mtk_ecc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. * MTK ECC controller driver.
  3. * Copyright (C) 2016 MediaTek Inc.
  4. * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
  5. * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. #include <linux/platform_device.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/clk.h>
  20. #include <linux/module.h>
  21. #include <linux/iopoll.h>
  22. #include <linux/of.h>
  23. #include <linux/of_platform.h>
  24. #include <linux/mutex.h>
  25. #include "mtk_ecc.h"
  26. #define ECC_IDLE_MASK BIT(0)
  27. #define ECC_IRQ_EN BIT(0)
  28. #define ECC_PG_IRQ_SEL BIT(1)
  29. #define ECC_OP_ENABLE (1)
  30. #define ECC_OP_DISABLE (0)
  31. #define ECC_ENCCON (0x00)
  32. #define ECC_ENCCNFG (0x04)
  33. #define ECC_MODE_SHIFT (5)
  34. #define ECC_MS_SHIFT (16)
  35. #define ECC_ENCDIADDR (0x08)
  36. #define ECC_ENCIDLE (0x0C)
  37. #define ECC_ENCIRQ_EN (0x80)
  38. #define ECC_ENCIRQ_STA (0x84)
  39. #define ECC_DECCON (0x100)
  40. #define ECC_DECCNFG (0x104)
  41. #define DEC_EMPTY_EN BIT(31)
  42. #define DEC_CNFG_CORRECT (0x3 << 12)
  43. #define ECC_DECIDLE (0x10C)
  44. #define ECC_DECENUM0 (0x114)
  45. #define ECC_DECDONE (0x124)
  46. #define ECC_DECIRQ_EN (0x200)
  47. #define ECC_DECIRQ_STA (0x204)
  48. #define ECC_TIMEOUT (500000)
  49. #define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
  50. #define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
  51. #define ECC_IRQ_REG(op) ((op) == ECC_ENCODE ? \
  52. ECC_ENCIRQ_EN : ECC_DECIRQ_EN)
  53. struct mtk_ecc_caps {
  54. u32 err_mask;
  55. const u8 *ecc_strength;
  56. u8 num_ecc_strength;
  57. u32 encode_parity_reg0;
  58. int pg_irq_sel;
  59. };
  60. struct mtk_ecc {
  61. struct device *dev;
  62. const struct mtk_ecc_caps *caps;
  63. void __iomem *regs;
  64. struct clk *clk;
  65. struct completion done;
  66. struct mutex lock;
  67. u32 sectors;
  68. u8 *eccdata;
  69. };
  70. /* ecc strength that each IP supports */
  71. static const u8 ecc_strength_mt2701[] = {
  72. 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
  73. 40, 44, 48, 52, 56, 60
  74. };
  75. static const u8 ecc_strength_mt2712[] = {
  76. 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
  77. 40, 44, 48, 52, 56, 60, 68, 72, 80
  78. };
  79. static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
  80. enum mtk_ecc_operation op)
  81. {
  82. struct device *dev = ecc->dev;
  83. u32 val;
  84. int ret;
  85. ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
  86. val & ECC_IDLE_MASK,
  87. 10, ECC_TIMEOUT);
  88. if (ret)
  89. dev_warn(dev, "%s NOT idle\n",
  90. op == ECC_ENCODE ? "encoder" : "decoder");
  91. }
  92. static irqreturn_t mtk_ecc_irq(int irq, void *id)
  93. {
  94. struct mtk_ecc *ecc = id;
  95. enum mtk_ecc_operation op;
  96. u32 dec, enc;
  97. dec = readw(ecc->regs + ECC_DECIRQ_STA) & ECC_IRQ_EN;
  98. if (dec) {
  99. op = ECC_DECODE;
  100. dec = readw(ecc->regs + ECC_DECDONE);
  101. if (dec & ecc->sectors) {
  102. ecc->sectors = 0;
  103. complete(&ecc->done);
  104. } else {
  105. return IRQ_HANDLED;
  106. }
  107. } else {
  108. enc = readl(ecc->regs + ECC_ENCIRQ_STA) & ECC_IRQ_EN;
  109. if (enc) {
  110. op = ECC_ENCODE;
  111. complete(&ecc->done);
  112. } else {
  113. return IRQ_NONE;
  114. }
  115. }
  116. writel(0, ecc->regs + ECC_IRQ_REG(op));
  117. return IRQ_HANDLED;
  118. }
  119. static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
  120. {
  121. u32 ecc_bit, dec_sz, enc_sz;
  122. u32 reg, i;
  123. for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
  124. if (ecc->caps->ecc_strength[i] == config->strength)
  125. break;
  126. }
  127. if (i == ecc->caps->num_ecc_strength) {
