m_can.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755
  1. /*
  2. * CAN bus driver for Bosch M_CAN controller
  3. *
  4. * Copyright (C) 2014 Freescale Semiconductor, Inc.
  5. * Dong Aisheng <b29396@freescale.com>
  6. *
  7. * Bosch M_CAN user manual can be obtained from:
  8. * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
  9. * mcan_users_manual_v302.pdf
  10. *
  11. * This file is licensed under the terms of the GNU General Public
  12. * License version 2. This program is licensed "as is" without any
  13. * warranty of any kind, whether express or implied.
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/of.h>
  23. #include <linux/of_device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/iopoll.h>
  26. #include <linux/can/dev.h>
  27. /* napi related */
  28. #define M_CAN_NAPI_WEIGHT 64
  29. /* message ram configuration data length */
  30. #define MRAM_CFG_LEN 8
  31. /* registers definition */
  32. enum m_can_reg {
  33. M_CAN_CREL = 0x0,
  34. M_CAN_ENDN = 0x4,
  35. M_CAN_CUST = 0x8,
  36. M_CAN_DBTP = 0xc,
  37. M_CAN_TEST = 0x10,
  38. M_CAN_RWD = 0x14,
  39. M_CAN_CCCR = 0x18,
  40. M_CAN_NBTP = 0x1c,
  41. M_CAN_TSCC = 0x20,
  42. M_CAN_TSCV = 0x24,
  43. M_CAN_TOCC = 0x28,
  44. M_CAN_TOCV = 0x2c,
  45. M_CAN_ECR = 0x40,
  46. M_CAN_PSR = 0x44,
  47. /* TDCR Register only available for version >=3.1.x */
  48. M_CAN_TDCR = 0x48,
  49. M_CAN_IR = 0x50,
  50. M_CAN_IE = 0x54,
  51. M_CAN_ILS = 0x58,
  52. M_CAN_ILE = 0x5c,
  53. M_CAN_GFC = 0x80,
  54. M_CAN_SIDFC = 0x84,
  55. M_CAN_XIDFC = 0x88,
  56. M_CAN_XIDAM = 0x90,
  57. M_CAN_HPMS = 0x94,
  58. M_CAN_NDAT1 = 0x98,
  59. M_CAN_NDAT2 = 0x9c,
  60. M_CAN_RXF0C = 0xa0,
  61. M_CAN_RXF0S = 0xa4,
  62. M_CAN_RXF0A = 0xa8,
  63. M_CAN_RXBC = 0xac,
  64. M_CAN_RXF1C = 0xb0,
  65. M_CAN_RXF1S = 0xb4,
  66. M_CAN_RXF1A = 0xb8,
  67. M_CAN_RXESC = 0xbc,
  68. M_CAN_TXBC = 0xc0,
  69. M_CAN_TXFQS = 0xc4,
  70. M_CAN_TXESC = 0xc8,
  71. M_CAN_TXBRP = 0xcc,
  72. M_CAN_TXBAR = 0xd0,
  73. M_CAN_TXBCR = 0xd4,
  74. M_CAN_TXBTO = 0xd8,
  75. M_CAN_TXBCF = 0xdc,
  76. M_CAN_TXBTIE = 0xe0,
  77. M_CAN_TXBCIE = 0xe4,
  78. M_CAN_TXEFC = 0xf0,
  79. M_CAN_TXEFS = 0xf4,
  80. M_CAN_TXEFA = 0xf8,
  81. };
  82. /* m_can lec values */
  83. enum m_can_lec_type {
  84. LEC_NO_ERROR = 0,
  85. LEC_STUFF_ERROR,
  86. LEC_FORM_ERROR,
  87. LEC_ACK_ERROR,
  88. LEC_BIT1_ERROR,
  89. LEC_BIT0_ERROR,
  90. LEC_CRC_ERROR,
  91. LEC_UNUSED,
  92. };
  93. enum m_can_mram_cfg {
  94. MRAM_SIDF = 0,
  95. MRAM_XIDF,
  96. MRAM_RXF0,
  97. MRAM_RXF1,
  98. MRAM_RXB,
  99. MRAM_TXE,
  100. MRAM_TXB,
  101. MRAM_CFG_NUM,
  102. };
  103. /* Core Release Register (CREL) */
  104. #define CREL_REL_SHIFT 28
  105. #define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
  106. #define CREL_STEP_SHIFT 24
  107. #define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
  108. #define CREL_SUBSTEP_SHIFT 20
  109. #define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
  110. /* Data Bit Timing & Prescaler Register (DBTP) */
  111. #define DBTP_TDC BIT(23)
  112. #define DBTP_DBRP_SHIFT 16
  113. #define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
  114. #define DBTP_DTSEG1_SHIFT 8
  115. #define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
  116. #define DBTP_DTSEG2_SHIFT 4
  117. #define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
  118. #define DBTP_DSJW_SHIFT 0
  119. #define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
  120. /* Test Register (TEST) */
  121. #define TEST_LBCK BIT(4)
  122. /* CC Control Register(CCCR) */
  123. #define CCCR_CMR_MASK 0x3
  124. #define CCCR_CMR_SHIFT 10
  125. #define CCCR_CMR_CANFD 0x1
  126. #define CCCR_CMR_CANFD_BRS 0x2
  127. #define CCCR_CMR_CAN 0x3
  128. #define CCCR_CME_MASK 0x3
  129. #define CCCR_CME_SHIFT 8
  130. #define CCCR_CME_CAN 0
  131. #define CCCR_CME_CANFD 0x1
  132. #define CCCR_CME_CANFD_BRS 0x2
  133. #define CCCR_TXP BIT(14)
  134. #define CCCR_TEST BIT(7)
  135. #define CCCR_MON BIT(5)
  136. #define CCCR_CSR BIT(4)
  137. #define CCCR_CSA BIT(3)
  138. #define CCCR_ASM BIT(2)
  139. #define CCCR_CCE BIT(1)
  140. #define CCCR_INIT BIT(0)
  141. #define CCCR_CANFD 0x10
  142. /* for version >=3.1.x */
  143. #define CCCR_EFBI BIT(13)
  144. #define CCCR_PXHD BIT(12)
  145. #define CCCR_BRSE BIT(9)
  146. #define CCCR_FDOE BIT(8)
  147. /* only for version >=3.2.x */
  148. #define CCCR_NISO BIT(15)
  149. /* Nominal Bit Timing & Prescaler Register (NBTP) */
  150. #define NBTP_NSJW_SHIFT 25
  151. #define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
  152. #define NBTP_NBRP_SHIFT 16
  153. #define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
  154. #define NBTP_NTSEG1_SHIFT 8
  155. #define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
  156. #define NBTP_NTSEG2_SHIFT 0
  157. #define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
  158. /* Error Counter Register(ECR) */
  159. #define ECR_RP BIT(15)
  160. #define ECR_REC_SHIFT 8
  161. #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
  162. #define ECR_TEC_SHIFT 0
  163. #define ECR_TEC_MASK 0xff
  164. /* Protocol Status Register(PSR) */
  165. #define PSR_BO BIT(7)
  166. #define PSR_EW BIT(6)
  167. #define PSR_EP BIT(5)
  168. #define PSR_LEC_MASK 0x7
  169. /* Interrupt Register(IR) */
  170. #define IR_ALL_INT 0xffffffff
  171. /* Renamed bits for versions > 3.1.x */
  172. #define IR_ARA BIT(29)
  173. #define IR_PED BIT(28)
  174. #define IR_PEA BIT(27)
  175. /* Bits for version 3.0.x */
  176. #define IR_STE BIT(31)
  177. #define IR_FOE BIT(30)
  178. #define IR_ACKE BIT(29)
  179. #define IR_BE BIT(28)
  180. #define IR_CRCE BIT(27)
  181. #define IR_WDI BIT(26)
  182. #define IR_BO BIT(25)
  183. #define IR_EW BIT(24)
  184. #define IR_EP BIT(23)
  185. #define IR_ELO BIT(22)
  186. #define IR_BEU BIT(21)
  187. #define IR_BEC BIT(20)
  188. #define IR_DRX BIT(19)
  189. #define IR_TOO BIT(18)
  190. #define IR_MRAF BIT(17)
  191. #define IR_TSW BIT(16)
  192. #define IR_TEFL BIT(15)
  193. #define IR_TEFF BIT(14)
  194. #define IR_TEFW BIT(13)
  195. #define IR_TEFN BIT(12)
  196. #define IR_TFE BIT(11)
  197. #define IR_TCF BIT(10)
  198. #define IR_TC BIT(9)
  199. #define IR_HPM BIT(8)
  200. #define IR_RF1L BIT(7)
  201. #define IR_RF1F BIT(6)
  202. #define IR_RF1W BIT(5)
  203. #define IR_RF1N BIT(4)
  204. #define IR_RF0L BIT(3)
  205. #define IR_RF0F BIT(2)
  206. #define IR_RF0W BIT(1)
  207. #define IR_RF0N BIT(0)
  208. #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
  209. /* Interrupts for version 3.0.x */
  210. #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
  211. #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
  212. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  213. IR_RF1L | IR_RF0L)
  214. #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
  215. /* Interrupts for version >= 3.1.x */
