qca8k.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956
  1. /*
  2. * Copyright (C) 2009 Felix Fietkau <nbd@nbd.name>
  3. * Copyright (C) 2011-2012 Gabor Juhos <juhosg@openwrt.org>
  4. * Copyright (c) 2015, The Linux Foundation. All rights reserved.
  5. * Copyright (c) 2016 John Crispin <john@phrozen.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 and
  9. * only version 2 as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/phy.h>
  18. #include <linux/netdevice.h>
  19. #include <net/dsa.h>
  20. #include <linux/of_net.h>
  21. #include <linux/of_platform.h>
  22. #include <linux/if_bridge.h>
  23. #include <linux/mdio.h>
  24. #include <linux/etherdevice.h>
  25. #include "qca8k.h"
  26. #define MIB_DESC(_s, _o, _n) \
  27. { \
  28. .size = (_s), \
  29. .offset = (_o), \
  30. .name = (_n), \
  31. }
  32. static const struct qca8k_mib_desc ar8327_mib[] = {
  33. MIB_DESC(1, 0x00, "RxBroad"),
  34. MIB_DESC(1, 0x04, "RxPause"),
  35. MIB_DESC(1, 0x08, "RxMulti"),
  36. MIB_DESC(1, 0x0c, "RxFcsErr"),
  37. MIB_DESC(1, 0x10, "RxAlignErr"),
  38. MIB_DESC(1, 0x14, "RxRunt"),
  39. MIB_DESC(1, 0x18, "RxFragment"),
  40. MIB_DESC(1, 0x1c, "Rx64Byte"),
  41. MIB_DESC(1, 0x20, "Rx128Byte"),
  42. MIB_DESC(1, 0x24, "Rx256Byte"),
  43. MIB_DESC(1, 0x28, "Rx512Byte"),
  44. MIB_DESC(1, 0x2c, "Rx1024Byte"),
  45. MIB_DESC(1, 0x30, "Rx1518Byte"),
  46. MIB_DESC(1, 0x34, "RxMaxByte"),
  47. MIB_DESC(1, 0x38, "RxTooLong"),
  48. MIB_DESC(2, 0x3c, "RxGoodByte"),
  49. MIB_DESC(2, 0x44, "RxBadByte"),
  50. MIB_DESC(1, 0x4c, "RxOverFlow"),
  51. MIB_DESC(1, 0x50, "Filtered"),
  52. MIB_DESC(1, 0x54, "TxBroad"),
  53. MIB_DESC(1, 0x58, "TxPause"),
  54. MIB_DESC(1, 0x5c, "TxMulti"),
  55. MIB_DESC(1, 0x60, "TxUnderRun"),
  56. MIB_DESC(1, 0x64, "Tx64Byte"),
  57. MIB_DESC(1, 0x68, "Tx128Byte"),
  58. MIB_DESC(1, 0x6c, "Tx256Byte"),
  59. MIB_DESC(1, 0x70, "Tx512Byte"),
  60. MIB_DESC(1, 0x74, "Tx1024Byte"),
  61. MIB_DESC(1, 0x78, "Tx1518Byte"),
  62. MIB_DESC(1, 0x7c, "TxMaxByte"),
  63. MIB_DESC(1, 0x80, "TxOverSize"),
  64. MIB_DESC(2, 0x84, "TxByte"),
  65. MIB_DESC(1, 0x8c, "TxCollision"),
  66. MIB_DESC(1, 0x90, "TxAbortCol"),
  67. MIB_DESC(1, 0x94, "TxMultiCol"),
  68. MIB_DESC(1, 0x98, "TxSingleCol"),
  69. MIB_DESC(1, 0x9c, "TxExcDefer"),
  70. MIB_DESC(1, 0xa0, "TxDefer"),
  71. MIB_DESC(1, 0xa4, "TxLateCol"),
  72. };
  73. /* The 32bit switch registers are accessed indirectly. To achieve this we need
  74. * to set the page of the register. Track the last page that was set to reduce
  75. * mdio writes
  76. */
  77. static u16 qca8k_current_page = 0xffff;
  78. static void
  79. qca8k_split_addr(u32 regaddr, u16 *r1, u16 *r2, u16 *page)
  80. {
  81. regaddr >>= 1;
  82. *r1 = regaddr & 0x1e;
  83. regaddr >>= 5;
  84. *r2 = regaddr & 0x7;
  85. regaddr >>= 3;
  86. *page = regaddr & 0x3ff;
  87. }
  88. static u32
  89. qca8k_mii_read32(struct mii_bus *bus, int phy_id, u32 regnum)
  90. {
  91. u32 val;
  92. int ret;
  93. ret = bus->read(bus, phy_id, regnum);
  94. if (ret >= 0) {
  95. val = ret;
  96. ret = bus->read(bus, phy_id, regnum + 1);
  97. val |= ret << 16;
  98. }
  99. if (ret < 0) {
