stm32-quadspi.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. /*
  2. * stm32_quadspi.c
  3. *
  4. * Copyright (C) 2017, Ludovic Barre
  5. *
  6. * License terms: GNU General Public License (GPL), version 2
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/errno.h>
  10. #include <linux/io.h>
  11. #include <linux/iopoll.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/module.h>
  14. #include <linux/mtd/mtd.h>
  15. #include <linux/mtd/partitions.h>
  16. #include <linux/mtd/spi-nor.h>
  17. #include <linux/mutex.h>
  18. #include <linux/of.h>
  19. #include <linux/of_device.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/reset.h>
  22. #include <linux/sizes.h>
  23. #define QUADSPI_CR 0x00
  24. #define CR_EN BIT(0)
  25. #define CR_ABORT BIT(1)
  26. #define CR_DMAEN BIT(2)
  27. #define CR_TCEN BIT(3)
  28. #define CR_SSHIFT BIT(4)
  29. #define CR_DFM BIT(6)
  30. #define CR_FSEL BIT(7)
  31. #define CR_FTHRES_SHIFT 8
  32. #define CR_FTHRES_MASK GENMASK(12, 8)
  33. #define CR_FTHRES(n) (((n) << CR_FTHRES_SHIFT) & CR_FTHRES_MASK)
  34. #define CR_TEIE BIT(16)
  35. #define CR_TCIE BIT(17)
  36. #define CR_FTIE BIT(18)
  37. #define CR_SMIE BIT(19)
  38. #define CR_TOIE BIT(20)
  39. #define CR_PRESC_SHIFT 24
  40. #define CR_PRESC_MASK GENMASK(31, 24)
  41. #define CR_PRESC(n) (((n) << CR_PRESC_SHIFT) & CR_PRESC_MASK)
  42. #define QUADSPI_DCR 0x04
  43. #define DCR_CSHT_SHIFT 8
  44. #define DCR_CSHT_MASK GENMASK(10, 8)
  45. #define DCR_CSHT(n) (((n) << DCR_CSHT_SHIFT) & DCR_CSHT_MASK)
  46. #define DCR_FSIZE_SHIFT 16
  47. #define DCR_FSIZE_MASK GENMASK(20, 16)
  48. #define DCR_FSIZE(n) (((n) << DCR_FSIZE_SHIFT) & DCR_FSIZE_MASK)
  49. #define QUADSPI_SR 0x08
  50. #define SR_TEF BIT(0)
  51. #define SR_TCF BIT(1)
  52. #define SR_FTF BIT(2)
  53. #define SR_SMF BIT(3)
  54. #define SR_TOF BIT(4)
  55. #define SR_BUSY BIT(5)
  56. #define SR_FLEVEL_SHIFT 8
  57. #define SR_FLEVEL_MASK GENMASK(13, 8)
  58. #define QUADSPI_FCR 0x0c
  59. #define FCR_CTCF BIT(1)
  60. #define QUADSPI_DLR 0x10
  61. #define QUADSPI_CCR 0x14
  62. #define CCR_INST_SHIFT 0
  63. #define CCR_INST_MASK GENMASK(7, 0)
  64. #define CCR_INST(n) (((n) << CCR_INST_SHIFT) & CCR_INST_MASK)
  65. #define CCR_IMODE_NONE (0U << 8)
  66. #define CCR_IMODE_1 (1U << 8)
  67. #define CCR_IMODE_2 (2U << 8)
  68. #define CCR_IMODE_4 (3U << 8)
  69. #define CCR_ADMODE_NONE (0U << 10)
  70. #define CCR_ADMODE_1 (1U << 10)
  71. #define CCR_ADMODE_2 (2U << 10)
  72. #define CCR_ADMODE_4 (3U << 10)
  73. #define CCR_ADSIZE_SHIFT 12
  74. #define CCR_ADSIZE_MASK GENMASK(13, 12)
  75. #define CCR_ADSIZE(n) (((n) << CCR_ADSIZE_SHIFT) & CCR_ADSIZE_MASK)
  76. #define CCR_ABMODE_NONE (0U << 14)
  77. #define CCR_ABMODE_1 (1U << 14)
  78. #define CCR_ABMODE_2 (2U << 14)
  79. #define CCR_ABMODE_4 (3U << 14)
  80. #define CCR_ABSIZE_8 (0U << 16)
  81. #define CCR_ABSIZE_16 (1U << 16)
  82. #define CCR_ABSIZE_24 (2U << 16)
  83. #define CCR_ABSIZE_32 (3U << 16)
  84. #define CCR_DCYC_SHIFT 18
  85. #define CCR_DCYC_MASK GENMASK(22, 18)
  86. #define CCR_DCYC(n) (((n) << CCR_DCYC_SHIFT) & CCR_DCYC_MASK)
  87. #define CCR_DMODE_NONE (0U << 24)
