raid1.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/module.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/ratelimit.h>
  39. #include <linux/sched/signal.h>
  40. #include <trace/events/block.h>
  41. #include "md.h"
  42. #include "raid1.h"
  43. #include "bitmap.h"
  44. #define UNSUPPORTED_MDDEV_FLAGS \
  45. ((1L << MD_HAS_JOURNAL) | \
  46. (1L << MD_JOURNAL_CLEAN) | \
  47. (1L << MD_HAS_PPL) | \
  48. (1L << MD_HAS_MULTIPLE_PPLS))
  49. /*
  50. * Number of guaranteed r1bios in case of extreme VM load:
  51. */
  52. #define NR_RAID1_BIOS 256
  53. /* when we get a read error on a read-only array, we redirect to another
  54. * device without failing the first device, or trying to over-write to
  55. * correct the read error. To keep track of bad blocks on a per-bio
  56. * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  57. */
  58. #define IO_BLOCKED ((struct bio *)1)
  59. /* When we successfully write to a known bad-block, we need to remove the
  60. * bad-block marking which must be done from process context. So we record
  61. * the success by setting devs[n].bio to IO_MADE_GOOD
  62. */
  63. #define IO_MADE_GOOD ((struct bio *)2)
  64. #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  65. /* When there are this many requests queue to be written by
  66. * the raid1 thread, we become 'congested' to provide back-pressure
  67. * for writeback.
  68. */
  69. static int max_queued_requests = 1024;
  70. static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  71. static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  72. #define raid1_log(md, fmt, args...) \
  73. do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  74. #include "raid1-10.c"
  75. /*
  76. * for resync bio, r1bio pointer can be retrieved from the per-bio
  77. * 'struct resync_pages'.
  78. */
  79. static inline struct r1bio *get_resync_r1bio(struct bio *bio)
  80. {
  81. return get_resync_pages(bio)->raid_bio;
  82. }
  83. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  84. {
  85. struct pool_info *pi = data;
  86. int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  87. /* allocate a r1bio with room for raid_disks entries in the bios array */
  88. return kzalloc(size, gfp_flags);
  89. }
  90. static void r1bio_pool_free(void *r1_bio, void *data)
  91. {
  92. kfree(r1_bio);
  93. }
  94. #define RESYNC_DEPTH 32
  95. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  96. #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  97. #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  98. #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
  99. #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
  100. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  101. {
  102. struct pool_info *pi = data;
  103. struct r1bio *r1_bio;
  104. struct bio *bio;
  105. int need_pages;
  106. int j;
  107. struct resync_pages *rps;
  108. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  109. if (!r1_bio)
  110. return NULL;
  111. rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
  112. gfp_flags);
  113. if (!rps)
  114. goto out_free_r1bio;
  115. /*
  116. * Allocate bios : 1 for reading, n-1 for writing
  117. */
  118. for (j = pi->raid_disks ; j-- ; ) {
  119. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  120. if (!bio)
  121. goto out_free_bio;
  122. r1_bio->bios[j] = bio;
  123. }
  124. /*
  125. * Allocate RESYNC_PAGES data pages and attach them to
  126. * the first bio.
  127. * If this is a user-requested check/repair, allocate
  128. * RESYNC_PAGES for each bio.
  129. */
  130. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  131. need_pages = pi->raid_disks;
  132. else
  133. need_pages = 1;
  134. for (j = 0; j < pi->raid_disks; j++) {
  135. struct resync_pages *rp = &rps[j];
  136. bio = r1_bio->bios[j];
  137. if (j < need_pages) {
  138. if (resync_alloc_pages(rp, gfp_flags))
  139. goto out_free_pages;
  140. } else {
  141. memcpy(rp, &rps[0], sizeof(*rp));
  142. resync_get_all_pages(rp);
  143. }
  144. rp->raid_bio = r1_bio;
  145. bio->bi_private = rp;
  146. }
  147. r1_bio->master_bio = NULL;
  148. return r1_bio;
  149. out_free_pages:
  150. while (--j >= 0)
  151. resync_free_pages(&rps[j]);
  152. out_free_bio:
  153. while (++j < pi->raid_disks)
  154. bio_put(r1_bio->bios[j]);
  155. kfree(rps);
  156. out_free_r1bio:
  157. r1bio_pool_free(r1_bio, data);
  158. return NULL;
  159. }
  160. static void r1buf_pool_free(void *__r1_bio, void *data)
  161. {
  162. struct pool_info *pi = data;
  163. int i;
  164. struct r1bio *r1bio = __r1_bio;
  165. struct resync_pages *rp = NULL;
  166. for (i = pi->raid_disks; i--; ) {
  167. rp = get_resync_pages(r1bio->bios[i]);
  168. resync_free_pages(rp);
  169. bio_put(r1bio->bios[i]);
  170. }
  171. /* resync pages array stored in the 1st bio's .bi_private */
  172. kfree(rp);
  173. r1bio_pool_free(r1bio, data);
  174. }
  175. static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
  176. {
  177. int i;
  178. for (i = 0; i < conf->raid_disks * 2; i++) {
  179. struct bio **bio = r1_bio->bios + i;
  180. if (!BIO_SPECIAL(*bio))
  181. bio_put(*bio);
  182. *bio = NULL;
  183. }
  184. }
  185. static void free_r1bio(struct r1bio *r1_bio)
  186. {
  187. struct r1conf *conf = r1_bio->mddev->private;
  188. put_all_bios(conf, r1_bio);
  189. mempool_free(r1_bio, conf->r1bio_pool);
  190. }
  191. static void put_buf(struct r1bio *r1_bio)
  192. {
  193. struct r1conf *conf = r1_bio->mddev->private;
  194. sector_t sect = r1_bio->sector;
  195. int i;
  196. for (i = 0; i < conf->raid_disks * 2; i++) {
  197. struct bio *bio = r1_bio->bios[i];
  198. if (bio->bi_end_io)
  199. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  200. }
  201. mempool_free(r1_bio, conf->r1buf_pool);
  202. lower_barrier(conf, sect);
  203. }
  204. static void reschedule_retry(struct r1bio *r1_bio)
  205. {
  206. unsigned long flags;
  207. struct mddev *mddev = r1_bio->mddev;
  208. struct r1conf *conf = mddev->private;
  209. int idx;
  210. idx = sector_to_idx(r1_bio->sector);
  211. spin_lock_irqsave(&conf->device_lock, flags);
  212. list_add(&r1_bio->retry_list, &conf->retry_list);
  213. atomic_inc(&conf->nr_queued[idx]);
  214. spin_unlock_irqrestore(&conf->device_lock, flags);
  215. wake_up(&conf->wait_barrier);
  216. md_wakeup_thread(mddev->thread);
  217. }
  218. /*
  219. * raid_end_bio_io() is called when we have finished servicing a mirrored
  220. * operation and are ready to return a success/failure code to the buffer
  221. * cache layer.
  222. */
  223. static void call_bio_endio(struct r1bio *r1_bio)
  224. {
  225. struct bio *bio = r1_bio->master_bio;
  226. struct r1conf *conf = r1_bio->mddev->private;
  227. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  228. bio->bi_status = BLK_STS_IOERR;
  229. bio_endio(bio);
  230. /*
  231. * Wake up any possible resync thread that waits for the device
  232. * to go idle.
  233. */
  234. allow_barrier(conf, r1_bio->sector);
  235. }
  236. static void raid_end_bio_io(struct r1bio *r1_bio)
  237. {
  238. struct bio *bio = r1_bio->master_bio;
  239. /* if nobody has done the final endio yet, do it now */
  240. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  241. pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
  242. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  243. (unsigned long long) bio->bi_iter.bi_sector,
  244. (unsigned long long) bio_end_sector(bio) - 1);
  245. call_bio_endio(r1_bio);
  246. }
  247. free_r1bio(r1_bio);
  248. }
  249. /*
  250. * Update disk head position estimator based on IRQ completion info.
  251. */
  252. static inline void update_head_pos(int disk, struct r1bio *r1_bio)
  253. {
  254. struct r1conf *conf = r1_bio->mddev->private;
  255. conf->mirrors[disk].head_position =
  256. r1_bio->sector + (r1_bio->sectors);
  257. }
  258. /*
  259. * Find the disk number which triggered given bio
  260. */
  261. static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
  262. {
  263. int mirror;
  264. struct r1conf *conf = r1_bio->mddev->private;
  265. int raid_disks = conf->raid_disks;
  266. for (mirror = 0; mirror < raid_disks * 2; mirror++)
  267. if (r1_bio->bios[mirror] == bio)
  268. break;
  269. BUG_ON(mirror == raid_disks * 2);
  270. update_head_pos(mirror, r1_bio);
  271. return mirror;
  272. }
  273. static void raid1_end_read_request(struct bio *bio)
  274. {
  275. int uptodate = !bio->bi_status;
  276. struct r1bio *r1_bio = bio->bi_private;
  277. struct r1conf *conf = r1_bio->mddev->private;
  278. struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
  279. /*
  280. * this branch is our 'one mirror IO has finished' event handler:
  281. */
  282. update_head_pos(r1_bio->read_disk, r1_bio);
  283. if (uptodate)
  284. set_bit(R1BIO_Uptodate, &r1_bio->state);
  285. else if (test_bit(FailFast, &rdev->flags) &&
  286. test_bit(R1BIO_FailFast, &r1_bio->state))
  287. /* This was a fail-fast read so we definitely
  288. * want to retry */
  289. ;
  290. else {
  291. /* If all other devices have failed, we want to return
  292. * the error upwards rather than fail the last device.
  293. * Here we redefine "uptodate" to mean "Don't want to retry"
  294. */
  295. unsigned long flags;
  296. spin_lock_irqsave(&conf->device_lock, flags);
  297. if (r1_bio->mddev->degraded == conf->raid_disks ||
  298. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  299. test_bit(In_sync, &rdev->flags)))
  300. uptodate = 1;
  301. spin_unlock_irqrestore(&conf->device_lock, flags);
  302. }
  303. if (uptodate) {
  304. raid_end_bio_io(r1_bio);
  305. rdev_dec_pending(rdev, conf->mddev);
  306. } else {
  307. /*
  308. * oops, read error:
  309. */
  310. char b[BDEVNAME_SIZE];
  311. pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
  312. mdname(conf->mddev),
  313. bdevname(rdev->bdev, b),
  314. (unsigned long long)r1_bio->sector);
  315. set_bit(R1BIO_ReadError, &r1_bio->state);
  316. reschedule_retry(r1_bio);
  317. /* don't drop the reference on read_disk yet */
  318. }
  319. }
  320. static void close_write(struct r1bio *r1_bio)
  321. {
  322. /* it really is the end of this request */
  323. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  324. bio_free_pages(r1_bio->behind_master_bio);
  325. bio_put(r1_bio->behind_master_bio);
  326. r1_bio->behind_master_bio = NULL;
  327. }
  328. /* clear the bitmap if all writes complete successfully */
  329. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  330. r1_bio->sectors,
  331. !test_bit(R1BIO_Degraded, &r1_bio->state),
  332. test_bit(R1BIO_BehindIO, &r1_bio->state));
  333. md_write_end(r1_bio->mddev);
  334. }
  335. static void r1_bio_write_done(struct r1bio *r1_bio)
  336. {
  337. if (!atomic_dec_and_test(&r1_bio->remaining))
  338. return;
  339. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  340. reschedule_retry(r1_bio);
  341. else {
  342. close_write(r1_bio);
  343. if (test_bit(R1BIO_MadeGood, &r1_bio->state))
  344. reschedule_retry(r1_bio);
  345. else
  346. raid_end_bio_io(r1_bio);
  347. }
  348. }
  349. static void raid1_end_write_request(struct bio *bio)
  350. {
  351. struct r1bio *r1_bio = bio->bi_private;
  352. int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  353. struct r1conf *conf = r1_bio->mddev->private;
  354. struct bio *to_put = NULL;
  355. int mirror = find_bio_disk(r1_bio, bio);
  356. struct md_rdev *rdev = conf->mirrors[mirror].rdev;
  357. bool discard_error;
  358. discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
  359. /*
  360. * 'one mirror IO has finished' event handler:
  361. */
  362. if (bio->bi_status && !discard_error) {
  363. set_bit(WriteErrorSeen, &rdev->flags);
  364. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  365. set_bit(MD_RECOVERY_NEEDED, &
  366. conf->mddev->recovery);
  367. if (test_bit(FailFast, &rdev->flags) &&
  368. (bio->bi_opf & MD_FAILFAST) &&
  369. /* We never try FailFast to WriteMostly devices */
  370. !test_bit(WriteMostly, &rdev->flags)) {
  371. md_error(r1_bio->mddev, rdev);
  372. if (!test_bit(Faulty, &rdev->flags))
  373. /* This is the only remaining device,
  374. * We need to retry the write without
  375. * FailFast
  376. */
  377. set_bit(R1BIO_WriteError, &r1_bio->state);
  378. else {
  379. /* Finished with this branch */
  380. r1_bio->bios[mirror] = NULL;
  381. to_put = bio;
  382. }
  383. } else
  384. set_bit(R1BIO_WriteError, &r1_bio->state);
  385. } else {
  386. /*
  387. * Set R1BIO_Uptodate in our master bio, so that we
  388. * will return a good error code for to the higher
  389. * levels even if IO on some other mirrored buffer
  390. * fails.
  391. *
  392. * The 'master' represents the composite IO operation
  393. * to user-side. So if something waits for IO, then it
  394. * will wait for the 'master' bio.
  395. */
  396. sector_t first_bad;
  397. int bad_sectors;
  398. r1_bio->bios[mirror] = NULL;
  399. to_put = bio;
  400. /*
  401. * Do not set R1BIO_Uptodate if the current device is
  402. * rebuilding or Faulty. This is because we cannot use
  403. * such device for properly reading the data back (we could
  404. * potentially use it, if the current write would have felt
  405. * before rdev->recovery_offset, but for simplicity we don't
  406. * check this here.