  100. dev_err_ratelimited(&bus->dev,
  101. "failed to read qca8k 32bit register\n");
  102. return ret;
  103. }
  104. return val;
  105. }
  106. static void
  107. qca8k_mii_write32(struct mii_bus *bus, int phy_id, u32 regnum, u32 val)
  108. {
  109. u16 lo, hi;
  110. int ret;
  111. lo = val & 0xffff;
  112. hi = (u16)(val >> 16);
  113. ret = bus->write(bus, phy_id, regnum, lo);
  114. if (ret >= 0)
  115. ret = bus->write(bus, phy_id, regnum + 1, hi);
  116. if (ret < 0)
  117. dev_err_ratelimited(&bus->dev,
  118. "failed to write qca8k 32bit register\n");
  119. }
  120. static void
  121. qca8k_set_page(struct mii_bus *bus, u16 page)
  122. {
  123. if (page == qca8k_current_page)
  124. return;
  125. if (bus->write(bus, 0x18, 0, page) < 0)
  126. dev_err_ratelimited(&bus->dev,
  127. "failed to set qca8k page\n");
  128. qca8k_current_page = page;
  129. }
  130. static u32
  131. qca8k_read(struct qca8k_priv *priv, u32 reg)
  132. {
  133. u16 r1, r2, page;
  134. u32 val;
  135. qca8k_split_addr(reg, &r1, &r2, &page);
  136. mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
  137. qca8k_set_page(priv->bus, page);
  138. val = qca8k_mii_read32(priv->bus, 0x10 | r2, r1);
  139. mutex_unlock(&priv->bus->mdio_lock);
  140. return val;
  141. }
  142. static void
  143. qca8k_write(struct qca8k_priv *priv, u32 reg, u32 val)
  144. {
  145. u16 r1, r2, page;
  146. qca8k_split_addr(reg, &r1, &r2, &page);
  147. mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
  148. qca8k_set_page(priv->bus, page);
  149. qca8k_mii_write32(priv->bus, 0x10 | r2, r1, val);
  150. mutex_unlock(&priv->bus->mdio_lock);
  151. }
  152. static u32
  153. qca8k_rmw(struct qca8k_priv *priv, u32 reg, u32 mask, u32 val)
  154. {
  155. u16 r1, r2, page;
  156. u32 ret;
  157. qca8k_split_addr(reg, &r1, &r2, &page);
  158. mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
  159. qca8k_set_page(priv->bus, page);
  160. ret = qca8k_mii_read32(priv->bus, 0x10 | r2, r1);
  161. ret &= ~mask;
  162. ret |= val;
  163. qca8k_mii_write32(priv->bus, 0x10 | r2, r1, ret);
  164. mutex_unlock(&priv->bus->mdio_lock);
  165. return ret;
  166. }
  167. static void
  168. qca8k_reg_set(struct qca8k_priv *priv, u32 reg, u32 val)
  169. {
  170. qca8k_rmw(priv, reg, 0, val);
  171. }
  172. static void
  173. qca8k_reg_clear(struct qca8k_priv *priv, u32 reg, u32 val)
  174. {
  175. qca8k_rmw(priv, reg, val, 0);
  176. }
  177. static int
  178. qca8k_regmap_read(void *ctx, uint32_t reg, uint32_t *val)
  179. {
  180. struct qca8k_priv *priv = (struct qca8k_priv *)ctx;
  181. *val = qca8k_read(priv, reg);
  182. return 0;
  183. }
  184. static int
  185. qca8k_regmap_write(void *ctx, uint32_t reg, uint32_t val)
  186. {
  187. struct qca8k_priv *priv = (struct qca8k_priv *)ctx;
  188. qca8k_write(priv, reg, val);
  189. return 0;
  190. }
  191. static const struct regmap_range qca8k_readable_ranges[] = {
  192. regmap_reg_range(0x0000, 0x00e4), /* Global control */
  193. regmap_reg_range(0x0100, 0x0168), /* EEE control */
  194. regmap_reg_range(0x0200, 0x0270), /* Parser control */
  195. regmap_reg_range(0x0400, 0x0454), /* ACL */
