cadence-quadspi.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309
  1. /*
  2. * Driver for Cadence QSPI Controller
  3. *
  4. * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/err.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/io.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/mtd/mtd.h>
  29. #include <linux/mtd/partitions.h>
  30. #include <linux/mtd/spi-nor.h>
  31. #include <linux/of_device.h>
  32. #include <linux/of.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/sched.h>
  35. #include <linux/spi/spi.h>
  36. #include <linux/timer.h>
  37. #define CQSPI_NAME "cadence-qspi"
  38. #define CQSPI_MAX_CHIPSELECT 16
  39. struct cqspi_st;
  40. struct cqspi_flash_pdata {
  41. struct spi_nor nor;
  42. struct cqspi_st *cqspi;
  43. u32 clk_rate;
  44. u32 read_delay;
  45. u32 tshsl_ns;
  46. u32 tsd2d_ns;
  47. u32 tchsh_ns;
  48. u32 tslch_ns;
  49. u8 inst_width;
  50. u8 addr_width;
  51. u8 data_width;
  52. u8 cs;
  53. bool registered;
  54. };
  55. struct cqspi_st {
  56. struct platform_device *pdev;
  57. struct clk *clk;
  58. unsigned int sclk;
  59. void __iomem *iobase;
  60. void __iomem *ahb_base;
  61. struct completion transfer_complete;
  62. struct mutex bus_mutex;
  63. int current_cs;
  64. int current_page_size;
  65. int current_erase_size;
  66. int current_addr_width;
  67. unsigned long master_ref_clk_hz;
  68. bool is_decoded_cs;
  69. u32 fifo_depth;
  70. u32 fifo_width;
  71. u32 trigger_address;
  72. struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  73. };
  74. /* Operation timeout value */
  75. #define CQSPI_TIMEOUT_MS 500
  76. #define CQSPI_READ_TIMEOUT_MS 10
  77. /* Instruction type */
  78. #define CQSPI_INST_TYPE_SINGLE 0
  79. #define CQSPI_INST_TYPE_DUAL 1
  80. #define CQSPI_INST_TYPE_QUAD 2
  81. #define CQSPI_DUMMY_CLKS_PER_BYTE 8
  82. #define CQSPI_DUMMY_BYTES_MAX 4
  83. #define CQSPI_DUMMY_CLKS_MAX 31
  84. #define CQSPI_STIG_DATA_LEN_MAX 8
  85. /* Register map */
  86. #define CQSPI_REG_CONFIG 0x00
  87. #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
  88. #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
  89. #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
  90. #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
  91. #define CQSPI_REG_CONFIG_BAUD_LSB 19
  92. #define CQSPI_REG_CONFIG_IDLE_LSB 31
  93. #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
  94. #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
  95. #define CQSPI_REG_RD_INSTR 0x04
  96. #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
  97. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
  98. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
  99. #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
  100. #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
  101. #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
  102. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
  103. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
  104. #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
  105. #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
  106. #define CQSPI_REG_WR_INSTR 0x08
  107. #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
  108. #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
  109. #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
  110. #define CQSPI_REG_DELAY 0x0C
  111. #define CQSPI_REG_DELAY_TSLCH_LSB 0
  112. #define CQSPI_REG_DELAY_TCHSH_LSB 8
  113. #define CQSPI_REG_DELAY_TSD2D_LSB 16
  114. #define CQSPI_REG_DELAY_TSHSL_LSB 24
  115. #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
  116. #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
  117. #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
  118. #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
  119. #define CQSPI_REG_READCAPTURE 0x10
  120. #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
  121. #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
  122. #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
  123. #define CQSPI_REG_SIZE 0x14
  124. #define CQSPI_REG_SIZE_ADDRESS_LSB 0
  125. #define CQSPI_REG_SIZE_PAGE_LSB 4
  126. #define CQSPI_REG_SIZE_BLOCK_LSB 16
  127. #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
  128. #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
  129. #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
  130. #define CQSPI_REG_SRAMPARTITION 0x18
  131. #define CQSPI_REG_INDIRECTTRIGGER 0x1C
  132. #define CQSPI_REG_DMA 0x20
  133. #define CQSPI_REG_DMA_SINGLE_LSB 0
  134. #define CQSPI_REG_DMA_BURST_LSB 8
  135. #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
  136. #define CQSPI_REG_DMA_BURST_MASK 0xFF
  137. #define CQSPI_REG_REMAP 0x24
  138. #define CQSPI_REG_MODE_BIT 0x28
  139. #define CQSPI_REG_SDRAMLEVEL 0x2C
  140. #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
  141. #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
  142. #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
  143. #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
  144. #define CQSPI_REG_IRQSTATUS 0x40
  145. #define CQSPI_REG_IRQMASK 0x44
  146. #define CQSPI_REG_INDIRECTRD 0x60
  147. #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
  148. #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
  149. #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
  150. #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
  151. #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
  152. #define CQSPI_REG_INDIRECTRDBYTES 0x6C
  153. #define CQSPI_REG_CMDCTRL 0x90
  154. #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
  155. #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
