pblk-rb.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894
  1. /*
  2. * Copyright (C) 2016 CNEX Labs
  3. * Initial release: Javier Gonzalez <javier@cnexlabs.com>
  4. *
  5. * Based upon the circular ringbuffer.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License version
  9. * 2 as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * pblk-rb.c - pblk's write buffer
  17. */
  18. #include <linux/circ_buf.h>
  19. #include "pblk.h"
  20. static DECLARE_RWSEM(pblk_rb_lock);
  21. void pblk_rb_data_free(struct pblk_rb *rb)
  22. {
  23. struct pblk_rb_pages *p, *t;
  24. down_write(&pblk_rb_lock);
  25. list_for_each_entry_safe(p, t, &rb->pages, list) {
  26. free_pages((unsigned long)page_address(p->pages), p->order);
  27. list_del(&p->list);
  28. kfree(p);
  29. }
  30. up_write(&pblk_rb_lock);
  31. }
  32. /*
  33. * Initialize ring buffer. The data and metadata buffers must be previously
  34. * allocated and their size must be a power of two
  35. * (Documentation/circular-buffers.txt)
  36. */
  37. int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base,
  38. unsigned int power_size, unsigned int power_seg_sz)
  39. {
  40. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  41. unsigned int init_entry = 0;
  42. unsigned int alloc_order = power_size;
  43. unsigned int max_order = MAX_ORDER - 1;
  44. unsigned int order, iter;
  45. down_write(&pblk_rb_lock);
  46. rb->entries = rb_entry_base;
  47. rb->seg_size = (1 << power_seg_sz);
  48. rb->nr_entries = (1 << power_size);
  49. rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
  50. rb->sync_point = EMPTY_ENTRY;
  51. spin_lock_init(&rb->w_lock);
  52. spin_lock_init(&rb->s_lock);
  53. INIT_LIST_HEAD(&rb->pages);
  54. if (alloc_order >= max_order) {
  55. order = max_order;
  56. iter = (1 << (alloc_order - max_order));
  57. } else {
  58. order = alloc_order;
  59. iter = 1;
  60. }
  61. do {
  62. struct pblk_rb_entry *entry;
  63. struct pblk_rb_pages *page_set;
  64. void *kaddr;
  65. unsigned long set_size;
  66. int i;
  67. page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
  68. if (!page_set) {
  69. up_write(&pblk_rb_lock);
  70. return -ENOMEM;
  71. }
  72. page_set->order = order;
  73. page_set->pages = alloc_pages(GFP_KERNEL, order);
  74. if (!page_set->pages) {
  75. kfree(page_set);
  76. pblk_rb_data_free(rb);
  77. up_write(&pblk_rb_lock);
  78. return -ENOMEM;
  79. }
  80. kaddr = page_address(page_set->pages);
  81. entry = &rb->entries[init_entry];
  82. entry->data = kaddr;
  83. entry->cacheline = pblk_cacheline_to_addr(init_entry++);
  84. entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
  85. set_size = (1 << order);
  86. for (i = 1; i < set_size; i++) {
  87. entry = &rb->entries[init_entry];
  88. entry->cacheline = pblk_cacheline_to_addr(init_entry++);
  89. entry->data = kaddr + (i * rb->seg_size);
  90. entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
  91. bio_list_init(&entry->w_ctx.bios);
  92. }
  93. list_add_tail(&page_set->list, &rb->pages);
  94. iter--;
  95. } while (iter > 0);
  96. up_write(&pblk_rb_lock);
  97. #ifdef CONFIG_NVM_DEBUG
  98. atomic_set(&rb->inflight_sync_point, 0);
  99. #endif
  100. /*
  101. * Initialize rate-limiter, which controls access to the write buffer
  102. * but user and GC I/O
  103. */
  104. pblk_rl_init(&pblk->rl, rb->nr_entries);
  105. return 0;
  106. }
  107. /*
  108. * pblk_rb_calculate_size -- calculate the size of the write buffer
  109. */
  110. unsigned int pblk_rb_calculate_size(unsigned int nr_entries)
  111. {
  112. /* Alloc a write buffer that can at least fit 128 entries */
  113. return (1 << max(get_count_order(nr_entries), 7));
  114. }
  115. void *pblk_rb_entries_ref(struct pblk_rb *rb)
  116. {
  117. return rb->entries;
  118. }
  119. static void clean_wctx(struct pblk_w_ctx *w_ctx)
  120. {
  121. int flags;
  122. try:
  123. flags = READ_ONCE(w_ctx->flags);
  124. if (!(flags & PBLK_SUBMITTED_ENTRY))
  125. goto try;
  126. /* Release flags on context. Protect from writes and reads */
  127. smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
  128. pblk_ppa_set_empty(&w_ctx->ppa);
  129. w_ctx->lba = ADDR_EMPTY;
  130. }
  131. #define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
  132. #define pblk_rb_ring_space(rb, head, tail, size) \
  133. (CIRC_SPACE(head, tail, size))
  134. /*
  135. * Buffer space is calculated with respect to the back pointer signaling
  136. * synchronized entries to the media.
