i = 0; i < bp->rx_ring_size; i++) {
  4350. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4351. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4352. ring_num, i, bp->rx_ring_size);
  4353. break;
  4354. }
  4355. prod = BNX2_NEXT_RX_BD(prod);
  4356. ring_prod = BNX2_RX_RING_IDX(prod);
  4357. }
  4358. rxr->rx_prod = prod;
  4359. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4360. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4361. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4362. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4363. BNX2_WR16(bp, rxr->rx_bidx_addr, prod);
  4364. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4365. }
  4366. static void
  4367. bnx2_init_all_rings(struct bnx2 *bp)
  4368. {
  4369. int i;
  4370. u32 val;
  4371. bnx2_clear_ring_states(bp);
  4372. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4373. for (i = 0; i < bp->num_tx_rings; i++)
  4374. bnx2_init_tx_ring(bp, i);
  4375. if (bp->num_tx_rings > 1)
  4376. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4377. (TX_TSS_CID << 7));
  4378. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4379. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4380. for (i = 0; i < bp->num_rx_rings; i++)
  4381. bnx2_init_rx_ring(bp, i);
  4382. if (bp->num_rx_rings > 1) {
  4383. u32 tbl_32 = 0;
  4384. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4385. int shift = (i % 8) << 2;
  4386. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4387. if ((i % 8) == 7) {
  4388. BNX2_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4389. BNX2_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4390. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4391. BNX2_RLUP_RSS_COMMAND_WRITE |
  4392. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4393. tbl_32 = 0;
  4394. }
  4395. }
  4396. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4397. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4398. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4399. }
  4400. }
  4401. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4402. {
  4403. u32 max, num_rings = 1;
  4404. while (ring_size > BNX2_MAX_RX_DESC_CNT) {
  4405. ring_size -= BNX2_MAX_RX_DESC_CNT;
  4406. num_rings++;
  4407. }
  4408. /* round to next power of 2 */
  4409. max = max_size;
  4410. while ((max & num_rings) == 0)
  4411. max >>= 1;
  4412. if (num_rings != max)
  4413. max <<= 1;
  4414. return max;
  4415. }
  4416. static void
  4417. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4418. {
  4419. u32 rx_size, rx_space, jumbo_size;
  4420. /* 8 for CRC and VLAN */
  4421. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4422. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4423. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4424. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4425. bp->rx_pg_ring_size = 0;
  4426. bp->rx_max_pg_ring = 0;
  4427. bp->rx_max_pg_ring_idx = 0;
  4428. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4429. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4430. jumbo_size = size * pages;
  4431. if (jumbo_size > BNX2_MAX_TOTAL_RX_PG_DESC_CNT)
  4432. jumbo_size = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  4433. bp->rx_pg_ring_size = jumbo_size;
  4434. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4435. BNX2_MAX_RX_PG_RINGS);
  4436. bp->rx_max_pg_ring_idx =
  4437. (bp->rx_max_pg_ring * BNX2_RX_DESC_CNT) - 1;
  4438. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4439. bp->rx_copy_thresh = 0;
  4440. }
  4441. bp->rx_buf_use_size = rx_size;
  4442. /* hw alignment + build_skb() overhead*/
  4443. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4444. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4445. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4446. bp->rx_ring_size = size;
  4447. bp->rx_max_ring = bnx2_find_max_ring(size, BNX2_MAX_RX_RINGS);
  4448. bp->rx_max_ring_idx = (bp->rx_max_ring * BNX2_RX_DESC_CNT) - 1;
  4449. }
  4450. static void
  4451. bnx2_free_tx_skbs(struct bnx2 *bp)
  4452. {
  4453. int i;
  4454. for (i = 0; i < bp->num_tx_rings; i++) {
  4455. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4456. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4457. int j;
  4458. if (txr->tx_buf_ring == NULL)
  4459. continue;
  4460. for (j = 0; j < BNX2_TX_DESC_CNT; ) {
  4461. struct bnx2_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4462. struct sk_buff *skb = tx_buf->skb;
  4463. int k, last;
  4464. if (skb == NULL) {
  4465. j = BNX2_NEXT_TX_BD(j);
  4466. continue;
  4467. }
  4468. dma_unmap_single(&bp->pdev->dev,
  4469. dma_unmap_addr(tx_buf, mapping),
  4470. skb_headlen(skb),
  4471. PCI_DMA_TODEVICE);
  4472. tx_buf->skb = NULL;
  4473. last = tx_buf->nr_frags;
  4474. j = BNX2_NEXT_TX_BD(j);
  4475. for (k = 0; k < last; k++, j = BNX2_NEXT_TX_BD(j)) {
  4476. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(j)];
  4477. dma_unmap_page(&bp->pdev->dev,
  4478. dma_unmap_addr(tx_buf, mapping),
  4479. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4480. PCI_DMA_TODEVICE);
  4481. }
  4482. dev_kfree_skb(skb);
  4483. }
  4484. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4485. }
  4486. }
  4487. static void
  4488. bnx2_free_rx_skbs(struct bnx2 *bp)
  4489. {
  4490. int i;
  4491. for (i = 0; i < bp->num_rx_rings; i++) {
  4492. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4493. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4494. int j;
  4495. if (rxr->rx_buf_ring == NULL)
  4496. return;
  4497. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4498. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4499. u8 *data = rx_buf->data;
  4500. if (data == NULL)
  4501. continue;
  4502. dma_unmap_single(&bp->pdev->dev,
  4503. dma_unmap_addr(rx_buf, mapping),
  4504. bp->rx_buf_use_size,
  4505. PCI_DMA_FROMDEVICE);
  4506. rx_buf->data = NULL;
  4507. kfree(data);
  4508. }
  4509. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4510. bnx2_free_rx_page(bp, rxr, j);
  4511. }
  4512. }
  4513. static void
  4514. bnx2_free_skbs(struct bnx2 *bp)
  4515. {
  4516. bnx2_free_tx_skbs(bp);
  4517. bnx2_free_rx_skbs(bp);
  4518. }
  4519. static int
  4520. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4521. {
  4522. int rc;
  4523. rc = bnx2_reset_chip(bp, reset_code);
  4524. bnx2_free_skbs(bp);
  4525. if (rc)
  4526. return rc;
  4527. if ((rc = bnx2_init_chip(bp)) != 0)
  4528. return rc;
  4529. bnx2_init_all_rings(bp);
  4530. return 0;
  4531. }
  4532. static int
  4533. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4534. {
  4535. int rc;
  4536. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4537. return rc;
  4538. spin_lock_bh(&bp->phy_lock);
  4539. bnx2_init_phy(bp, reset_phy);
  4540. bnx2_set_link(bp);
  4541. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4542. bnx2_remote_phy_event(bp);
  4543. spin_unlock_bh(&bp->phy_lock);
  4544. return 0;
  4545. }
  4546. static int
  4547. bnx2_shutdown_chip(struct bnx2 *bp)
  4548. {
  4549. u32 reset_code;
  4550. if (bp->flags & BNX2_FLAG_NO_WOL)
  4551. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4552. else if (bp->wol)
  4553. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4554. else
  4555. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4556. return bnx2_reset_chip(bp, reset_code);
  4557. }
  4558. static int
  4559. bnx2_test_registers(struct bnx2 *bp)
  4560. {
  4561. int ret;
  4562. int i, is_5709;
  4563. static const struct {
  4564. u16 offset;
  4565. u16 flags;
  4566. #define BNX2_FL_NOT_5709 1
  4567. u32 rw_mask;
  4568. u32 ro_mask;
  4569. } reg_tbl[] = {
  4570. { 0x006c, 0, 0x00000000, 0x0000003f },
  4571. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4572. { 0x0094, 0, 0x00000000, 0x00000000 },
  4573. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4574. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4575. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4576. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4577. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4578. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4579. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4580. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4581. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4582. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4583. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4584. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4585. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4586. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4587. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4588. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4589. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4590. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4591. { 0x1000, 0, 0x00000000, 0x00000001 },
  4592. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4593. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4594. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4595. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4596. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4597. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4598. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4599. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4600. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4601. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4602. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4603. { 0x1800, 0, 0x00000000, 0x00000001 },
  4604. { 0x1804, 0, 0x00000000, 0x00000003 },
  4605. { 0x2800, 0, 0x00000000, 0x00000001 },
  4606. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4607. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4608. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4609. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4610. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4611. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4612. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4613. { 0x2840, 0, 0x00000000, 0xffffffff },
  4614. { 0x2844, 0, 0x00000000, 0xffffffff },
  4615. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4616. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4617. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4618. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4619. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4620. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4621. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4622. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4623. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4624. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4625. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4626. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4627. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4628. { 0x5004, 0, 0x00000000, 0x0000007f },
  4629. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4630. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4631. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4632. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4633. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4634. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4635. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4636. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4637. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4638. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4639. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4640. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4641. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4642. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4643. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4644. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4645. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4646. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4647. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4648. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4649. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4650. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4651. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4652. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4653. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4654. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4655. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4656. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4657. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4658. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4659. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4660. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4661. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4662. { 0xffff, 0, 0x00000000, 0x00000000 },
  4663. };
  4664. ret = 0;
  4665. is_5709 = 0;
  4666. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4667. is_5709 = 1;
  4668. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4669. u32 offset, rw_mask, ro_mask, save_val, val;
  4670. u16 flags = reg_tbl[i].flags;
  4671. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4672. continue;
  4673. offset = (u32) reg_tbl[i].offset;
  4674. rw_mask = reg_tbl[i].rw_mask;
  4675. ro_mask = reg_tbl[i].ro_mask;
  4676. save_val = readl(bp->regview + offset);
  4677. writel(0, bp->regview + offset);
  4678. val = readl(bp->regview + offset);
  4679. if ((val & rw_mask) != 0) {
  4680. goto reg_test_err;
  4681. }
  4682. if ((val & ro_mask) != (save_val & ro_mask)) {
  4683. goto reg_test_err;
  4684. }
  4685. writel(0xffffffff, bp->regview + offset);
  4686. val = readl(bp->regview + offset);
  4687. if ((val & rw_mask) != rw_mask) {
  4688. goto reg_test_err;
  4689. }
  4690. if ((val & ro_mask) != (save_val & ro_mask)) {
  4691. goto reg_test_err;
  4692. }
  4693. writel(save_val, bp->regview + offset);
  4694. continue;
  4695. reg_test_err:
  4696. writel(save_val, bp->regview + offset);
  4697. ret = -ENODEV;
  4698. break;
  4699. }
  4700. return ret;
  4701. }
  4702. static int
  4703. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4704. {
  4705. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4706. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4707. int i;