  128. dev_err(ecc->dev, "invalid ecc strength %d\n",
  129. config->strength);
  130. return -EINVAL;
  131. }
  132. ecc_bit = i;
  133. if (config->op == ECC_ENCODE) {
  134. /* configure ECC encoder (in bits) */
  135. enc_sz = config->len << 3;
  136. reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
  137. reg |= (enc_sz << ECC_MS_SHIFT);
  138. writel(reg, ecc->regs + ECC_ENCCNFG);
  139. if (config->mode != ECC_NFI_MODE)
  140. writel(lower_32_bits(config->addr),
  141. ecc->regs + ECC_ENCDIADDR);
  142. } else {
  143. /* configure ECC decoder (in bits) */
  144. dec_sz = (config->len << 3) +
  145. config->strength * ECC_PARITY_BITS;
  146. reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
  147. reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
  148. reg |= DEC_EMPTY_EN;
  149. writel(reg, ecc->regs + ECC_DECCNFG);
  150. if (config->sectors)
  151. ecc->sectors = 1 << (config->sectors - 1);
  152. }
  153. return 0;
  154. }
  155. void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
  156. int sectors)
  157. {
  158. u32 offset, i, err;
  159. u32 bitflips = 0;
  160. stats->corrected = 0;
  161. stats->failed = 0;
  162. for (i = 0; i < sectors; i++) {
  163. offset = (i >> 2) << 2;
  164. err = readl(ecc->regs + ECC_DECENUM0 + offset);
  165. err = err >> ((i % 4) * 8);
  166. err &= ecc->caps->err_mask;
  167. if (err == ecc->caps->err_mask) {
  168. /* uncorrectable errors */
  169. stats->failed++;
  170. continue;
  171. }
  172. stats->corrected += err;
  173. bitflips = max_t(u32, bitflips, err);
  174. }
  175. stats->bitflips = bitflips;
  176. }
  177. EXPORT_SYMBOL(mtk_ecc_get_stats);
  178. void mtk_ecc_release(struct mtk_ecc *ecc)
  179. {
  180. clk_disable_unprepare(ecc->clk);
  181. put_device(ecc->dev);
  182. }
  183. EXPORT_SYMBOL(mtk_ecc_release);
  184. static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
  185. {
  186. mtk_ecc_wait_idle(ecc, ECC_ENCODE);
  187. writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
  188. mtk_ecc_wait_idle(ecc, ECC_DECODE);
  189. writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
  190. }
  191. static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
  192. {
  193. struct platform_device *pdev;
  194. struct mtk_ecc *ecc;
  195. pdev = of_find_device_by_node(np);
  196. if (!pdev || !platform_get_drvdata(pdev))
  197. return ERR_PTR(-EPROBE_DEFER);
  198. get_device(&pdev->dev);
  199. ecc = platform_get_drvdata(pdev);
  200. clk_prepare_enable(ecc->clk);
  201. mtk_ecc_hw_init(ecc);
  202. return ecc;
  203. }
  204. struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
  205. {
  206. struct mtk_ecc *ecc = NULL;
  207. struct device_node *np;
  208. np = of_parse_phandle(of_node, "ecc-engine", 0);
  209. if (np) {
  210. ecc = mtk_ecc_get(np);
  211. of_node_put(np);
  212. }
  213. return ecc;
  214. }
  215. EXPORT_SYMBOL(of_mtk_ecc_get);
  216. int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
  217. {
  218. enum mtk_ecc_operation op = config->op;
  219. u16 reg_val;
  220. int ret;
  221. ret = mutex_lock_interruptible(&ecc->lock);
  222. if (ret) {
  223. dev_err(ecc->dev, "interrupted when attempting to lock\n");
  224. return ret;
  225. }
  226. mtk_ecc_wait_idle(ecc, op);
  227. ret = mtk_ecc_config(ecc, config);
  228. if (ret) {
  229. mutex_unlock(&ecc->lock);
  230. return ret;
  231. }
  232. if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
  233. init_completion(&ecc->done);
  234. reg_val = ECC_IRQ_EN;
  235. /*
  236. * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
  237. * means this chip can only generate one ecc irq during page
  238. * read / write. If is 0, generate one ecc irq each ecc step.