  156. #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
  157. #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
  158. #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
  159. #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
  160. #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
  161. #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
  162. #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
  163. #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
  164. #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
  165. #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
  166. #define CQSPI_REG_INDIRECTWR 0x70
  167. #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
  168. #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
  169. #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
  170. #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
  171. #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
  172. #define CQSPI_REG_INDIRECTWRBYTES 0x7C
  173. #define CQSPI_REG_CMDADDRESS 0x94
  174. #define CQSPI_REG_CMDREADDATALOWER 0xA0
  175. #define CQSPI_REG_CMDREADDATAUPPER 0xA4
  176. #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
  177. #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
  178. /* Interrupt status bits */
  179. #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
  180. #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
  181. #define CQSPI_REG_IRQ_IND_COMP BIT(2)
  182. #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
  183. #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
  184. #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
  185. #define CQSPI_REG_IRQ_WATERMARK BIT(6)
  186. #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
  187. #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
  188. CQSPI_REG_IRQ_IND_SRAM_FULL | \
  189. CQSPI_REG_IRQ_IND_COMP)
  190. #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
  191. CQSPI_REG_IRQ_WATERMARK | \
  192. CQSPI_REG_IRQ_UNDERFLOW)
  193. #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
  194. static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
  195. {
  196. unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  197. u32 val;
  198. while (1) {
  199. val = readl(reg);
  200. if (clear)
  201. val = ~val;
  202. val &= mask;
  203. if (val == mask)
  204. return 0;
  205. if (time_after(jiffies, end))
  206. return -ETIMEDOUT;
  207. }
  208. }
  209. static bool cqspi_is_idle(struct cqspi_st *cqspi)
  210. {
  211. u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  212. return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
  213. }
  214. static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
  215. {
  216. u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
  217. reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
  218. return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
  219. }
  220. static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
  221. {
  222. struct cqspi_st *cqspi = dev;
  223. unsigned int irq_status;
  224. /* Read interrupt status */
  225. irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
  226. /* Clear interrupt */
  227. writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
  228. irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
  229. if (irq_status)
  230. complete(&cqspi->transfer_complete);
  231. return IRQ_HANDLED;
  232. }
  233. static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
  234. {
  235. struct cqspi_flash_pdata *f_pdata = nor->priv;
  236. u32 rdreg = 0;
  237. rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
  238. rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
  239. rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
  240. return rdreg;
  241. }
  242. static int cqspi_wait_idle(struct cqspi_st *cqspi)
  243. {
  244. const unsigned int poll_idle_retry = 3;
  245. unsigned int count = 0;
  246. unsigned long timeout;
  247. timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  248. while (1) {
  249. /*
  250. * Read few times in succession to ensure the controller
  251. * is indeed idle, that is, the bit does not transition
  252. * low again.
  253. */
  254. if (cqspi_is_idle(cqspi))
  255. count++;
  256. else
  257. count = 0;
  258. if (count >= poll_idle_retry)
  259. return 0;
  260. if (time_after(jiffies, timeout)) {
  261. /* Timeout, in busy mode. */
  262. dev_err(&cqspi->pdev->dev,
  263. "QSPI is still busy after %dms timeout.\n",
  264. CQSPI_TIMEOUT_MS);
  265. return -ETIMEDOUT;
  266. }
  267. cpu_relax();
  268. }
  269. }
  270. static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
  271. {
  272. void __iomem *reg_base = cqspi->iobase;
  273. int ret;
  274. /* Write the CMDCTRL without start execution. */
  275. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  276. /* Start execute */
  277. reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
  278. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  279. /* Polling for completion. */
  280. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
  281. CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
  282. if (ret) {
  283. dev_err(&cqspi->pdev->dev,
  284. "Flash command execution timed out.\n");
  285. return ret;
  286. }
  287. /* Polling QSPI idle status. */
  288. return cqspi_wait_idle(cqspi);
  289. }
  290. static int cqspi_command_read(struct spi_nor *nor,
  291. const u8 *txbuf, const unsigned n_tx,
  292. u8 *rxbuf, const unsigned n_rx)
  293. {
  294. struct cqspi_flash_pdata *f_pdata = nor->priv;