  4708. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4709. u32 offset;
  4710. for (offset = 0; offset < size; offset += 4) {
  4711. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4712. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4713. test_pattern[i]) {
  4714. return -ENODEV;
  4715. }
  4716. }
  4717. }
  4718. return 0;
  4719. }
  4720. static int
  4721. bnx2_test_memory(struct bnx2 *bp)
  4722. {
  4723. int ret = 0;
  4724. int i;
  4725. static struct mem_entry {
  4726. u32 offset;
  4727. u32 len;
  4728. } mem_tbl_5706[] = {
  4729. { 0x60000, 0x4000 },
  4730. { 0xa0000, 0x3000 },
  4731. { 0xe0000, 0x4000 },
  4732. { 0x120000, 0x4000 },
  4733. { 0x1a0000, 0x4000 },
  4734. { 0x160000, 0x4000 },
  4735. { 0xffffffff, 0 },
  4736. },
  4737. mem_tbl_5709[] = {
  4738. { 0x60000, 0x4000 },
  4739. { 0xa0000, 0x3000 },
  4740. { 0xe0000, 0x4000 },
  4741. { 0x120000, 0x4000 },
  4742. { 0x1a0000, 0x4000 },
  4743. { 0xffffffff, 0 },
  4744. };
  4745. struct mem_entry *mem_tbl;
  4746. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4747. mem_tbl = mem_tbl_5709;
  4748. else
  4749. mem_tbl = mem_tbl_5706;
  4750. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4751. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4752. mem_tbl[i].len)) != 0) {
  4753. return ret;
  4754. }
  4755. }
  4756. return ret;
  4757. }
  4758. #define BNX2_MAC_LOOPBACK 0
  4759. #define BNX2_PHY_LOOPBACK 1
  4760. static int
  4761. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4762. {
  4763. unsigned int pkt_size, num_pkts, i;
  4764. struct sk_buff *skb;
  4765. u8 *data;
  4766. unsigned char *packet;
  4767. u16 rx_start_idx, rx_idx;
  4768. dma_addr_t map;
  4769. struct bnx2_tx_bd *txbd;
  4770. struct bnx2_sw_bd *rx_buf;
  4771. struct l2_fhdr *rx_hdr;
  4772. int ret = -ENODEV;
  4773. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4774. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4775. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4776. tx_napi = bnapi;
  4777. txr = &tx_napi->tx_ring;
  4778. rxr = &bnapi->rx_ring;
  4779. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4780. bp->loopback = MAC_LOOPBACK;
  4781. bnx2_set_mac_loopback(bp);
  4782. }
  4783. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4784. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4785. return 0;
  4786. bp->loopback = PHY_LOOPBACK;
  4787. bnx2_set_phy_loopback(bp);
  4788. }
  4789. else
  4790. return -EINVAL;
  4791. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4792. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4793. if (!skb)
  4794. return -ENOMEM;
  4795. packet = skb_put(skb, pkt_size);
  4796. memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
  4797. memset(packet + ETH_ALEN, 0x0, 8);
  4798. for (i = 14; i < pkt_size; i++)
  4799. packet[i] = (unsigned char) (i & 0xff);
  4800. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4801. PCI_DMA_TODEVICE);
  4802. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4803. dev_kfree_skb(skb);
  4804. return -EIO;
  4805. }
  4806. BNX2_WR(bp, BNX2_HC_COMMAND,
  4807. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4808. BNX2_RD(bp, BNX2_HC_COMMAND);
  4809. udelay(5);
  4810. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4811. num_pkts = 0;
  4812. txbd = &txr->tx_desc_ring[BNX2_TX_RING_IDX(txr->tx_prod)];
  4813. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4814. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4815. txbd->tx_bd_mss_nbytes = pkt_size;
  4816. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4817. num_pkts++;
  4818. txr->tx_prod = BNX2_NEXT_TX_BD(txr->tx_prod);
  4819. txr->tx_prod_bseq += pkt_size;
  4820. BNX2_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4821. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4822. udelay(100);
  4823. BNX2_WR(bp, BNX2_HC_COMMAND,
  4824. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4825. BNX2_RD(bp, BNX2_HC_COMMAND);
  4826. udelay(5);
  4827. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4828. dev_kfree_skb(skb);
  4829. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4830. goto loopback_test_done;
  4831. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4832. if (rx_idx != rx_start_idx + num_pkts) {
  4833. goto loopback_test_done;
  4834. }
  4835. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4836. data = rx_buf->data;
  4837. rx_hdr = get_l2_fhdr(data);
  4838. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4839. dma_sync_single_for_cpu(&bp->pdev->dev,
  4840. dma_unmap_addr(rx_buf, mapping),
  4841. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4842. if (rx_hdr->l2_fhdr_status &
  4843. (L2_FHDR_ERRORS_BAD_CRC |
  4844. L2_FHDR_ERRORS_PHY_DECODE |
  4845. L2_FHDR_ERRORS_ALIGNMENT |
  4846. L2_FHDR_ERRORS_TOO_SHORT |
  4847. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4848. goto loopback_test_done;
  4849. }
  4850. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4851. goto loopback_test_done;
  4852. }
  4853. for (i = 14; i < pkt_size; i++) {
  4854. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4855. goto loopback_test_done;
  4856. }
  4857. }
  4858. ret = 0;
  4859. loopback_test_done:
  4860. bp->loopback = 0;
  4861. return ret;
  4862. }
  4863. #define BNX2_MAC_LOOPBACK_FAILED 1
  4864. #define BNX2_PHY_LOOPBACK_FAILED 2
  4865. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4866. BNX2_PHY_LOOPBACK_FAILED)
  4867. static int
  4868. bnx2_test_loopback(struct bnx2 *bp)
  4869. {
  4870. int rc = 0;
  4871. if (!netif_running(bp->dev))
  4872. return BNX2_LOOPBACK_FAILED;
  4873. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4874. spin_lock_bh(&bp->phy_lock);
  4875. bnx2_init_phy(bp, 1);
  4876. spin_unlock_bh(&bp->phy_lock);
  4877. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4878. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4879. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4880. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4881. return rc;
  4882. }
  4883. #define NVRAM_SIZE 0x200
  4884. #define CRC32_RESIDUAL 0xdebb20e3
  4885. static int
  4886. bnx2_test_nvram(struct bnx2 *bp)
  4887. {
  4888. __be32 buf[NVRAM_SIZE / 4];
  4889. u8 *data = (u8 *) buf;
  4890. int rc = 0;
  4891. u32 magic, csum;
  4892. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4893. goto test_nvram_done;
  4894. magic = be32_to_cpu(buf[0]);
  4895. if (magic != 0x669955aa) {
  4896. rc = -ENODEV;
  4897. goto test_nvram_done;
  4898. }
  4899. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4900. goto test_nvram_done;
  4901. csum = ether_crc_le(0x100, data);
  4902. if (csum != CRC32_RESIDUAL) {
  4903. rc = -ENODEV;
  4904. goto test_nvram_done;
  4905. }
  4906. csum = ether_crc_le(0x100, data + 0x100);
  4907. if (csum != CRC32_RESIDUAL) {
  4908. rc = -ENODEV;
  4909. }
  4910. test_nvram_done:
  4911. return rc;
  4912. }
  4913. static int
  4914. bnx2_test_link(struct bnx2 *bp)
  4915. {
  4916. u32 bmsr;
  4917. if (!netif_running(bp->dev))
  4918. return -ENODEV;
  4919. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4920. if (bp->link_up)
  4921. return 0;
  4922. return -ENODEV;
  4923. }
  4924. spin_lock_bh(&bp->phy_lock);
  4925. bnx2_enable_bmsr1(bp);
  4926. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4927. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4928. bnx2_disable_bmsr1(bp);
  4929. spin_unlock_bh(&bp->phy_lock);
  4930. if (bmsr & BMSR_LSTATUS) {
  4931. return 0;
  4932. }
  4933. return -ENODEV;
  4934. }
  4935. static int
  4936. bnx2_test_intr(struct bnx2 *bp)
  4937. {
  4938. int i;
  4939. u16 status_idx;
  4940. if (!netif_running(bp->dev))
  4941. return -ENODEV;
  4942. status_idx = BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4943. /* This register is not touched during run-time. */
  4944. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4945. BNX2_RD(bp, BNX2_HC_COMMAND);
  4946. for (i = 0; i < 10; i++) {
  4947. if ((BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4948. status_idx) {
  4949. break;
  4950. }
  4951. msleep_interruptible(10);
  4952. }
  4953. if (i < 10)
  4954. return 0;
  4955. return -ENODEV;
  4956. }
  4957. /* Determining link for parallel detection. */
  4958. static int
  4959. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4960. {
  4961. u32 mode_ctl, an_dbg, exp;
  4962. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4963. return 0;
  4964. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4965. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4966. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4967. return 0;
  4968. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4969. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4970. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4971. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4972. return 0;
  4973. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4974. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4975. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4976. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4977. return 0;
  4978. return 1;
  4979. }
  4980. static void
  4981. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4982. {
  4983. int check_link = 1;
  4984. spin_lock(&bp->phy_lock);
  4985. if (bp->serdes_an_pending) {
  4986. bp->serdes_an_pending--;
  4987. check_link = 0;
  4988. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4989. u32 bmcr;
  4990. bp->current_interval = BNX2_TIMER_INTERVAL;
  4991. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4992. if (bmcr & BMCR_ANENABLE) {
  4993. if (bnx2_5706_serdes_has_link(bp)) {
  4994. bmcr &= ~BMCR_ANENABLE;
  4995. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4996. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4997. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4998. }
  4999. }
  5000. }
  5001. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  5002. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  5003. u32 phy2;
  5004. bnx2_write_phy(bp, 0x17, 0x0f01);
  5005. bnx2_read_phy(bp, 0x15, &phy2);
  5006. if (phy2 & 0x20) {
  5007. u32 bmcr;
  5008. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5009. bmcr |= BMCR_ANENABLE;
  5010. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  5011. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  5012. }
  5013. } else
  5014. bp->current_interval = BNX2_TIMER_INTERVAL;
  5015. if (check_link) {
  5016. u32 val;
  5017. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  5018. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  5019. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  5020. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  5021. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  5022. bnx2_5706s_force_link_dn(bp, 1);
  5023. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  5024. } else
  5025. bnx2_set_link(bp);
  5026. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  5027. bnx2_set_link(bp);
  5028. }
  5029. spin_unlock(&bp->phy_lock);
  5030. }
  5031. static void
  5032. bnx2_5708_serdes_timer(struct bnx2 *bp)
  5033. {
  5034. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5035. return;
  5036. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  5037. bp->serdes_an_pending = 0;
  5038. return;
  5039. }
  5040. spin_lock(&bp->phy_lock);
  5041. if (bp->serdes_an_pending)
  5042. bp->serdes_an_pending--;
  5043. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  5044. u32 bmcr;
  5045. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5046. if (bmcr & BMCR_ANENABLE) {
  5047. bnx2_enable_forced_2g5(bp);
  5048. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  5049. } else {
  5050. bnx2_disable_forced_2g5(bp);
  5051. bp->serdes_an_pending = 2;
  5052. bp->current_interval = BNX2_TIMER_INTERVAL;
  5053. }
  5054. } else
  5055. bp->current_interval = BNX2_TIMER_INTERVAL;
  5056. spin_unlock(&bp->phy_lock);
  5057. }
  5058. static void
  5059. bnx2_timer(unsigned long data)
  5060. {
  5061. struct bnx2 *bp = (struct bnx2 *) data;
  5062. if (!netif_running(bp->dev))
  5063. return;
  5064. if (atomic_read(&bp->intr_sem) != 0)
  5065. goto bnx2_restart_timer;
  5066. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5067. BNX2_FLAG_USING_MSI)
  5068. bnx2_chk_missed_msi(bp);
  5069. bnx2_send_heart_beat(bp);
  5070. bp->stats_blk->stat_FwRxDrop =
  5071. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5072. /* workaround occasional corrupted counters */
  5073. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5074. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5075. BNX2_HC_COMMAND_STATS_NOW);
  5076. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5077. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  5078. bnx2_5706_serdes_timer(bp);
  5079. else
  5080. bnx2_5708_serdes_timer(bp);
  5081. }
  5082. bnx2_restart_timer:
  5083. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5084. }
  5085. static int
  5086. bnx2_request_irq(struct bnx2 *bp)
  5087. {
  5088. unsigned long flags;
  5089. struct bnx2_irq *irq;
  5090. int rc = 0, i;
  5091. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5092. flags = 0;
  5093. else
  5094. flags = IRQF_SHARED;
  5095. for (i = 0; i < bp->irq_nvecs; i++) {
  5096. irq = &bp->irq_tbl[i];
  5097. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5098. &bp->bnx2_napi[i]);
  5099. if (rc)
  5100. break;
  5101. irq->requested = 1;
  5102. }
  5103. return rc;
  5104. }
  5105. static void
  5106. __bnx2_free_irq(struct bnx2 *bp)
  5107. {
  5108. struct bnx2_irq *irq;
  5109. int i;
  5110. for (i = 0; i < bp->irq_nvecs; i++) {
  5111. irq = &bp->irq_tbl[i];
  5112. if (irq->requested)
  5113. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5114. irq->requested = 0;
  5115. }
  5116. }
  5117. static void
  5118. bnx2_free_irq(struct bnx2 *bp)
  5119. {
  5120. __bnx2_free_irq(bp);
  5121. if (bp->flags & BNX2_FLAG_USING_MSI)
  5122. pci_disable_msi(bp->pdev);
  5123. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5124. pci_disable_msix(bp->pdev);
  5125. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5126. }
  5127. static void
  5128. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5129. {
  5130. int i, total_vecs;