  216. #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
  217. #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
  218. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  219. IR_RF1L | IR_RF0L)
  220. #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
  221. /* Interrupt Line Select (ILS) */
  222. #define ILS_ALL_INT0 0x0
  223. #define ILS_ALL_INT1 0xFFFFFFFF
  224. /* Interrupt Line Enable (ILE) */
  225. #define ILE_EINT1 BIT(1)
  226. #define ILE_EINT0 BIT(0)
  227. /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
  228. #define RXFC_FWM_SHIFT 24
  229. #define RXFC_FWM_MASK (0x7f < RXFC_FWM_SHIFT)
  230. #define RXFC_FS_SHIFT 16
  231. #define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
  232. /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
  233. #define RXFS_RFL BIT(25)
  234. #define RXFS_FF BIT(24)
  235. #define RXFS_FPI_SHIFT 16
  236. #define RXFS_FPI_MASK 0x3f0000
  237. #define RXFS_FGI_SHIFT 8
  238. #define RXFS_FGI_MASK 0x3f00
  239. #define RXFS_FFL_MASK 0x7f
  240. /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
  241. #define M_CAN_RXESC_8BYTES 0x0
  242. #define M_CAN_RXESC_64BYTES 0x777
  243. /* Tx Buffer Configuration(TXBC) */
  244. #define TXBC_NDTB_SHIFT 16
  245. #define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
  246. #define TXBC_TFQS_SHIFT 24
  247. #define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
  248. /* Tx FIFO/Queue Status (TXFQS) */
  249. #define TXFQS_TFQF BIT(21)
  250. #define TXFQS_TFQPI_SHIFT 16
  251. #define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
  252. #define TXFQS_TFGI_SHIFT 8
  253. #define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
  254. #define TXFQS_TFFL_SHIFT 0
  255. #define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
  256. /* Tx Buffer Element Size Configuration(TXESC) */
  257. #define TXESC_TBDS_8BYTES 0x0
  258. #define TXESC_TBDS_64BYTES 0x7
  259. /* Tx Event FIFO Configuration (TXEFC) */
  260. #define TXEFC_EFS_SHIFT 16
  261. #define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
  262. /* Tx Event FIFO Status (TXEFS) */
  263. #define TXEFS_TEFL BIT(25)
  264. #define TXEFS_EFF BIT(24)
  265. #define TXEFS_EFGI_SHIFT 8
  266. #define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
  267. #define TXEFS_EFFL_SHIFT 0
  268. #define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
  269. /* Tx Event FIFO Acknowledge (TXEFA) */
  270. #define TXEFA_EFAI_SHIFT 0
  271. #define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
  272. /* Message RAM Configuration (in bytes) */
  273. #define SIDF_ELEMENT_SIZE 4
  274. #define XIDF_ELEMENT_SIZE 8
  275. #define RXF0_ELEMENT_SIZE 72
  276. #define RXF1_ELEMENT_SIZE 72
  277. #define RXB_ELEMENT_SIZE 72
  278. #define TXE_ELEMENT_SIZE 8
  279. #define TXB_ELEMENT_SIZE 72
  280. /* Message RAM Elements */
  281. #define M_CAN_FIFO_ID 0x0
  282. #define M_CAN_FIFO_DLC 0x4
  283. #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
  284. /* Rx Buffer Element */
  285. /* R0 */
  286. #define RX_BUF_ESI BIT(31)
  287. #define RX_BUF_XTD BIT(30)
  288. #define RX_BUF_RTR BIT(29)
  289. /* R1 */
  290. #define RX_BUF_ANMF BIT(31)
  291. #define RX_BUF_FDF BIT(21)
  292. #define RX_BUF_BRS BIT(20)
  293. /* Tx Buffer Element */
  294. /* T0 */
  295. #define TX_BUF_ESI BIT(31)
  296. #define TX_BUF_XTD BIT(30)
  297. #define TX_BUF_RTR BIT(29)
  298. /* T1 */
  299. #define TX_BUF_EFC BIT(23)
  300. #define TX_BUF_FDF BIT(21)
  301. #define TX_BUF_BRS BIT(20)
  302. #define TX_BUF_MM_SHIFT 24
  303. #define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
  304. /* Tx event FIFO Element */
  305. /* E1 */
  306. #define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
  307. #define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
  308. /* address offset and element number for each FIFO/Buffer in the Message RAM */
  309. struct mram_cfg {
  310. u16 off;
  311. u8 num;
  312. };
  313. /* m_can private data structure */
  314. struct m_can_priv {
  315. struct can_priv can; /* must be the first member */
  316. struct napi_struct napi;
  317. struct net_device *dev;
  318. struct device *device;
  319. struct clk *hclk;
  320. struct clk *cclk;
  321. void __iomem *base;
  322. u32 irqstatus;
  323. int version;
  324. /* message ram configuration */
  325. void __iomem *mram_base;
  326. struct mram_cfg mcfg[MRAM_CFG_NUM];
  327. };
  328. static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
  329. {
  330. return readl(priv->base + reg);
  331. }
  332. static inline void m_can_write(const struct m_can_priv *priv,
  333. enum m_can_reg reg, u32 val)
  334. {
  335. writel(val, priv->base + reg);
  336. }
  337. static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
  338. u32 fgi, unsigned int offset)
  339. {
  340. return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
  341. fgi * RXF0_ELEMENT_SIZE + offset);
  342. }
  343. static inline void m_can_fifo_write(const struct m_can_priv *priv,
  344. u32 fpi, unsigned int offset, u32 val)
  345. {
  346. writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
  347. fpi * TXB_ELEMENT_SIZE + offset);
  348. }
  349. static inline u32 m_can_txe_fifo_read(const struct m_can_priv *priv,
  350. u32 fgi,
  351. u32 offset) {
  352. return readl(priv->mram_base + priv->mcfg[MRAM_TXE].off +
  353. fgi * TXE_ELEMENT_SIZE + offset);
  354. }
  355. static inline bool m_can_tx_fifo_full(const struct m_can_priv *priv)
  356. {
  357. return !!(m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQF);
  358. }
  359. static inline void m_can_config_endisable(const struct m_can_priv *priv,
  360. bool enable)
  361. {
  362. u32 cccr = m_can_read(priv, M_CAN_CCCR);
  363. u32 timeout = 10;
  364. u32 val = 0;
  365. if (enable) {
  366. /* enable m_can configuration */
  367. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
  368. udelay(5);
  369. /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
  370. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
  371. } else {
  372. m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
  373. }
  374. /* there's a delay for module initialization */
  375. if (enable)
  376. val = CCCR_INIT | CCCR_CCE;
  377. while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
  378. if (timeout == 0) {
  379. netdev_warn(priv->dev, "Failed to init module\n");
  380. return;
  381. }
  382. timeout--;
  383. udelay(1);
  384. }
  385. }
  386. static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
  387. {
  388. /* Only interrupt line 0 is used in this driver */
  389. m_can_write(priv, M_CAN_ILE, ILE_EINT0);
  390. }
  391. static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
  392. {
  393. m_can_write(priv, M_CAN_ILE, 0x0);
  394. }
  395. static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
  396. {
  397. struct net_device_stats *stats = &dev->stats;