  239. */
  240. if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
  241. reg_val |= ECC_PG_IRQ_SEL;
  242. writew(reg_val, ecc->regs + ECC_IRQ_REG(op));
  243. }
  244. writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
  245. return 0;
  246. }
  247. EXPORT_SYMBOL(mtk_ecc_enable);
  248. void mtk_ecc_disable(struct mtk_ecc *ecc)
  249. {
  250. enum mtk_ecc_operation op = ECC_ENCODE;
  251. /* find out the running operation */
  252. if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
  253. op = ECC_DECODE;
  254. /* disable it */
  255. mtk_ecc_wait_idle(ecc, op);
  256. writew(0, ecc->regs + ECC_IRQ_REG(op));
  257. writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
  258. mutex_unlock(&ecc->lock);
  259. }
  260. EXPORT_SYMBOL(mtk_ecc_disable);
  261. int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
  262. {
  263. int ret;
  264. ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
  265. if (!ret) {
  266. dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
  267. (op == ECC_ENCODE) ? "encoder" : "decoder");
  268. return -ETIMEDOUT;
  269. }
  270. return 0;
  271. }
  272. EXPORT_SYMBOL(mtk_ecc_wait_done);
  273. int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
  274. u8 *data, u32 bytes)
  275. {
  276. dma_addr_t addr;
  277. u32 len;
  278. int ret;
  279. addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
  280. ret = dma_mapping_error(ecc->dev, addr);
  281. if (ret) {
  282. dev_err(ecc->dev, "dma mapping error\n");
  283. return -EINVAL;
  284. }
  285. config->op = ECC_ENCODE;
  286. config->addr = addr;
  287. ret = mtk_ecc_enable(ecc, config);
  288. if (ret) {
  289. dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
  290. return ret;
  291. }
  292. ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
  293. if (ret)
  294. goto timeout;
  295. mtk_ecc_wait_idle(ecc, ECC_ENCODE);
  296. /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
  297. len = (config->strength * ECC_PARITY_BITS + 7) >> 3;
  298. /* write the parity bytes generated by the ECC back to temp buffer */
  299. __ioread32_copy(ecc->eccdata,
  300. ecc->regs + ecc->caps->encode_parity_reg0,
  301. round_up(len, 4));
  302. /* copy into possibly unaligned OOB region with actual length */
  303. memcpy(data + bytes, ecc->eccdata, len);
  304. timeout:
  305. dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
  306. mtk_ecc_disable(ecc);
  307. return ret;
  308. }
  309. EXPORT_SYMBOL(mtk_ecc_encode);
  310. void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
  311. {
  312. const u8 *ecc_strength = ecc->caps->ecc_strength;
  313. int i;
  314. for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
  315. if (*p <= ecc_strength[i]) {
  316. if (!i)
  317. *p = ecc_strength[i];
  318. else if (*p != ecc_strength[i])
  319. *p = ecc_strength[i - 1];
  320. return;
  321. }
  322. }
  323. *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
  324. }
  325. EXPORT_SYMBOL(mtk_ecc_adjust_strength);
  326. static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
  327. .err_mask = 0x3f,
  328. .ecc_strength = ecc_strength_mt2701,
  329. .num_ecc_strength = 20,
  330. .encode_parity_reg0 = 0x10,
  331. .pg_irq_sel = 0,
  332. };
  333. static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
  334. .err_mask = 0x7f,
  335. .ecc_strength = ecc_strength_mt2712,