  5131. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5132. struct net_device *dev = bp->dev;
  5133. const int len = sizeof(bp->irq_tbl[0].name);
  5134. bnx2_setup_msix_tbl(bp);
  5135. BNX2_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5136. BNX2_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5137. BNX2_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5138. /* Need to flush the previous three writes to ensure MSI-X
  5139. * is setup properly */
  5140. BNX2_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5141. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5142. msix_ent[i].entry = i;
  5143. msix_ent[i].vector = 0;
  5144. }
  5145. total_vecs = msix_vecs;
  5146. #ifdef BCM_CNIC
  5147. total_vecs++;
  5148. #endif
  5149. total_vecs = pci_enable_msix_range(bp->pdev, msix_ent,
  5150. BNX2_MIN_MSIX_VEC, total_vecs);
  5151. if (total_vecs < 0)
  5152. return;
  5153. msix_vecs = total_vecs;
  5154. #ifdef BCM_CNIC
  5155. msix_vecs--;
  5156. #endif
  5157. bp->irq_nvecs = msix_vecs;
  5158. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5159. for (i = 0; i < total_vecs; i++) {
  5160. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5161. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5162. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5163. }
  5164. }
  5165. static int
  5166. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5167. {
  5168. int cpus = netif_get_num_default_rss_queues();
  5169. int msix_vecs;
  5170. if (!bp->num_req_rx_rings)
  5171. msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
  5172. else if (!bp->num_req_tx_rings)
  5173. msix_vecs = max(cpus, bp->num_req_rx_rings);
  5174. else
  5175. msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
  5176. msix_vecs = min(msix_vecs, RX_MAX_RINGS);
  5177. bp->irq_tbl[0].handler = bnx2_interrupt;
  5178. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5179. bp->irq_nvecs = 1;
  5180. bp->irq_tbl[0].vector = bp->pdev->irq;
  5181. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5182. bnx2_enable_msix(bp, msix_vecs);
  5183. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5184. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5185. if (pci_enable_msi(bp->pdev) == 0) {
  5186. bp->flags |= BNX2_FLAG_USING_MSI;
  5187. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  5188. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5189. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5190. } else
  5191. bp->irq_tbl[0].handler = bnx2_msi;
  5192. bp->irq_tbl[0].vector = bp->pdev->irq;
  5193. }
  5194. }
  5195. if (!bp->num_req_tx_rings)
  5196. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5197. else
  5198. bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
  5199. if (!bp->num_req_rx_rings)
  5200. bp->num_rx_rings = bp->irq_nvecs;
  5201. else
  5202. bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
  5203. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5204. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5205. }
  5206. /* Called with rtnl_lock */
  5207. static int
  5208. bnx2_open(struct net_device *dev)
  5209. {
  5210. struct bnx2 *bp = netdev_priv(dev);
  5211. int rc;
  5212. rc = bnx2_request_firmware(bp);
  5213. if (rc < 0)
  5214. goto out;
  5215. netif_carrier_off(dev);
  5216. bnx2_disable_int(bp);
  5217. rc = bnx2_setup_int_mode(bp, disable_msi);
  5218. if (rc)
  5219. goto open_err;
  5220. bnx2_init_napi(bp);
  5221. bnx2_napi_enable(bp);
  5222. rc = bnx2_alloc_mem(bp);
  5223. if (rc)
  5224. goto open_err;
  5225. rc = bnx2_request_irq(bp);
  5226. if (rc)
  5227. goto open_err;
  5228. rc = bnx2_init_nic(bp, 1);
  5229. if (rc)
  5230. goto open_err;
  5231. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5232. atomic_set(&bp->intr_sem, 0);
  5233. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5234. bnx2_enable_int(bp);
  5235. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5236. /* Test MSI to make sure it is working
  5237. * If MSI test fails, go back to INTx mode
  5238. */
  5239. if (bnx2_test_intr(bp) != 0) {
  5240. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5241. bnx2_disable_int(bp);
  5242. bnx2_free_irq(bp);
  5243. bnx2_setup_int_mode(bp, 1);
  5244. rc = bnx2_init_nic(bp, 0);
  5245. if (!rc)
  5246. rc = bnx2_request_irq(bp);
  5247. if (rc) {
  5248. del_timer_sync(&bp->timer);
  5249. goto open_err;
  5250. }
  5251. bnx2_enable_int(bp);
  5252. }
  5253. }
  5254. if (bp->flags & BNX2_FLAG_USING_MSI)
  5255. netdev_info(dev, "using MSI\n");
  5256. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5257. netdev_info(dev, "using MSIX\n");
  5258. netif_tx_start_all_queues(dev);
  5259. out:
  5260. return rc;
  5261. open_err:
  5262. bnx2_napi_disable(bp);
  5263. bnx2_free_skbs(bp);
  5264. bnx2_free_irq(bp);
  5265. bnx2_free_mem(bp);
  5266. bnx2_del_napi(bp);
  5267. bnx2_release_firmware(bp);
  5268. goto out;
  5269. }
  5270. static void
  5271. bnx2_reset_task(struct work_struct *work)
  5272. {
  5273. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5274. int rc;
  5275. u16 pcicmd;
  5276. rtnl_lock();
  5277. if (!netif_running(bp->dev)) {
  5278. rtnl_unlock();
  5279. return;
  5280. }
  5281. bnx2_netif_stop(bp, true);
  5282. pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd);
  5283. if (!(pcicmd & PCI_COMMAND_MEMORY)) {
  5284. /* in case PCI block has reset */
  5285. pci_restore_state(bp->pdev);
  5286. pci_save_state(bp->pdev);
  5287. }
  5288. rc = bnx2_init_nic(bp, 1);
  5289. if (rc) {
  5290. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5291. bnx2_napi_enable(bp);
  5292. dev_close(bp->dev);
  5293. rtnl_unlock();
  5294. return;
  5295. }
  5296. atomic_set(&bp->intr_sem, 1);
  5297. bnx2_netif_start(bp, true);
  5298. rtnl_unlock();
  5299. }
  5300. #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
  5301. static void
  5302. bnx2_dump_ftq(struct bnx2 *bp)
  5303. {
  5304. int i;
  5305. u32 reg, bdidx, cid, valid;
  5306. struct net_device *dev = bp->dev;
  5307. static const struct ftq_reg {
  5308. char *name;
  5309. u32 off;
  5310. } ftq_arr[] = {
  5311. BNX2_FTQ_ENTRY(RV2P_P),
  5312. BNX2_FTQ_ENTRY(RV2P_T),
  5313. BNX2_FTQ_ENTRY(RV2P_M),
  5314. BNX2_FTQ_ENTRY(TBDR_),
  5315. BNX2_FTQ_ENTRY(TDMA_),
  5316. BNX2_FTQ_ENTRY(TXP_),
  5317. BNX2_FTQ_ENTRY(TXP_),
  5318. BNX2_FTQ_ENTRY(TPAT_),
  5319. BNX2_FTQ_ENTRY(RXP_C),
  5320. BNX2_FTQ_ENTRY(RXP_),
  5321. BNX2_FTQ_ENTRY(COM_COMXQ_),
  5322. BNX2_FTQ_ENTRY(COM_COMTQ_),
  5323. BNX2_FTQ_ENTRY(COM_COMQ_),
  5324. BNX2_FTQ_ENTRY(CP_CPQ_),
  5325. };
  5326. netdev_err(dev, "<--- start FTQ dump --->\n");
  5327. for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
  5328. netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
  5329. bnx2_reg_rd_ind(bp, ftq_arr[i].off));
  5330. netdev_err(dev, "CPU states:\n");
  5331. for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
  5332. netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
  5333. reg, bnx2_reg_rd_ind(bp, reg),
  5334. bnx2_reg_rd_ind(bp, reg + 4),
  5335. bnx2_reg_rd_ind(bp, reg + 8),
  5336. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5337. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5338. bnx2_reg_rd_ind(bp, reg + 0x20));
  5339. netdev_err(dev, "<--- end FTQ dump --->\n");
  5340. netdev_err(dev, "<--- start TBDC dump --->\n");
  5341. netdev_err(dev, "TBDC free cnt: %ld\n",
  5342. BNX2_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
  5343. netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
  5344. for (i = 0; i < 0x20; i++) {
  5345. int j = 0;
  5346. BNX2_WR(bp, BNX2_TBDC_BD_ADDR, i);
  5347. BNX2_WR(bp, BNX2_TBDC_CAM_OPCODE,
  5348. BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
  5349. BNX2_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
  5350. while ((BNX2_RD(bp, BNX2_TBDC_COMMAND) &
  5351. BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
  5352. j++;
  5353. cid = BNX2_RD(bp, BNX2_TBDC_CID);
  5354. bdidx = BNX2_RD(bp, BNX2_TBDC_BIDX);
  5355. valid = BNX2_RD(bp, BNX2_TBDC_CAM_OPCODE);
  5356. netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
  5357. i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
  5358. bdidx >> 24, (valid >> 8) & 0x0ff);
  5359. }
  5360. netdev_err(dev, "<--- end TBDC dump --->\n");
  5361. }
  5362. static void
  5363. bnx2_dump_state(struct bnx2 *bp)
  5364. {
  5365. struct net_device *dev = bp->dev;
  5366. u32 val1, val2;
  5367. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5368. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5369. atomic_read(&bp->intr_sem), val1);
  5370. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5371. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5372. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5373. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5374. BNX2_RD(bp, BNX2_EMAC_TX_STATUS),
  5375. BNX2_RD(bp, BNX2_EMAC_RX_STATUS));
  5376. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5377. BNX2_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5378. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5379. BNX2_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5380. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5381. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5382. BNX2_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5383. }
  5384. static void
  5385. bnx2_tx_timeout(struct net_device *dev)
  5386. {
  5387. struct bnx2 *bp = netdev_priv(dev);
  5388. bnx2_dump_ftq(bp);
  5389. bnx2_dump_state(bp);
  5390. bnx2_dump_mcp_state(bp);
  5391. /* This allows the netif to be shutdown gracefully before resetting */
  5392. schedule_work(&bp->reset_task);
  5393. }
  5394. /* Called with netif_tx_lock.
  5395. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5396. * netif_wake_queue().
  5397. */
  5398. static netdev_tx_t
  5399. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5400. {
  5401. struct bnx2 *bp = netdev_priv(dev);
  5402. dma_addr_t mapping;
  5403. struct bnx2_tx_bd *txbd;
  5404. struct bnx2_sw_tx_bd *tx_buf;
  5405. u32 len, vlan_tag_flags, last_frag, mss;
  5406. u16 prod, ring_prod;
  5407. int i;
  5408. struct bnx2_napi *bnapi;
  5409. struct bnx2_tx_ring_info *txr;
  5410. struct netdev_queue *txq;
  5411. /* Determine which tx ring we will be placed on */
  5412. i = skb_get_queue_mapping(skb);
  5413. bnapi = &bp->bnx2_napi[i];
  5414. txr = &bnapi->tx_ring;
  5415. txq = netdev_get_tx_queue(dev, i);
  5416. if (unlikely(bnx2_tx_avail(bp, txr) <
  5417. (skb_shinfo(skb)->nr_frags + 1))) {
  5418. netif_tx_stop_queue(txq);
  5419. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5420. return NETDEV_TX_BUSY;
  5421. }
  5422. len = skb_headlen(skb);
  5423. prod = txr->tx_prod;
  5424. ring_prod = BNX2_TX_RING_IDX(prod);
  5425. vlan_tag_flags = 0;
  5426. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5427. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5428. }
  5429. if (skb_vlan_tag_present(skb)) {
  5430. vlan_tag_flags |=
  5431. (TX_BD_FLAGS_VLAN_TAG | (skb_vlan_tag_get(skb) << 16));
  5432. }
  5433. if ((mss = skb_shinfo(skb)->gso_size)) {
  5434. u32 tcp_opt_len;
  5435. struct iphdr *iph;
  5436. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5437. tcp_opt_len = tcp_optlen(skb);
  5438. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5439. u32 tcp_off = skb_transport_offset(skb) -
  5440. sizeof(struct ipv6hdr) - ETH_HLEN;
  5441. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5442. TX_BD_FLAGS_SW_FLAGS;
  5443. if (likely(tcp_off == 0))
  5444. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5445. else {
  5446. tcp_off >>= 3;
  5447. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5448. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5449. ((tcp_off & 0x10) <<
  5450. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5451. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5452. }
  5453. } else {
  5454. iph = ip_hdr(skb);
  5455. if (tcp_opt_len || (iph->ihl > 5)) {
  5456. vlan_tag_flags |= ((iph->ihl - 5) +
  5457. (tcp_opt_len >> 2)) << 8;
  5458. }
  5459. }
  5460. } else
  5461. mss = 0;
  5462. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5463. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5464. dev_kfree_skb_any(skb);
  5465. return NETDEV_TX_OK;
  5466. }
  5467. tx_buf = &txr->tx_buf_ring[ring_prod];
  5468. tx_buf->skb = skb;
  5469. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5470. txbd = &txr->tx_desc_ring[ring_prod];
  5471. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5472. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5473. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5474. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5475. last_frag = skb_shinfo(skb)->nr_frags;
  5476. tx_buf->nr_frags = last_frag;
  5477. tx_buf->is_gso = skb_is_gso(skb);
  5478. for (i = 0; i < last_frag; i++) {
  5479. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5480. prod = BNX2_NEXT_TX_BD(prod);
  5481. ring_prod = BNX2_TX_RING_IDX(prod);
  5482. txbd = &txr->tx_desc_ring[ring_prod];
  5483. len = skb_frag_size(frag);
  5484. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5485. DMA_TO_DEVICE);
  5486. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5487. goto dma_error;
  5488. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5489. mapping);
  5490. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5491. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5492. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5493. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5494. }
  5495. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5496. /* Sync BD data before updating TX mailbox */
  5497. wmb();
  5498. netdev_tx_sent_queue(txq, skb->len);
  5499. prod = BNX2_NEXT_TX_BD(prod);
  5500. txr->tx_prod_bseq += skb->len;
  5501. BNX2_WR16(bp, txr->tx_bidx_addr, prod);
  5502. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5503. mmiowb();
  5504. txr->tx_prod = prod;
  5505. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5506. netif_tx_stop_queue(txq);
  5507. /* netif_tx_stop_queue() must be done before checking
  5508. * tx index in bnx2_tx_avail() below, because in
  5509. * bnx2_tx_int(), we update tx index before checking for
  5510. * netif_tx_queue_stopped().