  137. */
  138. static unsigned int pblk_rb_space(struct pblk_rb *rb)
  139. {
  140. unsigned int mem = READ_ONCE(rb->mem);
  141. unsigned int sync = READ_ONCE(rb->sync);
  142. return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
  143. }
  144. /*
  145. * Buffer count is calculated with respect to the submission entry signaling the
  146. * entries that are available to send to the media
  147. */
  148. unsigned int pblk_rb_read_count(struct pblk_rb *rb)
  149. {
  150. unsigned int mem = READ_ONCE(rb->mem);
  151. unsigned int subm = READ_ONCE(rb->subm);
  152. return pblk_rb_ring_count(mem, subm, rb->nr_entries);
  153. }
  154. unsigned int pblk_rb_sync_count(struct pblk_rb *rb)
  155. {
  156. unsigned int mem = READ_ONCE(rb->mem);
  157. unsigned int sync = READ_ONCE(rb->sync);
  158. return pblk_rb_ring_count(mem, sync, rb->nr_entries);
  159. }
  160. unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
  161. {
  162. unsigned int subm;
  163. subm = READ_ONCE(rb->subm);
  164. /* Commit read means updating submission pointer */
  165. smp_store_release(&rb->subm,
  166. (subm + nr_entries) & (rb->nr_entries - 1));
  167. return subm;
  168. }
  169. static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int *l2p_upd,
  170. unsigned int to_update)
  171. {
  172. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  173. struct pblk_line *line;
  174. struct pblk_rb_entry *entry;
  175. struct pblk_w_ctx *w_ctx;
  176. unsigned int user_io = 0, gc_io = 0;
  177. unsigned int i;
  178. int flags;
  179. for (i = 0; i < to_update; i++) {
  180. entry = &rb->entries[*l2p_upd];
  181. w_ctx = &entry->w_ctx;
  182. flags = READ_ONCE(entry->w_ctx.flags);
  183. if (flags & PBLK_IOTYPE_USER)
  184. user_io++;
  185. else if (flags & PBLK_IOTYPE_GC)
  186. gc_io++;
  187. else
  188. WARN(1, "pblk: unknown IO type\n");
  189. pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
  190. entry->cacheline);
  191. line = &pblk->lines[pblk_tgt_ppa_to_line(w_ctx->ppa)];
  192. kref_put(&line->ref, pblk_line_put);
  193. clean_wctx(w_ctx);
  194. *l2p_upd = (*l2p_upd + 1) & (rb->nr_entries - 1);
  195. }
  196. pblk_rl_out(&pblk->rl, user_io, gc_io);
  197. return 0;
  198. }
  199. /*
  200. * When we move the l2p_update pointer, we update the l2p table - lookups will
  201. * point to the physical address instead of to the cacheline in the write buffer
  202. * from this moment on.
  203. */
  204. static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
  205. unsigned int mem, unsigned int sync)
  206. {
  207. unsigned int space, count;
  208. int ret = 0;
  209. lockdep_assert_held(&rb->w_lock);
  210. /* Update l2p only as buffer entries are being overwritten */
  211. space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
  212. if (space > nr_entries)
  213. goto out;
  214. count = nr_entries - space;
  215. /* l2p_update used exclusively under rb->w_lock */
  216. ret = __pblk_rb_update_l2p(rb, &rb->l2p_update, count);
  217. out:
  218. return ret;
  219. }
  220. /*
  221. * Update the l2p entry for all sectors stored on the write buffer. This means
  222. * that all future lookups to the l2p table will point to a device address, not
  223. * to the cacheline in the write buffer.