  88. #define CCR_DMODE_1 (1U << 24)
  89. #define CCR_DMODE_2 (2U << 24)
  90. #define CCR_DMODE_4 (3U << 24)
  91. #define CCR_FMODE_INDW (0U << 26)
  92. #define CCR_FMODE_INDR (1U << 26)
  93. #define CCR_FMODE_APM (2U << 26)
  94. #define CCR_FMODE_MM (3U << 26)
  95. #define QUADSPI_AR 0x18
  96. #define QUADSPI_ABR 0x1c
  97. #define QUADSPI_DR 0x20
  98. #define QUADSPI_PSMKR 0x24
  99. #define QUADSPI_PSMAR 0x28
  100. #define QUADSPI_PIR 0x2c
  101. #define QUADSPI_LPTR 0x30
  102. #define LPTR_DFT_TIMEOUT 0x10
  103. #define FSIZE_VAL(size) (__fls(size) - 1)
  104. #define STM32_MAX_MMAP_SZ SZ_256M
  105. #define STM32_MAX_NORCHIP 2
  106. #define STM32_QSPI_FIFO_TIMEOUT_US 30000
  107. #define STM32_QSPI_BUSY_TIMEOUT_US 100000
  108. struct stm32_qspi_flash {
  109. struct spi_nor nor;
  110. struct stm32_qspi *qspi;
  111. u32 cs;
  112. u32 fsize;
  113. u32 presc;
  114. u32 read_mode;
  115. bool registered;
  116. };
  117. struct stm32_qspi {
  118. struct device *dev;
  119. void __iomem *io_base;
  120. void __iomem *mm_base;
  121. resource_size_t mm_size;
  122. u32 nor_num;
  123. struct clk *clk;
  124. u32 clk_rate;
  125. struct stm32_qspi_flash flash[STM32_MAX_NORCHIP];
  126. struct completion cmd_completion;
  127. /*
  128. * to protect device configuration, could be different between
  129. * 2 flash access (bk1, bk2)
  130. */
  131. struct mutex lock;
  132. };
  133. struct stm32_qspi_cmd {
  134. u8 addr_width;
  135. u8 dummy;
  136. bool tx_data;
  137. u8 opcode;
  138. u32 framemode;
  139. u32 qspimode;
  140. u32 addr;
  141. size_t len;
  142. void *buf;
  143. };
  144. static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi)
  145. {
  146. u32 cr;
  147. int err = 0;
  148. if (readl_relaxed(qspi->io_base + QUADSPI_SR) & SR_TCF)
  149. return 0;
  150. reinit_completion(&qspi->cmd_completion);
  151. cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
  152. writel_relaxed(cr | CR_TCIE, qspi->io_base + QUADSPI_CR);
  153. if (!wait_for_completion_interruptible_timeout(&qspi->cmd_completion,
  154. msecs_to_jiffies(1000)))
  155. err = -ETIMEDOUT;
  156. writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
  157. return err;
  158. }
  159. static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
  160. {
  161. u32 sr;
  162. return readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR, sr,
  163. !(sr & SR_BUSY), 10,
  164. STM32_QSPI_BUSY_TIMEOUT_US);
  165. }
  166. static void stm32_qspi_set_framemode(struct spi_nor *nor,
  167. struct stm32_qspi_cmd *cmd, bool read)
  168. {
  169. u32 dmode = CCR_DMODE_1;
  170. cmd->framemode = CCR_IMODE_1;
  171. if (read) {
  172. switch (nor->read_proto) {
  173. default:
  174. case SNOR_PROTO_1_1_1:
  175. dmode = CCR_DMODE_1;
  176. break;
  177. case SNOR_PROTO_1_1_2:
  178. dmode = CCR_DMODE_2;
  179. break;
  180. case SNOR_PROTO_1_1_4:
  181. dmode = CCR_DMODE_4;
  182. break;
  183. }
  184. }
  185. cmd->framemode |= cmd->tx_data ? dmode : 0;
  186. cmd->framemode |= cmd->addr_width ? CCR_ADMODE_1 : 0;
  187. }
  188. static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
  189. {
  190. *val = readb_relaxed(addr);