  5511. */
  5512. smp_mb();
  5513. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5514. netif_tx_wake_queue(txq);
  5515. }
  5516. return NETDEV_TX_OK;
  5517. dma_error:
  5518. /* save value of frag that failed */
  5519. last_frag = i;
  5520. /* start back at beginning and unmap skb */
  5521. prod = txr->tx_prod;
  5522. ring_prod = BNX2_TX_RING_IDX(prod);
  5523. tx_buf = &txr->tx_buf_ring[ring_prod];
  5524. tx_buf->skb = NULL;
  5525. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5526. skb_headlen(skb), PCI_DMA_TODEVICE);
  5527. /* unmap remaining mapped pages */
  5528. for (i = 0; i < last_frag; i++) {
  5529. prod = BNX2_NEXT_TX_BD(prod);
  5530. ring_prod = BNX2_TX_RING_IDX(prod);
  5531. tx_buf = &txr->tx_buf_ring[ring_prod];
  5532. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5533. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5534. PCI_DMA_TODEVICE);
  5535. }
  5536. dev_kfree_skb_any(skb);
  5537. return NETDEV_TX_OK;
  5538. }
  5539. /* Called with rtnl_lock */
  5540. static int
  5541. bnx2_close(struct net_device *dev)
  5542. {
  5543. struct bnx2 *bp = netdev_priv(dev);
  5544. bnx2_disable_int_sync(bp);
  5545. bnx2_napi_disable(bp);
  5546. netif_tx_disable(dev);
  5547. del_timer_sync(&bp->timer);
  5548. bnx2_shutdown_chip(bp);
  5549. bnx2_free_irq(bp);
  5550. bnx2_free_skbs(bp);
  5551. bnx2_free_mem(bp);
  5552. bnx2_del_napi(bp);
  5553. bp->link_up = 0;
  5554. netif_carrier_off(bp->dev);
  5555. return 0;
  5556. }
  5557. static void
  5558. bnx2_save_stats(struct bnx2 *bp)
  5559. {
  5560. u32 *hw_stats = (u32 *) bp->stats_blk;
  5561. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5562. int i;
  5563. /* The 1st 10 counters are 64-bit counters */
  5564. for (i = 0; i < 20; i += 2) {
  5565. u32 hi;
  5566. u64 lo;
  5567. hi = temp_stats[i] + hw_stats[i];
  5568. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5569. if (lo > 0xffffffff)
  5570. hi++;
  5571. temp_stats[i] = hi;
  5572. temp_stats[i + 1] = lo & 0xffffffff;
  5573. }
  5574. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5575. temp_stats[i] += hw_stats[i];
  5576. }
  5577. #define GET_64BIT_NET_STATS64(ctr) \
  5578. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5579. #define GET_64BIT_NET_STATS(ctr) \
  5580. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5581. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5582. #define GET_32BIT_NET_STATS(ctr) \
  5583. (unsigned long) (bp->stats_blk->ctr + \
  5584. bp->temp_stats_blk->ctr)
  5585. static void
  5586. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5587. {
  5588. struct bnx2 *bp = netdev_priv(dev);
  5589. if (bp->stats_blk == NULL)
  5590. return;
  5591. net_stats->rx_packets =
  5592. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5593. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5594. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5595. net_stats->tx_packets =
  5596. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5597. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5598. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5599. net_stats->rx_bytes =
  5600. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5601. net_stats->tx_bytes =
  5602. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5603. net_stats->multicast =
  5604. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5605. net_stats->collisions =
  5606. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5607. net_stats->rx_length_errors =
  5608. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5609. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5610. net_stats->rx_over_errors =
  5611. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5612. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5613. net_stats->rx_frame_errors =
  5614. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5615. net_stats->rx_crc_errors =
  5616. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5617. net_stats->rx_errors = net_stats->rx_length_errors +
  5618. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5619. net_stats->rx_crc_errors;
  5620. net_stats->tx_aborted_errors =
  5621. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5622. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5623. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  5624. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  5625. net_stats->tx_carrier_errors = 0;
  5626. else {
  5627. net_stats->tx_carrier_errors =
  5628. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5629. }
  5630. net_stats->tx_errors =
  5631. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5632. net_stats->tx_aborted_errors +
  5633. net_stats->tx_carrier_errors;
  5634. net_stats->rx_missed_errors =
  5635. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5636. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5637. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5638. }
  5639. /* All ethtool functions called with rtnl_lock */
  5640. static int
  5641. bnx2_get_link_ksettings(struct net_device *dev,
  5642. struct ethtool_link_ksettings *cmd)
  5643. {
  5644. struct bnx2 *bp = netdev_priv(dev);
  5645. int support_serdes = 0, support_copper = 0;
  5646. u32 supported, advertising;
  5647. supported = SUPPORTED_Autoneg;
  5648. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5649. support_serdes = 1;
  5650. support_copper = 1;
  5651. } else if (bp->phy_port == PORT_FIBRE)
  5652. support_serdes = 1;
  5653. else
  5654. support_copper = 1;
  5655. if (support_serdes) {
  5656. supported |= SUPPORTED_1000baseT_Full |
  5657. SUPPORTED_FIBRE;
  5658. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5659. supported |= SUPPORTED_2500baseX_Full;
  5660. }
  5661. if (support_copper) {
  5662. supported |= SUPPORTED_10baseT_Half |
  5663. SUPPORTED_10baseT_Full |
  5664. SUPPORTED_100baseT_Half |
  5665. SUPPORTED_100baseT_Full |
  5666. SUPPORTED_1000baseT_Full |
  5667. SUPPORTED_TP;
  5668. }
  5669. spin_lock_bh(&bp->phy_lock);
  5670. cmd->base.port = bp->phy_port;
  5671. advertising = bp->advertising;
  5672. if (bp->autoneg & AUTONEG_SPEED) {
  5673. cmd->base.autoneg = AUTONEG_ENABLE;
  5674. } else {
  5675. cmd->base.autoneg = AUTONEG_DISABLE;
  5676. }
  5677. if (netif_carrier_ok(dev)) {
  5678. cmd->base.speed = bp->line_speed;
  5679. cmd->base.duplex = bp->duplex;
  5680. if (!(bp->phy_flags & BNX2_PHY_FLAG_SERDES)) {
  5681. if (bp->phy_flags & BNX2_PHY_FLAG_MDIX)
  5682. cmd->base.eth_tp_mdix = ETH_TP_MDI_X;
  5683. else
  5684. cmd->base.eth_tp_mdix = ETH_TP_MDI;
  5685. }
  5686. }
  5687. else {
  5688. cmd->base.speed = SPEED_UNKNOWN;
  5689. cmd->base.duplex = DUPLEX_UNKNOWN;
  5690. }
  5691. spin_unlock_bh(&bp->phy_lock);
  5692. cmd->base.phy_address = bp->phy_addr;
  5693. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  5694. supported);
  5695. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  5696. advertising);
  5697. return 0;
  5698. }
  5699. static int
  5700. bnx2_set_link_ksettings(struct net_device *dev,
  5701. const struct ethtool_link_ksettings *cmd)
  5702. {
  5703. struct bnx2 *bp = netdev_priv(dev);
  5704. u8 autoneg = bp->autoneg;
  5705. u8 req_duplex = bp->req_duplex;
  5706. u16 req_line_speed = bp->req_line_speed;
  5707. u32 advertising = bp->advertising;
  5708. int err = -EINVAL;
  5709. spin_lock_bh(&bp->phy_lock);
  5710. if (cmd->base.port != PORT_TP && cmd->base.port != PORT_FIBRE)
  5711. goto err_out_unlock;
  5712. if (cmd->base.port != bp->phy_port &&
  5713. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5714. goto err_out_unlock;
  5715. /* If device is down, we can store the settings only if the user
  5716. * is setting the currently active port.
  5717. */
  5718. if (!netif_running(dev) && cmd->base.port != bp->phy_port)
  5719. goto err_out_unlock;
  5720. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  5721. autoneg |= AUTONEG_SPEED;
  5722. ethtool_convert_link_mode_to_legacy_u32(
  5723. &advertising, cmd->link_modes.advertising);
  5724. if (cmd->base.port == PORT_TP) {
  5725. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5726. if (!advertising)
  5727. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5728. } else {
  5729. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5730. if (!advertising)
  5731. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5732. }
  5733. advertising |= ADVERTISED_Autoneg;
  5734. }
  5735. else {
  5736. u32 speed = cmd->base.speed;
  5737. if (cmd->base.port == PORT_FIBRE) {
  5738. if ((speed != SPEED_1000 &&
  5739. speed != SPEED_2500) ||
  5740. (cmd->base.duplex != DUPLEX_FULL))
  5741. goto err_out_unlock;
  5742. if (speed == SPEED_2500 &&
  5743. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5744. goto err_out_unlock;
  5745. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5746. goto err_out_unlock;
  5747. autoneg &= ~AUTONEG_SPEED;
  5748. req_line_speed = speed;
  5749. req_duplex = cmd->base.duplex;
  5750. advertising = 0;
  5751. }
  5752. bp->autoneg = autoneg;
  5753. bp->advertising = advertising;
  5754. bp->req_line_speed = req_line_speed;
  5755. bp->req_duplex = req_duplex;
  5756. err = 0;
  5757. /* If device is down, the new settings will be picked up when it is
  5758. * brought up.