  407. */
  408. if (test_bit(In_sync, &rdev->flags) &&
  409. !test_bit(Faulty, &rdev->flags))
  410. set_bit(R1BIO_Uptodate, &r1_bio->state);
  411. /* Maybe we can clear some bad blocks. */
  412. if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
  413. &first_bad, &bad_sectors) && !discard_error) {
  414. r1_bio->bios[mirror] = IO_MADE_GOOD;
  415. set_bit(R1BIO_MadeGood, &r1_bio->state);
  416. }
  417. }
  418. if (behind) {
  419. if (test_bit(WriteMostly, &rdev->flags))
  420. atomic_dec(&r1_bio->behind_remaining);
  421. /*
  422. * In behind mode, we ACK the master bio once the I/O
  423. * has safely reached all non-writemostly
  424. * disks. Setting the Returned bit ensures that this
  425. * gets done only once -- we don't ever want to return
  426. * -EIO here, instead we'll wait
  427. */
  428. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  429. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  430. /* Maybe we can return now */
  431. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  432. struct bio *mbio = r1_bio->master_bio;
  433. pr_debug("raid1: behind end write sectors"
  434. " %llu-%llu\n",
  435. (unsigned long long) mbio->bi_iter.bi_sector,
  436. (unsigned long long) bio_end_sector(mbio) - 1);
  437. call_bio_endio(r1_bio);
  438. }
  439. }
  440. }
  441. if (r1_bio->bios[mirror] == NULL)
  442. rdev_dec_pending(rdev, conf->mddev);
  443. /*
  444. * Let's see if all mirrored write operations have finished
  445. * already.
  446. */
  447. r1_bio_write_done(r1_bio);
  448. if (to_put)
  449. bio_put(to_put);
  450. }
  451. static sector_t align_to_barrier_unit_end(sector_t start_sector,
  452. sector_t sectors)
  453. {
  454. sector_t len;
  455. WARN_ON(sectors == 0);
  456. /*
  457. * len is the number of sectors from start_sector to end of the
  458. * barrier unit which start_sector belongs to.
  459. */
  460. len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
  461. start_sector;
  462. if (len > sectors)
  463. len = sectors;
  464. return len;
  465. }
  466. /*
  467. * This routine returns the disk from which the requested read should
  468. * be done. There is a per-array 'next expected sequential IO' sector
  469. * number - if this matches on the next IO then we use the last disk.
  470. * There is also a per-disk 'last know head position' sector that is
  471. * maintained from IRQ contexts, both the normal and the resync IO
  472. * completion handlers update this position correctly. If there is no
  473. * perfect sequential match then we pick the disk whose head is closest.
  474. *
  475. * If there are 2 mirrors in the same 2 devices, performance degrades
  476. * because position is mirror, not device based.
  477. *
  478. * The rdev for the device selected will have nr_pending incremented.
  479. */
  480. static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
  481. {
  482. const sector_t this_sector = r1_bio->sector;
  483. int sectors;
  484. int best_good_sectors;
  485. int best_disk, best_dist_disk, best_pending_disk;
  486. int has_nonrot_disk;
  487. int disk;
  488. sector_t best_dist;
  489. unsigned int min_pending;
  490. struct md_rdev *rdev;
  491. int choose_first;
  492. int choose_next_idle;
  493. rcu_read_lock();
  494. /*
  495. * Check if we can balance. We can balance on the whole
  496. * device if no resync is going on, or below the resync window.
  497. * We take the first readable disk when above the resync window.
  498. */
  499. retry:
  500. sectors = r1_bio->sectors;
  501. best_disk = -1;
  502. best_dist_disk = -1;
  503. best_dist = MaxSector;
  504. best_pending_disk = -1;
  505. min_pending = UINT_MAX;
  506. best_good_sectors = 0;
  507. has_nonrot_disk = 0;
  508. choose_next_idle = 0;
  509. clear_bit(R1BIO_FailFast, &r1_bio->state);
  510. if ((conf->mddev->recovery_cp < this_sector + sectors) ||
  511. (mddev_is_clustered(conf->mddev) &&
  512. md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
  513. this_sector + sectors)))
  514. choose_first = 1;
  515. else
  516. choose_first = 0;
  517. for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
  518. sector_t dist;
  519. sector_t first_bad;
  520. int bad_sectors;
  521. unsigned int pending;
  522. bool nonrot;
  523. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  524. if (r1_bio->bios[disk] == IO_BLOCKED
  525. || rdev == NULL
  526. || test_bit(Faulty, &rdev->flags))
  527. continue;
  528. if (!test_bit(In_sync, &rdev->flags) &&
  529. rdev->recovery_offset < this_sector + sectors)
  530. continue;
  531. if (test_bit(WriteMostly, &rdev->flags)) {
  532. /* Don't balance among write-mostly, just
  533. * use the first as a last resort */
  534. if (best_dist_disk < 0) {
  535. if (is_badblock(rdev, this_sector, sectors,
  536. &first_bad, &bad_sectors)) {
  537. if (first_bad <= this_sector)
  538. /* Cannot use this */
  539. continue;
  540. best_good_sectors = first_bad - this_sector;
  541. } else
  542. best_good_sectors = sectors;
  543. best_dist_disk = disk;
  544. best_pending_disk = disk;
  545. }
  546. continue;
  547. }
  548. /* This is a reasonable device to use. It might
  549. * even be best.
  550. */
  551. if (is_badblock(rdev, this_sector, sectors,
  552. &first_bad, &bad_sectors)) {
  553. if (best_dist < MaxSector)
  554. /* already have a better device */
  555. continue;
  556. if (first_bad <= this_sector) {
  557. /* cannot read here. If this is the 'primary'
  558. * device, then we must not read beyond
  559. * bad_sectors from another device..
  560. */
  561. bad_sectors -= (this_sector - first_bad);
  562. if (choose_first && sectors > bad_sectors)
  563. sectors = bad_sectors;
  564. if (best_good_sectors > sectors)
  565. best_good_sectors = sectors;
  566. } else {
  567. sector_t good_sectors = first_bad - this_sector;
  568. if (good_sectors > best_good_sectors) {
  569. best_good_sectors = good_sectors;
  570. best_disk = disk;
  571. }
  572. if (choose_first)
  573. break;
  574. }
  575. continue;
  576. } else {
  577. if ((sectors > best_good_sectors) && (best_disk >= 0))
  578. best_disk = -1;
  579. best_good_sectors = sectors;
  580. }
  581. if (best_disk >= 0)
  582. /* At least two disks to choose from so failfast is OK */
  583. set_bit(R1BIO_FailFast, &r1_bio->state);
  584. nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
  585. has_nonrot_disk |= nonrot;
  586. pending = atomic_read(&rdev->nr_pending);
  587. dist = abs(this_sector - conf->mirrors[disk].head_position);
  588. if (choose_first) {
  589. best_disk = disk;
  590. break;
  591. }
  592. /* Don't change to another disk for sequential reads */
  593. if (conf->mirrors[disk].next_seq_sect == this_sector
  594. || dist == 0) {
  595. int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
  596. struct raid1_info *mirror = &conf->mirrors[disk];
  597. best_disk = disk;
  598. /*
  599. * If buffered sequential IO size exceeds optimal
  600. * iosize, check if there is idle disk. If yes, choose
  601. * the idle disk. read_balance could already choose an
  602. * idle disk before noticing it's a sequential IO in
  603. * this disk. This doesn't matter because this disk
  604. * will idle, next time it will be utilized after the
  605. * first disk has IO size exceeds optimal iosize. In
  606. * this way, iosize of the first disk will be optimal
  607. * iosize at least. iosize of the second disk might be
  608. * small, but not a big deal since when the second disk
  609. * starts IO, the first disk is likely still busy.
  610. */
  611. if (nonrot && opt_iosize > 0 &&
  612. mirror->seq_start != MaxSector &&
  613. mirror->next_seq_sect > opt_iosize &&
  614. mirror->next_seq_sect - opt_iosize >=
  615. mirror->seq_start) {
  616. choose_next_idle = 1;
  617. continue;
  618. }
  619. break;
  620. }
  621. if (choose_next_idle)
  622. continue;
  623. if (min_pending > pending) {
  624. min_pending = pending;
  625. best_pending_disk = disk;
  626. }
  627. if (dist < best_dist) {
  628. best_dist = dist;
  629. best_dist_disk = disk;
  630. }
  631. }
  632. /*
  633. * If all disks are rotational, choose the closest disk. If any disk is
  634. * non-rotational, choose the disk with less pending request even the
  635. * disk is rotational, which might/might not be optimal for raids with
  636. * mixed ratation/non-rotational disks depending on workload.
  637. */
  638. if (best_disk == -1) {
  639. if (has_nonrot_disk || min_pending == 0)
  640. best_disk = best_pending_disk;
  641. else
  642. best_disk = best_dist_disk;
  643. }
  644. if (best_disk >= 0) {
  645. rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
  646. if (!rdev)
  647. goto retry;
  648. atomic_inc(&rdev->nr_pending);
  649. sectors = best_good_sectors;
  650. if (conf->mirrors[best_disk].next_seq_sect != this_sector)
  651. conf->mirrors[best_disk].seq_start = this_sector;
  652. conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
  653. }
  654. rcu_read_unlock();
  655. *max_sectors = sectors;
  656. return best_disk;
  657. }
  658. static int raid1_congested(struct mddev *mddev, int bits)
  659. {
  660. struct r1conf *conf = mddev->private;
  661. int i, ret = 0;
  662. if ((bits & (1 << WB_async_congested)) &&
  663. conf->pending_count >= max_queued_requests)
  664. return 1;
  665. rcu_read_lock();
  666. for (i = 0; i < conf->raid_disks * 2; i++) {
  667. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  668. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  669. struct request_queue *q = bdev_get_queue(rdev->bdev);
  670. BUG_ON(!q);
  671. /* Note the '|| 1' - when read_balance prefers
  672. * non-congested targets, it can be removed
  673. */
  674. if ((bits & (1 << WB_async_congested)) || 1)
  675. ret |= bdi_congested(q->backing_dev_info, bits);
  676. else
  677. ret &= bdi_congested(q->backing_dev_info, bits);
  678. }
  679. }
  680. rcu_read_unlock();
  681. return ret;
  682. }
  683. static void flush_bio_list(struct r1conf *conf, struct bio *bio)
  684. {
  685. /* flush any pending bitmap writes to disk before proceeding w/ I/O */
  686. bitmap_unplug(conf->mddev->bitmap);
  687. wake_up(&conf->wait_barrier);
  688. while (bio) { /* submit pending writes */
  689. struct bio *next = bio->bi_next;
  690. struct md_rdev *rdev = (void *)bio->bi_disk;
  691. bio->bi_next = NULL;
  692. bio_set_dev(bio, rdev->bdev);
  693. if (test_bit(Faulty, &rdev->flags)) {
  694. bio_io_error(bio);
  695. } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
  696. !blk_queue_discard(bio->bi_disk->queue)))
  697. /* Just ignore it */
  698. bio_endio(bio);
  699. else
  700. generic_make_request(bio);
  701. bio = next;
  702. }
  703. }
  704. static void flush_pending_writes(struct r1conf *conf)
  705. {
  706. /* Any writes that have been queued but are awaiting
  707. * bitmap updates get flushed here.
  708. */
  709. spin_lock_irq(&conf->device_lock);
  710. if (conf->pending_bio_list.head) {
  711. struct bio *bio;
  712. bio = bio_list_get(&conf->pending_bio_list);
  713. conf->pending_count = 0;
  714. spin_unlock_irq(&conf->device_lock);
  715. flush_bio_list(conf, bio);
  716. } else
  717. spin_unlock_irq(&conf->device_lock);
  718. }
  719. /* Barriers....
  720. * Sometimes we need to suspend IO while we do something else,
  721. * either some resync/recovery, or reconfigure the array.
  722. * To do this we raise a 'barrier'.
  723. * The 'barrier' is a counter that can be raised multiple times
  724. * to count how many activities are happening which preclude
  725. * normal IO.
  726. * We can only raise the barrier if there is no pending IO.
  727. * i.e. if nr_pending == 0.
  728. * We choose only to raise the barrier if no-one is waiting for the
  729. * barrier to go down. This means that as soon as an IO request
  730. * is ready, no other operations which require a barrier will start
  731. * until the IO request has had a chance.
  732. *
  733. * So: regular IO calls 'wait_barrier'. When that returns there
  734. * is no backgroup IO happening, It must arrange to call
  735. * allow_barrier when it has finished its IO.
  736. * backgroup IO calls must call raise_barrier. Once that returns
  737. * there is no normal IO happeing. It must arrange to call
  738. * lower_barrier when the particular background IO completes.
  739. */
  740. static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
  741. {
  742. int idx = sector_to_idx(sector_nr);
  743. spin_lock_irq(&conf->resync_lock);
  744. /* Wait until no block IO is waiting */
  745. wait_event_lock_irq(conf->wait_barrier,
  746. !atomic_read(&conf->nr_waiting[idx]),
  747. conf->resync_lock);
  748. /* block any new IO from starting */
  749. atomic_inc(&conf->barrier[idx]);
  750. /*
  751. * In raise_barrier() we firstly increase conf->barrier[idx] then
  752. * check conf->nr_pending[idx]. In _wait_barrier() we firstly
  753. * increase conf->nr_pending[idx] then check conf->barrier[idx].
  754. * A memory barrier here to make sure conf->nr_pending[idx] won't
  755. * be fetched before conf->barrier[idx] is increased. Otherwise
  756. * there will be a race between raise_barrier() and _wait_barrier().
  757. */
  758. smp_mb__after_atomic();
  759. /* For these conditions we must wait:
  760. * A: while the array is in frozen state
  761. * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
  762. * existing in corresponding I/O barrier bucket.
  763. * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
  764. * max resync count which allowed on current I/O barrier bucket.
  765. */
  766. wait_event_lock_irq(conf->wait_barrier,
  767. !conf->array_frozen &&
  768. !atomic_read(&conf->nr_pending[idx]) &&
  769. atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
  770. conf->resync_lock);
  771. atomic_inc(&conf->nr_sync_pending);
  772. spin_unlock_irq(&conf->resync_lock);
  773. }
  774. static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
  775. {
  776. int idx = sector_to_idx(sector_nr);
  777. BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
  778. atomic_dec(&conf->barrier[idx]);
  779. atomic_dec(&conf->nr_sync_pending);
  780. wake_up(&conf->wait_barrier);
  781. }
  782. static void _wait_barrier(struct r1conf *conf, int idx)
  783. {
  784. /*
  785. * We need to increase conf->nr_pending[idx] very early here,
  786. * then raise_barrier() can be blocked when it waits for
  787. * conf->nr_pending[idx] to be 0. Then we can avoid holding
  788. * conf->resync_lock when there is no barrier raised in same
  789. * barrier unit bucket. Also if the array is frozen, I/O
  790. * should be blocked until array is unfrozen.