  191. }
  192. static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
  193. {
  194. writeb_relaxed(*val, addr);
  195. }
  196. static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
  197. const struct stm32_qspi_cmd *cmd)
  198. {
  199. void (*tx_fifo)(u8 *, void __iomem *);
  200. u32 len = cmd->len, sr;
  201. u8 *buf = cmd->buf;
  202. int ret;
  203. if (cmd->qspimode == CCR_FMODE_INDW)
  204. tx_fifo = stm32_qspi_write_fifo;
  205. else
  206. tx_fifo = stm32_qspi_read_fifo;
  207. while (len--) {
  208. ret = readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR,
  209. sr, (sr & SR_FTF), 10,
  210. STM32_QSPI_FIFO_TIMEOUT_US);
  211. if (ret) {
  212. dev_err(qspi->dev, "fifo timeout (stat:%#x)\n", sr);
  213. break;
  214. }
  215. tx_fifo(buf++, qspi->io_base + QUADSPI_DR);
  216. }
  217. return ret;
  218. }
  219. static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
  220. const struct stm32_qspi_cmd *cmd)
  221. {
  222. memcpy_fromio(cmd->buf, qspi->mm_base + cmd->addr, cmd->len);
  223. return 0;
  224. }
  225. static int stm32_qspi_tx(struct stm32_qspi *qspi,
  226. const struct stm32_qspi_cmd *cmd)
  227. {
  228. if (!cmd->tx_data)
  229. return 0;
  230. if (cmd->qspimode == CCR_FMODE_MM)
  231. return stm32_qspi_tx_mm(qspi, cmd);
  232. return stm32_qspi_tx_poll(qspi, cmd);
  233. }
  234. static int stm32_qspi_send(struct stm32_qspi_flash *flash,
  235. const struct stm32_qspi_cmd *cmd)
  236. {
  237. struct stm32_qspi *qspi = flash->qspi;
  238. u32 ccr, dcr, cr;
  239. int err;
  240. err = stm32_qspi_wait_nobusy(qspi);
  241. if (err)
  242. goto abort;
  243. dcr = readl_relaxed(qspi->io_base + QUADSPI_DCR) & ~DCR_FSIZE_MASK;
  244. dcr |= DCR_FSIZE(flash->fsize);
  245. writel_relaxed(dcr, qspi->io_base + QUADSPI_DCR);
  246. cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
  247. cr &= ~CR_PRESC_MASK & ~CR_FSEL;
  248. cr |= CR_PRESC(flash->presc);
  249. cr |= flash->cs ? CR_FSEL : 0;
  250. writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
  251. if (cmd->tx_data)
  252. writel_relaxed(cmd->len - 1, qspi->io_base + QUADSPI_DLR);
  253. ccr = cmd->framemode | cmd->qspimode;
  254. if (cmd->dummy)
  255. ccr |= CCR_DCYC(cmd->dummy);
  256. if (cmd->addr_width)
  257. ccr |= CCR_ADSIZE(cmd->addr_width - 1);
  258. ccr |= CCR_INST(cmd->opcode);
  259. writel_relaxed(ccr, qspi->io_base + QUADSPI_CCR);
  260. if (cmd->addr_width && cmd->qspimode != CCR_FMODE_MM)
  261. writel_relaxed(cmd->addr, qspi->io_base + QUADSPI_AR);
  262. err = stm32_qspi_tx(qspi, cmd);
  263. if (err)
  264. goto abort;
  265. if (cmd->qspimode != CCR_FMODE_MM) {
  266. err = stm32_qspi_wait_cmd(qspi);
  267. if (err)
  268. goto abort;
  269. writel_relaxed(FCR_CTCF, qspi->io_base + QUADSPI_FCR);
  270. }
  271. return err;
  272. abort:
  273. cr = readl_relaxed(qspi->io_base + QUADSPI_CR) | CR_ABORT;
  274. writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
  275. dev_err(qspi->dev, "%s abort err:%d\n", __func__, err);
  276. return err;
  277. }
  278. static int stm32_qspi_read_reg(struct spi_nor *nor,
  279. u8 opcode, u8 *buf, int len)
  280. {
  281. struct stm32_qspi_flash *flash = nor->priv;