  5759. */
  5760. if (netif_running(dev))
  5761. err = bnx2_setup_phy(bp, cmd->base.port);
  5762. err_out_unlock:
  5763. spin_unlock_bh(&bp->phy_lock);
  5764. return err;
  5765. }
  5766. static void
  5767. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5768. {
  5769. struct bnx2 *bp = netdev_priv(dev);
  5770. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5771. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5772. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5773. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5774. }
  5775. #define BNX2_REGDUMP_LEN (32 * 1024)
  5776. static int
  5777. bnx2_get_regs_len(struct net_device *dev)
  5778. {
  5779. return BNX2_REGDUMP_LEN;
  5780. }
  5781. static void
  5782. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5783. {
  5784. u32 *p = _p, i, offset;
  5785. u8 *orig_p = _p;
  5786. struct bnx2 *bp = netdev_priv(dev);
  5787. static const u32 reg_boundaries[] = {
  5788. 0x0000, 0x0098, 0x0400, 0x045c,
  5789. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5790. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5791. 0x1040, 0x1048, 0x1080, 0x10a4,
  5792. 0x1400, 0x1490, 0x1498, 0x14f0,
  5793. 0x1500, 0x155c, 0x1580, 0x15dc,
  5794. 0x1600, 0x1658, 0x1680, 0x16d8,
  5795. 0x1800, 0x1820, 0x1840, 0x1854,
  5796. 0x1880, 0x1894, 0x1900, 0x1984,
  5797. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5798. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5799. 0x2000, 0x2030, 0x23c0, 0x2400,
  5800. 0x2800, 0x2820, 0x2830, 0x2850,
  5801. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5802. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5803. 0x4080, 0x4090, 0x43c0, 0x4458,
  5804. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5805. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5806. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5807. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5808. 0x6800, 0x6848, 0x684c, 0x6860,
  5809. 0x6888, 0x6910, 0x8000
  5810. };
  5811. regs->version = 0;
  5812. memset(p, 0, BNX2_REGDUMP_LEN);
  5813. if (!netif_running(bp->dev))
  5814. return;
  5815. i = 0;
  5816. offset = reg_boundaries[0];
  5817. p += offset;
  5818. while (offset < BNX2_REGDUMP_LEN) {
  5819. *p++ = BNX2_RD(bp, offset);
  5820. offset += 4;
  5821. if (offset == reg_boundaries[i + 1]) {
  5822. offset = reg_boundaries[i + 2];
  5823. p = (u32 *) (orig_p + offset);
  5824. i += 2;
  5825. }
  5826. }
  5827. }
  5828. static void
  5829. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5830. {
  5831. struct bnx2 *bp = netdev_priv(dev);
  5832. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5833. wol->supported = 0;
  5834. wol->wolopts = 0;
  5835. }
  5836. else {
  5837. wol->supported = WAKE_MAGIC;
  5838. if (bp->wol)
  5839. wol->wolopts = WAKE_MAGIC;
  5840. else
  5841. wol->wolopts = 0;
  5842. }
  5843. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5844. }
  5845. static int
  5846. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5847. {
  5848. struct bnx2 *bp = netdev_priv(dev);
  5849. if (wol->wolopts & ~WAKE_MAGIC)
  5850. return -EINVAL;
  5851. if (wol->wolopts & WAKE_MAGIC) {
  5852. if (bp->flags & BNX2_FLAG_NO_WOL)
  5853. return -EINVAL;
  5854. bp->wol = 1;
  5855. }
  5856. else {
  5857. bp->wol = 0;
  5858. }
  5859. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  5860. return 0;
  5861. }
  5862. static int
  5863. bnx2_nway_reset(struct net_device *dev)
  5864. {
  5865. struct bnx2 *bp = netdev_priv(dev);
  5866. u32 bmcr;
  5867. if (!netif_running(dev))
  5868. return -EAGAIN;
  5869. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5870. return -EINVAL;
  5871. }
  5872. spin_lock_bh(&bp->phy_lock);
  5873. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5874. int rc;
  5875. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5876. spin_unlock_bh(&bp->phy_lock);
  5877. return rc;
  5878. }
  5879. /* Force a link down visible on the other side */
  5880. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5881. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5882. spin_unlock_bh(&bp->phy_lock);
  5883. msleep(20);
  5884. spin_lock_bh(&bp->phy_lock);
  5885. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5886. bp->serdes_an_pending = 1;
  5887. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5888. }
  5889. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5890. bmcr &= ~BMCR_LOOPBACK;
  5891. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5892. spin_unlock_bh(&bp->phy_lock);
  5893. return 0;
  5894. }
  5895. static u32
  5896. bnx2_get_link(struct net_device *dev)
  5897. {
  5898. struct bnx2 *bp = netdev_priv(dev);
  5899. return bp->link_up;
  5900. }
  5901. static int
  5902. bnx2_get_eeprom_len(struct net_device *dev)
  5903. {
  5904. struct bnx2 *bp = netdev_priv(dev);
  5905. if (bp->flash_info == NULL)
  5906. return 0;
  5907. return (int) bp->flash_size;
  5908. }
  5909. static int
  5910. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5911. u8 *eebuf)
  5912. {
  5913. struct bnx2 *bp = netdev_priv(dev);
  5914. int rc;
  5915. /* parameters already validated in ethtool_get_eeprom */
  5916. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5917. return rc;
  5918. }
  5919. static int
  5920. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5921. u8 *eebuf)
  5922. {
  5923. struct bnx2 *bp = netdev_priv(dev);
  5924. int rc;
  5925. /* parameters already validated in ethtool_set_eeprom */
  5926. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5927. return rc;
  5928. }
  5929. static int
  5930. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5931. {
  5932. struct bnx2 *bp = netdev_priv(dev);
  5933. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5934. coal->rx_coalesce_usecs = bp->rx_ticks;
  5935. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5936. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5937. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5938. coal->tx_coalesce_usecs = bp->tx_ticks;
  5939. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5940. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5941. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5942. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5943. return 0;
  5944. }
  5945. static int
  5946. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5947. {
  5948. struct bnx2 *bp = netdev_priv(dev);
  5949. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5950. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5951. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5952. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5953. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5954. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5955. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5956. if (bp->rx_quick_cons_trip_int > 0xff)
  5957. bp->rx_quick_cons_trip_int = 0xff;
  5958. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5959. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5960. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5961. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5962. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5963. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5964. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5965. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5966. 0xff;
  5967. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5968. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5969. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5970. bp->stats_ticks = USEC_PER_SEC;
  5971. }
  5972. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5973. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5974. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5975. if (netif_running(bp->dev)) {
  5976. bnx2_netif_stop(bp, true);
  5977. bnx2_init_nic(bp, 0);
  5978. bnx2_netif_start(bp, true);
  5979. }
  5980. return 0;
  5981. }
  5982. static void
  5983. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5984. {
  5985. struct bnx2 *bp = netdev_priv(dev);
  5986. ering->rx_max_pending = BNX2_MAX_TOTAL_RX_DESC_CNT;
  5987. ering->rx_jumbo_max_pending = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  5988. ering->rx_pending = bp->rx_ring_size;
  5989. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5990. ering->tx_max_pending = BNX2_MAX_TX_DESC_CNT;
  5991. ering->tx_pending = bp->tx_ring_size;
  5992. }
  5993. static int
  5994. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
  5995. {
  5996. if (netif_running(bp->dev)) {
  5997. /* Reset will erase chipset stats; save them */
  5998. bnx2_save_stats(bp);
  5999. bnx2_netif_stop(bp, true);
  6000. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  6001. if (reset_irq) {
  6002. bnx2_free_irq(bp);
  6003. bnx2_del_napi(bp);
  6004. } else {
  6005. __bnx2_free_irq(bp);
  6006. }
  6007. bnx2_free_skbs(bp);
  6008. bnx2_free_mem(bp);
  6009. }
  6010. bnx2_set_rx_ring_size(bp, rx);
  6011. bp->tx_ring_size = tx;
  6012. if (netif_running(bp->dev)) {
  6013. int rc = 0;
  6014. if (reset_irq) {
  6015. rc = bnx2_setup_int_mode(bp, disable_msi);
  6016. bnx2_init_napi(bp);
  6017. }
  6018. if (!rc)
  6019. rc = bnx2_alloc_mem(bp);
  6020. if (!rc)
  6021. rc = bnx2_request_irq(bp);
  6022. if (!rc)
  6023. rc = bnx2_init_nic(bp, 0);
  6024. if (rc) {
  6025. bnx2_napi_enable(bp);
  6026. dev_close(bp->dev);
  6027. return rc;
  6028. }
  6029. #ifdef BCM_CNIC
  6030. mutex_lock(&bp->cnic_lock);
  6031. /* Let cnic know about the new status block. */
  6032. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  6033. bnx2_setup_cnic_irq_info(bp);
  6034. mutex_unlock(&bp->cnic_lock);
  6035. #endif
  6036. bnx2_netif_start(bp, true);
  6037. }
  6038. return 0;
  6039. }
  6040. static int
  6041. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  6042. {
  6043. struct bnx2 *bp = netdev_priv(dev);
  6044. int rc;
  6045. if ((ering->rx_pending > BNX2_MAX_TOTAL_RX_DESC_CNT) ||
  6046. (ering->tx_pending > BNX2_MAX_TX_DESC_CNT) ||
  6047. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  6048. return -EINVAL;
  6049. }
  6050. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
  6051. false);
  6052. return rc;
  6053. }
  6054. static void
  6055. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6056. {
  6057. struct bnx2 *bp = netdev_priv(dev);
  6058. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  6059. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  6060. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  6061. }
  6062. static int
  6063. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6064. {
  6065. struct bnx2 *bp = netdev_priv(dev);
  6066. bp->req_flow_ctrl = 0;
  6067. if (epause->rx_pause)
  6068. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  6069. if (epause->tx_pause)
  6070. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  6071. if (epause->autoneg) {
  6072. bp->autoneg |= AUTONEG_FLOW_CTRL;
  6073. }
  6074. else {
  6075. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  6076. }
  6077. if (netif_running(dev)) {
  6078. spin_lock_bh(&bp->phy_lock);
  6079. bnx2_setup_phy(bp, bp->phy_port);
  6080. spin_unlock_bh(&bp->phy_lock);
  6081. }
  6082. return 0;
  6083. }
  6084. static struct {
  6085. char string[ETH_GSTRING_LEN];
  6086. } bnx2_stats_str_arr[] = {
  6087. { "rx_bytes" },
  6088. { "rx_error_bytes" },
  6089. { "tx_bytes" },
  6090. { "tx_error_bytes" },
  6091. { "rx_ucast_packets" },
  6092. { "rx_mcast_packets" },
  6093. { "rx_bcast_packets" },
  6094. { "tx_ucast_packets" },
  6095. { "tx_mcast_packets" },
  6096. { "tx_bcast_packets" },
  6097. { "tx_mac_errors" },
  6098. { "tx_carrier_errors" },
  6099. { "rx_crc_errors" },
  6100. { "rx_align_errors" },
  6101. { "tx_single_collisions" },
  6102. { "tx_multi_collisions" },
  6103. { "tx_deferred" },
  6104. { "tx_excess_collisions" },
  6105. { "tx_late_collisions" },
  6106. { "tx_total_collisions" },
  6107. { "rx_fragments" },
  6108. { "rx_jabbers" },
  6109. { "rx_undersize_packets" },
  6110. { "rx_oversize_packets" },
  6111. { "rx_64_byte_packets" },
  6112. { "rx_65_to_127_byte_packets" },
  6113. { "rx_128_to_255_byte_packets" },
  6114. { "rx_256_to_511_byte_packets" },
  6115. { "rx_512_to_1023_byte_packets" },
  6116. { "rx_1024_to_1522_byte_packets" },
  6117. { "rx_1523_to_9022_byte_packets" },
  6118. { "tx_64_byte_packets" },
  6119. { "tx_65_to_127_byte_packets" },
  6120. { "tx_128_to_255_byte_packets" },
  6121. { "tx_256_to_511_byte_packets" },
  6122. { "tx_512_to_1023_byte_packets" },
  6123. { "tx_1024_to_1522_byte_packets" },
  6124. { "tx_1523_to_9022_byte_packets" },
  6125. { "rx_xon_frames" },
  6126. { "rx_xoff_frames" },
  6127. { "tx_xon_frames" },
  6128. { "tx_xoff_frames" },
  6129. { "rx_mac_ctrl_frames" },
  6130. { "rx_filtered_packets" },
  6131. { "rx_ftq_discards" },
  6132. { "rx_discards" },
  6133. { "rx_fw_discards" },
  6134. };
  6135. #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
  6136. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  6137. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  6138. STATS_OFFSET32(stat_IfHCInOctets_hi),
  6139. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  6140. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  6141. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  6142. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  6143. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  6144. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  6145. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  6146. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  6147. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  6148. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  6149. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  6150. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  6151. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  6152. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  6153. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  6154. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6155. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6156. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6157. STATS_OFFSET32(stat_EtherStatsCollisions),
  6158. STATS_OFFSET32(stat_EtherStatsFragments),
  6159. STATS_OFFSET32(stat_EtherStatsJabbers),
  6160. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6161. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6162. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6163. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6164. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6165. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6166. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6167. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6168. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6169. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6170. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6171. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6172. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6173. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6174. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6175. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6176. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6177. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6178. STATS_OFFSET32(stat_OutXonSent),
  6179. STATS_OFFSET32(stat_OutXoffSent),
  6180. STATS_OFFSET32(stat_MacControlFramesReceived),
  6181. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6182. STATS_OFFSET32(stat_IfInFTQDiscards),
  6183. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6184. STATS_OFFSET32(stat_FwRxDrop),
  6185. };
  6186. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6187. * skipped because of errata.