  791. */
  792. atomic_inc(&conf->nr_pending[idx]);
  793. /*
  794. * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
  795. * check conf->barrier[idx]. In raise_barrier() we firstly increase
  796. * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
  797. * barrier is necessary here to make sure conf->barrier[idx] won't be
  798. * fetched before conf->nr_pending[idx] is increased. Otherwise there
  799. * will be a race between _wait_barrier() and raise_barrier().
  800. */
  801. smp_mb__after_atomic();
  802. /*
  803. * Don't worry about checking two atomic_t variables at same time
  804. * here. If during we check conf->barrier[idx], the array is
  805. * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
  806. * 0, it is safe to return and make the I/O continue. Because the
  807. * array is frozen, all I/O returned here will eventually complete
  808. * or be queued, no race will happen. See code comment in
  809. * frozen_array().
  810. */
  811. if (!READ_ONCE(conf->array_frozen) &&
  812. !atomic_read(&conf->barrier[idx]))
  813. return;
  814. /*
  815. * After holding conf->resync_lock, conf->nr_pending[idx]
  816. * should be decreased before waiting for barrier to drop.
  817. * Otherwise, we may encounter a race condition because
  818. * raise_barrer() might be waiting for conf->nr_pending[idx]
  819. * to be 0 at same time.
  820. */
  821. spin_lock_irq(&conf->resync_lock);
  822. atomic_inc(&conf->nr_waiting[idx]);
  823. atomic_dec(&conf->nr_pending[idx]);
  824. /*
  825. * In case freeze_array() is waiting for
  826. * get_unqueued_pending() == extra
  827. */
  828. wake_up(&conf->wait_barrier);
  829. /* Wait for the barrier in same barrier unit bucket to drop. */
  830. wait_event_lock_irq(conf->wait_barrier,
  831. !conf->array_frozen &&
  832. !atomic_read(&conf->barrier[idx]),
  833. conf->resync_lock);
  834. atomic_inc(&conf->nr_pending[idx]);
  835. atomic_dec(&conf->nr_waiting[idx]);
  836. spin_unlock_irq(&conf->resync_lock);
  837. }
  838. static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
  839. {
  840. int idx = sector_to_idx(sector_nr);
  841. /*
  842. * Very similar to _wait_barrier(). The difference is, for read
  843. * I/O we don't need wait for sync I/O, but if the whole array
  844. * is frozen, the read I/O still has to wait until the array is
  845. * unfrozen. Since there is no ordering requirement with
  846. * conf->barrier[idx] here, memory barrier is unnecessary as well.
  847. */
  848. atomic_inc(&conf->nr_pending[idx]);
  849. if (!READ_ONCE(conf->array_frozen))
  850. return;
  851. spin_lock_irq(&conf->resync_lock);
  852. atomic_inc(&conf->nr_waiting[idx]);
  853. atomic_dec(&conf->nr_pending[idx]);
  854. /*
  855. * In case freeze_array() is waiting for
  856. * get_unqueued_pending() == extra
  857. */
  858. wake_up(&conf->wait_barrier);
  859. /* Wait for array to be unfrozen */
  860. wait_event_lock_irq(conf->wait_barrier,
  861. !conf->array_frozen,
  862. conf->resync_lock);
  863. atomic_inc(&conf->nr_pending[idx]);
  864. atomic_dec(&conf->nr_waiting[idx]);
  865. spin_unlock_irq(&conf->resync_lock);
  866. }
  867. static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
  868. {
  869. int idx = sector_to_idx(sector_nr);
  870. _wait_barrier(conf, idx);
  871. }
  872. static void wait_all_barriers(struct r1conf *conf)
  873. {
  874. int idx;
  875. for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
  876. _wait_barrier(conf, idx);
  877. }
  878. static void _allow_barrier(struct r1conf *conf, int idx)
  879. {
  880. atomic_dec(&conf->nr_pending[idx]);
  881. wake_up(&conf->wait_barrier);
  882. }
  883. static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
  884. {
  885. int idx = sector_to_idx(sector_nr);
  886. _allow_barrier(conf, idx);
  887. }
  888. static void allow_all_barriers(struct r1conf *conf)
  889. {
  890. int idx;
  891. for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
  892. _allow_barrier(conf, idx);
  893. }
  894. /* conf->resync_lock should be held */
  895. static int get_unqueued_pending(struct r1conf *conf)
  896. {
  897. int idx, ret;
  898. ret = atomic_read(&conf->nr_sync_pending);
  899. for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
  900. ret += atomic_read(&conf->nr_pending[idx]) -
  901. atomic_read(&conf->nr_queued[idx]);
  902. return ret;
  903. }
  904. static void freeze_array(struct r1conf *conf, int extra)
  905. {
  906. /* Stop sync I/O and normal I/O and wait for everything to
  907. * go quiet.
  908. * This is called in two situations:
  909. * 1) management command handlers (reshape, remove disk, quiesce).
  910. * 2) one normal I/O request failed.
  911. * After array_frozen is set to 1, new sync IO will be blocked at
  912. * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
  913. * or wait_read_barrier(). The flying I/Os will either complete or be
  914. * queued. When everything goes quite, there are only queued I/Os left.
  915. * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
  916. * barrier bucket index which this I/O request hits. When all sync and
  917. * normal I/O are queued, sum of all conf->nr_pending[] will match sum
  918. * of all conf->nr_queued[]. But normal I/O failure is an exception,
  919. * in handle_read_error(), we may call freeze_array() before trying to
  920. * fix the read error. In this case, the error read I/O is not queued,
  921. * so get_unqueued_pending() == 1.
  922. *
  923. * Therefore before this function returns, we need to wait until
  924. * get_unqueued_pendings(conf) gets equal to extra. For
  925. * normal I/O context, extra is 1, in rested situations extra is 0.
  926. */
  927. spin_lock_irq(&conf->resync_lock);
  928. conf->array_frozen = 1;
  929. raid1_log(conf->mddev, "wait freeze");
  930. wait_event_lock_irq_cmd(
  931. conf->wait_barrier,
  932. get_unqueued_pending(conf) == extra,
  933. conf->resync_lock,
  934. flush_pending_writes(conf));
  935. spin_unlock_irq(&conf->resync_lock);
  936. }
  937. static void unfreeze_array(struct r1conf *conf)
  938. {
  939. /* reverse the effect of the freeze */
  940. spin_lock_irq(&conf->resync_lock);
  941. conf->array_frozen = 0;
  942. spin_unlock_irq(&conf->resync_lock);
  943. wake_up(&conf->wait_barrier);
  944. }
  945. static void alloc_behind_master_bio(struct r1bio *r1_bio,
  946. struct bio *bio)
  947. {
  948. int size = bio->bi_iter.bi_size;
  949. unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  950. int i = 0;
  951. struct bio *behind_bio = NULL;
  952. behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
  953. if (!behind_bio)
  954. return;
  955. /* discard op, we don't support writezero/writesame yet */
  956. if (!bio_has_data(bio)) {
  957. behind_bio->bi_iter.bi_size = size;
  958. goto skip_copy;
  959. }
  960. while (i < vcnt && size) {
  961. struct page *page;
  962. int len = min_t(int, PAGE_SIZE, size);
  963. page = alloc_page(GFP_NOIO);
  964. if (unlikely(!page))
  965. goto free_pages;
  966. bio_add_page(behind_bio, page, len, 0);
  967. size -= len;
  968. i++;
  969. }
  970. bio_copy_data(behind_bio, bio);
  971. skip_copy:
  972. r1_bio->behind_master_bio = behind_bio;;
  973. set_bit(R1BIO_BehindIO, &r1_bio->state);
  974. return;
  975. free_pages:
  976. pr_debug("%dB behind alloc failed, doing sync I/O\n",
  977. bio->bi_iter.bi_size);
  978. bio_free_pages(behind_bio);
  979. bio_put(behind_bio);
  980. }
  981. struct raid1_plug_cb {
  982. struct blk_plug_cb cb;
  983. struct bio_list pending;
  984. int pending_cnt;
  985. };
  986. static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
  987. {
  988. struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
  989. cb);
  990. struct mddev *mddev = plug->cb.data;
  991. struct r1conf *conf = mddev->private;
  992. struct bio *bio;
  993. if (from_schedule || current->bio_list) {
  994. spin_lock_irq(&conf->device_lock);
  995. bio_list_merge(&conf->pending_bio_list, &plug->pending);
  996. conf->pending_count += plug->pending_cnt;
  997. spin_unlock_irq(&conf->device_lock);
  998. wake_up(&conf->wait_barrier);
  999. md_wakeup_thread(mddev->thread);
  1000. kfree(plug);
  1001. return;
  1002. }
  1003. /* we aren't scheduling, so we can do the write-out directly. */
  1004. bio = bio_list_get(&plug->pending);
  1005. flush_bio_list(conf, bio);
  1006. kfree(plug);
  1007. }
  1008. static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
  1009. {
  1010. r1_bio->master_bio = bio;
  1011. r1_bio->sectors = bio_sectors(bio);
  1012. r1_bio->state = 0;
  1013. r1_bio->mddev = mddev;
  1014. r1_bio->sector = bio->bi_iter.bi_sector;
  1015. }
  1016. static inline struct r1bio *
  1017. alloc_r1bio(struct mddev *mddev, struct bio *bio)
  1018. {
  1019. struct r1conf *conf = mddev->private;
  1020. struct r1bio *r1_bio;
  1021. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1022. /* Ensure no bio records IO_BLOCKED */
  1023. memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
  1024. init_r1bio(r1_bio, mddev, bio);
  1025. return r1_bio;
  1026. }
  1027. static void raid1_read_request(struct mddev *mddev, struct bio *bio,
  1028. int max_read_sectors, struct r1bio *r1_bio)
  1029. {
  1030. struct r1conf *conf = mddev->private;
  1031. struct raid1_info *mirror;
  1032. struct bio *read_bio;
  1033. struct bitmap *bitmap = mddev->bitmap;
  1034. const int op = bio_op(bio);
  1035. const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
  1036. int max_sectors;
  1037. int rdisk;
  1038. bool print_msg = !!r1_bio;
  1039. char b[BDEVNAME_SIZE];
  1040. /*
  1041. * If r1_bio is set, we are blocking the raid1d thread
  1042. * so there is a tiny risk of deadlock. So ask for
  1043. * emergency memory if needed.
  1044. */
  1045. gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
  1046. if (print_msg) {
  1047. /* Need to get the block device name carefully */
  1048. struct md_rdev *rdev;
  1049. rcu_read_lock();
  1050. rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
  1051. if (rdev)
  1052. bdevname(rdev->bdev, b);
  1053. else
  1054. strcpy(b, "???");
  1055. rcu_read_unlock();
  1056. }
  1057. /*
  1058. * Still need barrier for READ in case that whole
  1059. * array is frozen.
  1060. */
  1061. wait_read_barrier(conf, bio->bi_iter.bi_sector);
  1062. if (!r1_bio)
  1063. r1_bio = alloc_r1bio(mddev, bio);
  1064. else
  1065. init_r1bio(r1_bio, mddev, bio);
  1066. r1_bio->sectors = max_read_sectors;
  1067. /*
  1068. * make_request() can abort the operation when read-ahead is being
  1069. * used and no empty request is available.
  1070. */
  1071. rdisk = read_balance(conf, r1_bio, &max_sectors);
  1072. if (rdisk < 0) {
  1073. /* couldn't find anywhere to read from */
  1074. if (print_msg) {
  1075. pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
  1076. mdname(mddev),
  1077. b,
  1078. (unsigned long long)r1_bio->sector);
  1079. }
  1080. raid_end_bio_io(r1_bio);
  1081. return;
  1082. }
  1083. mirror = conf->mirrors + rdisk;
  1084. if (print_msg)
  1085. pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
  1086. mdname(mddev),
  1087. (unsigned long long)r1_bio->sector,
  1088. bdevname(mirror->rdev->bdev, b));
  1089. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  1090. bitmap) {
  1091. /*
  1092. * Reading from a write-mostly device must take care not to
  1093. * over-take any writes that are 'behind'
  1094. */
  1095. raid1_log(mddev, "wait behind writes");
  1096. wait_event(bitmap->behind_wait,
  1097. atomic_read(&bitmap->behind_writes) == 0);
  1098. }
  1099. if (max_sectors < bio_sectors(bio)) {
  1100. struct bio *split = bio_split(bio, max_sectors,
  1101. gfp, conf->bio_split);
  1102. bio_chain(split, bio);
  1103. generic_make_request(bio);
  1104. bio = split;
  1105. r1_bio->master_bio = bio;
  1106. r1_bio->sectors = max_sectors;
  1107. }
  1108. r1_bio->read_disk = rdisk;
  1109. read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
  1110. r1_bio->bios[rdisk] = read_bio;
  1111. read_bio->bi_iter.bi_sector = r1_bio->sector +
  1112. mirror->rdev->data_offset;
  1113. bio_set_dev(read_bio, mirror->rdev->bdev);
  1114. read_bio->bi_end_io = raid1_end_read_request;
  1115. bio_set_op_attrs(read_bio, op, do_sync);
  1116. if (test_bit(FailFast, &mirror->rdev->flags) &&
  1117. test_bit(R1BIO_FailFast, &r1_bio->state))
  1118. read_bio->bi_opf |= MD_FAILFAST;
  1119. read_bio->bi_private = r1_bio;
  1120. if (mddev->gendisk)
  1121. trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
  1122. disk_devt(mddev->gendisk), r1_bio->sector);
  1123. generic_make_request(read_bio);
  1124. }
  1125. static void raid1_write_request(struct mddev *mddev, struct bio *bio,
  1126. int max_write_sectors)
  1127. {
  1128. struct r1conf *conf = mddev->private;
  1129. struct r1bio *r1_bio;
  1130. int i, disks;
  1131. struct bitmap *bitmap = mddev->bitmap;
  1132. unsigned long flags;
  1133. struct md_rdev *blocked_rdev;
  1134. struct blk_plug_cb *cb;
  1135. struct raid1_plug_cb *plug = NULL;
  1136. int first_clone;
  1137. int max_sectors;
  1138. /*
  1139. * Register the new request and wait if the reconstruction
  1140. * thread has put up a bar for new requests.