  224. */
  225. void pblk_rb_sync_l2p(struct pblk_rb *rb)
  226. {
  227. unsigned int sync;
  228. unsigned int to_update;
  229. spin_lock(&rb->w_lock);
  230. /* Protect from reads and writes */
  231. sync = smp_load_acquire(&rb->sync);
  232. to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
  233. __pblk_rb_update_l2p(rb, &rb->l2p_update, to_update);
  234. spin_unlock(&rb->w_lock);
  235. }
  236. /*
  237. * Write @nr_entries to ring buffer from @data buffer if there is enough space.
  238. * Typically, 4KB data chunks coming from a bio will be copied to the ring
  239. * buffer, thus the write will fail if not all incoming data can be copied.
  240. *
  241. */
  242. static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
  243. struct pblk_w_ctx w_ctx,
  244. struct pblk_rb_entry *entry)
  245. {
  246. memcpy(entry->data, data, rb->seg_size);
  247. entry->w_ctx.lba = w_ctx.lba;
  248. entry->w_ctx.ppa = w_ctx.ppa;
  249. }
  250. void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
  251. struct pblk_w_ctx w_ctx, unsigned int ring_pos)
  252. {
  253. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  254. struct pblk_rb_entry *entry;
  255. int flags;
  256. entry = &rb->entries[ring_pos];
  257. flags = READ_ONCE(entry->w_ctx.flags);
  258. #ifdef CONFIG_NVM_DEBUG
  259. /* Caller must guarantee that the entry is free */
  260. BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
  261. #endif
  262. __pblk_rb_write_entry(rb, data, w_ctx, entry);
  263. pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
  264. flags = w_ctx.flags | PBLK_WRITTEN_DATA;
  265. /* Release flags on write context. Protect from writes */
  266. smp_store_release(&entry->w_ctx.flags, flags);
  267. }
  268. void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
  269. struct pblk_w_ctx w_ctx, struct pblk_line *gc_line,
  270. unsigned int ring_pos)
  271. {
  272. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  273. struct pblk_rb_entry *entry;
  274. int flags;
  275. entry = &rb->entries[ring_pos];
  276. flags = READ_ONCE(entry->w_ctx.flags);
  277. #ifdef CONFIG_NVM_DEBUG
  278. /* Caller must guarantee that the entry is free */
  279. BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
  280. #endif
  281. __pblk_rb_write_entry(rb, data, w_ctx, entry);
  282. if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, gc_line))
  283. entry->w_ctx.lba = ADDR_EMPTY;
  284. flags = w_ctx.flags | PBLK_WRITTEN_DATA;
  285. /* Release flags on write context. Protect from writes */
  286. smp_store_release(&entry->w_ctx.flags, flags);
  287. }
  288. static int pblk_rb_sync_point_set(struct pblk_rb *rb, struct bio *bio,
  289. unsigned int pos)
  290. {
  291. struct pblk_rb_entry *entry;
  292. unsigned int subm, sync_point;
  293. int flags;
  294. subm = READ_ONCE(rb->subm);
  295. #ifdef CONFIG_NVM_DEBUG
  296. atomic_inc(&rb->inflight_sync_point);
  297. #endif
  298. if (pos == subm)
  299. return 0;
  300. sync_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
  301. entry = &rb->entries[sync_point];
  302. flags = READ_ONCE(entry->w_ctx.flags);
  303. flags |= PBLK_FLUSH_ENTRY;
  304. /* Release flags on context. Protect from writes */
  305. smp_store_release(&entry->w_ctx.flags, flags);
  306. /* Protect syncs */
  307. smp_store_release(&rb->sync_point, sync_point);
  308. if (!bio)
  309. return 0;
  310. spin_lock_irq(&rb->s_lock);
  311. bio_list_add(&entry->w_ctx.bios, bio);
  312. spin_unlock_irq(&rb->s_lock);
  313. return 1;
  314. }
  315. static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
  316. unsigned int *pos)
  317. {
  318. unsigned int mem;
  319. unsigned int sync;
  320. sync = READ_ONCE(rb->sync);
  321. mem = READ_ONCE(rb->mem);
  322. if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries)
  323. return 0;
  324. if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
  325. return 0;
  326. *pos = mem;
  327. return 1;
  328. }
  329. static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
  330. unsigned int *pos)
  331. {
  332. if (!__pblk_rb_may_write(rb, nr_entries, pos))