  196. regmap_reg_range(0x0600, 0x0718), /* Lookup */
  197. regmap_reg_range(0x0800, 0x0b70), /* QM */
  198. regmap_reg_range(0x0c00, 0x0c80), /* PKT */
  199. regmap_reg_range(0x0e00, 0x0e98), /* L3 */
  200. regmap_reg_range(0x1000, 0x10ac), /* MIB - Port0 */
  201. regmap_reg_range(0x1100, 0x11ac), /* MIB - Port1 */
  202. regmap_reg_range(0x1200, 0x12ac), /* MIB - Port2 */
  203. regmap_reg_range(0x1300, 0x13ac), /* MIB - Port3 */
  204. regmap_reg_range(0x1400, 0x14ac), /* MIB - Port4 */
  205. regmap_reg_range(0x1500, 0x15ac), /* MIB - Port5 */
  206. regmap_reg_range(0x1600, 0x16ac), /* MIB - Port6 */
  207. };
  208. static const struct regmap_access_table qca8k_readable_table = {
  209. .yes_ranges = qca8k_readable_ranges,
  210. .n_yes_ranges = ARRAY_SIZE(qca8k_readable_ranges),
  211. };
  212. static struct regmap_config qca8k_regmap_config = {
  213. .reg_bits = 16,
  214. .val_bits = 32,
  215. .reg_stride = 4,
  216. .max_register = 0x16ac, /* end MIB - Port6 range */
  217. .reg_read = qca8k_regmap_read,
  218. .reg_write = qca8k_regmap_write,
  219. .rd_table = &qca8k_readable_table,
  220. };
  221. static int
  222. qca8k_busy_wait(struct qca8k_priv *priv, u32 reg, u32 mask)
  223. {
  224. unsigned long timeout;
  225. timeout = jiffies + msecs_to_jiffies(20);
  226. /* loop until the busy flag has cleared */
  227. do {
  228. u32 val = qca8k_read(priv, reg);
  229. int busy = val & mask;
  230. if (!busy)
  231. break;
  232. cond_resched();
  233. } while (!time_after_eq(jiffies, timeout));
  234. return time_after_eq(jiffies, timeout);
  235. }
  236. static void
  237. qca8k_fdb_read(struct qca8k_priv *priv, struct qca8k_fdb *fdb)
  238. {
  239. u32 reg[4];
  240. int i;
  241. /* load the ARL table into an array */
  242. for (i = 0; i < 4; i++)
  243. reg[i] = qca8k_read(priv, QCA8K_REG_ATU_DATA0 + (i * 4));
  244. /* vid - 83:72 */
  245. fdb->vid = (reg[2] >> QCA8K_ATU_VID_S) & QCA8K_ATU_VID_M;
  246. /* aging - 67:64 */
  247. fdb->aging = reg[2] & QCA8K_ATU_STATUS_M;
  248. /* portmask - 54:48 */
  249. fdb->port_mask = (reg[1] >> QCA8K_ATU_PORT_S) & QCA8K_ATU_PORT_M;
  250. /* mac - 47:0 */
  251. fdb->mac[0] = (reg[1] >> QCA8K_ATU_ADDR0_S) & 0xff;
  252. fdb->mac[1] = reg[1] & 0xff;
  253. fdb->mac[2] = (reg[0] >> QCA8K_ATU_ADDR2_S) & 0xff;
  254. fdb->mac[3] = (reg[0] >> QCA8K_ATU_ADDR3_S) & 0xff;
  255. fdb->mac[4] = (reg[0] >> QCA8K_ATU_ADDR4_S) & 0xff;
  256. fdb->mac[5] = reg[0] & 0xff;
  257. }
  258. static void
  259. qca8k_fdb_write(struct qca8k_priv *priv, u16 vid, u8 port_mask, const u8 *mac,
  260. u8 aging)
  261. {
  262. u32 reg[3] = { 0 };
  263. int i;
  264. /* vid - 83:72 */
  265. reg[2] = (vid & QCA8K_ATU_VID_M) << QCA8K_ATU_VID_S;
  266. /* aging - 67:64 */
  267. reg[2] |= aging & QCA8K_ATU_STATUS_M;
  268. /* portmask - 54:48 */
  269. reg[1] = (port_mask & QCA8K_ATU_PORT_M) << QCA8K_ATU_PORT_S;
  270. /* mac - 47:0 */
  271. reg[1] |= mac[0] << QCA8K_ATU_ADDR0_S;
  272. reg[1] |= mac[1];
  273. reg[0] |= mac[2] << QCA8K_ATU_ADDR2_S;
  274. reg[0] |= mac[3] << QCA8K_ATU_ADDR3_S;
  275. reg[0] |= mac[4] << QCA8K_ATU_ADDR4_S;
  276. reg[0] |= mac[5];