  1141. * Continue immediately if no resync is active currently.
  1142. */
  1143. if ((bio_end_sector(bio) > mddev->suspend_lo &&
  1144. bio->bi_iter.bi_sector < mddev->suspend_hi) ||
  1145. (mddev_is_clustered(mddev) &&
  1146. md_cluster_ops->area_resyncing(mddev, WRITE,
  1147. bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
  1148. /*
  1149. * As the suspend_* range is controlled by userspace, we want
  1150. * an interruptible wait.
  1151. */
  1152. DEFINE_WAIT(w);
  1153. for (;;) {
  1154. sigset_t full, old;
  1155. prepare_to_wait(&conf->wait_barrier,
  1156. &w, TASK_INTERRUPTIBLE);
  1157. if (bio_end_sector(bio) <= mddev->suspend_lo ||
  1158. bio->bi_iter.bi_sector >= mddev->suspend_hi ||
  1159. (mddev_is_clustered(mddev) &&
  1160. !md_cluster_ops->area_resyncing(mddev, WRITE,
  1161. bio->bi_iter.bi_sector,
  1162. bio_end_sector(bio))))
  1163. break;
  1164. sigfillset(&full);
  1165. sigprocmask(SIG_BLOCK, &full, &old);
  1166. schedule();
  1167. sigprocmask(SIG_SETMASK, &old, NULL);
  1168. }
  1169. finish_wait(&conf->wait_barrier, &w);
  1170. }
  1171. wait_barrier(conf, bio->bi_iter.bi_sector);
  1172. r1_bio = alloc_r1bio(mddev, bio);
  1173. r1_bio->sectors = max_write_sectors;
  1174. if (conf->pending_count >= max_queued_requests) {
  1175. md_wakeup_thread(mddev->thread);
  1176. raid1_log(mddev, "wait queued");
  1177. wait_event(conf->wait_barrier,
  1178. conf->pending_count < max_queued_requests);
  1179. }
  1180. /* first select target devices under rcu_lock and
  1181. * inc refcount on their rdev. Record them by setting
  1182. * bios[x] to bio
  1183. * If there are known/acknowledged bad blocks on any device on
  1184. * which we have seen a write error, we want to avoid writing those
  1185. * blocks.
  1186. * This potentially requires several writes to write around
  1187. * the bad blocks. Each set of writes gets it's own r1bio
  1188. * with a set of bios attached.
  1189. */
  1190. disks = conf->raid_disks * 2;
  1191. retry_write:
  1192. blocked_rdev = NULL;
  1193. rcu_read_lock();
  1194. max_sectors = r1_bio->sectors;
  1195. for (i = 0; i < disks; i++) {
  1196. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1197. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  1198. atomic_inc(&rdev->nr_pending);
  1199. blocked_rdev = rdev;
  1200. break;
  1201. }
  1202. r1_bio->bios[i] = NULL;
  1203. if (!rdev || test_bit(Faulty, &rdev->flags)) {
  1204. if (i < conf->raid_disks)
  1205. set_bit(R1BIO_Degraded, &r1_bio->state);
  1206. continue;
  1207. }
  1208. atomic_inc(&rdev->nr_pending);
  1209. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  1210. sector_t first_bad;
  1211. int bad_sectors;
  1212. int is_bad;
  1213. is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
  1214. &first_bad, &bad_sectors);
  1215. if (is_bad < 0) {
  1216. /* mustn't write here until the bad block is
  1217. * acknowledged*/
  1218. set_bit(BlockedBadBlocks, &rdev->flags);
  1219. blocked_rdev = rdev;
  1220. break;
  1221. }
  1222. if (is_bad && first_bad <= r1_bio->sector) {
  1223. /* Cannot write here at all */
  1224. bad_sectors -= (r1_bio->sector - first_bad);
  1225. if (bad_sectors < max_sectors)
  1226. /* mustn't write more than bad_sectors
  1227. * to other devices yet
  1228. */
  1229. max_sectors = bad_sectors;
  1230. rdev_dec_pending(rdev, mddev);
  1231. /* We don't set R1BIO_Degraded as that
  1232. * only applies if the disk is
  1233. * missing, so it might be re-added,
  1234. * and we want to know to recover this
  1235. * chunk.
  1236. * In this case the device is here,
  1237. * and the fact that this chunk is not
  1238. * in-sync is recorded in the bad
  1239. * block log
  1240. */
  1241. continue;
  1242. }
  1243. if (is_bad) {
  1244. int good_sectors = first_bad - r1_bio->sector;
  1245. if (good_sectors < max_sectors)
  1246. max_sectors = good_sectors;
  1247. }
  1248. }
  1249. r1_bio->bios[i] = bio;
  1250. }
  1251. rcu_read_unlock();
  1252. if (unlikely(blocked_rdev)) {
  1253. /* Wait for this device to become unblocked */
  1254. int j;
  1255. for (j = 0; j < i; j++)
  1256. if (r1_bio->bios[j])
  1257. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  1258. r1_bio->state = 0;
  1259. allow_barrier(conf, bio->bi_iter.bi_sector);
  1260. raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
  1261. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  1262. wait_barrier(conf, bio->bi_iter.bi_sector);
  1263. goto retry_write;
  1264. }
  1265. if (max_sectors < bio_sectors(bio)) {
  1266. struct bio *split = bio_split(bio, max_sectors,
  1267. GFP_NOIO, conf->bio_split);
  1268. bio_chain(split, bio);
  1269. generic_make_request(bio);
  1270. bio = split;
  1271. r1_bio->master_bio = bio;
  1272. r1_bio->sectors = max_sectors;
  1273. }
  1274. atomic_set(&r1_bio->remaining, 1);
  1275. atomic_set(&r1_bio->behind_remaining, 0);
  1276. first_clone = 1;
  1277. for (i = 0; i < disks; i++) {
  1278. struct bio *mbio = NULL;
  1279. if (!r1_bio->bios[i])
  1280. continue;
  1281. if (first_clone) {
  1282. /* do behind I/O ?
  1283. * Not if there are too many, or cannot
  1284. * allocate memory, or a reader on WriteMostly
  1285. * is waiting for behind writes to flush */
  1286. if (bitmap &&
  1287. (atomic_read(&bitmap->behind_writes)
  1288. < mddev->bitmap_info.max_write_behind) &&
  1289. !waitqueue_active(&bitmap->behind_wait)) {
  1290. alloc_behind_master_bio(r1_bio, bio);
  1291. }
  1292. bitmap_startwrite(bitmap, r1_bio->sector,
  1293. r1_bio->sectors,
  1294. test_bit(R1BIO_BehindIO,
  1295. &r1_bio->state));
  1296. first_clone = 0;
  1297. }
  1298. if (r1_bio->behind_master_bio)
  1299. mbio = bio_clone_fast(r1_bio->behind_master_bio,
  1300. GFP_NOIO, mddev->bio_set);
  1301. else
  1302. mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
  1303. if (r1_bio->behind_master_bio) {
  1304. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  1305. atomic_inc(&r1_bio->behind_remaining);
  1306. }
  1307. r1_bio->bios[i] = mbio;
  1308. mbio->bi_iter.bi_sector = (r1_bio->sector +
  1309. conf->mirrors[i].rdev->data_offset);
  1310. bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
  1311. mbio->bi_end_io = raid1_end_write_request;
  1312. mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
  1313. if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
  1314. !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
  1315. conf->raid_disks - mddev->degraded > 1)
  1316. mbio->bi_opf |= MD_FAILFAST;
  1317. mbio->bi_private = r1_bio;
  1318. atomic_inc(&r1_bio->remaining);
  1319. if (mddev->gendisk)
  1320. trace_block_bio_remap(mbio->bi_disk->queue,
  1321. mbio, disk_devt(mddev->gendisk),
  1322. r1_bio->sector);
  1323. /* flush_pending_writes() needs access to the rdev so...*/
  1324. mbio->bi_disk = (void *)conf->mirrors[i].rdev;
  1325. cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
  1326. if (cb)
  1327. plug = container_of(cb, struct raid1_plug_cb, cb);
  1328. else
  1329. plug = NULL;
  1330. if (plug) {
  1331. bio_list_add(&plug->pending, mbio);
  1332. plug->pending_cnt++;
  1333. } else {
  1334. spin_lock_irqsave(&conf->device_lock, flags);
  1335. bio_list_add(&conf->pending_bio_list, mbio);
  1336. conf->pending_count++;
  1337. spin_unlock_irqrestore(&conf->device_lock, flags);
  1338. md_wakeup_thread(mddev->thread);
  1339. }
  1340. }
  1341. r1_bio_write_done(r1_bio);
  1342. /* In case raid1d snuck in to freeze_array */
  1343. wake_up(&conf->wait_barrier);
  1344. }
  1345. static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
  1346. {
  1347. sector_t sectors;
  1348. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  1349. md_flush_request(mddev, bio);
  1350. return true;
  1351. }
  1352. /*
  1353. * There is a limit to the maximum size, but
  1354. * the read/write handler might find a lower limit
  1355. * due to bad blocks. To avoid multiple splits,
  1356. * we pass the maximum number of sectors down
  1357. * and let the lower level perform the split.
  1358. */
  1359. sectors = align_to_barrier_unit_end(
  1360. bio->bi_iter.bi_sector, bio_sectors(bio));
  1361. if (bio_data_dir(bio) == READ)
  1362. raid1_read_request(mddev, bio, sectors, NULL);
  1363. else {
  1364. if (!md_write_start(mddev,bio))
  1365. return false;
  1366. raid1_write_request(mddev, bio, sectors);
  1367. }
  1368. return true;
  1369. }
  1370. static void raid1_status(struct seq_file *seq, struct mddev *mddev)
  1371. {
  1372. struct r1conf *conf = mddev->private;
  1373. int i;
  1374. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1375. conf->raid_disks - mddev->degraded);
  1376. rcu_read_lock();
  1377. for (i = 0; i < conf->raid_disks; i++) {
  1378. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1379. seq_printf(seq, "%s",
  1380. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  1381. }
  1382. rcu_read_unlock();
  1383. seq_printf(seq, "]");
  1384. }
  1385. static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
  1386. {
  1387. char b[BDEVNAME_SIZE];
  1388. struct r1conf *conf = mddev->private;
  1389. unsigned long flags;
  1390. /*
  1391. * If it is not operational, then we have already marked it as dead
  1392. * else if it is the last working disks, ignore the error, let the
  1393. * next level up know.
  1394. * else mark the drive as failed
  1395. */
  1396. spin_lock_irqsave(&conf->device_lock, flags);
  1397. if (test_bit(In_sync, &rdev->flags)
  1398. && (conf->raid_disks - mddev->degraded) == 1) {
  1399. /*
  1400. * Don't fail the drive, act as though we were just a
  1401. * normal single drive.
  1402. * However don't try a recovery from this drive as
  1403. * it is very likely to fail.
  1404. */
  1405. conf->recovery_disabled = mddev->recovery_disabled;
  1406. spin_unlock_irqrestore(&conf->device_lock, flags);
  1407. return;
  1408. }
  1409. set_bit(Blocked, &rdev->flags);
  1410. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1411. mddev->degraded++;
  1412. set_bit(Faulty, &rdev->flags);
  1413. } else
  1414. set_bit(Faulty, &rdev->flags);
  1415. spin_unlock_irqrestore(&conf->device_lock, flags);
  1416. /*
  1417. * if recovery is running, make sure it aborts.
  1418. */
  1419. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1420. set_mask_bits(&mddev->sb_flags, 0,
  1421. BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
  1422. pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
  1423. "md/raid1:%s: Operation continuing on %d devices.\n",
  1424. mdname(mddev), bdevname(rdev->bdev, b),
  1425. mdname(mddev), conf->raid_disks - mddev->degraded);
  1426. }
  1427. static void print_conf(struct r1conf *conf)
  1428. {
  1429. int i;
  1430. pr_debug("RAID1 conf printout:\n");
  1431. if (!conf) {
  1432. pr_debug("(!conf)\n");
  1433. return;
  1434. }
  1435. pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1436. conf->raid_disks);
  1437. rcu_read_lock();
  1438. for (i = 0; i < conf->raid_disks; i++) {
  1439. char b[BDEVNAME_SIZE];
  1440. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1441. if (rdev)
  1442. pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
  1443. i, !test_bit(In_sync, &rdev->flags),
  1444. !test_bit(Faulty, &rdev->flags),
  1445. bdevname(rdev->bdev,b));
  1446. }
  1447. rcu_read_unlock();
  1448. }
  1449. static void close_sync(struct r1conf *conf)
  1450. {
  1451. wait_all_barriers(conf);
  1452. allow_all_barriers(conf);
  1453. mempool_destroy(conf->r1buf_pool);
  1454. conf->r1buf_pool = NULL;
  1455. }
  1456. static int raid1_spare_active(struct mddev *mddev)
  1457. {
  1458. int i;
  1459. struct r1conf *conf = mddev->private;
  1460. int count = 0;
  1461. unsigned long flags;
  1462. /*
  1463. * Find all failed disks within the RAID1 configuration
  1464. * and mark them readable.
  1465. * Called under mddev lock, so rcu protection not needed.
  1466. * device_lock used to avoid races with raid1_end_read_request
  1467. * which expects 'In_sync' flags and ->degraded to be consistent.
  1468. */
  1469. spin_lock_irqsave(&conf->device_lock, flags);
  1470. for (i = 0; i < conf->raid_disks; i++) {
  1471. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1472. struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
  1473. if (repl
  1474. && !test_bit(Candidate, &repl->flags)
  1475. && repl->recovery_offset == MaxSector
  1476. && !test_bit(Faulty, &repl->flags)
  1477. && !test_and_set_bit(In_sync, &repl->flags)) {
  1478. /* replacement has just become active */
  1479. if (!rdev ||
  1480. !test_and_clear_bit(In_sync, &rdev->flags))
  1481. count++;
  1482. if (rdev) {
  1483. /* Replaced device not technically
  1484. * faulty, but we need to be sure
  1485. * it gets removed and never re-added
  1486. */
  1487. set_bit(Faulty, &rdev->flags);
  1488. sysfs_notify_dirent_safe(
  1489. rdev->sysfs_state);
  1490. }
  1491. }
  1492. if (rdev
  1493. && rdev->recovery_offset == MaxSector
  1494. && !test_bit(Faulty, &rdev->flags)
  1495. && !test_and_set_bit(In_sync, &rdev->flags)) {
  1496. count++;
  1497. sysfs_notify_dirent_safe(rdev->sysfs_state);
  1498. }
  1499. }
  1500. mddev->degraded -= count;
  1501. spin_unlock_irqrestore(&conf->device_lock, flags);
  1502. print_conf(conf);
  1503. return count;
  1504. }
  1505. static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1506. {
  1507. struct r1conf *conf = mddev->private;
  1508. int err = -EEXIST;
  1509. int mirror = 0;
  1510. struct raid1_info *p;
  1511. int first = 0;
  1512. int last = conf->raid_disks - 1;
  1513. if (mddev->recovery_disabled == conf->recovery_disabled)
  1514. return -EBUSY;
  1515. if (md_integrity_add_rdev(rdev, mddev))
  1516. return -ENXIO;
  1517. if (rdev->raid_disk >= 0)
  1518. first = last = rdev->raid_disk;
  1519. /*
  1520. * find the disk ... but prefer rdev->saved_raid_disk
  1521. * if possible.