  6188. */
  6189. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6190. 8,0,8,8,8,8,8,8,8,8,
  6191. 4,0,4,4,4,4,4,4,4,4,
  6192. 4,4,4,4,4,4,4,4,4,4,
  6193. 4,4,4,4,4,4,4,4,4,4,
  6194. 4,4,4,4,4,4,4,
  6195. };
  6196. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6197. 8,0,8,8,8,8,8,8,8,8,
  6198. 4,4,4,4,4,4,4,4,4,4,
  6199. 4,4,4,4,4,4,4,4,4,4,
  6200. 4,4,4,4,4,4,4,4,4,4,
  6201. 4,4,4,4,4,4,4,
  6202. };
  6203. #define BNX2_NUM_TESTS 6
  6204. static struct {
  6205. char string[ETH_GSTRING_LEN];
  6206. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6207. { "register_test (offline)" },
  6208. { "memory_test (offline)" },
  6209. { "loopback_test (offline)" },
  6210. { "nvram_test (online)" },
  6211. { "interrupt_test (online)" },
  6212. { "link_test (online)" },
  6213. };
  6214. static int
  6215. bnx2_get_sset_count(struct net_device *dev, int sset)
  6216. {
  6217. switch (sset) {
  6218. case ETH_SS_TEST:
  6219. return BNX2_NUM_TESTS;
  6220. case ETH_SS_STATS:
  6221. return BNX2_NUM_STATS;
  6222. default:
  6223. return -EOPNOTSUPP;
  6224. }
  6225. }
  6226. static void
  6227. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6228. {
  6229. struct bnx2 *bp = netdev_priv(dev);
  6230. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6231. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6232. int i;
  6233. bnx2_netif_stop(bp, true);
  6234. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6235. bnx2_free_skbs(bp);
  6236. if (bnx2_test_registers(bp) != 0) {
  6237. buf[0] = 1;
  6238. etest->flags |= ETH_TEST_FL_FAILED;
  6239. }
  6240. if (bnx2_test_memory(bp) != 0) {
  6241. buf[1] = 1;
  6242. etest->flags |= ETH_TEST_FL_FAILED;
  6243. }
  6244. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6245. etest->flags |= ETH_TEST_FL_FAILED;
  6246. if (!netif_running(bp->dev))
  6247. bnx2_shutdown_chip(bp);
  6248. else {
  6249. bnx2_init_nic(bp, 1);
  6250. bnx2_netif_start(bp, true);
  6251. }
  6252. /* wait for link up */
  6253. for (i = 0; i < 7; i++) {
  6254. if (bp->link_up)
  6255. break;
  6256. msleep_interruptible(1000);
  6257. }
  6258. }
  6259. if (bnx2_test_nvram(bp) != 0) {
  6260. buf[3] = 1;
  6261. etest->flags |= ETH_TEST_FL_FAILED;
  6262. }
  6263. if (bnx2_test_intr(bp) != 0) {
  6264. buf[4] = 1;
  6265. etest->flags |= ETH_TEST_FL_FAILED;
  6266. }
  6267. if (bnx2_test_link(bp) != 0) {
  6268. buf[5] = 1;
  6269. etest->flags |= ETH_TEST_FL_FAILED;
  6270. }
  6271. }
  6272. static void
  6273. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6274. {
  6275. switch (stringset) {
  6276. case ETH_SS_STATS:
  6277. memcpy(buf, bnx2_stats_str_arr,
  6278. sizeof(bnx2_stats_str_arr));
  6279. break;
  6280. case ETH_SS_TEST:
  6281. memcpy(buf, bnx2_tests_str_arr,
  6282. sizeof(bnx2_tests_str_arr));
  6283. break;
  6284. }
  6285. }
  6286. static void
  6287. bnx2_get_ethtool_stats(struct net_device *dev,
  6288. struct ethtool_stats *stats, u64 *buf)
  6289. {
  6290. struct bnx2 *bp = netdev_priv(dev);
  6291. int i;
  6292. u32 *hw_stats = (u32 *) bp->stats_blk;
  6293. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6294. u8 *stats_len_arr = NULL;
  6295. if (hw_stats == NULL) {
  6296. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6297. return;
  6298. }
  6299. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  6300. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) ||
  6301. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A2) ||
  6302. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  6303. stats_len_arr = bnx2_5706_stats_len_arr;
  6304. else
  6305. stats_len_arr = bnx2_5708_stats_len_arr;
  6306. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6307. unsigned long offset;
  6308. if (stats_len_arr[i] == 0) {
  6309. /* skip this counter */
  6310. buf[i] = 0;
  6311. continue;
  6312. }
  6313. offset = bnx2_stats_offset_arr[i];
  6314. if (stats_len_arr[i] == 4) {
  6315. /* 4-byte counter */
  6316. buf[i] = (u64) *(hw_stats + offset) +
  6317. *(temp_stats + offset);
  6318. continue;
  6319. }
  6320. /* 8-byte counter */
  6321. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6322. *(hw_stats + offset + 1) +
  6323. (((u64) *(temp_stats + offset)) << 32) +
  6324. *(temp_stats + offset + 1);
  6325. }
  6326. }
  6327. static int
  6328. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6329. {
  6330. struct bnx2 *bp = netdev_priv(dev);
  6331. switch (state) {
  6332. case ETHTOOL_ID_ACTIVE:
  6333. bp->leds_save = BNX2_RD(bp, BNX2_MISC_CFG);
  6334. BNX2_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6335. return 1; /* cycle on/off once per second */
  6336. case ETHTOOL_ID_ON:
  6337. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6338. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6339. BNX2_EMAC_LED_100MB_OVERRIDE |
  6340. BNX2_EMAC_LED_10MB_OVERRIDE |
  6341. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6342. BNX2_EMAC_LED_TRAFFIC);
  6343. break;
  6344. case ETHTOOL_ID_OFF:
  6345. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6346. break;
  6347. case ETHTOOL_ID_INACTIVE:
  6348. BNX2_WR(bp, BNX2_EMAC_LED, 0);
  6349. BNX2_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6350. break;
  6351. }
  6352. return 0;
  6353. }
  6354. static int
  6355. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6356. {
  6357. struct bnx2 *bp = netdev_priv(dev);
  6358. /* TSO with VLAN tag won't work with current firmware */
  6359. if (features & NETIF_F_HW_VLAN_CTAG_TX)
  6360. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6361. else
  6362. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6363. if ((!!(features & NETIF_F_HW_VLAN_CTAG_RX) !=
  6364. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6365. netif_running(dev)) {
  6366. bnx2_netif_stop(bp, false);
  6367. dev->features = features;
  6368. bnx2_set_rx_mode(dev);
  6369. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6370. bnx2_netif_start(bp, false);
  6371. return 1;
  6372. }
  6373. return 0;
  6374. }
  6375. static void bnx2_get_channels(struct net_device *dev,
  6376. struct ethtool_channels *channels)
  6377. {
  6378. struct bnx2 *bp = netdev_priv(dev);
  6379. u32 max_rx_rings = 1;
  6380. u32 max_tx_rings = 1;
  6381. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6382. max_rx_rings = RX_MAX_RINGS;
  6383. max_tx_rings = TX_MAX_RINGS;
  6384. }
  6385. channels->max_rx = max_rx_rings;
  6386. channels->max_tx = max_tx_rings;
  6387. channels->max_other = 0;
  6388. channels->max_combined = 0;
  6389. channels->rx_count = bp->num_rx_rings;
  6390. channels->tx_count = bp->num_tx_rings;
  6391. channels->other_count = 0;
  6392. channels->combined_count = 0;
  6393. }
  6394. static int bnx2_set_channels(struct net_device *dev,
  6395. struct ethtool_channels *channels)
  6396. {
  6397. struct bnx2 *bp = netdev_priv(dev);
  6398. u32 max_rx_rings = 1;
  6399. u32 max_tx_rings = 1;
  6400. int rc = 0;
  6401. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6402. max_rx_rings = RX_MAX_RINGS;
  6403. max_tx_rings = TX_MAX_RINGS;
  6404. }
  6405. if (channels->rx_count > max_rx_rings ||
  6406. channels->tx_count > max_tx_rings)
  6407. return -EINVAL;
  6408. bp->num_req_rx_rings = channels->rx_count;
  6409. bp->num_req_tx_rings = channels->tx_count;
  6410. if (netif_running(dev))
  6411. rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
  6412. bp->tx_ring_size, true);
  6413. return rc;
  6414. }
  6415. static const struct ethtool_ops bnx2_ethtool_ops = {
  6416. .get_drvinfo = bnx2_get_drvinfo,
  6417. .get_regs_len = bnx2_get_regs_len,
  6418. .get_regs = bnx2_get_regs,
  6419. .get_wol = bnx2_get_wol,
  6420. .set_wol = bnx2_set_wol,
  6421. .nway_reset = bnx2_nway_reset,
  6422. .get_link = bnx2_get_link,
  6423. .get_eeprom_len = bnx2_get_eeprom_len,
  6424. .get_eeprom = bnx2_get_eeprom,
  6425. .set_eeprom = bnx2_set_eeprom,
  6426. .get_coalesce = bnx2_get_coalesce,
  6427. .set_coalesce = bnx2_set_coalesce,
  6428. .get_ringparam = bnx2_get_ringparam,
  6429. .set_ringparam = bnx2_set_ringparam,
  6430. .get_pauseparam = bnx2_get_pauseparam,
  6431. .set_pauseparam = bnx2_set_pauseparam,
  6432. .self_test = bnx2_self_test,
  6433. .get_strings = bnx2_get_strings,
  6434. .set_phys_id = bnx2_set_phys_id,
  6435. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6436. .get_sset_count = bnx2_get_sset_count,
  6437. .get_channels = bnx2_get_channels,
  6438. .set_channels = bnx2_set_channels,
  6439. .get_link_ksettings = bnx2_get_link_ksettings,
  6440. .set_link_ksettings = bnx2_set_link_ksettings,
  6441. };
  6442. /* Called with rtnl_lock */
  6443. static int
  6444. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6445. {
  6446. struct mii_ioctl_data *data = if_mii(ifr);
  6447. struct bnx2 *bp = netdev_priv(dev);
  6448. int err;
  6449. switch(cmd) {
  6450. case SIOCGMIIPHY:
  6451. data->phy_id = bp->phy_addr;
  6452. /* fallthru */
  6453. case SIOCGMIIREG: {
  6454. u32 mii_regval;
  6455. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6456. return -EOPNOTSUPP;
  6457. if (!netif_running(dev))
  6458. return -EAGAIN;
  6459. spin_lock_bh(&bp->phy_lock);
  6460. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6461. spin_unlock_bh(&bp->phy_lock);
  6462. data->val_out = mii_regval;
  6463. return err;
  6464. }
  6465. case SIOCSMIIREG:
  6466. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6467. return -EOPNOTSUPP;
  6468. if (!netif_running(dev))
  6469. return -EAGAIN;
  6470. spin_lock_bh(&bp->phy_lock);
  6471. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6472. spin_unlock_bh(&bp->phy_lock);
  6473. return err;
  6474. default:
  6475. /* do nothing */
  6476. break;
  6477. }
  6478. return -EOPNOTSUPP;
  6479. }
  6480. /* Called with rtnl_lock */
  6481. static int
  6482. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6483. {
  6484. struct sockaddr *addr = p;
  6485. struct bnx2 *bp = netdev_priv(dev);
  6486. if (!is_valid_ether_addr(addr->sa_data))
  6487. return -EADDRNOTAVAIL;
  6488. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6489. if (netif_running(dev))
  6490. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6491. return 0;
  6492. }
  6493. /* Called with rtnl_lock */
  6494. static int
  6495. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6496. {
  6497. struct bnx2 *bp = netdev_priv(dev);
  6498. dev->mtu = new_mtu;
  6499. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
  6500. false);
  6501. }
  6502. #ifdef CONFIG_NET_POLL_CONTROLLER
  6503. static void
  6504. poll_bnx2(struct net_device *dev)
  6505. {
  6506. struct bnx2 *bp = netdev_priv(dev);
  6507. int i;
  6508. for (i = 0; i < bp->irq_nvecs; i++) {
  6509. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6510. disable_irq(irq->vector);
  6511. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6512. enable_irq(irq->vector);
  6513. }
  6514. }
  6515. #endif
  6516. static void
  6517. bnx2_get_5709_media(struct bnx2 *bp)
  6518. {
  6519. u32 val = BNX2_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6520. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6521. u32 strap;
  6522. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6523. return;
  6524. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6525. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6526. return;
  6527. }
  6528. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6529. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6530. else
  6531. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6532. if (bp->func == 0) {
  6533. switch (strap) {
  6534. case 0x4:
  6535. case 0x5:
  6536. case 0x6:
  6537. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6538. return;
  6539. }
  6540. } else {
  6541. switch (strap) {
  6542. case 0x1:
  6543. case 0x2:
  6544. case 0x4:
  6545. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6546. return;
  6547. }
  6548. }
  6549. }
  6550. static void
  6551. bnx2_get_pci_speed(struct bnx2 *bp)
  6552. {
  6553. u32 reg;
  6554. reg = BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6555. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6556. u32 clkreg;
  6557. bp->flags |= BNX2_FLAG_PCIX;
  6558. clkreg = BNX2_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6559. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6560. switch (clkreg) {
  6561. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6562. bp->bus_speed_mhz = 133;
  6563. break;
  6564. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6565. bp->bus_speed_mhz = 100;
  6566. break;
  6567. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6568. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6569. bp->bus_speed_mhz = 66;
  6570. break;
  6571. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6572. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6573. bp->bus_speed_mhz = 50;
  6574. break;
  6575. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6576. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6577. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6578. bp->bus_speed_mhz = 33;
  6579. break;
  6580. }
  6581. }
  6582. else {
  6583. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6584. bp->bus_speed_mhz = 66;
  6585. else
  6586. bp->bus_speed_mhz = 33;