  282. struct device *dev = flash->qspi->dev;
  283. struct stm32_qspi_cmd cmd;
  284. dev_dbg(dev, "read_reg: cmd:%#.2x buf:%p len:%#x\n", opcode, buf, len);
  285. memset(&cmd, 0, sizeof(cmd));
  286. cmd.opcode = opcode;
  287. cmd.tx_data = true;
  288. cmd.len = len;
  289. cmd.buf = buf;
  290. cmd.qspimode = CCR_FMODE_INDR;
  291. stm32_qspi_set_framemode(nor, &cmd, false);
  292. return stm32_qspi_send(flash, &cmd);
  293. }
  294. static int stm32_qspi_write_reg(struct spi_nor *nor, u8 opcode,
  295. u8 *buf, int len)
  296. {
  297. struct stm32_qspi_flash *flash = nor->priv;
  298. struct device *dev = flash->qspi->dev;
  299. struct stm32_qspi_cmd cmd;
  300. dev_dbg(dev, "write_reg: cmd:%#.2x buf:%p len:%#x\n", opcode, buf, len);
  301. memset(&cmd, 0, sizeof(cmd));
  302. cmd.opcode = opcode;
  303. cmd.tx_data = !!(buf && len > 0);
  304. cmd.len = len;
  305. cmd.buf = buf;
  306. cmd.qspimode = CCR_FMODE_INDW;
  307. stm32_qspi_set_framemode(nor, &cmd, false);
  308. return stm32_qspi_send(flash, &cmd);
  309. }
  310. static ssize_t stm32_qspi_read(struct spi_nor *nor, loff_t from, size_t len,
  311. u_char *buf)
  312. {
  313. struct stm32_qspi_flash *flash = nor->priv;
  314. struct stm32_qspi *qspi = flash->qspi;
  315. struct stm32_qspi_cmd cmd;
  316. int err;
  317. dev_dbg(qspi->dev, "read(%#.2x): buf:%p from:%#.8x len:%#zx\n",
  318. nor->read_opcode, buf, (u32)from, len);
  319. memset(&cmd, 0, sizeof(cmd));
  320. cmd.opcode = nor->read_opcode;
  321. cmd.addr_width = nor->addr_width;
  322. cmd.addr = (u32)from;
  323. cmd.tx_data = true;
  324. cmd.dummy = nor->read_dummy;
  325. cmd.len = len;
  326. cmd.buf = buf;
  327. cmd.qspimode = flash->read_mode;
  328. stm32_qspi_set_framemode(nor, &cmd, true);
  329. err = stm32_qspi_send(flash, &cmd);
  330. return err ? err : len;
  331. }
  332. static ssize_t stm32_qspi_write(struct spi_nor *nor, loff_t to, size_t len,
  333. const u_char *buf)
  334. {
  335. struct stm32_qspi_flash *flash = nor->priv;
  336. struct device *dev = flash->qspi->dev;
  337. struct stm32_qspi_cmd cmd;
  338. int err;
  339. dev_dbg(dev, "write(%#.2x): buf:%p to:%#.8x len:%#zx\n",
  340. nor->program_opcode, buf, (u32)to, len);
  341. memset(&cmd, 0, sizeof(cmd));
  342. cmd.opcode = nor->program_opcode;
  343. cmd.addr_width = nor->addr_width;
  344. cmd.addr = (u32)to;
  345. cmd.tx_data = true;
  346. cmd.len = len;
  347. cmd.buf = (void *)buf;
  348. cmd.qspimode = CCR_FMODE_INDW;
  349. stm32_qspi_set_framemode(nor, &cmd, false);
  350. err = stm32_qspi_send(flash, &cmd);
  351. return err ? err : len;
  352. }
  353. static int stm32_qspi_erase(struct spi_nor *nor, loff_t offs)
  354. {
  355. struct stm32_qspi_flash *flash = nor->priv;
  356. struct device *dev = flash->qspi->dev;
  357. struct stm32_qspi_cmd cmd;
  358. dev_dbg(dev, "erase(%#.2x):offs:%#x\n", nor->erase_opcode, (u32)offs);
  359. memset(&cmd, 0, sizeof(cmd));
  360. cmd.opcode = nor->erase_opcode;
  361. cmd.addr_width = nor->addr_width;
  362. cmd.addr = (u32)offs;
  363. cmd.qspimode = CCR_FMODE_INDW;
  364. stm32_qspi_set_framemode(nor, &cmd, false);