  1522. */
  1523. if (rdev->saved_raid_disk >= 0 &&
  1524. rdev->saved_raid_disk >= first &&
  1525. conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
  1526. first = last = rdev->saved_raid_disk;
  1527. for (mirror = first; mirror <= last; mirror++) {
  1528. p = conf->mirrors+mirror;
  1529. if (!p->rdev) {
  1530. if (mddev->gendisk)
  1531. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1532. rdev->data_offset << 9);
  1533. p->head_position = 0;
  1534. rdev->raid_disk = mirror;
  1535. err = 0;
  1536. /* As all devices are equivalent, we don't need a full recovery
  1537. * if this was recently any drive of the array
  1538. */
  1539. if (rdev->saved_raid_disk < 0)
  1540. conf->fullsync = 1;
  1541. rcu_assign_pointer(p->rdev, rdev);
  1542. break;
  1543. }
  1544. if (test_bit(WantReplacement, &p->rdev->flags) &&
  1545. p[conf->raid_disks].rdev == NULL) {
  1546. /* Add this device as a replacement */
  1547. clear_bit(In_sync, &rdev->flags);
  1548. set_bit(Replacement, &rdev->flags);
  1549. rdev->raid_disk = mirror;
  1550. err = 0;
  1551. conf->fullsync = 1;
  1552. rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
  1553. break;
  1554. }
  1555. }
  1556. if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
  1557. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
  1558. print_conf(conf);
  1559. return err;
  1560. }
  1561. static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
  1562. {
  1563. struct r1conf *conf = mddev->private;
  1564. int err = 0;
  1565. int number = rdev->raid_disk;
  1566. struct raid1_info *p = conf->mirrors + number;
  1567. if (rdev != p->rdev)
  1568. p = conf->mirrors + conf->raid_disks + number;
  1569. print_conf(conf);
  1570. if (rdev == p->rdev) {
  1571. if (test_bit(In_sync, &rdev->flags) ||
  1572. atomic_read(&rdev->nr_pending)) {
  1573. err = -EBUSY;
  1574. goto abort;
  1575. }
  1576. /* Only remove non-faulty devices if recovery
  1577. * is not possible.
  1578. */
  1579. if (!test_bit(Faulty, &rdev->flags) &&
  1580. mddev->recovery_disabled != conf->recovery_disabled &&
  1581. mddev->degraded < conf->raid_disks) {
  1582. err = -EBUSY;
  1583. goto abort;
  1584. }
  1585. p->rdev = NULL;
  1586. if (!test_bit(RemoveSynchronized, &rdev->flags)) {
  1587. synchronize_rcu();
  1588. if (atomic_read(&rdev->nr_pending)) {
  1589. /* lost the race, try later */
  1590. err = -EBUSY;
  1591. p->rdev = rdev;
  1592. goto abort;
  1593. }
  1594. }
  1595. if (conf->mirrors[conf->raid_disks + number].rdev) {
  1596. /* We just removed a device that is being replaced.
  1597. * Move down the replacement. We drain all IO before
  1598. * doing this to avoid confusion.
  1599. */
  1600. struct md_rdev *repl =
  1601. conf->mirrors[conf->raid_disks + number].rdev;
  1602. freeze_array(conf, 0);
  1603. clear_bit(Replacement, &repl->flags);
  1604. p->rdev = repl;
  1605. conf->mirrors[conf->raid_disks + number].rdev = NULL;
  1606. unfreeze_array(conf);
  1607. }
  1608. clear_bit(WantReplacement, &rdev->flags);
  1609. err = md_integrity_register(mddev);
  1610. }
  1611. abort:
  1612. print_conf(conf);
  1613. return err;
  1614. }
  1615. static void end_sync_read(struct bio *bio)
  1616. {
  1617. struct r1bio *r1_bio = get_resync_r1bio(bio);
  1618. update_head_pos(r1_bio->read_disk, r1_bio);
  1619. /*
  1620. * we have read a block, now it needs to be re-written,
  1621. * or re-read if the read failed.
  1622. * We don't do much here, just schedule handling by raid1d
  1623. */
  1624. if (!bio->bi_status)
  1625. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1626. if (atomic_dec_and_test(&r1_bio->remaining))
  1627. reschedule_retry(r1_bio);
  1628. }
  1629. static void end_sync_write(struct bio *bio)
  1630. {
  1631. int uptodate = !bio->bi_status;
  1632. struct r1bio *r1_bio = get_resync_r1bio(bio);
  1633. struct mddev *mddev = r1_bio->mddev;
  1634. struct r1conf *conf = mddev->private;
  1635. sector_t first_bad;
  1636. int bad_sectors;
  1637. struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
  1638. if (!uptodate) {
  1639. sector_t sync_blocks = 0;
  1640. sector_t s = r1_bio->sector;
  1641. long sectors_to_go = r1_bio->sectors;
  1642. /* make sure these bits doesn't get cleared. */
  1643. do {
  1644. bitmap_end_sync(mddev->bitmap, s,
  1645. &sync_blocks, 1);
  1646. s += sync_blocks;
  1647. sectors_to_go -= sync_blocks;
  1648. } while (sectors_to_go > 0);
  1649. set_bit(WriteErrorSeen, &rdev->flags);
  1650. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  1651. set_bit(MD_RECOVERY_NEEDED, &
  1652. mddev->recovery);
  1653. set_bit(R1BIO_WriteError, &r1_bio->state);
  1654. } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
  1655. &first_bad, &bad_sectors) &&
  1656. !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
  1657. r1_bio->sector,
  1658. r1_bio->sectors,
  1659. &first_bad, &bad_sectors)
  1660. )
  1661. set_bit(R1BIO_MadeGood, &r1_bio->state);
  1662. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1663. int s = r1_bio->sectors;
  1664. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1665. test_bit(R1BIO_WriteError, &r1_bio->state))
  1666. reschedule_retry(r1_bio);
  1667. else {
  1668. put_buf(r1_bio);
  1669. md_done_sync(mddev, s, uptodate);
  1670. }
  1671. }
  1672. }
  1673. static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1674. int sectors, struct page *page, int rw)
  1675. {
  1676. if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
  1677. /* success */
  1678. return 1;
  1679. if (rw == WRITE) {
  1680. set_bit(WriteErrorSeen, &rdev->flags);
  1681. if (!test_and_set_bit(WantReplacement,
  1682. &rdev->flags))
  1683. set_bit(MD_RECOVERY_NEEDED, &
  1684. rdev->mddev->recovery);
  1685. }
  1686. /* need to record an error - either for the block or the device */
  1687. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1688. md_error(rdev->mddev, rdev);
  1689. return 0;
  1690. }
  1691. static int fix_sync_read_error(struct r1bio *r1_bio)
  1692. {
  1693. /* Try some synchronous reads of other devices to get
  1694. * good data, much like with normal read errors. Only
  1695. * read into the pages we already have so we don't
  1696. * need to re-issue the read request.
  1697. * We don't need to freeze the array, because being in an
  1698. * active sync request, there is no normal IO, and
  1699. * no overlapping syncs.
  1700. * We don't need to check is_badblock() again as we
  1701. * made sure that anything with a bad block in range
  1702. * will have bi_end_io clear.
  1703. */
  1704. struct mddev *mddev = r1_bio->mddev;
  1705. struct r1conf *conf = mddev->private;
  1706. struct bio *bio = r1_bio->bios[r1_bio->read_disk];
  1707. struct page **pages = get_resync_pages(bio)->pages;
  1708. sector_t sect = r1_bio->sector;
  1709. int sectors = r1_bio->sectors;
  1710. int idx = 0;
  1711. struct md_rdev *rdev;
  1712. rdev = conf->mirrors[r1_bio->read_disk].rdev;
  1713. if (test_bit(FailFast, &rdev->flags)) {
  1714. /* Don't try recovering from here - just fail it
  1715. * ... unless it is the last working device of course */
  1716. md_error(mddev, rdev);
  1717. if (test_bit(Faulty, &rdev->flags))
  1718. /* Don't try to read from here, but make sure
  1719. * put_buf does it's thing
  1720. */
  1721. bio->bi_end_io = end_sync_write;
  1722. }
  1723. while(sectors) {
  1724. int s = sectors;
  1725. int d = r1_bio->read_disk;
  1726. int success = 0;
  1727. int start;
  1728. if (s > (PAGE_SIZE>>9))
  1729. s = PAGE_SIZE >> 9;
  1730. do {
  1731. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1732. /* No rcu protection needed here devices
  1733. * can only be removed when no resync is
  1734. * active, and resync is currently active
  1735. */
  1736. rdev = conf->mirrors[d].rdev;
  1737. if (sync_page_io(rdev, sect, s<<9,
  1738. pages[idx],
  1739. REQ_OP_READ, 0, false)) {
  1740. success = 1;
  1741. break;
  1742. }
  1743. }
  1744. d++;
  1745. if (d == conf->raid_disks * 2)
  1746. d = 0;
  1747. } while (!success && d != r1_bio->read_disk);
  1748. if (!success) {
  1749. char b[BDEVNAME_SIZE];
  1750. int abort = 0;
  1751. /* Cannot read from anywhere, this block is lost.
  1752. * Record a bad block on each device. If that doesn't
  1753. * work just disable and interrupt the recovery.
  1754. * Don't fail devices as that won't really help.
  1755. */
  1756. pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
  1757. mdname(mddev), bio_devname(bio, b),
  1758. (unsigned long long)r1_bio->sector);
  1759. for (d = 0; d < conf->raid_disks * 2; d++) {
  1760. rdev = conf->mirrors[d].rdev;
  1761. if (!rdev || test_bit(Faulty, &rdev->flags))
  1762. continue;
  1763. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1764. abort = 1;
  1765. }
  1766. if (abort) {
  1767. conf->recovery_disabled =
  1768. mddev->recovery_disabled;
  1769. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1770. md_done_sync(mddev, r1_bio->sectors, 0);
  1771. put_buf(r1_bio);
  1772. return 0;
  1773. }
  1774. /* Try next page */
  1775. sectors -= s;
  1776. sect += s;
  1777. idx++;
  1778. continue;
  1779. }
  1780. start = d;
  1781. /* write it back and re-read */
  1782. while (d != r1_bio->read_disk) {
  1783. if (d == 0)
  1784. d = conf->raid_disks * 2;
  1785. d--;
  1786. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1787. continue;
  1788. rdev = conf->mirrors[d].rdev;
  1789. if (r1_sync_page_io(rdev, sect, s,
  1790. pages[idx],
  1791. WRITE) == 0) {
  1792. r1_bio->bios[d]->bi_end_io = NULL;
  1793. rdev_dec_pending(rdev, mddev);
  1794. }
  1795. }
  1796. d = start;
  1797. while (d != r1_bio->read_disk) {
  1798. if (d == 0)
  1799. d = conf->raid_disks * 2;
  1800. d--;
  1801. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1802. continue;
  1803. rdev = conf->mirrors[d].rdev;
  1804. if (r1_sync_page_io(rdev, sect, s,
  1805. pages[idx],
  1806. READ) != 0)
  1807. atomic_add(s, &rdev->corrected_errors);
  1808. }
  1809. sectors -= s;
  1810. sect += s;
  1811. idx ++;
  1812. }
  1813. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1814. bio->bi_status = 0;
  1815. return 1;
  1816. }
  1817. static void process_checks(struct r1bio *r1_bio)
  1818. {
  1819. /* We have read all readable devices. If we haven't
  1820. * got the block, then there is no hope left.
  1821. * If we have, then we want to do a comparison
  1822. * and skip the write if everything is the same.