  6587. }
  6588. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6589. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6590. }
  6591. static void
  6592. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6593. {
  6594. int rc, i, j;
  6595. u8 *data;
  6596. unsigned int block_end, rosize, len;
  6597. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6598. #define BNX2_VPD_LEN 128
  6599. #define BNX2_MAX_VER_SLEN 30
  6600. data = kmalloc(256, GFP_KERNEL);
  6601. if (!data)
  6602. return;
  6603. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6604. BNX2_VPD_LEN);
  6605. if (rc)
  6606. goto vpd_done;
  6607. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6608. data[i] = data[i + BNX2_VPD_LEN + 3];
  6609. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6610. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6611. data[i + 3] = data[i + BNX2_VPD_LEN];
  6612. }
  6613. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6614. if (i < 0)
  6615. goto vpd_done;
  6616. rosize = pci_vpd_lrdt_size(&data[i]);
  6617. i += PCI_VPD_LRDT_TAG_SIZE;
  6618. block_end = i + rosize;
  6619. if (block_end > BNX2_VPD_LEN)
  6620. goto vpd_done;
  6621. j = pci_vpd_find_info_keyword(data, i, rosize,
  6622. PCI_VPD_RO_KEYWORD_MFR_ID);
  6623. if (j < 0)
  6624. goto vpd_done;
  6625. len = pci_vpd_info_field_size(&data[j]);
  6626. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6627. if (j + len > block_end || len != 4 ||
  6628. memcmp(&data[j], "1028", 4))
  6629. goto vpd_done;
  6630. j = pci_vpd_find_info_keyword(data, i, rosize,
  6631. PCI_VPD_RO_KEYWORD_VENDOR0);
  6632. if (j < 0)
  6633. goto vpd_done;
  6634. len = pci_vpd_info_field_size(&data[j]);
  6635. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6636. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6637. goto vpd_done;
  6638. memcpy(bp->fw_version, &data[j], len);
  6639. bp->fw_version[len] = ' ';
  6640. vpd_done:
  6641. kfree(data);
  6642. }
  6643. static int
  6644. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6645. {
  6646. struct bnx2 *bp;
  6647. int rc, i, j;
  6648. u32 reg;
  6649. u64 dma_mask, persist_dma_mask;
  6650. int err;
  6651. SET_NETDEV_DEV(dev, &pdev->dev);
  6652. bp = netdev_priv(dev);
  6653. bp->flags = 0;
  6654. bp->phy_flags = 0;
  6655. bp->temp_stats_blk =
  6656. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6657. if (bp->temp_stats_blk == NULL) {
  6658. rc = -ENOMEM;
  6659. goto err_out;
  6660. }
  6661. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6662. rc = pci_enable_device(pdev);
  6663. if (rc) {
  6664. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6665. goto err_out;
  6666. }
  6667. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6668. dev_err(&pdev->dev,
  6669. "Cannot find PCI device base address, aborting\n");
  6670. rc = -ENODEV;
  6671. goto err_out_disable;
  6672. }
  6673. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6674. if (rc) {
  6675. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6676. goto err_out_disable;
  6677. }
  6678. pci_set_master(pdev);
  6679. bp->pm_cap = pdev->pm_cap;
  6680. if (bp->pm_cap == 0) {
  6681. dev_err(&pdev->dev,
  6682. "Cannot find power management capability, aborting\n");
  6683. rc = -EIO;
  6684. goto err_out_release;
  6685. }
  6686. bp->dev = dev;
  6687. bp->pdev = pdev;
  6688. spin_lock_init(&bp->phy_lock);
  6689. spin_lock_init(&bp->indirect_lock);
  6690. #ifdef BCM_CNIC
  6691. mutex_init(&bp->cnic_lock);
  6692. #endif
  6693. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6694. bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
  6695. TX_MAX_TSS_RINGS + 1));
  6696. if (!bp->regview) {
  6697. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6698. rc = -ENOMEM;
  6699. goto err_out_release;
  6700. }
  6701. /* Configure byte swap and enable write to the reg_window registers.
  6702. * Rely on CPU to do target byte swapping on big endian systems
  6703. * The chip's target access swapping will not swap all accesses
  6704. */
  6705. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6706. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6707. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6708. bp->chip_id = BNX2_RD(bp, BNX2_MISC_ID);
  6709. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  6710. if (!pci_is_pcie(pdev)) {
  6711. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6712. rc = -EIO;
  6713. goto err_out_unmap;
  6714. }
  6715. bp->flags |= BNX2_FLAG_PCIE;
  6716. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  6717. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6718. /* AER (Advanced Error Reporting) hooks */
  6719. err = pci_enable_pcie_error_reporting(pdev);
  6720. if (!err)
  6721. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6722. } else {
  6723. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6724. if (bp->pcix_cap == 0) {
  6725. dev_err(&pdev->dev,
  6726. "Cannot find PCIX capability, aborting\n");
  6727. rc = -EIO;
  6728. goto err_out_unmap;
  6729. }
  6730. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6731. }
  6732. if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6733. BNX2_CHIP_REV(bp) != BNX2_CHIP_REV_Ax) {
  6734. if (pdev->msix_cap)
  6735. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6736. }
  6737. if (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0 &&
  6738. BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A1) {
  6739. if (pdev->msi_cap)
  6740. bp->flags |= BNX2_FLAG_MSI_CAP;
  6741. }
  6742. /* 5708 cannot support DMA addresses > 40-bit. */
  6743. if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6744. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6745. else
  6746. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6747. /* Configure DMA attributes. */
  6748. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6749. dev->features |= NETIF_F_HIGHDMA;
  6750. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6751. if (rc) {
  6752. dev_err(&pdev->dev,
  6753. "pci_set_consistent_dma_mask failed, aborting\n");
  6754. goto err_out_unmap;
  6755. }
  6756. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6757. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6758. goto err_out_unmap;
  6759. }
  6760. if (!(bp->flags & BNX2_FLAG_PCIE))
  6761. bnx2_get_pci_speed(bp);
  6762. /* 5706A0 may falsely detect SERR and PERR. */
  6763. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6764. reg = BNX2_RD(bp, PCI_COMMAND);
  6765. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6766. BNX2_WR(bp, PCI_COMMAND, reg);
  6767. } else if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) &&
  6768. !(bp->flags & BNX2_FLAG_PCIX)) {
  6769. dev_err(&pdev->dev,
  6770. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6771. goto err_out_unmap;
  6772. }
  6773. bnx2_init_nvram(bp);
  6774. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6775. if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
  6776. bp->func = 1;
  6777. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6778. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6779. u32 off = bp->func << 2;
  6780. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6781. } else
  6782. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6783. /* Get the permanent MAC address. First we need to make sure the
  6784. * firmware is actually running.
  6785. */
  6786. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6787. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6788. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6789. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6790. rc = -ENODEV;
  6791. goto err_out_unmap;
  6792. }
  6793. bnx2_read_vpd_fw_ver(bp);
  6794. j = strlen(bp->fw_version);
  6795. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6796. for (i = 0; i < 3 && j < 24; i++) {
  6797. u8 num, k, skip0;
  6798. if (i == 0) {
  6799. bp->fw_version[j++] = 'b';
  6800. bp->fw_version[j++] = 'c';
  6801. bp->fw_version[j++] = ' ';
  6802. }
  6803. num = (u8) (reg >> (24 - (i * 8)));
  6804. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6805. if (num >= k || !skip0 || k == 1) {
  6806. bp->fw_version[j++] = (num / k) + '0';
  6807. skip0 = 0;
  6808. }
  6809. }
  6810. if (i != 2)
  6811. bp->fw_version[j++] = '.';
  6812. }
  6813. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6814. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6815. bp->wol = 1;
  6816. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6817. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6818. for (i = 0; i < 30; i++) {
  6819. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6820. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6821. break;
  6822. msleep(10);
  6823. }
  6824. }
  6825. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6826. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6827. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6828. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6829. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6830. if (j < 32)
  6831. bp->fw_version[j++] = ' ';
  6832. for (i = 0; i < 3 && j < 28; i++) {
  6833. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6834. reg = be32_to_cpu(reg);
  6835. memcpy(&bp->fw_version[j], &reg, 4);
  6836. j += 4;
  6837. }
  6838. }
  6839. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6840. bp->mac_addr[0] = (u8) (reg >> 8);
  6841. bp->mac_addr[1] = (u8) reg;
  6842. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6843. bp->mac_addr[2] = (u8) (reg >> 24);
  6844. bp->mac_addr[3] = (u8) (reg >> 16);
  6845. bp->mac_addr[4] = (u8) (reg >> 8);
  6846. bp->mac_addr[5] = (u8) reg;
  6847. bp->tx_ring_size = BNX2_MAX_TX_DESC_CNT;
  6848. bnx2_set_rx_ring_size(bp, 255);
  6849. bp->tx_quick_cons_trip_int = 2;
  6850. bp->tx_quick_cons_trip = 20;
  6851. bp->tx_ticks_int = 18;
  6852. bp->tx_ticks = 80;
  6853. bp->rx_quick_cons_trip_int = 2;
  6854. bp->rx_quick_cons_trip = 12;
  6855. bp->rx_ticks_int = 18;
  6856. bp->rx_ticks = 18;
  6857. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6858. bp->current_interval = BNX2_TIMER_INTERVAL;
  6859. bp->phy_addr = 1;
  6860. /* allocate stats_blk */
  6861. rc = bnx2_alloc_stats_blk(dev);
  6862. if (rc)
  6863. goto err_out_unmap;
  6864. /* Disable WOL support if we are running on a SERDES chip. */
  6865. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  6866. bnx2_get_5709_media(bp);
  6867. else if (BNX2_CHIP_BOND(bp) & BNX2_CHIP_BOND_SERDES_BIT)
  6868. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6869. bp->phy_port = PORT_TP;
  6870. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6871. bp->phy_port = PORT_FIBRE;
  6872. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6873. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6874. bp->flags |= BNX2_FLAG_NO_WOL;
  6875. bp->wol = 0;
  6876. }
  6877. if (BNX2_CHIP(bp) == BNX2_CHIP_5706) {
  6878. /* Don't do parallel detect on this board because of
  6879. * some board problems. The link will not go down
  6880. * if we do parallel detect.
  6881. */
  6882. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6883. pdev->subsystem_device == 0x310c)
  6884. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6885. } else {
  6886. bp->phy_addr = 2;
  6887. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6888. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6889. }
  6890. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5706 ||
  6891. BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6892. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6893. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6894. (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax ||
  6895. BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Bx))
  6896. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6897. bnx2_init_fw_cap(bp);
  6898. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  6899. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  6900. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1) ||
  6901. !(BNX2_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6902. bp->flags |= BNX2_FLAG_NO_WOL;
  6903. bp->wol = 0;
  6904. }
  6905. if (bp->flags & BNX2_FLAG_NO_WOL)
  6906. device_set_wakeup_capable(&bp->pdev->dev, false);
  6907. else
  6908. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  6909. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6910. bp->tx_quick_cons_trip_int =
  6911. bp->tx_quick_cons_trip;
  6912. bp->tx_ticks_int = bp->tx_ticks;
  6913. bp->rx_quick_cons_trip_int =
  6914. bp->rx_quick_cons_trip;
  6915. bp->rx_ticks_int = bp->rx_ticks;
  6916. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6917. bp->com_ticks_int = bp->com_ticks;
  6918. bp->cmd_ticks_int = bp->cmd_ticks;
  6919. }
  6920. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6921. *
  6922. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6923. * with byte enables disabled on the unused 32-bit word. This is legal
  6924. * but causes problems on the AMD 8132 which will eventually stop
  6925. * responding after a while.
  6926. *
  6927. * AMD believes this incompatibility is unique to the 5706, and
  6928. * prefers to locally disable MSI rather than globally disabling it.