  277. /* load the array into the ARL table */
  278. for (i = 0; i < 3; i++)
  279. qca8k_write(priv, QCA8K_REG_ATU_DATA0 + (i * 4), reg[i]);
  280. }
  281. static int
  282. qca8k_fdb_access(struct qca8k_priv *priv, enum qca8k_fdb_cmd cmd, int port)
  283. {
  284. u32 reg;
  285. /* Set the command and FDB index */
  286. reg = QCA8K_ATU_FUNC_BUSY;
  287. reg |= cmd;
  288. if (port >= 0) {
  289. reg |= QCA8K_ATU_FUNC_PORT_EN;
  290. reg |= (port & QCA8K_ATU_FUNC_PORT_M) << QCA8K_ATU_FUNC_PORT_S;
  291. }
  292. /* Write the function register triggering the table access */
  293. qca8k_write(priv, QCA8K_REG_ATU_FUNC, reg);
  294. /* wait for completion */
  295. if (qca8k_busy_wait(priv, QCA8K_REG_ATU_FUNC, QCA8K_ATU_FUNC_BUSY))
  296. return -1;
  297. /* Check for table full violation when adding an entry */
  298. if (cmd == QCA8K_FDB_LOAD) {
  299. reg = qca8k_read(priv, QCA8K_REG_ATU_FUNC);
  300. if (reg & QCA8K_ATU_FUNC_FULL)
  301. return -1;
  302. }
  303. return 0;
  304. }
  305. static int
  306. qca8k_fdb_next(struct qca8k_priv *priv, struct qca8k_fdb *fdb, int port)
  307. {
  308. int ret;
  309. qca8k_fdb_write(priv, fdb->vid, fdb->port_mask, fdb->mac, fdb->aging);
  310. ret = qca8k_fdb_access(priv, QCA8K_FDB_NEXT, port);
  311. if (ret >= 0)
  312. qca8k_fdb_read(priv, fdb);
  313. return ret;
  314. }
  315. static int
  316. qca8k_fdb_add(struct qca8k_priv *priv, const u8 *mac, u16 port_mask,
  317. u16 vid, u8 aging)
  318. {
  319. int ret;
  320. mutex_lock(&priv->reg_mutex);
  321. qca8k_fdb_write(priv, vid, port_mask, mac, aging);
  322. ret = qca8k_fdb_access(priv, QCA8K_FDB_LOAD, -1);
  323. mutex_unlock(&priv->reg_mutex);
  324. return ret;
  325. }
  326. static int
  327. qca8k_fdb_del(struct qca8k_priv *priv, const u8 *mac, u16 port_mask, u16 vid)
  328. {
  329. int ret;
  330. mutex_lock(&priv->reg_mutex);
  331. qca8k_fdb_write(priv, vid, port_mask, mac, 0);
  332. ret = qca8k_fdb_access(priv, QCA8K_FDB_PURGE, -1);
  333. mutex_unlock(&priv->reg_mutex);
  334. return ret;
  335. }
  336. static void
  337. qca8k_fdb_flush(struct qca8k_priv *priv)
  338. {
  339. mutex_lock(&priv->reg_mutex);
  340. qca8k_fdb_access(priv, QCA8K_FDB_FLUSH, -1);
  341. mutex_unlock(&priv->reg_mutex);
  342. }
  343. static void
  344. qca8k_mib_init(struct qca8k_priv *priv)
  345. {
  346. mutex_lock(&priv->reg_mutex);
  347. qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_FLUSH | QCA8K_MIB_BUSY);
  348. qca8k_busy_wait(priv, QCA8K_REG_MIB, QCA8K_MIB_BUSY);
  349. qca8k_reg_set(priv, QCA8K_REG_MIB, QCA8K_MIB_CPU_KEEP);
  350. qca8k_write(priv, QCA8K_REG_MODULE_EN, QCA8K_MODULE_EN_MIB);
  351. mutex_unlock(&priv->reg_mutex);
  352. }
  353. static int
  354. qca8k_set_pad_ctrl(struct qca8k_priv *priv, int port, int mode)
  355. {
  356. u32 reg;
  357. switch (port) {
  358. case 0:
  359. reg = QCA8K_REG_PORT0_PAD_CTRL;
  360. break;
  361. case 6:
  362. reg = QCA8K_REG_PORT6_PAD_CTRL;
  363. break;
  364. default:
  365. pr_err("Can't set PAD_CTRL on port %d\n", port);
  366. return -EINVAL;
  367. }
  368. /* Configure a port to be directly connected to an external
  369. * PHY or MAC.