  295. struct cqspi_st *cqspi = f_pdata->cqspi;
  296. void __iomem *reg_base = cqspi->iobase;
  297. unsigned int rdreg;
  298. unsigned int reg;
  299. unsigned int read_len;
  300. int status;
  301. if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
  302. dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
  303. n_rx, rxbuf);
  304. return -EINVAL;
  305. }
  306. reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  307. rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
  308. writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
  309. reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
  310. /* 0 means 1 byte. */
  311. reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
  312. << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
  313. status = cqspi_exec_flash_cmd(cqspi, reg);
  314. if (status)
  315. return status;
  316. reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
  317. /* Put the read value into rx_buf */
  318. read_len = (n_rx > 4) ? 4 : n_rx;
  319. memcpy(rxbuf, &reg, read_len);
  320. rxbuf += read_len;
  321. if (n_rx > 4) {
  322. reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
  323. read_len = n_rx - read_len;
  324. memcpy(rxbuf, &reg, read_len);
  325. }
  326. return 0;
  327. }
  328. static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
  329. const u8 *txbuf, const unsigned n_tx)
  330. {
  331. struct cqspi_flash_pdata *f_pdata = nor->priv;
  332. struct cqspi_st *cqspi = f_pdata->cqspi;
  333. void __iomem *reg_base = cqspi->iobase;
  334. unsigned int reg;
  335. unsigned int data;
  336. int ret;
  337. if (n_tx > 4 || (n_tx && !txbuf)) {
  338. dev_err(nor->dev,
  339. "Invalid input argument, cmdlen %d txbuf 0x%p\n",
  340. n_tx, txbuf);
  341. return -EINVAL;
  342. }
  343. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  344. if (n_tx) {
  345. reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
  346. reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
  347. << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
  348. data = 0;
  349. memcpy(&data, txbuf, n_tx);
  350. writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
  351. }
  352. ret = cqspi_exec_flash_cmd(cqspi, reg);
  353. return ret;
  354. }
  355. static int cqspi_command_write_addr(struct spi_nor *nor,
  356. const u8 opcode, const unsigned int addr)
  357. {
  358. struct cqspi_flash_pdata *f_pdata = nor->priv;
  359. struct cqspi_st *cqspi = f_pdata->cqspi;
  360. void __iomem *reg_base = cqspi->iobase;
  361. unsigned int reg;
  362. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  363. reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
  364. reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
  365. << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
  366. writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
  367. return cqspi_exec_flash_cmd(cqspi, reg);
  368. }
  369. static int cqspi_indirect_read_setup(struct spi_nor *nor,
  370. const unsigned int from_addr)
  371. {
  372. struct cqspi_flash_pdata *f_pdata = nor->priv;
  373. struct cqspi_st *cqspi = f_pdata->cqspi;
  374. void __iomem *reg_base = cqspi->iobase;
  375. unsigned int dummy_clk = 0;
  376. unsigned int reg;
  377. writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
  378. reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
  379. reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
  380. /* Setup dummy clock cycles */
  381. dummy_clk = nor->read_dummy;
  382. if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
  383. dummy_clk = CQSPI_DUMMY_CLKS_MAX;
  384. if (dummy_clk / 8) {
  385. reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
  386. /* Set mode bits high to ensure chip doesn't enter XIP */
  387. writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
  388. /* Need to subtract the mode byte (8 clocks). */
  389. if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
  390. dummy_clk -= 8;
  391. if (dummy_clk)
  392. reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
  393. << CQSPI_REG_RD_INSTR_DUMMY_LSB;
  394. }
  395. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  396. /* Set address width */
  397. reg = readl(reg_base + CQSPI_REG_SIZE);
  398. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  399. reg |= (nor->addr_width - 1);
  400. writel(reg, reg_base + CQSPI_REG_SIZE);
  401. return 0;
  402. }
  403. static int cqspi_indirect_read_execute(struct spi_nor *nor,
  404. u8 *rxbuf, const unsigned n_rx)
  405. {
  406. struct cqspi_flash_pdata *f_pdata = nor->priv;
  407. struct cqspi_st *cqspi = f_pdata->cqspi;
  408. void __iomem *reg_base = cqspi->iobase;
  409. void __iomem *ahb_base = cqspi->ahb_base;
  410. unsigned int remaining = n_rx;
  411. unsigned int bytes_to_read = 0;
  412. int ret = 0;
  413. writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
  414. /* Clear all interrupts. */
  415. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  416. writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
  417. reinit_completion(&cqspi->transfer_complete);
  418. writel(CQSPI_REG_INDIRECTRD_START_MASK,
  419. reg_base + CQSPI_REG_INDIRECTRD);
  420. while (remaining > 0) {
  421. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  422. msecs_to_jiffies
  423. (CQSPI_READ_TIMEOUT_MS));
  424. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  425. if (!ret && bytes_to_read == 0) {
  426. dev_err(nor->dev, "Indirect read timeout, no bytes\n");
  427. ret = -ETIMEDOUT;
  428. goto failrd;
  429. }
  430. while (bytes_to_read != 0) {
  431. bytes_to_read *= cqspi->fifo_width;
  432. bytes_to_read = bytes_to_read > remaining ?