  6929. */
  6930. if (BNX2_CHIP(bp) == BNX2_CHIP_5706 && disable_msi == 0) {
  6931. struct pci_dev *amd_8132 = NULL;
  6932. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6933. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6934. amd_8132))) {
  6935. if (amd_8132->revision >= 0x10 &&
  6936. amd_8132->revision <= 0x13) {
  6937. disable_msi = 1;
  6938. pci_dev_put(amd_8132);
  6939. break;
  6940. }
  6941. }
  6942. }
  6943. bnx2_set_default_link(bp);
  6944. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6945. init_timer(&bp->timer);
  6946. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6947. bp->timer.data = (unsigned long) bp;
  6948. bp->timer.function = bnx2_timer;
  6949. #ifdef BCM_CNIC
  6950. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6951. bp->cnic_eth_dev.max_iscsi_conn =
  6952. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6953. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6954. bp->cnic_probe = bnx2_cnic_probe;
  6955. #endif
  6956. pci_save_state(pdev);
  6957. return 0;
  6958. err_out_unmap:
  6959. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6960. pci_disable_pcie_error_reporting(pdev);
  6961. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6962. }
  6963. pci_iounmap(pdev, bp->regview);
  6964. bp->regview = NULL;
  6965. err_out_release:
  6966. pci_release_regions(pdev);
  6967. err_out_disable:
  6968. pci_disable_device(pdev);
  6969. err_out:
  6970. kfree(bp->temp_stats_blk);
  6971. return rc;
  6972. }
  6973. static char *
  6974. bnx2_bus_string(struct bnx2 *bp, char *str)
  6975. {
  6976. char *s = str;
  6977. if (bp->flags & BNX2_FLAG_PCIE) {
  6978. s += sprintf(s, "PCI Express");
  6979. } else {
  6980. s += sprintf(s, "PCI");
  6981. if (bp->flags & BNX2_FLAG_PCIX)
  6982. s += sprintf(s, "-X");
  6983. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6984. s += sprintf(s, " 32-bit");
  6985. else
  6986. s += sprintf(s, " 64-bit");
  6987. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6988. }
  6989. return str;
  6990. }
  6991. static void
  6992. bnx2_del_napi(struct bnx2 *bp)
  6993. {
  6994. int i;
  6995. for (i = 0; i < bp->irq_nvecs; i++)
  6996. netif_napi_del(&bp->bnx2_napi[i].napi);
  6997. }
  6998. static void
  6999. bnx2_init_napi(struct bnx2 *bp)
  7000. {
  7001. int i;
  7002. for (i = 0; i < bp->irq_nvecs; i++) {
  7003. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  7004. int (*poll)(struct napi_struct *, int);
  7005. if (i == 0)
  7006. poll = bnx2_poll;
  7007. else
  7008. poll = bnx2_poll_msix;
  7009. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  7010. bnapi->bp = bp;
  7011. }
  7012. }
  7013. static const struct net_device_ops bnx2_netdev_ops = {
  7014. .ndo_open = bnx2_open,
  7015. .ndo_start_xmit = bnx2_start_xmit,
  7016. .ndo_stop = bnx2_close,
  7017. .ndo_get_stats64 = bnx2_get_stats64,
  7018. .ndo_set_rx_mode = bnx2_set_rx_mode,
  7019. .ndo_do_ioctl = bnx2_ioctl,
  7020. .ndo_validate_addr = eth_validate_addr,
  7021. .ndo_set_mac_address = bnx2_change_mac_addr,
  7022. .ndo_change_mtu = bnx2_change_mtu,
  7023. .ndo_set_features = bnx2_set_features,
  7024. .ndo_tx_timeout = bnx2_tx_timeout,
  7025. #ifdef CONFIG_NET_POLL_CONTROLLER
  7026. .ndo_poll_controller = poll_bnx2,
  7027. #endif
  7028. };
  7029. static int
  7030. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  7031. {
  7032. static int version_printed = 0;
  7033. struct net_device *dev;
  7034. struct bnx2 *bp;
  7035. int rc;
  7036. char str[40];
  7037. if (version_printed++ == 0)
  7038. pr_info("%s", version);
  7039. /* dev zeroed in init_etherdev */
  7040. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  7041. if (!dev)
  7042. return -ENOMEM;
  7043. rc = bnx2_init_board(pdev, dev);
  7044. if (rc < 0)
  7045. goto err_free;
  7046. dev->netdev_ops = &bnx2_netdev_ops;
  7047. dev->watchdog_timeo = TX_TIMEOUT;
  7048. dev->ethtool_ops = &bnx2_ethtool_ops;
  7049. bp = netdev_priv(dev);
  7050. pci_set_drvdata(pdev, dev);
  7051. /*
  7052. * In-flight DMA from 1st kernel could continue going in kdump kernel.
  7053. * New io-page table has been created before bnx2 does reset at open stage.
  7054. * We have to wait for the in-flight DMA to complete to avoid it look up
  7055. * into the newly created io-page table.
  7056. */
  7057. if (is_kdump_kernel())
  7058. bnx2_wait_dma_complete(bp);
  7059. memcpy(dev->dev_addr, bp->mac_addr, ETH_ALEN);
  7060. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  7061. NETIF_F_TSO | NETIF_F_TSO_ECN |
  7062. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  7063. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  7064. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  7065. dev->vlan_features = dev->hw_features;
  7066. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
  7067. dev->features |= dev->hw_features;
  7068. dev->priv_flags |= IFF_UNICAST_FLT;
  7069. dev->min_mtu = MIN_ETHERNET_PACKET_SIZE;
  7070. dev->max_mtu = MAX_ETHERNET_JUMBO_PACKET_SIZE;
  7071. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  7072. dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
  7073. if ((rc = register_netdev(dev))) {
  7074. dev_err(&pdev->dev, "Cannot register net device\n");
  7075. goto error;
  7076. }
  7077. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
  7078. "node addr %pM\n", board_info[ent->driver_data].name,
  7079. ((BNX2_CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  7080. ((BNX2_CHIP_ID(bp) & 0x0ff0) >> 4),
  7081. bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
  7082. pdev->irq, dev->dev_addr);
  7083. return 0;
  7084. error:
  7085. pci_iounmap(pdev, bp->regview);
  7086. pci_release_regions(pdev);
  7087. pci_disable_device(pdev);
  7088. err_free:
  7089. bnx2_free_stats_blk(dev);
  7090. free_netdev(dev);
  7091. return rc;
  7092. }
  7093. static void
  7094. bnx2_remove_one(struct pci_dev *pdev)
  7095. {
  7096. struct net_device *dev = pci_get_drvdata(pdev);
  7097. struct bnx2 *bp = netdev_priv(dev);
  7098. unregister_netdev(dev);
  7099. del_timer_sync(&bp->timer);
  7100. cancel_work_sync(&bp->reset_task);
  7101. pci_iounmap(bp->pdev, bp->regview);
  7102. bnx2_free_stats_blk(dev);
  7103. kfree(bp->temp_stats_blk);
  7104. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  7105. pci_disable_pcie_error_reporting(pdev);
  7106. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  7107. }
  7108. bnx2_release_firmware(bp);
  7109. free_netdev(dev);
  7110. pci_release_regions(pdev);
  7111. pci_disable_device(pdev);
  7112. }
  7113. #ifdef CONFIG_PM_SLEEP
  7114. static int
  7115. bnx2_suspend(struct device *device)
  7116. {
  7117. struct pci_dev *pdev = to_pci_dev(device);
  7118. struct net_device *dev = pci_get_drvdata(pdev);
  7119. struct bnx2 *bp = netdev_priv(dev);
  7120. if (netif_running(dev)) {
  7121. cancel_work_sync(&bp->reset_task);
  7122. bnx2_netif_stop(bp, true);
  7123. netif_device_detach(dev);
  7124. del_timer_sync(&bp->timer);
  7125. bnx2_shutdown_chip(bp);
  7126. __bnx2_free_irq(bp);
  7127. bnx2_free_skbs(bp);
  7128. }
  7129. bnx2_setup_wol(bp);
  7130. return 0;
  7131. }
  7132. static int
  7133. bnx2_resume(struct device *device)
  7134. {
  7135. struct pci_dev *pdev = to_pci_dev(device);
  7136. struct net_device *dev = pci_get_drvdata(pdev);
  7137. struct bnx2 *bp = netdev_priv(dev);
  7138. if (!netif_running(dev))
  7139. return 0;
  7140. bnx2_set_power_state(bp, PCI_D0);
  7141. netif_device_attach(dev);
  7142. bnx2_request_irq(bp);
  7143. bnx2_init_nic(bp, 1);
  7144. bnx2_netif_start(bp, true);
  7145. return 0;
  7146. }
  7147. static SIMPLE_DEV_PM_OPS(bnx2_pm_ops, bnx2_suspend, bnx2_resume);
  7148. #define BNX2_PM_OPS (&bnx2_pm_ops)
  7149. #else
  7150. #define BNX2_PM_OPS NULL
  7151. #endif /* CONFIG_PM_SLEEP */
  7152. /**
  7153. * bnx2_io_error_detected - called when PCI error is detected
  7154. * @pdev: Pointer to PCI device
  7155. * @state: The current pci connection state
  7156. *
  7157. * This function is called after a PCI bus error affecting
  7158. * this device has been detected.
  7159. */
  7160. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  7161. pci_channel_state_t state)
  7162. {
  7163. struct net_device *dev = pci_get_drvdata(pdev);
  7164. struct bnx2 *bp = netdev_priv(dev);
  7165. rtnl_lock();
  7166. netif_device_detach(dev);
  7167. if (state == pci_channel_io_perm_failure) {
  7168. rtnl_unlock();
  7169. return PCI_ERS_RESULT_DISCONNECT;
  7170. }
  7171. if (netif_running(dev)) {
  7172. bnx2_netif_stop(bp, true);
  7173. del_timer_sync(&bp->timer);
  7174. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  7175. }
  7176. pci_disable_device(pdev);
  7177. rtnl_unlock();
  7178. /* Request a slot slot reset. */
  7179. return PCI_ERS_RESULT_NEED_RESET;
  7180. }
  7181. /**
  7182. * bnx2_io_slot_reset - called after the pci bus has been reset.
  7183. * @pdev: Pointer to PCI device
  7184. *
  7185. * Restart the card from scratch, as if from a cold-boot.
  7186. */
  7187. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  7188. {
  7189. struct net_device *dev = pci_get_drvdata(pdev);
  7190. struct bnx2 *bp = netdev_priv(dev);
  7191. pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
  7192. int err = 0;
  7193. rtnl_lock();
  7194. if (pci_enable_device(pdev)) {
  7195. dev_err(&pdev->dev,
  7196. "Cannot re-enable PCI device after reset\n");
  7197. } else {
  7198. pci_set_master(pdev);
  7199. pci_restore_state(pdev);
  7200. pci_save_state(pdev);
  7201. if (netif_running(dev))
  7202. err = bnx2_init_nic(bp, 1);
  7203. if (!err)
  7204. result = PCI_ERS_RESULT_RECOVERED;
  7205. }
  7206. if (result != PCI_ERS_RESULT_RECOVERED && netif_running(dev)) {
  7207. bnx2_napi_enable(bp);
  7208. dev_close(dev);
  7209. }
  7210. rtnl_unlock();
  7211. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7212. return result;
  7213. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7214. if (err) {
  7215. dev_err(&pdev->dev,
  7216. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7217. err); /* non-fatal, continue */
  7218. }
  7219. return result;
  7220. }
  7221. /**
  7222. * bnx2_io_resume - called when traffic can start flowing again.
  7223. * @pdev: Pointer to PCI device
  7224. *
  7225. * This callback is called when the error recovery driver tells us that
  7226. * its OK to resume normal operation.
  7227. */
  7228. static void bnx2_io_resume(struct pci_dev *pdev)
  7229. {
  7230. struct net_device *dev = pci_get_drvdata(pdev);
  7231. struct bnx2 *bp = netdev_priv(dev);
  7232. rtnl_lock();
  7233. if (netif_running(dev))
  7234. bnx2_netif_start(bp, true);
  7235. netif_device_attach(dev);
  7236. rtnl_unlock();
  7237. }
  7238. static void bnx2_shutdown(struct pci_dev *pdev)
  7239. {
  7240. struct net_device *dev = pci_get_drvdata(pdev);
  7241. struct bnx2 *bp;
  7242. if (!dev)
  7243. return;
  7244. bp = netdev_priv(dev);
  7245. if (!bp)
  7246. return;
  7247. rtnl_lock();
  7248. if (netif_running(dev))
  7249. dev_close(bp->dev);
  7250. if (system_state == SYSTEM_POWER_OFF)
  7251. bnx2_set_power_state(bp, PCI_D3hot);
  7252. rtnl_unlock();
  7253. }
  7254. static const struct pci_error_handlers bnx2_err_handler = {
  7255. .error_detected = bnx2_io_error_detected,
  7256. .slot_reset = bnx2_io_slot_reset,
  7257. .resume = bnx2_io_resume,
  7258. };
  7259. static struct pci_driver bnx2_pci_driver = {
  7260. .name = DRV_MODULE_NAME,
  7261. .id_table = bnx2_pci_tbl,
  7262. .probe = bnx2_init_one,
  7263. .remove = bnx2_remove_one,
  7264. .driver.pm = BNX2_PM_OPS,
  7265. .err_handler = &bnx2_err_handler,
  7266. .shutdown = bnx2_shutdown,
  7267. };
  7268. module_pci_driver(bnx2_pci_driver);