  370. */
  371. switch (mode) {
  372. case PHY_INTERFACE_MODE_RGMII:
  373. qca8k_write(priv, reg,
  374. QCA8K_PORT_PAD_RGMII_EN |
  375. QCA8K_PORT_PAD_RGMII_TX_DELAY(3) |
  376. QCA8K_PORT_PAD_RGMII_RX_DELAY(3));
  377. /* According to the datasheet, RGMII delay is enabled through
  378. * PORT5_PAD_CTRL for all ports, rather than individual port
  379. * registers
  380. */
  381. qca8k_write(priv, QCA8K_REG_PORT5_PAD_CTRL,
  382. QCA8K_PORT_PAD_RGMII_RX_DELAY_EN);
  383. break;
  384. case PHY_INTERFACE_MODE_SGMII:
  385. qca8k_write(priv, reg, QCA8K_PORT_PAD_SGMII_EN);
  386. break;
  387. default:
  388. pr_err("xMII mode %d not supported\n", mode);
  389. return -EINVAL;
  390. }
  391. return 0;
  392. }
  393. static void
  394. qca8k_port_set_status(struct qca8k_priv *priv, int port, int enable)
  395. {
  396. u32 mask = QCA8K_PORT_STATUS_TXMAC;
  397. /* Port 0 and 6 have no internal PHY */
  398. if ((port > 0) && (port < 6))
  399. mask |= QCA8K_PORT_STATUS_LINK_AUTO;
  400. if (enable)
  401. qca8k_reg_set(priv, QCA8K_REG_PORT_STATUS(port), mask);
  402. else
  403. qca8k_reg_clear(priv, QCA8K_REG_PORT_STATUS(port), mask);
  404. }
  405. static int
  406. qca8k_setup(struct dsa_switch *ds)
  407. {
  408. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  409. int ret, i, phy_mode = -1;
  410. /* Make sure that port 0 is the cpu port */
  411. if (!dsa_is_cpu_port(ds, 0)) {
  412. pr_err("port 0 is not the CPU port\n");
  413. return -EINVAL;
  414. }
  415. mutex_init(&priv->reg_mutex);
  416. /* Start by setting up the register mapping */
  417. priv->regmap = devm_regmap_init(ds->dev, NULL, priv,
  418. &qca8k_regmap_config);
  419. if (IS_ERR(priv->regmap))
  420. pr_warn("regmap initialization failed");
  421. /* Initialize CPU port pad mode (xMII type, delays...) */
  422. phy_mode = of_get_phy_mode(ds->dst->cpu_dp->dn);
  423. if (phy_mode < 0) {
  424. pr_err("Can't find phy-mode for master device\n");
  425. return phy_mode;
  426. }
  427. ret = qca8k_set_pad_ctrl(priv, QCA8K_CPU_PORT, phy_mode);
  428. if (ret < 0)
  429. return ret;
  430. /* Enable CPU Port */
  431. qca8k_reg_set(priv, QCA8K_REG_GLOBAL_FW_CTRL0,
  432. QCA8K_GLOBAL_FW_CTRL0_CPU_PORT_EN);
  433. qca8k_port_set_status(priv, QCA8K_CPU_PORT, 1);
  434. priv->port_sts[QCA8K_CPU_PORT].enabled = 1;
  435. /* Enable MIB counters */
  436. qca8k_mib_init(priv);
  437. /* Enable QCA header mode on the cpu port */
  438. qca8k_write(priv, QCA8K_REG_PORT_HDR_CTRL(QCA8K_CPU_PORT),
  439. QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_TX_S |
  440. QCA8K_PORT_HDR_CTRL_ALL << QCA8K_PORT_HDR_CTRL_RX_S);
  441. /* Disable forwarding by default on all ports */
  442. for (i = 0; i < QCA8K_NUM_PORTS; i++)
  443. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i),
  444. QCA8K_PORT_LOOKUP_MEMBER, 0);
  445. /* Disable MAC by default on all user ports */
  446. for (i = 1; i < QCA8K_NUM_PORTS; i++)
  447. if (ds->enabled_port_mask & BIT(i))
  448. qca8k_port_set_status(priv, i, 0);
  449. /* Forward all unknown frames to CPU port for Linux processing */
  450. qca8k_write(priv, QCA8K_REG_GLOBAL_FW_CTRL1,
  451. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_IGMP_DP_S |
  452. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_BC_DP_S |
  453. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_MC_DP_S |
  454. BIT(0) << QCA8K_GLOBAL_FW_CTRL1_UC_DP_S);
  455. /* Setup connection between CPU port & user ports */
  456. for (i = 0; i < DSA_MAX_PORTS; i++) {
  457. /* CPU port gets connected to all user ports of the switch */
  458. if (dsa_is_cpu_port(ds, i)) {
  459. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(QCA8K_CPU_PORT),
  460. QCA8K_PORT_LOOKUP_MEMBER,