  1823. * If any blocks failed to read, then we need to
  1824. * attempt an over-write
  1825. */
  1826. struct mddev *mddev = r1_bio->mddev;
  1827. struct r1conf *conf = mddev->private;
  1828. int primary;
  1829. int i;
  1830. int vcnt;
  1831. /* Fix variable parts of all bios */
  1832. vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
  1833. for (i = 0; i < conf->raid_disks * 2; i++) {
  1834. blk_status_t status;
  1835. struct bio *b = r1_bio->bios[i];
  1836. struct resync_pages *rp = get_resync_pages(b);
  1837. if (b->bi_end_io != end_sync_read)
  1838. continue;
  1839. /* fixup the bio for reuse, but preserve errno */
  1840. status = b->bi_status;
  1841. bio_reset(b);
  1842. b->bi_status = status;
  1843. b->bi_iter.bi_sector = r1_bio->sector +
  1844. conf->mirrors[i].rdev->data_offset;
  1845. bio_set_dev(b, conf->mirrors[i].rdev->bdev);
  1846. b->bi_end_io = end_sync_read;
  1847. rp->raid_bio = r1_bio;
  1848. b->bi_private = rp;
  1849. /* initialize bvec table again */
  1850. md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
  1851. }
  1852. for (primary = 0; primary < conf->raid_disks * 2; primary++)
  1853. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1854. !r1_bio->bios[primary]->bi_status) {
  1855. r1_bio->bios[primary]->bi_end_io = NULL;
  1856. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1857. break;
  1858. }
  1859. r1_bio->read_disk = primary;
  1860. for (i = 0; i < conf->raid_disks * 2; i++) {
  1861. int j;
  1862. struct bio *pbio = r1_bio->bios[primary];
  1863. struct bio *sbio = r1_bio->bios[i];
  1864. blk_status_t status = sbio->bi_status;
  1865. struct page **ppages = get_resync_pages(pbio)->pages;
  1866. struct page **spages = get_resync_pages(sbio)->pages;
  1867. struct bio_vec *bi;
  1868. int page_len[RESYNC_PAGES] = { 0 };
  1869. if (sbio->bi_end_io != end_sync_read)
  1870. continue;
  1871. /* Now we can 'fixup' the error value */
  1872. sbio->bi_status = 0;
  1873. bio_for_each_segment_all(bi, sbio, j)
  1874. page_len[j] = bi->bv_len;
  1875. if (!status) {
  1876. for (j = vcnt; j-- ; ) {
  1877. if (memcmp(page_address(ppages[j]),
  1878. page_address(spages[j]),
  1879. page_len[j]))
  1880. break;
  1881. }
  1882. } else
  1883. j = 0;
  1884. if (j >= 0)
  1885. atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
  1886. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1887. && !status)) {
  1888. /* No need to write to this device. */
  1889. sbio->bi_end_io = NULL;
  1890. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1891. continue;
  1892. }
  1893. bio_copy_data(sbio, pbio);
  1894. }
  1895. }
  1896. static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
  1897. {
  1898. struct r1conf *conf = mddev->private;
  1899. int i;
  1900. int disks = conf->raid_disks * 2;
  1901. struct bio *wbio;
  1902. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  1903. /* ouch - failed to read all of that. */
  1904. if (!fix_sync_read_error(r1_bio))
  1905. return;
  1906. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1907. process_checks(r1_bio);
  1908. /*
  1909. * schedule writes
  1910. */
  1911. atomic_set(&r1_bio->remaining, 1);
  1912. for (i = 0; i < disks ; i++) {
  1913. wbio = r1_bio->bios[i];
  1914. if (wbio->bi_end_io == NULL ||
  1915. (wbio->bi_end_io == end_sync_read &&
  1916. (i == r1_bio->read_disk ||
  1917. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1918. continue;
  1919. if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  1920. continue;
  1921. bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
  1922. if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
  1923. wbio->bi_opf |= MD_FAILFAST;
  1924. wbio->bi_end_io = end_sync_write;
  1925. atomic_inc(&r1_bio->remaining);
  1926. md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
  1927. generic_make_request(wbio);
  1928. }
  1929. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1930. /* if we're here, all write(s) have completed, so clean up */
  1931. int s = r1_bio->sectors;
  1932. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1933. test_bit(R1BIO_WriteError, &r1_bio->state))
  1934. reschedule_retry(r1_bio);
  1935. else {
  1936. put_buf(r1_bio);
  1937. md_done_sync(mddev, s, 1);
  1938. }
  1939. }
  1940. }
  1941. /*
  1942. * This is a kernel thread which:
  1943. *
  1944. * 1. Retries failed read operations on working mirrors.
  1945. * 2. Updates the raid superblock when problems encounter.
  1946. * 3. Performs writes following reads for array synchronising.
  1947. */
  1948. static void fix_read_error(struct r1conf *conf, int read_disk,
  1949. sector_t sect, int sectors)
  1950. {
  1951. struct mddev *mddev = conf->mddev;
  1952. while(sectors) {
  1953. int s = sectors;
  1954. int d = read_disk;
  1955. int success = 0;
  1956. int start;
  1957. struct md_rdev *rdev;
  1958. if (s > (PAGE_SIZE>>9))
  1959. s = PAGE_SIZE >> 9;
  1960. do {
  1961. sector_t first_bad;
  1962. int bad_sectors;
  1963. rcu_read_lock();
  1964. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1965. if (rdev &&
  1966. (test_bit(In_sync, &rdev->flags) ||
  1967. (!test_bit(Faulty, &rdev->flags) &&
  1968. rdev->recovery_offset >= sect + s)) &&
  1969. is_badblock(rdev, sect, s,
  1970. &first_bad, &bad_sectors) == 0) {
  1971. atomic_inc(&rdev->nr_pending);
  1972. rcu_read_unlock();
  1973. if (sync_page_io(rdev, sect, s<<9,
  1974. conf->tmppage, REQ_OP_READ, 0, false))
  1975. success = 1;
  1976. rdev_dec_pending(rdev, mddev);
  1977. if (success)
  1978. break;
  1979. } else
  1980. rcu_read_unlock();
  1981. d++;
  1982. if (d == conf->raid_disks * 2)
  1983. d = 0;
  1984. } while (!success && d != read_disk);
  1985. if (!success) {
  1986. /* Cannot read from anywhere - mark it bad */
  1987. struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
  1988. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1989. md_error(mddev, rdev);
  1990. break;
  1991. }
  1992. /* write it back and re-read */
  1993. start = d;
  1994. while (d != read_disk) {
  1995. if (d==0)
  1996. d = conf->raid_disks * 2;
  1997. d--;
  1998. rcu_read_lock();
  1999. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2000. if (rdev &&
  2001. !test_bit(Faulty, &rdev->flags)) {
  2002. atomic_inc(&rdev->nr_pending);
  2003. rcu_read_unlock();
  2004. r1_sync_page_io(rdev, sect, s,
  2005. conf->tmppage, WRITE);
  2006. rdev_dec_pending(rdev, mddev);
  2007. } else
  2008. rcu_read_unlock();
  2009. }
  2010. d = start;
  2011. while (d != read_disk) {
  2012. char b[BDEVNAME_SIZE];
  2013. if (d==0)
  2014. d = conf->raid_disks * 2;
  2015. d--;
  2016. rcu_read_lock();
  2017. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2018. if (rdev &&
  2019. !test_bit(Faulty, &rdev->flags)) {
  2020. atomic_inc(&rdev->nr_pending);
  2021. rcu_read_unlock();
  2022. if (r1_sync_page_io(rdev, sect, s,
  2023. conf->tmppage, READ)) {
  2024. atomic_add(s, &rdev->corrected_errors);
  2025. pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
  2026. mdname(mddev), s,
  2027. (unsigned long long)(sect +
  2028. rdev->data_offset),
  2029. bdevname(rdev->bdev, b));
  2030. }
  2031. rdev_dec_pending(rdev, mddev);
  2032. } else
  2033. rcu_read_unlock();
  2034. }
  2035. sectors -= s;
  2036. sect += s;
  2037. }
  2038. }
  2039. static int narrow_write_error(struct r1bio *r1_bio, int i)
  2040. {
  2041. struct mddev *mddev = r1_bio->mddev;
  2042. struct r1conf *conf = mddev->private;
  2043. struct md_rdev *rdev = conf->mirrors[i].rdev;
  2044. /* bio has the data to be written to device 'i' where
  2045. * we just recently had a write error.
  2046. * We repeatedly clone the bio and trim down to one block,
  2047. * then try the write. Where the write fails we record
  2048. * a bad block.
  2049. * It is conceivable that the bio doesn't exactly align with
  2050. * blocks. We must handle this somehow.
  2051. *
  2052. * We currently own a reference on the rdev.
  2053. */
  2054. int block_sectors;
  2055. sector_t sector;
  2056. int sectors;
  2057. int sect_to_write = r1_bio->sectors;
  2058. int ok = 1;
  2059. if (rdev->badblocks.shift < 0)
  2060. return 0;
  2061. block_sectors = roundup(1 << rdev->badblocks.shift,
  2062. bdev_logical_block_size(rdev->bdev) >> 9);
  2063. sector = r1_bio->sector;
  2064. sectors = ((sector + block_sectors)
  2065. & ~(sector_t)(block_sectors - 1))
  2066. - sector;
  2067. while (sect_to_write) {
  2068. struct bio *wbio;
  2069. if (sectors > sect_to_write)
  2070. sectors = sect_to_write;
  2071. /* Write at 'sector' for 'sectors'*/
  2072. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  2073. wbio = bio_clone_fast(r1_bio->behind_master_bio,
  2074. GFP_NOIO,
  2075. mddev->bio_set);
  2076. } else {
  2077. wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
  2078. mddev->bio_set);
  2079. }
  2080. bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
  2081. wbio->bi_iter.bi_sector = r1_bio->sector;
  2082. wbio->bi_iter.bi_size = r1_bio->sectors << 9;
  2083. bio_trim(wbio, sector - r1_bio->sector, sectors);
  2084. wbio->bi_iter.bi_sector += rdev->data_offset;
  2085. bio_set_dev(wbio, rdev->bdev);
  2086. if (submit_bio_wait(wbio) < 0)
  2087. /* failure! */
  2088. ok = rdev_set_badblocks(rdev, sector,
  2089. sectors, 0)
  2090. && ok;
  2091. bio_put(wbio);
  2092. sect_to_write -= sectors;
  2093. sector += sectors;
  2094. sectors = block_sectors;
  2095. }
  2096. return ok;
  2097. }
  2098. static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  2099. {
  2100. int m;
  2101. int s = r1_bio->sectors;
  2102. for (m = 0; m < conf->raid_disks * 2 ; m++) {
  2103. struct md_rdev *rdev = conf->mirrors[m].rdev;
  2104. struct bio *bio = r1_bio->bios[m];
  2105. if (bio->bi_end_io == NULL)
  2106. continue;
  2107. if (!bio->bi_status &&
  2108. test_bit(R1BIO_MadeGood, &r1_bio->state)) {
  2109. rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
  2110. }
  2111. if (bio->bi_status &&
  2112. test_bit(R1BIO_WriteError, &r1_bio->state)) {
  2113. if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
  2114. md_error(conf->mddev, rdev);
  2115. }
  2116. }
  2117. put_buf(r1_bio);
  2118. md_done_sync(conf->mddev, s, 1);
  2119. }
  2120. static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  2121. {
  2122. int m, idx;
  2123. bool fail = false;
  2124. for (m = 0; m < conf->raid_disks * 2 ; m++)
  2125. if (r1_bio->bios[m] == IO_MADE_GOOD) {
  2126. struct md_rdev *rdev = conf->mirrors[m].rdev;
  2127. rdev_clear_badblocks(rdev,
  2128. r1_bio->sector,
  2129. r1_bio->sectors, 0);
  2130. rdev_dec_pending(rdev, conf->mddev);
  2131. } else if (r1_bio->bios[m] != NULL) {
  2132. /* This drive got a write error. We need to
  2133. * narrow down and record precise write
  2134. * errors.
  2135. */
  2136. fail = true;
  2137. if (!narrow_write_error(r1_bio, m)) {
  2138. md_error(conf->mddev,
  2139. conf->mirrors[m].rdev);
  2140. /* an I/O failed, we can't clear the bitmap */
  2141. set_bit(R1BIO_Degraded, &r1_bio->state);
  2142. }
  2143. rdev_dec_pending(conf->mirrors[m].rdev,
  2144. conf->mddev);
  2145. }
  2146. if (fail) {
  2147. spin_lock_irq(&conf->device_lock);
  2148. list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
  2149. idx = sector_to_idx(r1_bio->sector);
  2150. atomic_inc(&conf->nr_queued[idx]);
  2151. spin_unlock_irq(&conf->device_lock);
  2152. /*
  2153. * In case freeze_array() is waiting for condition
  2154. * get_unqueued_pending() == extra to be true.
  2155. */
  2156. wake_up(&conf->wait_barrier);
  2157. md_wakeup_thread(conf->mddev->thread);
  2158. } else {
  2159. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  2160. close_write(r1_bio);
  2161. raid_end_bio_io(r1_bio);
  2162. }
  2163. }
  2164. static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
  2165. {
  2166. struct mddev *mddev = conf->mddev;
  2167. struct bio *bio;
  2168. struct md_rdev *rdev;
  2169. sector_t bio_sector;
  2170. clear_bit(R1BIO_ReadError, &r1_bio->state);
  2171. /* we got a read error. Maybe the drive is bad. Maybe just
  2172. * the block and we can fix it.
  2173. * We freeze all other IO, and try reading the block from
  2174. * other devices. When we find one, we re-write
  2175. * and check it that fixes the read error.
  2176. * This is all done synchronously while the array is
  2177. * frozen
  2178. */
  2179. bio = r1_bio->bios[r1_bio->read_disk];
  2180. bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
  2181. bio_put(bio);
  2182. r1_bio->bios[r1_bio->read_disk] = NULL;
  2183. rdev = conf->mirrors[r1_bio->read_disk].rdev;
  2184. if (mddev->ro == 0
  2185. && !test_bit(FailFast, &rdev->flags)) {
  2186. freeze_array(conf, 1);
  2187. fix_read_error(conf, r1_bio->read_disk,
  2188. r1_bio->sector, r1_bio->sectors);
  2189. unfreeze_array(conf);
  2190. } else {
  2191. r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
  2192. }
  2193. rdev_dec_pending(rdev, conf->mddev);
  2194. allow_barrier(conf, r1_bio->sector);
  2195. bio = r1_bio->master_bio;
  2196. /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
  2197. r1_bio->state = 0;
  2198. raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
  2199. }
  2200. static void raid1d(struct md_thread *thread)
  2201. {
  2202. struct mddev *mddev = thread->mddev;
  2203. struct r1bio *r1_bio;
  2204. unsigned long flags;
  2205. struct r1conf *conf = mddev->private;
  2206. struct list_head *head = &conf->retry_list;
  2207. struct blk_plug plug;
  2208. int idx;
  2209. md_check_recovery(mddev);
  2210. if (!list_empty_careful(&conf->bio_end_io_list) &&
  2211. !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
  2212. LIST_HEAD(tmp);
  2213. spin_lock_irqsave(&conf->device_lock, flags);
  2214. if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
  2215. list_splice_init(&conf->bio_end_io_list, &tmp);
  2216. spin_unlock_irqrestore(&conf->device_lock, flags);
  2217. while (!list_empty(&tmp)) {
  2218. r1_bio = list_first_entry(&tmp, struct r1bio,
  2219. retry_list);
  2220. list_del(&r1_bio->retry_list);
  2221. idx = sector_to_idx(r1_bio->sector);
  2222. atomic_dec(&conf->nr_queued[idx]);
  2223. if (mddev->degraded)
  2224. set_bit(R1BIO_Degraded, &r1_bio->state);
  2225. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  2226. close_write(r1_bio);
  2227. raid_end_bio_io(r1_bio);
  2228. }
  2229. }
  2230. blk_start_plug(&plug);
  2231. for (;;) {
  2232. flush_pending_writes(conf);
  2233. spin_lock_irqsave(&conf->device_lock, flags);
  2234. if (list_empty(head)) {
  2235. spin_unlock_irqrestore(&conf->device_lock, flags);
  2236. break;
  2237. }
  2238. r1_bio = list_entry(head->prev, struct r1bio, retry_list);
  2239. list_del(head->prev);
  2240. idx = sector_to_idx(r1_bio->sector);
  2241. atomic_dec(&conf->nr_queued[idx]);
  2242. spin_unlock_irqrestore(&conf->device_lock, flags);
  2243. mddev = r1_bio->mddev;
  2244. conf = mddev->private;
  2245. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  2246. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  2247. test_bit(R1BIO_WriteError, &r1_bio->state))
  2248. handle_sync_write_finished(conf, r1_bio);
  2249. else
  2250. sync_request_write(mddev, r1_bio);
  2251. } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  2252. test_bit(R1BIO_WriteError, &r1_bio->state))
  2253. handle_write_finished(conf, r1_bio);
  2254. else if (test_bit(R1BIO_ReadError, &r1_bio->state))
  2255. handle_read_error(conf, r1_bio);
  2256. else
  2257. WARN_ON_ONCE(1);
  2258. cond_resched();
  2259. if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
  2260. md_check_recovery(mddev);
  2261. }
  2262. blk_finish_plug(&plug);
  2263. }
  2264. static int init_resync(struct r1conf *conf)
  2265. {
  2266. int buffs;
  2267. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  2268. BUG_ON(conf->r1buf_pool);
  2269. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  2270. conf->poolinfo);
  2271. if (!conf->r1buf_pool)
  2272. return -ENOMEM;
  2273. return 0;
  2274. }
  2275. static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
  2276. {
  2277. struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  2278. struct resync_pages *rps;
  2279. struct bio *bio;
  2280. int i;
  2281. for (i = conf->poolinfo->raid_disks; i--; ) {
  2282. bio = r1bio->bios[i];
  2283. rps = bio->bi_private;
  2284. bio_reset(bio);
  2285. bio->bi_private = rps;
  2286. }
  2287. r1bio->master_bio = NULL;
  2288. return r1bio;
  2289. }
  2290. /*
  2291. * perform a "sync" on one "block"
  2292. *
  2293. * We need to make sure that no normal I/O request - particularly write
  2294. * requests - conflict with active sync requests.