  398. struct m_can_priv *priv = netdev_priv(dev);
  399. struct canfd_frame *cf;
  400. struct sk_buff *skb;
  401. u32 id, fgi, dlc;
  402. int i;
  403. /* calculate the fifo get index for where to read data */
  404. fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
  405. dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
  406. if (dlc & RX_BUF_FDF)
  407. skb = alloc_canfd_skb(dev, &cf);
  408. else
  409. skb = alloc_can_skb(dev, (struct can_frame **)&cf);
  410. if (!skb) {
  411. stats->rx_dropped++;
  412. return;
  413. }
  414. if (dlc & RX_BUF_FDF)
  415. cf->len = can_dlc2len((dlc >> 16) & 0x0F);
  416. else
  417. cf->len = get_can_dlc((dlc >> 16) & 0x0F);
  418. id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
  419. if (id & RX_BUF_XTD)
  420. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  421. else
  422. cf->can_id = (id >> 18) & CAN_SFF_MASK;
  423. if (id & RX_BUF_ESI) {
  424. cf->flags |= CANFD_ESI;
  425. netdev_dbg(dev, "ESI Error\n");
  426. }
  427. if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
  428. cf->can_id |= CAN_RTR_FLAG;
  429. } else {
  430. if (dlc & RX_BUF_BRS)
  431. cf->flags |= CANFD_BRS;
  432. for (i = 0; i < cf->len; i += 4)
  433. *(u32 *)(cf->data + i) =
  434. m_can_fifo_read(priv, fgi,
  435. M_CAN_FIFO_DATA(i / 4));
  436. }
  437. /* acknowledge rx fifo 0 */
  438. m_can_write(priv, M_CAN_RXF0A, fgi);
  439. stats->rx_packets++;
  440. stats->rx_bytes += cf->len;
  441. netif_receive_skb(skb);
  442. }
  443. static int m_can_do_rx_poll(struct net_device *dev, int quota)
  444. {
  445. struct m_can_priv *priv = netdev_priv(dev);
  446. u32 pkts = 0;
  447. u32 rxfs;
  448. rxfs = m_can_read(priv, M_CAN_RXF0S);
  449. if (!(rxfs & RXFS_FFL_MASK)) {
  450. netdev_dbg(dev, "no messages in fifo0\n");
  451. return 0;
  452. }
  453. while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
  454. if (rxfs & RXFS_RFL)
  455. netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
  456. m_can_read_fifo(dev, rxfs);
  457. quota--;
  458. pkts++;
  459. rxfs = m_can_read(priv, M_CAN_RXF0S);
  460. }
  461. if (pkts)
  462. can_led_event(dev, CAN_LED_EVENT_RX);
  463. return pkts;
  464. }
  465. static int m_can_handle_lost_msg(struct net_device *dev)
  466. {
  467. struct net_device_stats *stats = &dev->stats;
  468. struct sk_buff *skb;
  469. struct can_frame *frame;
  470. netdev_err(dev, "msg lost in rxf0\n");
  471. stats->rx_errors++;
  472. stats->rx_over_errors++;
  473. skb = alloc_can_err_skb(dev, &frame);
  474. if (unlikely(!skb))
  475. return 0;
  476. frame->can_id |= CAN_ERR_CRTL;
  477. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  478. netif_receive_skb(skb);
  479. return 1;
  480. }
  481. static int m_can_handle_lec_err(struct net_device *dev,
  482. enum m_can_lec_type lec_type)
  483. {
  484. struct m_can_priv *priv = netdev_priv(dev);
  485. struct net_device_stats *stats = &dev->stats;
  486. struct can_frame *cf;
  487. struct sk_buff *skb;
  488. priv->can.can_stats.bus_error++;
  489. stats->rx_errors++;
  490. /* propagate the error condition to the CAN stack */
  491. skb = alloc_can_err_skb(dev, &cf);
  492. if (unlikely(!skb))
  493. return 0;
  494. /* check for 'last error code' which tells us the
  495. * type of the last error to occur on the CAN bus
  496. */
  497. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  498. switch (lec_type) {
  499. case LEC_STUFF_ERROR:
  500. netdev_dbg(dev, "stuff error\n");
  501. cf->data[2] |= CAN_ERR_PROT_STUFF;
  502. break;
  503. case LEC_FORM_ERROR:
  504. netdev_dbg(dev, "form error\n");
  505. cf->data[2] |= CAN_ERR_PROT_FORM;
  506. break;
  507. case LEC_ACK_ERROR:
  508. netdev_dbg(dev, "ack error\n");
  509. cf->data[3] = CAN_ERR_PROT_LOC_ACK;
  510. break;
  511. case LEC_BIT1_ERROR:
  512. netdev_dbg(dev, "bit1 error\n");
  513. cf->data[2] |= CAN_ERR_PROT_BIT1;
  514. break;
  515. case LEC_BIT0_ERROR:
  516. netdev_dbg(dev, "bit0 error\n");
  517. cf->data[2] |= CAN_ERR_PROT_BIT0;
  518. break;
  519. case LEC_CRC_ERROR:
  520. netdev_dbg(dev, "CRC error\n");
  521. cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
  522. break;
  523. default:
  524. break;
  525. }
  526. stats->rx_packets++;
  527. stats->rx_bytes += cf->can_dlc;
  528. netif_receive_skb(skb);
  529. return 1;
  530. }
  531. static int __m_can_get_berr_counter(const struct net_device *dev,
  532. struct can_berr_counter *bec)
  533. {
  534. struct m_can_priv *priv = netdev_priv(dev);
  535. unsigned int ecr;
  536. ecr = m_can_read(priv, M_CAN_ECR);
  537. bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
  538. bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
  539. return 0;
  540. }
  541. static int m_can_clk_start(struct m_can_priv *priv)
  542. {
  543. int err;
  544. err = clk_prepare_enable(priv->hclk);
  545. if (err)
  546. return err;
  547. err = clk_prepare_enable(priv->cclk);
  548. if (err)
  549. clk_disable_unprepare(priv->hclk);
  550. return err;
  551. }
  552. static void m_can_clk_stop(struct m_can_priv *priv)
  553. {
  554. clk_disable_unprepare(priv->cclk);
  555. clk_disable_unprepare(priv->hclk);
  556. }
  557. static int m_can_get_berr_counter(const struct net_device *dev,
  558. struct can_berr_counter *bec)
  559. {
  560. struct m_can_priv *priv = netdev_priv(dev);
  561. int err;
  562. err = m_can_clk_start(priv);
  563. if (err)
  564. return err;
  565. __m_can_get_berr_counter(dev, bec);
  566. m_can_clk_stop(priv);
  567. return 0;
  568. }
  569. static int m_can_handle_state_change(struct net_device *dev,
  570. enum can_state new_state)
  571. {
  572. struct m_can_priv *priv = netdev_priv(dev);
  573. struct net_device_stats *stats = &dev->stats;
  574. struct can_frame *cf;
  575. struct sk_buff *skb;
  576. struct can_berr_counter bec;
  577. unsigned int ecr;
  578. switch (new_state) {
  579. case CAN_STATE_ERROR_ACTIVE:
  580. /* error warning state */
  581. priv->can.can_stats.error_warning++;
  582. priv->can.state = CAN_STATE_ERROR_WARNING;
  583. break;
  584. case CAN_STATE_ERROR_PASSIVE:
  585. /* error passive state */
  586. priv->can.can_stats.error_passive++;
  587. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  588. break;
  589. case CAN_STATE_BUS_OFF:
  590. /* bus-off state */
  591. priv->can.state = CAN_STATE_BUS_OFF;
  592. m_can_disable_all_interrupts(priv);
  593. priv->can.can_stats.bus_off++;
  594. can_bus_off(dev);
  595. break;
  596. default:
  597. break;
  598. }
  599. /* propagate the error condition to the CAN stack */
  600. skb = alloc_can_err_skb(dev, &cf);
  601. if (unlikely(!skb))
  602. return 0;
  603. __m_can_get_berr_counter(dev, &bec);
  604. switch (new_state) {
  605. case CAN_STATE_ERROR_ACTIVE:
  606. /* error warning state */
  607. cf->can_id |= CAN_ERR_CRTL;
  608. cf->data[1] = (bec.txerr > bec.rxerr) ?