  365. return stm32_qspi_send(flash, &cmd);
  366. }
  367. static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
  368. {
  369. struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
  370. u32 cr, sr, fcr = 0;
  371. cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
  372. sr = readl_relaxed(qspi->io_base + QUADSPI_SR);
  373. if ((cr & CR_TCIE) && (sr & SR_TCF)) {
  374. /* tx complete */
  375. fcr |= FCR_CTCF;
  376. complete(&qspi->cmd_completion);
  377. } else {
  378. dev_info_ratelimited(qspi->dev, "spurious interrupt\n");
  379. }
  380. writel_relaxed(fcr, qspi->io_base + QUADSPI_FCR);
  381. return IRQ_HANDLED;
  382. }
  383. static int stm32_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  384. {
  385. struct stm32_qspi_flash *flash = nor->priv;
  386. struct stm32_qspi *qspi = flash->qspi;
  387. mutex_lock(&qspi->lock);
  388. return 0;
  389. }
  390. static void stm32_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  391. {
  392. struct stm32_qspi_flash *flash = nor->priv;
  393. struct stm32_qspi *qspi = flash->qspi;
  394. mutex_unlock(&qspi->lock);
  395. }
  396. static int stm32_qspi_flash_setup(struct stm32_qspi *qspi,
  397. struct device_node *np)
  398. {
  399. struct spi_nor_hwcaps hwcaps = {
  400. .mask = SNOR_HWCAPS_READ |
  401. SNOR_HWCAPS_READ_FAST |
  402. SNOR_HWCAPS_PP,
  403. };
  404. u32 width, presc, cs_num, max_rate = 0;
  405. struct stm32_qspi_flash *flash;
  406. struct mtd_info *mtd;
  407. int ret;
  408. of_property_read_u32(np, "reg", &cs_num);
  409. if (cs_num >= STM32_MAX_NORCHIP)
  410. return -EINVAL;
  411. of_property_read_u32(np, "spi-max-frequency", &max_rate);
  412. if (!max_rate)
  413. return -EINVAL;
  414. presc = DIV_ROUND_UP(qspi->clk_rate, max_rate) - 1;
  415. if (of_property_read_u32(np, "spi-rx-bus-width", &width))
  416. width = 1;
  417. if (width == 4)
  418. hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
  419. else if (width == 2)
  420. hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
  421. else if (width != 1)
  422. return -EINVAL;
  423. flash = &qspi->flash[cs_num];
  424. flash->qspi = qspi;
  425. flash->cs = cs_num;
  426. flash->presc = presc;
  427. flash->nor.dev = qspi->dev;
  428. spi_nor_set_flash_node(&flash->nor, np);
  429. flash->nor.priv = flash;
  430. mtd = &flash->nor.mtd;
  431. flash->nor.read = stm32_qspi_read;
  432. flash->nor.write = stm32_qspi_write;
  433. flash->nor.erase = stm32_qspi_erase;
  434. flash->nor.read_reg = stm32_qspi_read_reg;
  435. flash->nor.write_reg = stm32_qspi_write_reg;
  436. flash->nor.prepare = stm32_qspi_prep;
  437. flash->nor.unprepare = stm32_qspi_unprep;
  438. writel_relaxed(LPTR_DFT_TIMEOUT, qspi->io_base + QUADSPI_LPTR);
  439. writel_relaxed(CR_PRESC(presc) | CR_FTHRES(3) | CR_TCEN | CR_SSHIFT
  440. | CR_EN, qspi->io_base + QUADSPI_CR);
  441. /*
  442. * in stm32 qspi controller, QUADSPI_DCR register has a fsize field
  443. * which define the size of nor flash.
  444. * if fsize is NULL, the controller can't sent spi-nor command.
  445. * set a temporary value just to discover the nor flash with
  446. * "spi_nor_scan". After, the right value (mtd->size) can be set.