  2295. *
  2296. * This is achieved by tracking pending requests and a 'barrier' concept
  2297. * that can be installed to exclude normal IO requests.
  2298. */
  2299. static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
  2300. int *skipped)
  2301. {
  2302. struct r1conf *conf = mddev->private;
  2303. struct r1bio *r1_bio;
  2304. struct bio *bio;
  2305. sector_t max_sector, nr_sectors;
  2306. int disk = -1;
  2307. int i;
  2308. int wonly = -1;
  2309. int write_targets = 0, read_targets = 0;
  2310. sector_t sync_blocks;
  2311. int still_degraded = 0;
  2312. int good_sectors = RESYNC_SECTORS;
  2313. int min_bad = 0; /* number of sectors that are bad in all devices */
  2314. int idx = sector_to_idx(sector_nr);
  2315. int page_idx = 0;
  2316. if (!conf->r1buf_pool)
  2317. if (init_resync(conf))
  2318. return 0;
  2319. max_sector = mddev->dev_sectors;
  2320. if (sector_nr >= max_sector) {
  2321. /* If we aborted, we need to abort the
  2322. * sync on the 'current' bitmap chunk (there will
  2323. * only be one in raid1 resync.
  2324. * We can find the current addess in mddev->curr_resync
  2325. */
  2326. if (mddev->curr_resync < max_sector) /* aborted */
  2327. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  2328. &sync_blocks, 1);
  2329. else /* completed sync */
  2330. conf->fullsync = 0;
  2331. bitmap_close_sync(mddev->bitmap);
  2332. close_sync(conf);
  2333. if (mddev_is_clustered(mddev)) {
  2334. conf->cluster_sync_low = 0;
  2335. conf->cluster_sync_high = 0;
  2336. }
  2337. return 0;
  2338. }
  2339. if (mddev->bitmap == NULL &&
  2340. mddev->recovery_cp == MaxSector &&
  2341. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  2342. conf->fullsync == 0) {
  2343. *skipped = 1;
  2344. return max_sector - sector_nr;
  2345. }
  2346. /* before building a request, check if we can skip these blocks..
  2347. * This call the bitmap_start_sync doesn't actually record anything
  2348. */
  2349. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  2350. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2351. /* We can skip this block, and probably several more */
  2352. *skipped = 1;
  2353. return sync_blocks;
  2354. }
  2355. /*
  2356. * If there is non-resync activity waiting for a turn, then let it
  2357. * though before starting on this new sync request.
  2358. */
  2359. if (atomic_read(&conf->nr_waiting[idx]))
  2360. schedule_timeout_uninterruptible(1);
  2361. /* we are incrementing sector_nr below. To be safe, we check against
  2362. * sector_nr + two times RESYNC_SECTORS
  2363. */
  2364. bitmap_cond_end_sync(mddev->bitmap, sector_nr,
  2365. mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
  2366. r1_bio = raid1_alloc_init_r1buf(conf);
  2367. raise_barrier(conf, sector_nr);
  2368. rcu_read_lock();
  2369. /*
  2370. * If we get a correctably read error during resync or recovery,
  2371. * we might want to read from a different device. So we
  2372. * flag all drives that could conceivably be read from for READ,
  2373. * and any others (which will be non-In_sync devices) for WRITE.
  2374. * If a read fails, we try reading from something else for which READ
  2375. * is OK.
  2376. */
  2377. r1_bio->mddev = mddev;
  2378. r1_bio->sector = sector_nr;
  2379. r1_bio->state = 0;
  2380. set_bit(R1BIO_IsSync, &r1_bio->state);
  2381. /* make sure good_sectors won't go across barrier unit boundary */
  2382. good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
  2383. for (i = 0; i < conf->raid_disks * 2; i++) {
  2384. struct md_rdev *rdev;
  2385. bio = r1_bio->bios[i];
  2386. rdev = rcu_dereference(conf->mirrors[i].rdev);
  2387. if (rdev == NULL ||
  2388. test_bit(Faulty, &rdev->flags)) {
  2389. if (i < conf->raid_disks)
  2390. still_degraded = 1;
  2391. } else if (!test_bit(In_sync, &rdev->flags)) {
  2392. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  2393. bio->bi_end_io = end_sync_write;
  2394. write_targets ++;
  2395. } else {
  2396. /* may need to read from here */
  2397. sector_t first_bad = MaxSector;
  2398. int bad_sectors;
  2399. if (is_badblock(rdev, sector_nr, good_sectors,
  2400. &first_bad, &bad_sectors)) {
  2401. if (first_bad > sector_nr)
  2402. good_sectors = first_bad - sector_nr;
  2403. else {
  2404. bad_sectors -= (sector_nr - first_bad);
  2405. if (min_bad == 0 ||
  2406. min_bad > bad_sectors)
  2407. min_bad = bad_sectors;
  2408. }
  2409. }
  2410. if (sector_nr < first_bad) {
  2411. if (test_bit(WriteMostly, &rdev->flags)) {
  2412. if (wonly < 0)
  2413. wonly = i;
  2414. } else {
  2415. if (disk < 0)
  2416. disk = i;
  2417. }
  2418. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  2419. bio->bi_end_io = end_sync_read;
  2420. read_targets++;
  2421. } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
  2422. test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  2423. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  2424. /*
  2425. * The device is suitable for reading (InSync),
  2426. * but has bad block(s) here. Let's try to correct them,
  2427. * if we are doing resync or repair. Otherwise, leave
  2428. * this device alone for this sync request.
  2429. */
  2430. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  2431. bio->bi_end_io = end_sync_write;
  2432. write_targets++;
  2433. }
  2434. }
  2435. if (bio->bi_end_io) {
  2436. atomic_inc(&rdev->nr_pending);
  2437. bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
  2438. bio_set_dev(bio, rdev->bdev);
  2439. if (test_bit(FailFast, &rdev->flags))
  2440. bio->bi_opf |= MD_FAILFAST;
  2441. }
  2442. }
  2443. rcu_read_unlock();
  2444. if (disk < 0)
  2445. disk = wonly;
  2446. r1_bio->read_disk = disk;
  2447. if (read_targets == 0 && min_bad > 0) {
  2448. /* These sectors are bad on all InSync devices, so we
  2449. * need to mark them bad on all write targets
  2450. */
  2451. int ok = 1;
  2452. for (i = 0 ; i < conf->raid_disks * 2 ; i++)
  2453. if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
  2454. struct md_rdev *rdev = conf->mirrors[i].rdev;
  2455. ok = rdev_set_badblocks(rdev, sector_nr,
  2456. min_bad, 0
  2457. ) && ok;
  2458. }
  2459. set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
  2460. *skipped = 1;
  2461. put_buf(r1_bio);
  2462. if (!ok) {
  2463. /* Cannot record the badblocks, so need to
  2464. * abort the resync.
  2465. * If there are multiple read targets, could just
  2466. * fail the really bad ones ???
  2467. */
  2468. conf->recovery_disabled = mddev->recovery_disabled;
  2469. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2470. return 0;
  2471. } else
  2472. return min_bad;
  2473. }
  2474. if (min_bad > 0 && min_bad < good_sectors) {
  2475. /* only resync enough to reach the next bad->good
  2476. * transition */
  2477. good_sectors = min_bad;
  2478. }
  2479. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  2480. /* extra read targets are also write targets */
  2481. write_targets += read_targets-1;
  2482. if (write_targets == 0 || read_targets == 0) {
  2483. /* There is nowhere to write, so all non-sync
  2484. * drives must be failed - so we are finished
  2485. */
  2486. sector_t rv;
  2487. if (min_bad > 0)
  2488. max_sector = sector_nr + min_bad;
  2489. rv = max_sector - sector_nr;
  2490. *skipped = 1;
  2491. put_buf(r1_bio);
  2492. return rv;
  2493. }
  2494. if (max_sector > mddev->resync_max)
  2495. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2496. if (max_sector > sector_nr + good_sectors)
  2497. max_sector = sector_nr + good_sectors;
  2498. nr_sectors = 0;
  2499. sync_blocks = 0;
  2500. do {
  2501. struct page *page;
  2502. int len = PAGE_SIZE;
  2503. if (sector_nr + (len>>9) > max_sector)
  2504. len = (max_sector - sector_nr) << 9;
  2505. if (len == 0)
  2506. break;
  2507. if (sync_blocks == 0) {
  2508. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2509. &sync_blocks, still_degraded) &&
  2510. !conf->fullsync &&
  2511. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2512. break;
  2513. if ((len >> 9) > sync_blocks)
  2514. len = sync_blocks<<9;
  2515. }
  2516. for (i = 0 ; i < conf->raid_disks * 2; i++) {
  2517. struct resync_pages *rp;
  2518. bio = r1_bio->bios[i];
  2519. rp = get_resync_pages(bio);
  2520. if (bio->bi_end_io) {
  2521. page = resync_fetch_page(rp, page_idx);
  2522. /*
  2523. * won't fail because the vec table is big
  2524. * enough to hold all these pages
  2525. */
  2526. bio_add_page(bio, page, len, 0);
  2527. }
  2528. }
  2529. nr_sectors += len>>9;
  2530. sector_nr += len>>9;
  2531. sync_blocks -= (len>>9);
  2532. } while (++page_idx < RESYNC_PAGES);
  2533. r1_bio->sectors = nr_sectors;
  2534. if (mddev_is_clustered(mddev) &&
  2535. conf->cluster_sync_high < sector_nr + nr_sectors) {
  2536. conf->cluster_sync_low = mddev->curr_resync_completed;
  2537. conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
  2538. /* Send resync message */
  2539. md_cluster_ops->resync_info_update(mddev,
  2540. conf->cluster_sync_low,
  2541. conf->cluster_sync_high);
  2542. }
  2543. /* For a user-requested sync, we read all readable devices and do a
  2544. * compare
  2545. */
  2546. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2547. atomic_set(&r1_bio->remaining, read_targets);
  2548. for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
  2549. bio = r1_bio->bios[i];
  2550. if (bio->bi_end_io == end_sync_read) {
  2551. read_targets--;
  2552. md_sync_acct_bio(bio, nr_sectors);
  2553. if (read_targets == 1)
  2554. bio->bi_opf &= ~MD_FAILFAST;
  2555. generic_make_request(bio);
  2556. }
  2557. }
  2558. } else {
  2559. atomic_set(&r1_bio->remaining, 1);
  2560. bio = r1_bio->bios[r1_bio->read_disk];
  2561. md_sync_acct_bio(bio, nr_sectors);
  2562. if (read_targets == 1)
  2563. bio->bi_opf &= ~MD_FAILFAST;
  2564. generic_make_request(bio);
  2565. }
  2566. return nr_sectors;
  2567. }
  2568. static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2569. {
  2570. if (sectors)
  2571. return sectors;
  2572. return mddev->dev_sectors;
  2573. }
  2574. static struct r1conf *setup_conf(struct mddev *mddev)
  2575. {
  2576. struct r1conf *conf;
  2577. int i;
  2578. struct raid1_info *disk;
  2579. struct md_rdev *rdev;
  2580. int err = -ENOMEM;
  2581. conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
  2582. if (!conf)
  2583. goto abort;
  2584. conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
  2585. sizeof(atomic_t), GFP_KERNEL);
  2586. if (!conf->nr_pending)
  2587. goto abort;
  2588. conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
  2589. sizeof(atomic_t), GFP_KERNEL);
  2590. if (!conf->nr_waiting)
  2591. goto abort;
  2592. conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
  2593. sizeof(atomic_t), GFP_KERNEL);
  2594. if (!conf->nr_queued)
  2595. goto abort;
  2596. conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
  2597. sizeof(atomic_t), GFP_KERNEL);
  2598. if (!conf->barrier)
  2599. goto abort;
  2600. conf->mirrors = kzalloc(sizeof(struct raid1_info)
  2601. * mddev->raid_disks * 2,
  2602. GFP_KERNEL);
  2603. if (!conf->mirrors)
  2604. goto abort;
  2605. conf->tmppage = alloc_page(GFP_KERNEL);
  2606. if (!conf->tmppage)
  2607. goto abort;
  2608. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  2609. if (!conf->poolinfo)
  2610. goto abort;
  2611. conf->poolinfo->raid_disks = mddev->raid_disks * 2;
  2612. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2613. r1bio_pool_free,
  2614. conf->poolinfo);
  2615. if (!conf->r1bio_pool)
  2616. goto abort;
  2617. conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
  2618. if (!conf->bio_split)
  2619. goto abort;
  2620. conf->poolinfo->mddev = mddev;
  2621. err = -EINVAL;
  2622. spin_lock_init(&conf->device_lock);
  2623. rdev_for_each(rdev, mddev) {
  2624. int disk_idx = rdev->raid_disk;
  2625. if (disk_idx >= mddev->raid_disks
  2626. || disk_idx < 0)
  2627. continue;
  2628. if (test_bit(Replacement, &rdev->flags))