  609. CAN_ERR_CRTL_TX_WARNING :
  610. CAN_ERR_CRTL_RX_WARNING;
  611. cf->data[6] = bec.txerr;
  612. cf->data[7] = bec.rxerr;
  613. break;
  614. case CAN_STATE_ERROR_PASSIVE:
  615. /* error passive state */
  616. cf->can_id |= CAN_ERR_CRTL;
  617. ecr = m_can_read(priv, M_CAN_ECR);
  618. if (ecr & ECR_RP)
  619. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  620. if (bec.txerr > 127)
  621. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  622. cf->data[6] = bec.txerr;
  623. cf->data[7] = bec.rxerr;
  624. break;
  625. case CAN_STATE_BUS_OFF:
  626. /* bus-off state */
  627. cf->can_id |= CAN_ERR_BUSOFF;
  628. break;
  629. default:
  630. break;
  631. }
  632. stats->rx_packets++;
  633. stats->rx_bytes += cf->can_dlc;
  634. netif_receive_skb(skb);
  635. return 1;
  636. }
  637. static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
  638. {
  639. struct m_can_priv *priv = netdev_priv(dev);
  640. int work_done = 0;
  641. if ((psr & PSR_EW) &&
  642. (priv->can.state != CAN_STATE_ERROR_WARNING)) {
  643. netdev_dbg(dev, "entered error warning state\n");
  644. work_done += m_can_handle_state_change(dev,
  645. CAN_STATE_ERROR_WARNING);
  646. }
  647. if ((psr & PSR_EP) &&
  648. (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
  649. netdev_dbg(dev, "entered error passive state\n");
  650. work_done += m_can_handle_state_change(dev,
  651. CAN_STATE_ERROR_PASSIVE);
  652. }
  653. if ((psr & PSR_BO) &&
  654. (priv->can.state != CAN_STATE_BUS_OFF)) {
  655. netdev_dbg(dev, "entered error bus off state\n");
  656. work_done += m_can_handle_state_change(dev,
  657. CAN_STATE_BUS_OFF);
  658. }
  659. return work_done;
  660. }
  661. static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
  662. {
  663. if (irqstatus & IR_WDI)
  664. netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
  665. if (irqstatus & IR_ELO)
  666. netdev_err(dev, "Error Logging Overflow\n");
  667. if (irqstatus & IR_BEU)
  668. netdev_err(dev, "Bit Error Uncorrected\n");
  669. if (irqstatus & IR_BEC)
  670. netdev_err(dev, "Bit Error Corrected\n");
  671. if (irqstatus & IR_TOO)
  672. netdev_err(dev, "Timeout reached\n");
  673. if (irqstatus & IR_MRAF)
  674. netdev_err(dev, "Message RAM access failure occurred\n");
  675. }
  676. static inline bool is_lec_err(u32 psr)
  677. {
  678. psr &= LEC_UNUSED;
  679. return psr && (psr != LEC_UNUSED);
  680. }
  681. static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
  682. u32 psr)
  683. {
  684. struct m_can_priv *priv = netdev_priv(dev);
  685. int work_done = 0;
  686. if (irqstatus & IR_RF0L)
  687. work_done += m_can_handle_lost_msg(dev);
  688. /* handle lec errors on the bus */
  689. if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  690. is_lec_err(psr))
  691. work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
  692. /* other unproccessed error interrupts */
  693. m_can_handle_other_err(dev, irqstatus);
  694. return work_done;
  695. }
  696. static int m_can_poll(struct napi_struct *napi, int quota)
  697. {
  698. struct net_device *dev = napi->dev;
  699. struct m_can_priv *priv = netdev_priv(dev);
  700. int work_done = 0;
  701. u32 irqstatus, psr;
  702. irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
  703. if (!irqstatus)
  704. goto end;
  705. psr = m_can_read(priv, M_CAN_PSR);
  706. if (irqstatus & IR_ERR_STATE)
  707. work_done += m_can_handle_state_errors(dev, psr);
  708. if (irqstatus & IR_ERR_BUS_30X)
  709. work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
  710. if (irqstatus & IR_RF0N)
  711. work_done += m_can_do_rx_poll(dev, (quota - work_done));
  712. if (work_done < quota) {
  713. napi_complete_done(napi, work_done);
  714. m_can_enable_all_interrupts(priv);
  715. }
  716. end:
  717. return work_done;
  718. }
  719. static void m_can_echo_tx_event(struct net_device *dev)
  720. {
  721. u32 txe_count = 0;
  722. u32 m_can_txefs;
  723. u32 fgi = 0;
  724. int i = 0;
  725. unsigned int msg_mark;
  726. struct m_can_priv *priv = netdev_priv(dev);
  727. struct net_device_stats *stats = &dev->stats;
  728. /* read tx event fifo status */
  729. m_can_txefs = m_can_read(priv, M_CAN_TXEFS);
  730. /* Get Tx Event fifo element count */
  731. txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
  732. >> TXEFS_EFFL_SHIFT;
  733. /* Get and process all sent elements */
  734. for (i = 0; i < txe_count; i++) {
  735. /* retrieve get index */
  736. fgi = (m_can_read(priv, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
  737. >> TXEFS_EFGI_SHIFT;
  738. /* get message marker */
  739. msg_mark = (m_can_txe_fifo_read(priv, fgi, 4) &
  740. TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
  741. /* ack txe element */
  742. m_can_write(priv, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
  743. (fgi << TXEFA_EFAI_SHIFT)));
  744. /* update stats */
  745. stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
  746. stats->tx_packets++;
  747. }
  748. }
  749. static irqreturn_t m_can_isr(int irq, void *dev_id)
  750. {
  751. struct net_device *dev = (struct net_device *)dev_id;
  752. struct m_can_priv *priv = netdev_priv(dev);
  753. struct net_device_stats *stats = &dev->stats;
  754. u32 ir;
  755. ir = m_can_read(priv, M_CAN_IR);
  756. if (!ir)
  757. return IRQ_NONE;
  758. /* ACK all irqs */
  759. if (ir & IR_ALL_INT)
  760. m_can_write(priv, M_CAN_IR, ir);
  761. /* schedule NAPI in case of
  762. * - rx IRQ
  763. * - state change IRQ
  764. * - bus error IRQ and bus error reporting
  765. */
  766. if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
  767. priv->irqstatus = ir;
  768. m_can_disable_all_interrupts(priv);
  769. napi_schedule(&priv->napi);