  461. ds->enabled_port_mask);
  462. }
  463. /* Invividual user ports get connected to CPU port only */
  464. if (ds->enabled_port_mask & BIT(i)) {
  465. int shift = 16 * (i % 2);
  466. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(i),
  467. QCA8K_PORT_LOOKUP_MEMBER,
  468. BIT(QCA8K_CPU_PORT));
  469. /* Enable ARP Auto-learning by default */
  470. qca8k_reg_set(priv, QCA8K_PORT_LOOKUP_CTRL(i),
  471. QCA8K_PORT_LOOKUP_LEARN);
  472. /* For port based vlans to work we need to set the
  473. * default egress vid
  474. */
  475. qca8k_rmw(priv, QCA8K_EGRESS_VLAN(i),
  476. 0xffff << shift, 1 << shift);
  477. qca8k_write(priv, QCA8K_REG_PORT_VLAN_CTRL0(i),
  478. QCA8K_PORT_VLAN_CVID(1) |
  479. QCA8K_PORT_VLAN_SVID(1));
  480. }
  481. }
  482. /* Flush the FDB table */
  483. qca8k_fdb_flush(priv);
  484. return 0;
  485. }
  486. static int
  487. qca8k_phy_read(struct dsa_switch *ds, int phy, int regnum)
  488. {
  489. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  490. return mdiobus_read(priv->bus, phy, regnum);
  491. }
  492. static int
  493. qca8k_phy_write(struct dsa_switch *ds, int phy, int regnum, u16 val)
  494. {
  495. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  496. return mdiobus_write(priv->bus, phy, regnum, val);
  497. }
  498. static void
  499. qca8k_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
  500. {
  501. int i;
  502. for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++)
  503. strncpy(data + i * ETH_GSTRING_LEN, ar8327_mib[i].name,
  504. ETH_GSTRING_LEN);
  505. }
  506. static void
  507. qca8k_get_ethtool_stats(struct dsa_switch *ds, int port,
  508. uint64_t *data)
  509. {
  510. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  511. const struct qca8k_mib_desc *mib;
  512. u32 reg, i;
  513. u64 hi;
  514. for (i = 0; i < ARRAY_SIZE(ar8327_mib); i++) {
  515. mib = &ar8327_mib[i];
  516. reg = QCA8K_PORT_MIB_COUNTER(port) + mib->offset;
  517. data[i] = qca8k_read(priv, reg);
  518. if (mib->size == 2) {
  519. hi = qca8k_read(priv, reg + 4);
  520. data[i] |= hi << 32;
  521. }
  522. }
  523. }
  524. static int
  525. qca8k_get_sset_count(struct dsa_switch *ds)
  526. {
  527. return ARRAY_SIZE(ar8327_mib);
  528. }
  529. static int
  530. qca8k_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *eee)
  531. {
  532. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  533. u32 lpi_en = QCA8K_REG_EEE_CTRL_LPI_EN(port);
  534. u32 reg;
  535. mutex_lock(&priv->reg_mutex);
  536. reg = qca8k_read(priv, QCA8K_REG_EEE_CTRL);
  537. if (eee->eee_enabled)
  538. reg |= lpi_en;
  539. else
  540. reg &= ~lpi_en;
  541. qca8k_write(priv, QCA8K_REG_EEE_CTRL, reg);
  542. mutex_unlock(&priv->reg_mutex);
  543. return 0;
  544. }
  545. static int
  546. qca8k_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
  547. {
  548. /* Nothing to do on the port's MAC */
  549. return 0;
  550. }
  551. static void
  552. qca8k_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
  553. {
  554. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  555. u32 stp_state;
  556. switch (state) {
  557. case BR_STATE_DISABLED:
  558. stp_state = QCA8K_PORT_LOOKUP_STATE_DISABLED;
  559. break;
  560. case BR_STATE_BLOCKING:
  561. stp_state = QCA8K_PORT_LOOKUP_STATE_BLOCKING;
  562. break;
  563. case BR_STATE_LISTENING:
  564. stp_state = QCA8K_PORT_LOOKUP_STATE_LISTENING;
  565. break;
  566. case BR_STATE_LEARNING:
  567. stp_state = QCA8K_PORT_LOOKUP_STATE_LEARNING;
  568. break;
  569. case BR_STATE_FORWARDING:
  570. default:
  571. stp_state = QCA8K_PORT_LOOKUP_STATE_FORWARD;
  572. break;
  573. }
  574. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