  336. .num_ecc_strength = 23,
  337. .encode_parity_reg0 = 0x300,
  338. .pg_irq_sel = 1,
  339. };
  340. static const struct of_device_id mtk_ecc_dt_match[] = {
  341. {
  342. .compatible = "mediatek,mt2701-ecc",
  343. .data = &mtk_ecc_caps_mt2701,
  344. }, {
  345. .compatible = "mediatek,mt2712-ecc",
  346. .data = &mtk_ecc_caps_mt2712,
  347. },
  348. {},
  349. };
  350. static int mtk_ecc_probe(struct platform_device *pdev)
  351. {
  352. struct device *dev = &pdev->dev;
  353. struct mtk_ecc *ecc;
  354. struct resource *res;
  355. const struct of_device_id *of_ecc_id = NULL;
  356. u32 max_eccdata_size;
  357. int irq, ret;
  358. ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
  359. if (!ecc)
  360. return -ENOMEM;
  361. of_ecc_id = of_match_device(mtk_ecc_dt_match, &pdev->dev);
  362. if (!of_ecc_id)
  363. return -ENODEV;
  364. ecc->caps = of_ecc_id->data;
  365. max_eccdata_size = ecc->caps->num_ecc_strength - 1;
  366. max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
  367. max_eccdata_size = (max_eccdata_size * ECC_PARITY_BITS + 7) >> 3;
  368. max_eccdata_size = round_up(max_eccdata_size, 4);
  369. ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
  370. if (!ecc->eccdata)
  371. return -ENOMEM;
  372. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  373. ecc->regs = devm_ioremap_resource(dev, res);
  374. if (IS_ERR(ecc->regs)) {
  375. dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs));
  376. return PTR_ERR(ecc->regs);
  377. }
  378. ecc->clk = devm_clk_get(dev, NULL);
  379. if (IS_ERR(ecc->clk)) {
  380. dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
  381. return PTR_ERR(ecc->clk);
  382. }
  383. irq = platform_get_irq(pdev, 0);
  384. if (irq < 0) {
  385. dev_err(dev, "failed to get irq: %d\n", irq);
  386. return irq;
  387. }
  388. ret = dma_set_mask(dev, DMA_BIT_MASK(32));
  389. if (ret) {
  390. dev_err(dev, "failed to set DMA mask\n");
  391. return ret;
  392. }
  393. ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
  394. if (ret) {
  395. dev_err(dev, "failed to request irq\n");
  396. return -EINVAL;
  397. }
  398. ecc->dev = dev;
  399. mutex_init(&ecc->lock);
  400. platform_set_drvdata(pdev, ecc);
  401. dev_info(dev, "probed\n");
  402. return 0;
  403. }
  404. #ifdef CONFIG_PM_SLEEP
  405. static int mtk_ecc_suspend(struct device *dev)
  406. {
  407. struct mtk_ecc *ecc = dev_get_drvdata(dev);
  408. clk_disable_unprepare(ecc->clk);
  409. return 0;
  410. }
  411. static int mtk_ecc_resume(struct device *dev)
  412. {
  413. struct mtk_ecc *ecc = dev_get_drvdata(dev);
  414. int ret;
  415. ret = clk_prepare_enable(ecc->clk);
  416. if (ret) {
  417. dev_err(dev, "failed to enable clk\n");
  418. return ret;
  419. }
  420. return 0;
  421. }
  422. static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
  423. #endif
  424. MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
  425. static struct platform_driver mtk_ecc_driver = {
  426. .probe = mtk_ecc_probe,
  427. .driver = {
  428. .name = "mtk-ecc",
  429. .of_match_table = of_match_ptr(mtk_ecc_dt_match),
  430. #ifdef CONFIG_PM_SLEEP
  431. .pm = &mtk_ecc_pm_ops,
  432. #endif
  433. },
  434. };
  435. module_platform_driver(mtk_ecc_driver);
  436. MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
  437. MODULE_DESCRIPTION("MTK Nand ECC Driver");
  438. MODULE_LICENSE("GPL");