  770. }
  771. if (priv->version == 30) {
  772. if (ir & IR_TC) {
  773. /* Transmission Complete Interrupt*/
  774. stats->tx_bytes += can_get_echo_skb(dev, 0);
  775. stats->tx_packets++;
  776. can_led_event(dev, CAN_LED_EVENT_TX);
  777. netif_wake_queue(dev);
  778. }
  779. } else {
  780. if (ir & IR_TEFN) {
  781. /* New TX FIFO Element arrived */
  782. m_can_echo_tx_event(dev);
  783. can_led_event(dev, CAN_LED_EVENT_TX);
  784. if (netif_queue_stopped(dev) &&
  785. !m_can_tx_fifo_full(priv))
  786. netif_wake_queue(dev);
  787. }
  788. }
  789. return IRQ_HANDLED;
  790. }
  791. static const struct can_bittiming_const m_can_bittiming_const_30X = {
  792. .name = KBUILD_MODNAME,
  793. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  794. .tseg1_max = 64,
  795. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  796. .tseg2_max = 16,
  797. .sjw_max = 16,
  798. .brp_min = 1,
  799. .brp_max = 1024,
  800. .brp_inc = 1,
  801. };
  802. static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
  803. .name = KBUILD_MODNAME,
  804. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  805. .tseg1_max = 16,
  806. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  807. .tseg2_max = 8,
  808. .sjw_max = 4,
  809. .brp_min = 1,
  810. .brp_max = 32,
  811. .brp_inc = 1,
  812. };
  813. static const struct can_bittiming_const m_can_bittiming_const_31X = {
  814. .name = KBUILD_MODNAME,
  815. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  816. .tseg1_max = 256,
  817. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  818. .tseg2_max = 128,
  819. .sjw_max = 128,
  820. .brp_min = 1,
  821. .brp_max = 512,
  822. .brp_inc = 1,
  823. };
  824. static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
  825. .name = KBUILD_MODNAME,
  826. .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
  827. .tseg1_max = 32,
  828. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  829. .tseg2_max = 16,
  830. .sjw_max = 16,
  831. .brp_min = 1,
  832. .brp_max = 32,
  833. .brp_inc = 1,
  834. };
  835. static int m_can_set_bittiming(struct net_device *dev)
  836. {
  837. struct m_can_priv *priv = netdev_priv(dev);
  838. const struct can_bittiming *bt = &priv->can.bittiming;
  839. const struct can_bittiming *dbt = &priv->can.data_bittiming;
  840. u16 brp, sjw, tseg1, tseg2;
  841. u32 reg_btp;
  842. brp = bt->brp - 1;
  843. sjw = bt->sjw - 1;
  844. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  845. tseg2 = bt->phase_seg2 - 1;
  846. reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
  847. (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
  848. m_can_write(priv, M_CAN_NBTP, reg_btp);
  849. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  850. brp = dbt->brp - 1;
  851. sjw = dbt->sjw - 1;
  852. tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
  853. tseg2 = dbt->phase_seg2 - 1;
  854. reg_btp = (brp << DBTP_DBRP_SHIFT) | (sjw << DBTP_DSJW_SHIFT) |
  855. (tseg1 << DBTP_DTSEG1_SHIFT) |
  856. (tseg2 << DBTP_DTSEG2_SHIFT);
  857. m_can_write(priv, M_CAN_DBTP, reg_btp);
  858. }
  859. return 0;
  860. }
  861. /* Configure M_CAN chip:
  862. * - set rx buffer/fifo element size
  863. * - configure rx fifo
  864. * - accept non-matching frame into fifo 0
  865. * - configure tx buffer
  866. * - >= v3.1.x: TX FIFO is used
  867. * - configure mode
  868. * - setup bittiming
  869. */
  870. static void m_can_chip_config(struct net_device *dev)
  871. {
  872. struct m_can_priv *priv = netdev_priv(dev);
  873. u32 cccr, test;
  874. m_can_config_endisable(priv, true);
  875. /* RX Buffer/FIFO Element Size 64 bytes data field */
  876. m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
  877. /* Accept Non-matching Frames Into FIFO 0 */
  878. m_can_write(priv, M_CAN_GFC, 0x0);
  879. if (priv->version == 30) {
  880. /* only support one Tx Buffer currently */
  881. m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
  882. priv->mcfg[MRAM_TXB].off);
  883. } else {
  884. /* TX FIFO is used for newer IP Core versions */
  885. m_can_write(priv, M_CAN_TXBC,
  886. (priv->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
  887. (priv->mcfg[MRAM_TXB].off));
  888. }
  889. /* support 64 bytes payload */
  890. m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
  891. /* TX Event FIFO */
  892. if (priv->version == 30) {
  893. m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
  894. priv->mcfg[MRAM_TXE].off);
  895. } else {
  896. /* Full TX Event FIFO is used */
  897. m_can_write(priv, M_CAN_TXEFC,
  898. ((priv->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
  899. & TXEFC_EFS_MASK) |
  900. priv->mcfg[MRAM_TXE].off);
  901. }
  902. /* rx fifo configuration, blocking mode, fifo size 1 */
  903. m_can_write(priv, M_CAN_RXF0C,
  904. (priv->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
  905. priv->mcfg[MRAM_RXF0].off);
  906. m_can_write(priv, M_CAN_RXF1C,
  907. (priv->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
  908. priv->mcfg[MRAM_RXF1].off);
  909. cccr = m_can_read(priv, M_CAN_CCCR);
  910. test = m_can_read(priv, M_CAN_TEST);
  911. test &= ~TEST_LBCK;
  912. if (priv->version == 30) {
  913. /* Version 3.0.x */
  914. cccr &= ~(CCCR_TEST | CCCR_MON |
  915. (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
  916. (CCCR_CME_MASK << CCCR_CME_SHIFT));
  917. if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
  918. cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
  919. } else {
  920. /* Version 3.1.x or 3.2.x */
  921. cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE);
  922. /* Only 3.2.x has NISO Bit implemented */
  923. if (priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