  575. QCA8K_PORT_LOOKUP_STATE_MASK, stp_state);
  576. }
  577. static int
  578. qca8k_port_bridge_join(struct dsa_switch *ds, int port, struct net_device *br)
  579. {
  580. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  581. int port_mask = BIT(QCA8K_CPU_PORT);
  582. int i;
  583. for (i = 1; i < QCA8K_NUM_PORTS; i++) {
  584. if (ds->ports[i].bridge_dev != br)
  585. continue;
  586. /* Add this port to the portvlan mask of the other ports
  587. * in the bridge
  588. */
  589. qca8k_reg_set(priv,
  590. QCA8K_PORT_LOOKUP_CTRL(i),
  591. BIT(port));
  592. if (i != port)
  593. port_mask |= BIT(i);
  594. }
  595. /* Add all other ports to this ports portvlan mask */
  596. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
  597. QCA8K_PORT_LOOKUP_MEMBER, port_mask);
  598. return 0;
  599. }
  600. static void
  601. qca8k_port_bridge_leave(struct dsa_switch *ds, int port, struct net_device *br)
  602. {
  603. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  604. int i;
  605. for (i = 1; i < QCA8K_NUM_PORTS; i++) {
  606. if (ds->ports[i].bridge_dev != br)
  607. continue;
  608. /* Remove this port to the portvlan mask of the other ports
  609. * in the bridge
  610. */
  611. qca8k_reg_clear(priv,
  612. QCA8K_PORT_LOOKUP_CTRL(i),
  613. BIT(port));
  614. }
  615. /* Set the cpu port to be the only one in the portvlan mask of
  616. * this port
  617. */
  618. qca8k_rmw(priv, QCA8K_PORT_LOOKUP_CTRL(port),
  619. QCA8K_PORT_LOOKUP_MEMBER, BIT(QCA8K_CPU_PORT));
  620. }
  621. static int
  622. qca8k_port_enable(struct dsa_switch *ds, int port,
  623. struct phy_device *phy)
  624. {
  625. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  626. qca8k_port_set_status(priv, port, 1);
  627. priv->port_sts[port].enabled = 1;
  628. return 0;
  629. }
  630. static void
  631. qca8k_port_disable(struct dsa_switch *ds, int port,
  632. struct phy_device *phy)
  633. {
  634. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  635. qca8k_port_set_status(priv, port, 0);
  636. priv->port_sts[port].enabled = 0;
  637. }
  638. static int
  639. qca8k_port_fdb_insert(struct qca8k_priv *priv, const u8 *addr,
  640. u16 port_mask, u16 vid)
  641. {
  642. /* Set the vid to the port vlan id if no vid is set */
  643. if (!vid)
  644. vid = 1;
  645. return qca8k_fdb_add(priv, addr, port_mask, vid,
  646. QCA8K_ATU_STATUS_STATIC);
  647. }
  648. static int
  649. qca8k_port_fdb_add(struct dsa_switch *ds, int port,
  650. const unsigned char *addr, u16 vid)
  651. {
  652. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  653. u16 port_mask = BIT(port);
  654. return qca8k_port_fdb_insert(priv, addr, port_mask, vid);
  655. }
  656. static int
  657. qca8k_port_fdb_del(struct dsa_switch *ds, int port,
  658. const unsigned char *addr, u16 vid)
  659. {
  660. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  661. u16 port_mask = BIT(port);
  662. if (!vid)
  663. vid = 1;
  664. return qca8k_fdb_del(priv, addr, port_mask, vid);
  665. }
  666. static int
  667. qca8k_port_fdb_dump(struct dsa_switch *ds, int port,
  668. dsa_fdb_dump_cb_t *cb, void *data)
  669. {
  670. struct qca8k_priv *priv = (struct qca8k_priv *)ds->priv;
  671. struct qca8k_fdb _fdb = { 0 };
  672. int cnt = QCA8K_NUM_FDB_RECORDS;
  673. bool is_static;
  674. int ret = 0;
  675. mutex_lock(&priv->reg_mutex);
  676. while (cnt-- && !qca8k_fdb_next(priv, &_fdb, port)) {
  677. if (!_fdb.aging)
  678. break;
  679. is_static = (_fdb.aging == QCA8K_ATU_STATUS_STATIC);
  680. ret = cb(_fdb.mac, _fdb.vid, is_static, data);
  681. if (ret)
  682. break;
  683. }
  684. mutex_unlock(&priv->reg_mutex);
  685. return 0;
  686. }
  687. static enum dsa_tag_protocol