  2629. disk = conf->mirrors + mddev->raid_disks + disk_idx;
  2630. else
  2631. disk = conf->mirrors + disk_idx;
  2632. if (disk->rdev)
  2633. goto abort;
  2634. disk->rdev = rdev;
  2635. disk->head_position = 0;
  2636. disk->seq_start = MaxSector;
  2637. }
  2638. conf->raid_disks = mddev->raid_disks;
  2639. conf->mddev = mddev;
  2640. INIT_LIST_HEAD(&conf->retry_list);
  2641. INIT_LIST_HEAD(&conf->bio_end_io_list);
  2642. spin_lock_init(&conf->resync_lock);
  2643. init_waitqueue_head(&conf->wait_barrier);
  2644. bio_list_init(&conf->pending_bio_list);
  2645. conf->pending_count = 0;
  2646. conf->recovery_disabled = mddev->recovery_disabled - 1;
  2647. err = -EIO;
  2648. for (i = 0; i < conf->raid_disks * 2; i++) {
  2649. disk = conf->mirrors + i;
  2650. if (i < conf->raid_disks &&
  2651. disk[conf->raid_disks].rdev) {
  2652. /* This slot has a replacement. */
  2653. if (!disk->rdev) {
  2654. /* No original, just make the replacement
  2655. * a recovering spare
  2656. */
  2657. disk->rdev =
  2658. disk[conf->raid_disks].rdev;
  2659. disk[conf->raid_disks].rdev = NULL;
  2660. } else if (!test_bit(In_sync, &disk->rdev->flags))
  2661. /* Original is not in_sync - bad */
  2662. goto abort;
  2663. }
  2664. if (!disk->rdev ||
  2665. !test_bit(In_sync, &disk->rdev->flags)) {
  2666. disk->head_position = 0;
  2667. if (disk->rdev &&
  2668. (disk->rdev->saved_raid_disk < 0))
  2669. conf->fullsync = 1;
  2670. }
  2671. }
  2672. err = -ENOMEM;
  2673. conf->thread = md_register_thread(raid1d, mddev, "raid1");
  2674. if (!conf->thread)
  2675. goto abort;
  2676. return conf;
  2677. abort:
  2678. if (conf) {
  2679. mempool_destroy(conf->r1bio_pool);
  2680. kfree(conf->mirrors);
  2681. safe_put_page(conf->tmppage);
  2682. kfree(conf->poolinfo);
  2683. kfree(conf->nr_pending);
  2684. kfree(conf->nr_waiting);
  2685. kfree(conf->nr_queued);
  2686. kfree(conf->barrier);
  2687. if (conf->bio_split)
  2688. bioset_free(conf->bio_split);
  2689. kfree(conf);
  2690. }
  2691. return ERR_PTR(err);
  2692. }
  2693. static void raid1_free(struct mddev *mddev, void *priv);
  2694. static int raid1_run(struct mddev *mddev)
  2695. {
  2696. struct r1conf *conf;
  2697. int i;
  2698. struct md_rdev *rdev;
  2699. int ret;
  2700. bool discard_supported = false;
  2701. if (mddev->level != 1) {
  2702. pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
  2703. mdname(mddev), mddev->level);
  2704. return -EIO;
  2705. }
  2706. if (mddev->reshape_position != MaxSector) {
  2707. pr_warn("md/raid1:%s: reshape_position set but not supported\n",
  2708. mdname(mddev));
  2709. return -EIO;
  2710. }
  2711. if (mddev_init_writes_pending(mddev) < 0)
  2712. return -ENOMEM;
  2713. /*
  2714. * copy the already verified devices into our private RAID1
  2715. * bookkeeping area. [whatever we allocate in run(),
  2716. * should be freed in raid1_free()]
  2717. */
  2718. if (mddev->private == NULL)
  2719. conf = setup_conf(mddev);
  2720. else
  2721. conf = mddev->private;
  2722. if (IS_ERR(conf))
  2723. return PTR_ERR(conf);
  2724. if (mddev->queue) {
  2725. blk_queue_max_write_same_sectors(mddev->queue, 0);
  2726. blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
  2727. }
  2728. rdev_for_each(rdev, mddev) {
  2729. if (!mddev->gendisk)
  2730. continue;
  2731. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2732. rdev->data_offset << 9);
  2733. if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
  2734. discard_supported = true;
  2735. }
  2736. mddev->degraded = 0;
  2737. for (i=0; i < conf->raid_disks; i++)
  2738. if (conf->mirrors[i].rdev == NULL ||
  2739. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  2740. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  2741. mddev->degraded++;
  2742. if (conf->raid_disks - mddev->degraded == 1)
  2743. mddev->recovery_cp = MaxSector;
  2744. if (mddev->recovery_cp != MaxSector)
  2745. pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
  2746. mdname(mddev));
  2747. pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
  2748. mdname(mddev), mddev->raid_disks - mddev->degraded,
  2749. mddev->raid_disks);
  2750. /*
  2751. * Ok, everything is just fine now
  2752. */
  2753. mddev->thread = conf->thread;
  2754. conf->thread = NULL;
  2755. mddev->private = conf;
  2756. set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
  2757. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  2758. if (mddev->queue) {
  2759. if (discard_supported)
  2760. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
  2761. mddev->queue);
  2762. else
  2763. queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
  2764. mddev->queue);
  2765. }
  2766. ret = md_integrity_register(mddev);
  2767. if (ret) {
  2768. md_unregister_thread(&mddev->thread);
  2769. raid1_free(mddev, conf);
  2770. }
  2771. return ret;
  2772. }
  2773. static void raid1_free(struct mddev *mddev, void *priv)
  2774. {
  2775. struct r1conf *conf = priv;
  2776. mempool_destroy(conf->r1bio_pool);
  2777. kfree(conf->mirrors);
  2778. safe_put_page(conf->tmppage);
  2779. kfree(conf->poolinfo);
  2780. kfree(conf->nr_pending);
  2781. kfree(conf->nr_waiting);
  2782. kfree(conf->nr_queued);
  2783. kfree(conf->barrier);
  2784. if (conf->bio_split)
  2785. bioset_free(conf->bio_split);
  2786. kfree(conf);
  2787. }
  2788. static int raid1_resize(struct mddev *mddev, sector_t sectors)
  2789. {
  2790. /* no resync is happening, and there is enough space
  2791. * on all devices, so we can resize.
  2792. * We need to make sure resync covers any new space.
  2793. * If the array is shrinking we should possibly wait until
  2794. * any io in the removed space completes, but it hardly seems
  2795. * worth it.
  2796. */
  2797. sector_t newsize = raid1_size(mddev, sectors, 0);
  2798. if (mddev->external_size &&
  2799. mddev->array_sectors > newsize)
  2800. return -EINVAL;
  2801. if (mddev->bitmap) {
  2802. int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
  2803. if (ret)
  2804. return ret;
  2805. }
  2806. md_set_array_sectors(mddev, newsize);
  2807. if (sectors > mddev->dev_sectors &&
  2808. mddev->recovery_cp > mddev->dev_sectors) {
  2809. mddev->recovery_cp = mddev->dev_sectors;
  2810. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2811. }
  2812. mddev->dev_sectors = sectors;
  2813. mddev->resync_max_sectors = sectors;
  2814. return 0;
  2815. }
  2816. static int raid1_reshape(struct mddev *mddev)
  2817. {
  2818. /* We need to:
  2819. * 1/ resize the r1bio_pool
  2820. * 2/ resize conf->mirrors
  2821. *
  2822. * We allocate a new r1bio_pool if we can.
  2823. * Then raise a device barrier and wait until all IO stops.
  2824. * Then resize conf->mirrors and swap in the new r1bio pool.
  2825. *
  2826. * At the same time, we "pack" the devices so that all the missing
  2827. * devices have the higher raid_disk numbers.
  2828. */
  2829. mempool_t *newpool, *oldpool;
  2830. struct pool_info *newpoolinfo;
  2831. struct raid1_info *newmirrors;
  2832. struct r1conf *conf = mddev->private;
  2833. int cnt, raid_disks;
  2834. unsigned long flags;
  2835. int d, d2;
  2836. /* Cannot change chunk_size, layout, or level */
  2837. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  2838. mddev->layout != mddev->new_layout ||
  2839. mddev->level != mddev->new_level) {
  2840. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2841. mddev->new_layout = mddev->layout;
  2842. mddev->new_level = mddev->level;
  2843. return -EINVAL;
  2844. }
  2845. if (!mddev_is_clustered(mddev))
  2846. md_allow_write(mddev);
  2847. raid_disks = mddev->raid_disks + mddev->delta_disks;
  2848. if (raid_disks < conf->raid_disks) {
  2849. cnt=0;
  2850. for (d= 0; d < conf->raid_disks; d++)
  2851. if (conf->mirrors[d].rdev)
  2852. cnt++;
  2853. if (cnt > raid_disks)
  2854. return -EBUSY;
  2855. }
  2856. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  2857. if (!newpoolinfo)
  2858. return -ENOMEM;
  2859. newpoolinfo->mddev = mddev;
  2860. newpoolinfo->raid_disks = raid_disks * 2;
  2861. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2862. r1bio_pool_free, newpoolinfo);
  2863. if (!newpool) {
  2864. kfree(newpoolinfo);
  2865. return -ENOMEM;
  2866. }
  2867. newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
  2868. GFP_KERNEL);
  2869. if (!newmirrors) {
  2870. kfree(newpoolinfo);
  2871. mempool_destroy(newpool);
  2872. return -ENOMEM;
  2873. }
  2874. freeze_array(conf, 0);
  2875. /* ok, everything is stopped */
  2876. oldpool = conf->r1bio_pool;
  2877. conf->r1bio_pool = newpool;
  2878. for (d = d2 = 0; d < conf->raid_disks; d++) {
  2879. struct md_rdev *rdev = conf->mirrors[d].rdev;
  2880. if (rdev && rdev->raid_disk != d2) {
  2881. sysfs_unlink_rdev(mddev, rdev);
  2882. rdev->raid_disk = d2;
  2883. sysfs_unlink_rdev(mddev, rdev);
  2884. if (sysfs_link_rdev(mddev, rdev))
  2885. pr_warn("md/raid1:%s: cannot register rd%d\n",
  2886. mdname(mddev), rdev->raid_disk);
  2887. }
  2888. if (rdev)
  2889. newmirrors[d2++].rdev = rdev;
  2890. }
  2891. kfree(conf->mirrors);
  2892. conf->mirrors = newmirrors;
  2893. kfree(conf->poolinfo);
  2894. conf->poolinfo = newpoolinfo;
  2895. spin_lock_irqsave(&conf->device_lock, flags);
  2896. mddev->degraded += (raid_disks - conf->raid_disks);
  2897. spin_unlock_irqrestore(&conf->device_lock, flags);
  2898. conf->raid_disks = mddev->raid_disks = raid_disks;
  2899. mddev->delta_disks = 0;
  2900. unfreeze_array(conf);
  2901. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2902. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2903. md_wakeup_thread(mddev->thread);
  2904. mempool_destroy(oldpool);
  2905. return 0;
  2906. }
  2907. static void raid1_quiesce(struct mddev *mddev, int state)
  2908. {
  2909. struct r1conf *conf = mddev->private;
  2910. switch(state) {
  2911. case 2: /* wake for suspend */
  2912. wake_up(&conf->wait_barrier);
  2913. break;
  2914. case 1:
  2915. freeze_array(conf, 0);
  2916. break;
  2917. case 0:
  2918. unfreeze_array(conf);
  2919. break;
  2920. }
  2921. }
  2922. static void *raid1_takeover(struct mddev *mddev)
  2923. {
  2924. /* raid1 can take over:
  2925. * raid5 with 2 devices, any layout or chunk size
  2926. */
  2927. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2928. struct r1conf *conf;
  2929. mddev->new_level = 1;
  2930. mddev->new_layout = 0;
  2931. mddev->new_chunk_sectors = 0;
  2932. conf = setup_conf(mddev);
  2933. if (!IS_ERR(conf)) {
  2934. /* Array must appear to be quiesced */
  2935. conf->array_frozen = 1;
  2936. mddev_clear_unsupported_flags(mddev,
  2937. UNSUPPORTED_MDDEV_FLAGS);
  2938. }
  2939. return conf;
  2940. }
  2941. return ERR_PTR(-EINVAL);
  2942. }
  2943. static struct md_personality raid1_personality =
  2944. {
  2945. .name = "raid1",
  2946. .level = 1,
  2947. .owner = THIS_MODULE,
  2948. .make_request = raid1_make_request,
  2949. .run = raid1_run,
  2950. .free = raid1_free,
  2951. .status = raid1_status,
  2952. .error_handler = raid1_error,
  2953. .hot_add_disk = raid1_add_disk,
  2954. .hot_remove_disk= raid1_remove_disk,
  2955. .spare_active = raid1_spare_active,
  2956. .sync_request = raid1_sync_request,
  2957. .resize = raid1_resize,
  2958. .size = raid1_size,
  2959. .check_reshape = raid1_reshape,
  2960. .quiesce = raid1_quiesce,
  2961. .takeover = raid1_takeover,
  2962. .congested = raid1_congested,
  2963. };
  2964. static int __init raid_init(void)
  2965. {
  2966. return register_md_personality(&raid1_personality);
  2967. }
  2968. static void raid_exit(void)
  2969. {
  2970. unregister_md_personality(&raid1_personality);
  2971. }
  2972. module_init(raid_init);
  2973. module_exit(raid_exit);
  2974. MODULE_LICENSE("GPL");
  2975. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2976. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2977. MODULE_ALIAS("md-raid1");
  2978. MODULE_ALIAS("md-level-1");
  2979. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);