  924. cccr |= CCCR_NISO;
  925. if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
  926. cccr |= (CCCR_BRSE | CCCR_FDOE);
  927. }
  928. /* Loopback Mode */
  929. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  930. cccr |= CCCR_TEST | CCCR_MON;
  931. test |= TEST_LBCK;
  932. }
  933. /* Enable Monitoring (all versions) */
  934. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  935. cccr |= CCCR_MON;
  936. /* Write config */
  937. m_can_write(priv, M_CAN_CCCR, cccr);
  938. m_can_write(priv, M_CAN_TEST, test);
  939. /* Enable interrupts */
  940. m_can_write(priv, M_CAN_IR, IR_ALL_INT);
  941. if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
  942. if (priv->version == 30)
  943. m_can_write(priv, M_CAN_IE, IR_ALL_INT &
  944. ~(IR_ERR_LEC_30X));
  945. else
  946. m_can_write(priv, M_CAN_IE, IR_ALL_INT &
  947. ~(IR_ERR_LEC_31X));
  948. else
  949. m_can_write(priv, M_CAN_IE, IR_ALL_INT);
  950. /* route all interrupts to INT0 */
  951. m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
  952. /* set bittiming params */
  953. m_can_set_bittiming(dev);
  954. m_can_config_endisable(priv, false);
  955. }
  956. static void m_can_start(struct net_device *dev)
  957. {
  958. struct m_can_priv *priv = netdev_priv(dev);
  959. /* basic m_can configuration */
  960. m_can_chip_config(dev);
  961. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  962. m_can_enable_all_interrupts(priv);
  963. }
  964. static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
  965. {
  966. switch (mode) {
  967. case CAN_MODE_START:
  968. m_can_start(dev);
  969. netif_wake_queue(dev);
  970. break;
  971. default:
  972. return -EOPNOTSUPP;
  973. }
  974. return 0;
  975. }
  976. static void free_m_can_dev(struct net_device *dev)
  977. {
  978. free_candev(dev);
  979. }
  980. /* Checks core release number of M_CAN
  981. * returns 0 if an unsupported device is detected
  982. * else it returns the release and step coded as:
  983. * return value = 10 * <release> + 1 * <step>
  984. */
  985. static int m_can_check_core_release(void __iomem *m_can_base)
  986. {
  987. u32 crel_reg;
  988. u8 rel;
  989. u8 step;
  990. int res;
  991. struct m_can_priv temp_priv = {
  992. .base = m_can_base
  993. };
  994. /* Read Core Release Version and split into version number
  995. * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
  996. */
  997. crel_reg = m_can_read(&temp_priv, M_CAN_CREL);
  998. rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
  999. step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
  1000. if (rel == 3) {
  1001. /* M_CAN v3.x.y: create return value */
  1002. res = 30 + step;
  1003. } else {
  1004. /* Unsupported M_CAN version */
  1005. res = 0;
  1006. }
  1007. return res;
  1008. }
  1009. /* Selectable Non ISO support only in version 3.2.x
  1010. * This function checks if the bit is writable.
  1011. */
  1012. static bool m_can_niso_supported(const struct m_can_priv *priv)
  1013. {
  1014. u32 cccr_reg, cccr_poll;
  1015. int niso_timeout;
  1016. m_can_config_endisable(priv, true);
  1017. cccr_reg = m_can_read(priv, M_CAN_CCCR);
  1018. cccr_reg |= CCCR_NISO;
  1019. m_can_write(priv, M_CAN_CCCR, cccr_reg);
  1020. niso_timeout = readl_poll_timeout((priv->base + M_CAN_CCCR), cccr_poll,
  1021. (cccr_poll == cccr_reg), 0, 10);
  1022. /* Clear NISO */
  1023. cccr_reg &= ~(CCCR_NISO);
  1024. m_can_write(priv, M_CAN_CCCR, cccr_reg);
  1025. m_can_config_endisable(priv, false);
  1026. /* return false if time out (-ETIMEDOUT), else return true */
  1027. return !niso_timeout;
  1028. }
  1029. static struct net_device *alloc_m_can_dev(struct platform_device *pdev,
  1030. void __iomem *addr, u32 tx_fifo_size)
  1031. {
  1032. struct net_device *dev;
  1033. struct m_can_priv *priv;
  1034. int m_can_version;
  1035. unsigned int echo_buffer_count;
  1036. m_can_version = m_can_check_core_release(addr);
  1037. /* return if unsupported version */
  1038. if (!m_can_version) {
  1039. dev = NULL;
  1040. goto return_dev;
  1041. }
  1042. /* If version < 3.1.x, then only one echo buffer is used */
  1043. echo_buffer_count = ((m_can_version == 30)
  1044. ? 1U
  1045. : (unsigned int)tx_fifo_size);
  1046. dev = alloc_candev(sizeof(*priv), echo_buffer_count);
  1047. if (!dev) {
  1048. dev = NULL;
  1049. goto return_dev;
  1050. }
  1051. priv = netdev_priv(dev);
  1052. netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
  1053. /* Shared properties of all M_CAN versions */
  1054. priv->version = m_can_version;
  1055. priv->dev = dev;
  1056. priv->base = addr;
  1057. priv->can.do_set_mode = m_can_set_mode;
  1058. priv->can.do_get_berr_counter = m_can_get_berr_counter;
  1059. /* Set M_CAN supported operations */
  1060. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  1061. CAN_CTRLMODE_LISTENONLY |
  1062. CAN_CTRLMODE_BERR_REPORTING |
  1063. CAN_CTRLMODE_FD;
  1064. /* Set properties depending on M_CAN version */
  1065. switch (priv->version) {
  1066. case 30:
  1067. /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
  1068. can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
  1069. priv->can.bittiming_const = &m_can_bittiming_const_30X;
  1070. priv->can.data_bittiming_const =
  1071. &m_can_data_bittiming_const_30X;
  1072. break;
  1073. case 31:
  1074. /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
  1075. can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
  1076. priv->can.bittiming_const = &m_can_bittiming_const_31X;
  1077. priv->can.data_bittiming_const =
  1078. &m_can_data_bittiming_const_31X;
  1079. break;
  1080. case 32:
  1081. priv->can.bittiming_const = &m_can_bittiming_const_31X;
  1082. priv->can.data_bittiming_const =