  447. */
  448. flash->fsize = FSIZE_VAL(SZ_1K);
  449. ret = spi_nor_scan(&flash->nor, NULL, &hwcaps);
  450. if (ret) {
  451. dev_err(qspi->dev, "device scan failed\n");
  452. return ret;
  453. }
  454. flash->fsize = FSIZE_VAL(mtd->size);
  455. flash->read_mode = CCR_FMODE_MM;
  456. if (mtd->size > qspi->mm_size)
  457. flash->read_mode = CCR_FMODE_INDR;
  458. writel_relaxed(DCR_CSHT(1), qspi->io_base + QUADSPI_DCR);
  459. ret = mtd_device_register(mtd, NULL, 0);
  460. if (ret) {
  461. dev_err(qspi->dev, "mtd device parse failed\n");
  462. return ret;
  463. }
  464. flash->registered = true;
  465. dev_dbg(qspi->dev, "read mm:%s cs:%d bus:%d\n",
  466. flash->read_mode == CCR_FMODE_MM ? "yes" : "no", cs_num, width);
  467. return 0;
  468. }
  469. static void stm32_qspi_mtd_free(struct stm32_qspi *qspi)
  470. {
  471. int i;
  472. for (i = 0; i < STM32_MAX_NORCHIP; i++)
  473. if (qspi->flash[i].registered)
  474. mtd_device_unregister(&qspi->flash[i].nor.mtd);
  475. }
  476. static int stm32_qspi_probe(struct platform_device *pdev)
  477. {
  478. struct device *dev = &pdev->dev;
  479. struct device_node *flash_np;
  480. struct reset_control *rstc;
  481. struct stm32_qspi *qspi;
  482. struct resource *res;
  483. int ret, irq;
  484. qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL);
  485. if (!qspi)
  486. return -ENOMEM;
  487. qspi->nor_num = of_get_child_count(dev->of_node);
  488. if (!qspi->nor_num || qspi->nor_num > STM32_MAX_NORCHIP)
  489. return -ENODEV;
  490. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
  491. qspi->io_base = devm_ioremap_resource(dev, res);
  492. if (IS_ERR(qspi->io_base))
  493. return PTR_ERR(qspi->io_base);
  494. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
  495. qspi->mm_base = devm_ioremap_resource(dev, res);
  496. if (IS_ERR(qspi->mm_base))
  497. return PTR_ERR(qspi->mm_base);
  498. qspi->mm_size = resource_size(res);
  499. irq = platform_get_irq(pdev, 0);
  500. ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
  501. dev_name(dev), qspi);
  502. if (ret) {
  503. dev_err(dev, "failed to request irq\n");
  504. return ret;
  505. }
  506. init_completion(&qspi->cmd_completion);
  507. qspi->clk = devm_clk_get(dev, NULL);
  508. if (IS_ERR(qspi->clk))
  509. return PTR_ERR(qspi->clk);
  510. qspi->clk_rate = clk_get_rate(qspi->clk);
  511. if (!qspi->clk_rate)
  512. return -EINVAL;
  513. ret = clk_prepare_enable(qspi->clk);
  514. if (ret) {
  515. dev_err(dev, "can not enable the clock\n");
  516. return ret;
  517. }
  518. rstc = devm_reset_control_get(dev, NULL);
  519. if (!IS_ERR(rstc)) {
  520. reset_control_assert(rstc);
  521. udelay(2);
  522. reset_control_deassert(rstc);
  523. }
  524. qspi->dev = dev;
  525. platform_set_drvdata(pdev, qspi);
  526. mutex_init(&qspi->lock);
  527. for_each_available_child_of_node(dev->of_node, flash_np) {
  528. ret = stm32_qspi_flash_setup(qspi, flash_np);
  529. if (ret) {
  530. dev_err(dev, "unable to setup flash chip\n");
  531. goto err_flash;
  532. }
  533. }
  534. return 0;
  535. err_flash:
  536. mutex_destroy(&qspi->lock);
  537. stm32_qspi_mtd_free(qspi);
  538. clk_disable_unprepare(qspi->clk);
  539. return ret;
  540. }
  541. static int stm32_qspi_remove(struct platform_device *pdev)
  542. {
  543. struct stm32_qspi *qspi = platform_get_drvdata(pdev);
  544. /* disable qspi */
  545. writel_relaxed(0, qspi->io_base + QUADSPI_CR);
  546. stm32_qspi_mtd_free(qspi);
  547. mutex_destroy(&qspi->lock);
  548. clk_disable_unprepare(qspi->clk);
  549. return 0;
  550. }
  551. static const struct of_device_id stm32_qspi_match[] = {
  552. {.compatible = "st,stm32f469-qspi"},
  553. {}
  554. };
  555. MODULE_DEVICE_TABLE(of, stm32_qspi_match);
  556. static struct platform_driver stm32_qspi_driver = {
  557. .probe = stm32_qspi_probe,
  558. .remove = stm32_qspi_remove,
  559. .driver = {
  560. .name = "stm32-quadspi",
  561. .of_match_table = stm32_qspi_match,
  562. },
  563. };
  564. module_platform_driver(stm32_qspi_driver);
  565. MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
  566. MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
  567. MODULE_LICENSE("GPL v2");