  433. remaining : bytes_to_read;
  434. ioread32_rep(ahb_base, rxbuf,
  435. DIV_ROUND_UP(bytes_to_read, 4));
  436. rxbuf += bytes_to_read;
  437. remaining -= bytes_to_read;
  438. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  439. }
  440. if (remaining > 0)
  441. reinit_completion(&cqspi->transfer_complete);
  442. }
  443. /* Check indirect done status */
  444. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
  445. CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
  446. if (ret) {
  447. dev_err(nor->dev,
  448. "Indirect read completion error (%i)\n", ret);
  449. goto failrd;
  450. }
  451. /* Disable interrupt */
  452. writel(0, reg_base + CQSPI_REG_IRQMASK);
  453. /* Clear indirect completion status */
  454. writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
  455. return 0;
  456. failrd:
  457. /* Disable interrupt */
  458. writel(0, reg_base + CQSPI_REG_IRQMASK);
  459. /* Cancel the indirect read */
  460. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  461. reg_base + CQSPI_REG_INDIRECTRD);
  462. return ret;
  463. }
  464. static int cqspi_indirect_write_setup(struct spi_nor *nor,
  465. const unsigned int to_addr)
  466. {
  467. unsigned int reg;
  468. struct cqspi_flash_pdata *f_pdata = nor->priv;
  469. struct cqspi_st *cqspi = f_pdata->cqspi;
  470. void __iomem *reg_base = cqspi->iobase;
  471. /* Set opcode. */
  472. reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
  473. writel(reg, reg_base + CQSPI_REG_WR_INSTR);
  474. reg = cqspi_calc_rdreg(nor, nor->program_opcode);
  475. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  476. writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
  477. reg = readl(reg_base + CQSPI_REG_SIZE);
  478. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  479. reg |= (nor->addr_width - 1);
  480. writel(reg, reg_base + CQSPI_REG_SIZE);
  481. return 0;
  482. }
  483. static int cqspi_indirect_write_execute(struct spi_nor *nor,
  484. const u8 *txbuf, const unsigned n_tx)
  485. {
  486. const unsigned int page_size = nor->page_size;
  487. struct cqspi_flash_pdata *f_pdata = nor->priv;
  488. struct cqspi_st *cqspi = f_pdata->cqspi;
  489. void __iomem *reg_base = cqspi->iobase;
  490. unsigned int remaining = n_tx;
  491. unsigned int write_bytes;
  492. int ret;
  493. writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
  494. /* Clear all interrupts. */
  495. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  496. writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
  497. reinit_completion(&cqspi->transfer_complete);
  498. writel(CQSPI_REG_INDIRECTWR_START_MASK,
  499. reg_base + CQSPI_REG_INDIRECTWR);
  500. while (remaining > 0) {
  501. write_bytes = remaining > page_size ? page_size : remaining;
  502. iowrite32_rep(cqspi->ahb_base, txbuf,
  503. DIV_ROUND_UP(write_bytes, 4));
  504. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  505. msecs_to_jiffies
  506. (CQSPI_TIMEOUT_MS));
  507. if (!ret) {
  508. dev_err(nor->dev, "Indirect write timeout\n");
  509. ret = -ETIMEDOUT;
  510. goto failwr;
  511. }
  512. txbuf += write_bytes;
  513. remaining -= write_bytes;
  514. if (remaining > 0)
  515. reinit_completion(&cqspi->transfer_complete);
  516. }
  517. /* Check indirect done status */
  518. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
  519. CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
  520. if (ret) {
  521. dev_err(nor->dev,
  522. "Indirect write completion error (%i)\n", ret);
  523. goto failwr;
  524. }
  525. /* Disable interrupt. */
  526. writel(0, reg_base + CQSPI_REG_IRQMASK);
  527. /* Clear indirect completion status */
  528. writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
  529. cqspi_wait_idle(cqspi);
  530. return 0;
  531. failwr:
  532. /* Disable interrupt. */
  533. writel(0, reg_base + CQSPI_REG_IRQMASK);
  534. /* Cancel the indirect write */
  535. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  536. reg_base + CQSPI_REG_INDIRECTWR);
  537. return ret;
  538. }
  539. static void cqspi_chipselect(struct spi_nor *nor)
  540. {
  541. struct cqspi_flash_pdata *f_pdata = nor->priv;
  542. struct cqspi_st *cqspi = f_pdata->cqspi;
  543. void __iomem *reg_base = cqspi->iobase;
  544. unsigned int chip_select = f_pdata->cs;
  545. unsigned int reg;
  546. reg = readl(reg_base + CQSPI_REG_CONFIG);
  547. if (cqspi->is_decoded_cs) {
  548. reg |= CQSPI_REG_CONFIG_DECODE_MASK;
  549. } else {
  550. reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
  551. /* Convert CS if without decoder.