  1083. &m_can_data_bittiming_const_31X;
  1084. priv->can.ctrlmode_supported |= (m_can_niso_supported(priv)
  1085. ? CAN_CTRLMODE_FD_NON_ISO
  1086. : 0);
  1087. break;
  1088. default:
  1089. /* Unsupported device: free candev */
  1090. free_m_can_dev(dev);
  1091. dev_err(&pdev->dev, "Unsupported version number: %2d",
  1092. priv->version);
  1093. dev = NULL;
  1094. break;
  1095. }
  1096. return_dev:
  1097. return dev;
  1098. }
  1099. static int m_can_open(struct net_device *dev)
  1100. {
  1101. struct m_can_priv *priv = netdev_priv(dev);
  1102. int err;
  1103. err = m_can_clk_start(priv);
  1104. if (err)
  1105. return err;
  1106. /* open the can device */
  1107. err = open_candev(dev);
  1108. if (err) {
  1109. netdev_err(dev, "failed to open can device\n");
  1110. goto exit_disable_clks;
  1111. }
  1112. /* register interrupt handler */
  1113. err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
  1114. dev);
  1115. if (err < 0) {
  1116. netdev_err(dev, "failed to request interrupt\n");
  1117. goto exit_irq_fail;
  1118. }
  1119. /* start the m_can controller */
  1120. m_can_start(dev);
  1121. can_led_event(dev, CAN_LED_EVENT_OPEN);
  1122. napi_enable(&priv->napi);
  1123. netif_start_queue(dev);
  1124. return 0;
  1125. exit_irq_fail:
  1126. close_candev(dev);
  1127. exit_disable_clks:
  1128. m_can_clk_stop(priv);
  1129. return err;
  1130. }
  1131. static void m_can_stop(struct net_device *dev)
  1132. {
  1133. struct m_can_priv *priv = netdev_priv(dev);
  1134. /* disable all interrupts */
  1135. m_can_disable_all_interrupts(priv);
  1136. /* set the state as STOPPED */
  1137. priv->can.state = CAN_STATE_STOPPED;
  1138. }
  1139. static int m_can_close(struct net_device *dev)
  1140. {
  1141. struct m_can_priv *priv = netdev_priv(dev);
  1142. netif_stop_queue(dev);
  1143. napi_disable(&priv->napi);
  1144. m_can_stop(dev);
  1145. m_can_clk_stop(priv);
  1146. free_irq(dev->irq, dev);
  1147. close_candev(dev);
  1148. can_led_event(dev, CAN_LED_EVENT_STOP);
  1149. return 0;
  1150. }
  1151. static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
  1152. {
  1153. struct m_can_priv *priv = netdev_priv(dev);
  1154. /*get wrap around for loopback skb index */
  1155. unsigned int wrap = priv->can.echo_skb_max;
  1156. int next_idx;
  1157. /* calculate next index */
  1158. next_idx = (++putidx >= wrap ? 0 : putidx);
  1159. /* check if occupied */
  1160. return !!priv->can.echo_skb[next_idx];
  1161. }
  1162. static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
  1163. struct net_device *dev)
  1164. {
  1165. struct m_can_priv *priv = netdev_priv(dev);
  1166. struct canfd_frame *cf = (struct canfd_frame *)skb->data;
  1167. u32 id, cccr, fdflags;
  1168. int i;
  1169. int putidx;
  1170. if (can_dropped_invalid_skb(dev, skb))
  1171. return NETDEV_TX_OK;
  1172. /* Generate ID field for TX buffer Element */
  1173. /* Common to all supported M_CAN versions */
  1174. if (cf->can_id & CAN_EFF_FLAG) {
  1175. id = cf->can_id & CAN_EFF_MASK;
  1176. id |= TX_BUF_XTD;
  1177. } else {
  1178. id = ((cf->can_id & CAN_SFF_MASK) << 18);
  1179. }
  1180. if (cf->can_id & CAN_RTR_FLAG)
  1181. id |= TX_BUF_RTR;
  1182. if (priv->version == 30) {
  1183. netif_stop_queue(dev);
  1184. /* message ram configuration */
  1185. m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
  1186. m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC,
  1187. can_len2dlc(cf->len) << 16);
  1188. for (i = 0; i < cf->len; i += 4)
  1189. m_can_fifo_write(priv, 0,
  1190. M_CAN_FIFO_DATA(i / 4),
  1191. *(u32 *)(cf->data + i));
  1192. can_put_echo_skb(skb, dev, 0);
  1193. if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
  1194. cccr = m_can_read(priv, M_CAN_CCCR);
  1195. cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
  1196. if (can_is_canfd_skb(skb)) {
  1197. if (cf->flags & CANFD_BRS)
  1198. cccr |= CCCR_CMR_CANFD_BRS <<
  1199. CCCR_CMR_SHIFT;
  1200. else
  1201. cccr |= CCCR_CMR_CANFD <<
  1202. CCCR_CMR_SHIFT;
  1203. } else {
  1204. cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
  1205. }
  1206. m_can_write(priv, M_CAN_CCCR, cccr);
  1207. }
  1208. m_can_write(priv, M_CAN_TXBTIE, 0x1);
  1209. m_can_write(priv, M_CAN_TXBAR, 0x1);
  1210. /* End of xmit function for version 3.0.x */
  1211. } else {
  1212. /* Transmit routine for version >= v3.1.x */
  1213. /* Check if FIFO full */
  1214. if (m_can_tx_fifo_full(priv)) {
  1215. /* This shouldn't happen */
  1216. netif_stop_queue(dev);
  1217. netdev_warn(dev,
  1218. "TX queue active although FIFO is full.");
  1219. return NETDEV_TX_BUSY;
  1220. }
  1221. /* get put index for frame */
  1222. putidx = ((m_can_read(priv, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
  1223. >> TXFQS_TFQPI_SHIFT);
  1224. /* Write ID Field to FIFO Element */
  1225. m_can_fifo_write(priv, putidx, M_CAN_FIFO_ID, id);
  1226. /* get CAN FD configuration of frame */
  1227. fdflags = 0;
  1228. if (can_is_canfd_skb(skb)) {
  1229. fdflags |= TX_BUF_FDF;
  1230. if (cf->flags & CANFD_BRS)
  1231. fdflags |= TX_BUF_BRS;
  1232. }
  1233. /* Construct DLC Field. Also contains CAN-FD configuration
  1234. * use put index of fifo as message marker
  1235. * it is used in TX interrupt for
  1236. * sending the correct echo frame
  1237. */
  1238. m_can_fifo_write(priv, putidx, M_CAN_FIFO_DLC,
  1239. ((putidx << TX_BUF_MM_SHIFT) &
  1240. TX_BUF_MM_MASK) |
  1241. (can_len2dlc(cf->len) << 16) |
  1242. fdflags | TX_BUF_EFC);
  1243. for (i = 0; i < cf->len; i += 4)
  1244. m_can_fifo_write(priv, putidx, M_CAN_FIFO_DATA(i / 4),
  1245. *(u32 *)(cf->data + i));
  1246. /* Push loopback echo.