  688. qca8k_get_tag_protocol(struct dsa_switch *ds)
  689. {
  690. return DSA_TAG_PROTO_QCA;
  691. }
  692. static const struct dsa_switch_ops qca8k_switch_ops = {
  693. .get_tag_protocol = qca8k_get_tag_protocol,
  694. .setup = qca8k_setup,
  695. .get_strings = qca8k_get_strings,
  696. .phy_read = qca8k_phy_read,
  697. .phy_write = qca8k_phy_write,
  698. .get_ethtool_stats = qca8k_get_ethtool_stats,
  699. .get_sset_count = qca8k_get_sset_count,
  700. .get_mac_eee = qca8k_get_mac_eee,
  701. .set_mac_eee = qca8k_set_mac_eee,
  702. .port_enable = qca8k_port_enable,
  703. .port_disable = qca8k_port_disable,
  704. .port_stp_state_set = qca8k_port_stp_state_set,
  705. .port_bridge_join = qca8k_port_bridge_join,
  706. .port_bridge_leave = qca8k_port_bridge_leave,
  707. .port_fdb_add = qca8k_port_fdb_add,
  708. .port_fdb_del = qca8k_port_fdb_del,
  709. .port_fdb_dump = qca8k_port_fdb_dump,
  710. };
  711. static int
  712. qca8k_sw_probe(struct mdio_device *mdiodev)
  713. {
  714. struct qca8k_priv *priv;
  715. u32 id;
  716. /* allocate the private data struct so that we can probe the switches
  717. * ID register
  718. */
  719. priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
  720. if (!priv)
  721. return -ENOMEM;
  722. priv->bus = mdiodev->bus;
  723. /* read the switches ID register */
  724. id = qca8k_read(priv, QCA8K_REG_MASK_CTRL);
  725. id >>= QCA8K_MASK_CTRL_ID_S;
  726. id &= QCA8K_MASK_CTRL_ID_M;
  727. if (id != QCA8K_ID_QCA8337)
  728. return -ENODEV;
  729. priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
  730. if (!priv->ds)
  731. return -ENOMEM;
  732. priv->ds->priv = priv;
  733. priv->ds->ops = &qca8k_switch_ops;
  734. mutex_init(&priv->reg_mutex);
  735. dev_set_drvdata(&mdiodev->dev, priv);
  736. return dsa_register_switch(priv->ds);
  737. }
  738. static void
  739. qca8k_sw_remove(struct mdio_device *mdiodev)
  740. {
  741. struct qca8k_priv *priv = dev_get_drvdata(&mdiodev->dev);
  742. int i;
  743. for (i = 0; i < QCA8K_NUM_PORTS; i++)
  744. qca8k_port_set_status(priv, i, 0);
  745. dsa_unregister_switch(priv->ds);
  746. }
  747. #ifdef CONFIG_PM_SLEEP
  748. static void
  749. qca8k_set_pm(struct qca8k_priv *priv, int enable)
  750. {
  751. int i;
  752. for (i = 0; i < QCA8K_NUM_PORTS; i++) {
  753. if (!priv->port_sts[i].enabled)
  754. continue;
  755. qca8k_port_set_status(priv, i, enable);
  756. }
  757. }
  758. static int qca8k_suspend(struct device *dev)
  759. {
  760. struct platform_device *pdev = to_platform_device(dev);
  761. struct qca8k_priv *priv = platform_get_drvdata(pdev);
  762. qca8k_set_pm(priv, 0);
  763. return dsa_switch_suspend(priv->ds);
  764. }
  765. static int qca8k_resume(struct device *dev)
  766. {
  767. struct platform_device *pdev = to_platform_device(dev);
  768. struct qca8k_priv *priv = platform_get_drvdata(pdev);
  769. qca8k_set_pm(priv, 1);
  770. return dsa_switch_resume(priv->ds);
  771. }
  772. #endif /* CONFIG_PM_SLEEP */
  773. static SIMPLE_DEV_PM_OPS(qca8k_pm_ops,
  774. qca8k_suspend, qca8k_resume);
  775. static const struct of_device_id qca8k_of_match[] = {
  776. { .compatible = "qca,qca8337" },
  777. { /* sentinel */ },
  778. };
  779. static struct mdio_driver qca8kmdio_driver = {
  780. .probe = qca8k_sw_probe,
  781. .remove = qca8k_sw_remove,
  782. .mdiodrv.driver = {
  783. .name = "qca8k",
  784. .of_match_table = qca8k_of_match,
  785. .pm = &qca8k_pm_ops,
  786. },
  787. };
  788. mdio_module_driver(qca8kmdio_driver);
  789. MODULE_AUTHOR("Mathieu Olivari, John Crispin <john@phrozen.org>");
  790. MODULE_DESCRIPTION("Driver for QCA8K ethernet switch family");
  791. MODULE_LICENSE("GPL v2");
  792. MODULE_ALIAS("platform:qca8k");