  552. * CS0 to 4b'1110
  553. * CS1 to 4b'1101
  554. * CS2 to 4b'1011
  555. * CS3 to 4b'0111
  556. */
  557. chip_select = 0xF & ~(1 << chip_select);
  558. }
  559. reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
  560. << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
  561. reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
  562. << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
  563. writel(reg, reg_base + CQSPI_REG_CONFIG);
  564. }
  565. static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
  566. {
  567. struct cqspi_flash_pdata *f_pdata = nor->priv;
  568. struct cqspi_st *cqspi = f_pdata->cqspi;
  569. void __iomem *iobase = cqspi->iobase;
  570. unsigned int reg;
  571. /* configure page size and block size. */
  572. reg = readl(iobase + CQSPI_REG_SIZE);
  573. reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
  574. reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
  575. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  576. reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
  577. reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
  578. reg |= (nor->addr_width - 1);
  579. writel(reg, iobase + CQSPI_REG_SIZE);
  580. /* configure the chip select */
  581. cqspi_chipselect(nor);
  582. /* Store the new configuration of the controller */
  583. cqspi->current_page_size = nor->page_size;
  584. cqspi->current_erase_size = nor->mtd.erasesize;
  585. cqspi->current_addr_width = nor->addr_width;
  586. }
  587. static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
  588. const unsigned int ns_val)
  589. {
  590. unsigned int ticks;
  591. ticks = ref_clk_hz / 1000; /* kHz */
  592. ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
  593. return ticks;
  594. }
  595. static void cqspi_delay(struct spi_nor *nor)
  596. {
  597. struct cqspi_flash_pdata *f_pdata = nor->priv;
  598. struct cqspi_st *cqspi = f_pdata->cqspi;
  599. void __iomem *iobase = cqspi->iobase;
  600. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  601. unsigned int tshsl, tchsh, tslch, tsd2d;
  602. unsigned int reg;
  603. unsigned int tsclk;
  604. /* calculate the number of ref ticks for one sclk tick */
  605. tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
  606. tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
  607. /* this particular value must be at least one sclk */
  608. if (tshsl < tsclk)
  609. tshsl = tsclk;
  610. tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
  611. tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
  612. tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
  613. reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
  614. << CQSPI_REG_DELAY_TSHSL_LSB;
  615. reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
  616. << CQSPI_REG_DELAY_TCHSH_LSB;
  617. reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
  618. << CQSPI_REG_DELAY_TSLCH_LSB;
  619. reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
  620. << CQSPI_REG_DELAY_TSD2D_LSB;
  621. writel(reg, iobase + CQSPI_REG_DELAY);
  622. }
  623. static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
  624. {
  625. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  626. void __iomem *reg_base = cqspi->iobase;
  627. u32 reg, div;
  628. /* Recalculate the baudrate divisor based on QSPI specification. */
  629. div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
  630. reg = readl(reg_base + CQSPI_REG_CONFIG);
  631. reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
  632. reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
  633. writel(reg, reg_base + CQSPI_REG_CONFIG);
  634. }
  635. static void cqspi_readdata_capture(struct cqspi_st *cqspi,
  636. const unsigned int bypass,
  637. const unsigned int delay)
  638. {
  639. void __iomem *reg_base = cqspi->iobase;
  640. unsigned int reg;
  641. reg = readl(reg_base + CQSPI_REG_READCAPTURE);
  642. if (bypass)
  643. reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  644. else
  645. reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  646. reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
  647. << CQSPI_REG_READCAPTURE_DELAY_LSB);
  648. reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
  649. << CQSPI_REG_READCAPTURE_DELAY_LSB;
  650. writel(reg, reg_base + CQSPI_REG_READCAPTURE);
  651. }
  652. static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
  653. {
  654. void __iomem *reg_base = cqspi->iobase;
  655. unsigned int reg;
  656. reg = readl(reg_base + CQSPI_REG_CONFIG);
  657. if (enable)