  1247. * Will be looped back on TX interrupt based on message marker
  1248. */
  1249. can_put_echo_skb(skb, dev, putidx);
  1250. /* Enable TX FIFO element to start transfer */
  1251. m_can_write(priv, M_CAN_TXBAR, (1 << putidx));
  1252. /* stop network queue if fifo full */
  1253. if (m_can_tx_fifo_full(priv) ||
  1254. m_can_next_echo_skb_occupied(dev, putidx))
  1255. netif_stop_queue(dev);
  1256. }
  1257. return NETDEV_TX_OK;
  1258. }
  1259. static const struct net_device_ops m_can_netdev_ops = {
  1260. .ndo_open = m_can_open,
  1261. .ndo_stop = m_can_close,
  1262. .ndo_start_xmit = m_can_start_xmit,
  1263. .ndo_change_mtu = can_change_mtu,
  1264. };
  1265. static int register_m_can_dev(struct net_device *dev)
  1266. {
  1267. dev->flags |= IFF_ECHO; /* we support local echo */
  1268. dev->netdev_ops = &m_can_netdev_ops;
  1269. return register_candev(dev);
  1270. }
  1271. static void m_can_init_ram(struct m_can_priv *priv)
  1272. {
  1273. int end, i, start;
  1274. /* initialize the entire Message RAM in use to avoid possible
  1275. * ECC/parity checksum errors when reading an uninitialized buffer
  1276. */
  1277. start = priv->mcfg[MRAM_SIDF].off;
  1278. end = priv->mcfg[MRAM_TXB].off +
  1279. priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
  1280. for (i = start; i < end; i += 4)
  1281. writel(0x0, priv->mram_base + i);
  1282. }
  1283. static void m_can_of_parse_mram(struct m_can_priv *priv,
  1284. const u32 *mram_config_vals)
  1285. {
  1286. priv->mcfg[MRAM_SIDF].off = mram_config_vals[0];
  1287. priv->mcfg[MRAM_SIDF].num = mram_config_vals[1];
  1288. priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
  1289. priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
  1290. priv->mcfg[MRAM_XIDF].num = mram_config_vals[2];
  1291. priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
  1292. priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
  1293. priv->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
  1294. (RXFC_FS_MASK >> RXFC_FS_SHIFT);
  1295. priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
  1296. priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
  1297. priv->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
  1298. (RXFC_FS_MASK >> RXFC_FS_SHIFT);
  1299. priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
  1300. priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
  1301. priv->mcfg[MRAM_RXB].num = mram_config_vals[5];
  1302. priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
  1303. priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
  1304. priv->mcfg[MRAM_TXE].num = mram_config_vals[6];
  1305. priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
  1306. priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
  1307. priv->mcfg[MRAM_TXB].num = mram_config_vals[7] &
  1308. (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
  1309. dev_dbg(priv->device,
  1310. "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
  1311. priv->mram_base,
  1312. priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
  1313. priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
  1314. priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
  1315. priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
  1316. priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
  1317. priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
  1318. priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
  1319. m_can_init_ram(priv);
  1320. }
  1321. static int m_can_plat_probe(struct platform_device *pdev)
  1322. {
  1323. struct net_device *dev;
  1324. struct m_can_priv *priv;
  1325. struct resource *res;
  1326. void __iomem *addr;
  1327. void __iomem *mram_addr;
  1328. struct clk *hclk, *cclk;
  1329. int irq, ret;
  1330. struct device_node *np;
  1331. u32 mram_config_vals[MRAM_CFG_LEN];
  1332. u32 tx_fifo_size;
  1333. np = pdev->dev.of_node;
  1334. hclk = devm_clk_get(&pdev->dev, "hclk");
  1335. cclk = devm_clk_get(&pdev->dev, "cclk");
  1336. if (IS_ERR(hclk) || IS_ERR(cclk)) {
  1337. dev_err(&pdev->dev, "no clock found\n");
  1338. ret = -ENODEV;
  1339. goto failed_ret;
  1340. }
  1341. /* Enable clocks. Necessary to read Core Release in order to determine
  1342. * M_CAN version
  1343. */
  1344. ret = clk_prepare_enable(hclk);
  1345. if (ret)
  1346. goto disable_hclk_ret;
  1347. ret = clk_prepare_enable(cclk);
  1348. if (ret)
  1349. goto disable_cclk_ret;
  1350. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
  1351. addr = devm_ioremap_resource(&pdev->dev, res);
  1352. irq = platform_get_irq_byname(pdev, "int0");
  1353. if (IS_ERR(addr) || irq < 0) {
  1354. ret = -EINVAL;
  1355. goto disable_cclk_ret;
  1356. }
  1357. /* message ram could be shared */
  1358. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
  1359. if (!res) {
  1360. ret = -ENODEV;
  1361. goto disable_cclk_ret;
  1362. }
  1363. mram_addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  1364. if (!mram_addr) {
  1365. ret = -ENOMEM;
  1366. goto disable_cclk_ret;
  1367. }
  1368. /* get message ram configuration */
  1369. ret = of_property_read_u32_array(np, "bosch,mram-cfg",
  1370. mram_config_vals,
  1371. sizeof(mram_config_vals) / 4);
  1372. if (ret) {
  1373. dev_err(&pdev->dev, "Could not get Message RAM configuration.");
  1374. goto disable_cclk_ret;
  1375. }
  1376. /* Get TX FIFO size
  1377. * Defines the total amount of echo buffers for loopback
  1378. */
  1379. tx_fifo_size = mram_config_vals[7];
  1380. /* allocate the m_can device */
  1381. dev = alloc_m_can_dev(pdev, addr, tx_fifo_size);
  1382. if (!dev) {
  1383. ret = -ENOMEM;
  1384. goto disable_cclk_ret;
  1385. }
  1386. priv = netdev_priv(dev);
  1387. dev->irq = irq;
  1388. priv->device = &pdev->dev;
  1389. priv->hclk = hclk;
  1390. priv->cclk = cclk;
  1391. priv->can.clock.freq = clk_get_rate(cclk);
  1392. priv->mram_base = mram_addr;
  1393. m_can_of_parse_mram(priv, mram_config_vals);
  1394. platform_set_drvdata(pdev, dev);
  1395. SET_NETDEV_DEV(dev, &pdev->dev);
  1396. ret = register_m_can_dev(dev);
  1397. if (ret) {
  1398. dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
  1399. KBUILD_MODNAME, ret);
  1400. goto failed_free_dev;
  1401. }
  1402. devm_can_led_init(dev);
  1403. dev_info(&pdev->dev, "%s device registered (irq=%d, version=%d)\n",
  1404. KBUILD_MODNAME, dev->irq, priv->version);
  1405. /* Probe finished
  1406. * Stop clocks. They will be reactivated once the M_CAN device is opened
  1407. */
  1408. goto disable_cclk_ret;
  1409. failed_free_dev:
  1410. free_m_can_dev(dev);
  1411. disable_cclk_ret:
  1412. clk_disable_unprepare(cclk);
  1413. disable_hclk_ret:
  1414. clk_disable_unprepare(hclk);
  1415. failed_ret:
  1416. return ret;
  1417. }
  1418. /* TODO: runtime PM with power down or sleep mode */
  1419. static __maybe_unused int m_can_suspend(struct device *dev)
  1420. {
  1421. struct net_device *ndev = dev_get_drvdata(dev);
  1422. struct m_can_priv *priv = netdev_priv(ndev);
  1423. if (netif_running(ndev)) {
  1424. netif_stop_queue(ndev);
  1425. netif_device_detach(ndev);
  1426. m_can_stop(ndev);
  1427. m_can_clk_stop(priv);
  1428. }
  1429. priv->can.state = CAN_STATE_SLEEPING;
  1430. return 0;
  1431. }
  1432. static __maybe_unused int m_can_resume(struct device *dev)
  1433. {
  1434. struct net_device *ndev = dev_get_drvdata(dev);
  1435. struct m_can_priv *priv = netdev_priv(ndev);
  1436. m_can_init_ram(priv);
  1437. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  1438. if (netif_running(ndev)) {
  1439. int ret;
  1440. ret = m_can_clk_start(priv);
  1441. if (ret)
  1442. return ret;
  1443. m_can_start(ndev);
  1444. netif_device_attach(ndev);
  1445. netif_start_queue(ndev);
  1446. }
  1447. return 0;
  1448. }
  1449. static void unregister_m_can_dev(struct net_device *dev)
  1450. {
  1451. unregister_candev(dev);
  1452. }
  1453. static int m_can_plat_remove(struct platform_device *pdev)
  1454. {
  1455. struct net_device *dev = platform_get_drvdata(pdev);
  1456. unregister_m_can_dev(dev);
  1457. platform_set_drvdata(pdev, NULL);
  1458. free_m_can_dev(dev);
  1459. return 0;
  1460. }
  1461. static const struct dev_pm_ops m_can_pmops = {
  1462. SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
  1463. };
  1464. static const struct of_device_id m_can_of_table[] = {
  1465. { .compatible = "bosch,m_can", .data = NULL },
  1466. { /* sentinel */ },
  1467. };
  1468. MODULE_DEVICE_TABLE(of, m_can_of_table);
  1469. static struct platform_driver m_can_plat_driver = {
  1470. .driver = {
  1471. .name = KBUILD_MODNAME,
  1472. .of_match_table = m_can_of_table,
  1473. .pm = &m_can_pmops,
  1474. },
  1475. .probe = m_can_plat_probe,
  1476. .remove = m_can_plat_remove,
  1477. };
  1478. module_platform_driver(m_can_plat_driver);
  1479. MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
  1480. MODULE_LICENSE("GPL v2");
  1481. MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");