  658. reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
  659. else
  660. reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
  661. writel(reg, reg_base + CQSPI_REG_CONFIG);
  662. }
  663. static void cqspi_configure(struct spi_nor *nor)
  664. {
  665. struct cqspi_flash_pdata *f_pdata = nor->priv;
  666. struct cqspi_st *cqspi = f_pdata->cqspi;
  667. const unsigned int sclk = f_pdata->clk_rate;
  668. int switch_cs = (cqspi->current_cs != f_pdata->cs);
  669. int switch_ck = (cqspi->sclk != sclk);
  670. if ((cqspi->current_page_size != nor->page_size) ||
  671. (cqspi->current_erase_size != nor->mtd.erasesize) ||
  672. (cqspi->current_addr_width != nor->addr_width))
  673. switch_cs = 1;
  674. if (switch_cs || switch_ck)
  675. cqspi_controller_enable(cqspi, 0);
  676. /* Switch chip select. */
  677. if (switch_cs) {
  678. cqspi->current_cs = f_pdata->cs;
  679. cqspi_configure_cs_and_sizes(nor);
  680. }
  681. /* Setup baudrate divisor and delays */
  682. if (switch_ck) {
  683. cqspi->sclk = sclk;
  684. cqspi_config_baudrate_div(cqspi);
  685. cqspi_delay(nor);
  686. cqspi_readdata_capture(cqspi, 1, f_pdata->read_delay);
  687. }
  688. if (switch_cs || switch_ck)
  689. cqspi_controller_enable(cqspi, 1);
  690. }
  691. static int cqspi_set_protocol(struct spi_nor *nor, const int read)
  692. {
  693. struct cqspi_flash_pdata *f_pdata = nor->priv;
  694. f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
  695. f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
  696. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  697. if (read) {
  698. switch (nor->read_proto) {
  699. case SNOR_PROTO_1_1_1:
  700. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  701. break;
  702. case SNOR_PROTO_1_1_2:
  703. f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
  704. break;
  705. case SNOR_PROTO_1_1_4:
  706. f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
  707. break;
  708. default:
  709. return -EINVAL;
  710. }
  711. }
  712. cqspi_configure(nor);
  713. return 0;
  714. }
  715. static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
  716. size_t len, const u_char *buf)
  717. {
  718. int ret;
  719. ret = cqspi_set_protocol(nor, 0);
  720. if (ret)
  721. return ret;
  722. ret = cqspi_indirect_write_setup(nor, to);
  723. if (ret)
  724. return ret;
  725. ret = cqspi_indirect_write_execute(nor, buf, len);
  726. if (ret)
  727. return ret;
  728. return len;
  729. }
  730. static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
  731. size_t len, u_char *buf)
  732. {
  733. int ret;
  734. ret = cqspi_set_protocol(nor, 1);
  735. if (ret)
  736. return ret;
  737. ret = cqspi_indirect_read_setup(nor, from);
  738. if (ret)
  739. return ret;
  740. ret = cqspi_indirect_read_execute(nor, buf, len);
  741. if (ret)
  742. return ret;
  743. return len;
  744. }
  745. static int cqspi_erase(struct spi_nor *nor, loff_t offs)
  746. {
  747. int ret;
  748. ret = cqspi_set_protocol(nor, 0);
  749. if (ret)
  750. return ret;
  751. /* Send write enable, then erase commands. */
  752. ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
  753. if (ret)
  754. return ret;
  755. /* Set up command buffer. */
  756. ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
  757. if (ret)
  758. return ret;
  759. return 0;
  760. }
  761. static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  762. {
  763. struct cqspi_flash_pdata *f_pdata = nor->priv;
  764. struct cqspi_st *cqspi = f_pdata->cqspi;
  765. mutex_lock(&cqspi->bus_mutex);
  766. return 0;
  767. }
  768. static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  769. {
  770. struct cqspi_flash_pdata *f_pdata = nor->priv;
  771. struct cqspi_st *cqspi = f_pdata->cqspi;
  772. mutex_unlock(&cqspi->bus_mutex);
  773. }
  774. static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  775. {
  776. int ret;
  777. ret = cqspi_set_protocol(nor, 0);
  778. if (!ret)
  779. ret = cqspi_command_read(nor, &opcode, 1, buf, len);
  780. return ret;
  781. }
  782. static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  783. {
  784. int ret;
  785. ret = cqspi_set_protocol(nor, 0);
  786. if (!ret)
  787. ret = cqspi_command_write(nor, opcode, buf, len);
  788. return ret;
  789. }
  790. static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
  791. struct cqspi_flash_pdata *f_pdata,
  792. struct device_node *np)
  793. {
  794. if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
  795. dev_err(&pdev->dev, "couldn't determine read-delay\n");
  796. return -ENXIO;
  797. }
  798. if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
  799. dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
  800. return -ENXIO;
  801. }
  802. if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
  803. dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
  804. return -ENXIO;
  805. }
  806. if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
  807. dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
  808. return -ENXIO;
  809. }
  810. if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
  811. dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
  812. return -ENXIO;
  813. }
  814. if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
  815. dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
  816. return -ENXIO;
  817. }
  818. return 0;
  819. }
  820. static int cqspi_of_get_pdata(struct platform_device *pdev)
  821. {
  822. struct device_node *np = pdev->dev.of_node;
  823. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  824. cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
  825. if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
  826. dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
  827. return -ENXIO;
  828. }
  829. if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
  830. dev_err(&pdev->dev, "couldn't determine fifo-width\n");
  831. return -ENXIO;
  832. }
  833. if (of_property_read_u32(np, "cdns,trigger-address",
  834. &cqspi->trigger_address)) {
  835. dev_err(&pdev->dev, "couldn't determine trigger-address\n");
  836. return -ENXIO;
  837. }
  838. return 0;
  839. }
  840. static void cqspi_controller_init(struct cqspi_st *cqspi)
  841. {
  842. cqspi_controller_enable(cqspi, 0);
  843. /* Configure the remap address register, no remap */
  844. writel(0, cqspi->iobase + CQSPI_REG_REMAP);
  845. /* Disable all interrupts. */
  846. writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
  847. /* Configure the SRAM split to 1:1 . */
  848. writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
  849. /* Load indirect trigger address. */
  850. writel(cqspi->trigger_address,
  851. cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
  852. /* Program read watermark -- 1/2 of the FIFO. */
  853. writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
  854. cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
  855. /* Program write watermark -- 1/8 of the FIFO. */
  856. writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
  857. cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
  858. cqspi_controller_enable(cqspi, 1);
  859. }
  860. static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
  861. {
  862. const struct spi_nor_hwcaps hwcaps = {
  863. .mask = SNOR_HWCAPS_READ |
  864. SNOR_HWCAPS_READ_FAST |
  865. SNOR_HWCAPS_READ_1_1_2 |
  866. SNOR_HWCAPS_READ_1_1_4 |
  867. SNOR_HWCAPS_PP,
  868. };
  869. struct platform_device *pdev = cqspi->pdev;
  870. struct device *dev = &pdev->dev;
  871. struct cqspi_flash_pdata *f_pdata;
  872. struct spi_nor *nor;
  873. struct mtd_info *mtd;
  874. unsigned int cs;
  875. int i, ret;
  876. /* Get flash device data */
  877. for_each_available_child_of_node(dev->of_node, np) {
  878. ret = of_property_read_u32(np, "reg", &cs);
  879. if (ret) {
  880. dev_err(dev, "Couldn't determine chip select.\n");
  881. goto err;
  882. }
  883. if (cs >= CQSPI_MAX_CHIPSELECT) {
  884. ret = -EINVAL;
  885. dev_err(dev, "Chip select %d out of range.\n", cs);
  886. goto err;
  887. }
  888. f_pdata = &cqspi->f_pdata[cs];
  889. f_pdata->cqspi = cqspi;
  890. f_pdata->cs = cs;
  891. ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
  892. if (ret)
  893. goto err;
  894. nor = &f_pdata->nor;
  895. mtd = &nor->mtd;
  896. mtd->priv = nor;
  897. nor->dev = dev;
  898. spi_nor_set_flash_node(nor, np);
  899. nor->priv = f_pdata;
  900. nor->read_reg = cqspi_read_reg;
  901. nor->write_reg = cqspi_write_reg;
  902. nor->read = cqspi_read;
  903. nor->write = cqspi_write;
  904. nor->erase = cqspi_erase;
  905. nor->prepare = cqspi_prep;
  906. nor->unprepare = cqspi_unprep;
  907. mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
  908. dev_name(dev), cs);
  909. if (!mtd->name) {
  910. ret = -ENOMEM;
  911. goto err;
  912. }
  913. ret = spi_nor_scan(nor, NULL, &hwcaps);
  914. if (ret)
  915. goto err;
  916. ret = mtd_device_register(mtd, NULL, 0);
  917. if (ret)
  918. goto err;
  919. f_pdata->registered = true;
  920. }
  921. return 0;
  922. err:
  923. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  924. if (cqspi->f_pdata[i].registered)
  925. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  926. return ret;
  927. }
  928. static int cqspi_probe(struct platform_device *pdev)
  929. {
  930. struct device_node *np = pdev->dev.of_node;
  931. struct device *dev = &pdev->dev;
  932. struct cqspi_st *cqspi;
  933. struct resource *res;
  934. struct resource *res_ahb;
  935. int ret;
  936. int irq;
  937. cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
  938. if (!cqspi)
  939. return -ENOMEM;
  940. mutex_init(&cqspi->bus_mutex);
  941. cqspi->pdev = pdev;
  942. platform_set_drvdata(pdev, cqspi);
  943. /* Obtain configuration from OF. */
  944. ret = cqspi_of_get_pdata(pdev);
  945. if (ret) {
  946. dev_err(dev, "Cannot get mandatory OF data.\n");
  947. return -ENODEV;
  948. }
  949. /* Obtain QSPI clock. */
  950. cqspi->clk = devm_clk_get(dev, NULL);
  951. if (IS_ERR(cqspi->clk)) {
  952. dev_err(dev, "Cannot claim QSPI clock.\n");
  953. return PTR_ERR(cqspi->clk);
  954. }
  955. /* Obtain and remap controller address. */
  956. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  957. cqspi->iobase = devm_ioremap_resource(dev, res);
  958. if (IS_ERR(cqspi->iobase)) {
  959. dev_err(dev, "Cannot remap controller address.\n");
  960. return PTR_ERR(cqspi->iobase);
  961. }
  962. /* Obtain and remap AHB address. */
  963. res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  964. cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
  965. if (IS_ERR(cqspi->ahb_base)) {
  966. dev_err(dev, "Cannot remap AHB address.\n");
  967. return PTR_ERR(cqspi->ahb_base);
  968. }
  969. init_completion(&cqspi->transfer_complete);
  970. /* Obtain IRQ line. */
  971. irq = platform_get_irq(pdev, 0);
  972. if (irq < 0) {
  973. dev_err(dev, "Cannot obtain IRQ.\n");
  974. return -ENXIO;
  975. }
  976. ret = clk_prepare_enable(cqspi->clk);
  977. if (ret) {
  978. dev_err(dev, "Cannot enable QSPI clock.\n");
  979. return ret;
  980. }
  981. cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
  982. ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
  983. pdev->name, cqspi);
  984. if (ret) {
  985. dev_err(dev, "Cannot request IRQ.\n");
  986. goto probe_irq_failed;
  987. }
  988. cqspi_wait_idle(cqspi);
  989. cqspi_controller_init(cqspi);
  990. cqspi->current_cs = -1;
  991. cqspi->sclk = 0;
  992. ret = cqspi_setup_flash(cqspi, np);
  993. if (ret) {
  994. dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
  995. goto probe_setup_failed;
  996. }
  997. return ret;
  998. probe_irq_failed:
  999. cqspi_controller_enable(cqspi, 0);
  1000. probe_setup_failed:
  1001. clk_disable_unprepare(cqspi->clk);
  1002. return ret;
  1003. }
  1004. static int cqspi_remove(struct platform_device *pdev)
  1005. {
  1006. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  1007. int i;
  1008. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  1009. if (cqspi->f_pdata[i].registered)
  1010. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  1011. cqspi_controller_enable(cqspi, 0);
  1012. clk_disable_unprepare(cqspi->clk);
  1013. return 0;
  1014. }
  1015. #ifdef CONFIG_PM_SLEEP
  1016. static int cqspi_suspend(struct device *dev)
  1017. {
  1018. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1019. cqspi_controller_enable(cqspi, 0);
  1020. return 0;
  1021. }
  1022. static int cqspi_resume(struct device *dev)
  1023. {
  1024. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1025. cqspi_controller_enable(cqspi, 1);
  1026. return 0;
  1027. }
  1028. static const struct dev_pm_ops cqspi__dev_pm_ops = {
  1029. .suspend = cqspi_suspend,
  1030. .resume = cqspi_resume,
  1031. };
  1032. #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
  1033. #else
  1034. #define CQSPI_DEV_PM_OPS NULL
  1035. #endif
  1036. static const struct of_device_id cqspi_dt_ids[] = {
  1037. {.compatible = "cdns,qspi-nor",},
  1038. { /* end of table */ }
  1039. };
  1040. MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
  1041. static struct platform_driver cqspi_platform_driver = {
  1042. .probe = cqspi_probe,
  1043. .remove = cqspi_remove,
  1044. .driver = {
  1045. .name = CQSPI_NAME,
  1046. .pm = CQSPI_DEV_PM_OPS,
  1047. .of_match_table = cqspi_dt_ids,
  1048. },
  1049. };
  1050. module_platform_driver(cqspi_platform_driver);
  1051. MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
  1052. MODULE_LICENSE("GPL v2");
  1053. MODULE_ALIAS("platform:" CQSPI_NAME);
  1054. MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
  1055. MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");