  333. return 0;
  334. /* Protect from read count */
  335. smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1));
  336. return 1;
  337. }
  338. void pblk_rb_flush(struct pblk_rb *rb)
  339. {
  340. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  341. unsigned int mem = READ_ONCE(rb->mem);
  342. if (pblk_rb_sync_point_set(rb, NULL, mem))
  343. return;
  344. pblk_write_should_kick(pblk);
  345. }
  346. static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
  347. unsigned int *pos, struct bio *bio,
  348. int *io_ret)
  349. {
  350. unsigned int mem;
  351. if (!__pblk_rb_may_write(rb, nr_entries, pos))
  352. return 0;
  353. mem = (*pos + nr_entries) & (rb->nr_entries - 1);
  354. *io_ret = NVM_IO_DONE;
  355. if (bio->bi_opf & REQ_PREFLUSH) {
  356. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  357. #ifdef CONFIG_NVM_DEBUG
  358. atomic_long_inc(&pblk->nr_flush);
  359. #endif
  360. if (pblk_rb_sync_point_set(&pblk->rwb, bio, mem))
  361. *io_ret = NVM_IO_OK;
  362. }
  363. /* Protect from read count */
  364. smp_store_release(&rb->mem, mem);
  365. return 1;
  366. }
  367. /*
  368. * Atomically check that (i) there is space on the write buffer for the
  369. * incoming I/O, and (ii) the current I/O type has enough budget in the write
  370. * buffer (rate-limiter).
  371. */
  372. int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
  373. unsigned int nr_entries, unsigned int *pos)
  374. {
  375. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  376. int io_ret;
  377. spin_lock(&rb->w_lock);
  378. io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
  379. if (io_ret) {
  380. spin_unlock(&rb->w_lock);
  381. return io_ret;
  382. }
  383. if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
  384. spin_unlock(&rb->w_lock);
  385. return NVM_IO_REQUEUE;
  386. }
  387. pblk_rl_user_in(&pblk->rl, nr_entries);
  388. spin_unlock(&rb->w_lock);
  389. return io_ret;
  390. }
  391. /*
  392. * Look at pblk_rb_may_write_user comment
  393. */
  394. int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
  395. unsigned int *pos)
  396. {
  397. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  398. spin_lock(&rb->w_lock);
  399. if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
  400. spin_unlock(&rb->w_lock);
  401. return 0;
  402. }
  403. if (!pblk_rb_may_write(rb, nr_entries, pos)) {
  404. spin_unlock(&rb->w_lock);
  405. return 0;
  406. }
  407. pblk_rl_gc_in(&pblk->rl, nr_entries);
  408. spin_unlock(&rb->w_lock);
  409. return 1;
  410. }
  411. /*
  412. * The caller of this function must ensure that the backpointer will not
  413. * overwrite the entries passed on the list.
  414. */
  415. unsigned int pblk_rb_read_to_bio_list(struct pblk_rb *rb, struct bio *bio,
  416. struct list_head *list,
  417. unsigned int max)
  418. {
  419. struct pblk_rb_entry *entry, *tentry;
  420. struct page *page;
  421. unsigned int read = 0;
  422. int ret;
  423. list_for_each_entry_safe(entry, tentry, list, index) {
  424. if (read > max) {
  425. pr_err("pblk: too many entries on list\n");
  426. goto out;
  427. }
  428. page = virt_to_page(entry->data);
  429. if (!page) {
  430. pr_err("pblk: could not allocate write bio page\n");
  431. goto out;
  432. }
  433. ret = bio_add_page(bio, page, rb->seg_size, 0);
  434. if (ret != rb->seg_size) {
  435. pr_err("pblk: could not add page to write bio\n");
  436. goto out;
  437. }
  438. list_del(&entry->index);
  439. read++;
  440. }
  441. out:
  442. return read;
  443. }
  444. /*
  445. * Read available entries on rb and add them to the given bio. To avoid a memory
  446. * copy, a page reference to the write buffer is used to be added to the bio.
  447. *
  448. * This function is used by the write thread to form the write bio that will
  449. * persist data on the write buffer to the media.
  450. */
  451. unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
  452. struct bio *bio, unsigned int pos,
  453. unsigned int nr_entries, unsigned int count)
  454. {
  455. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  456. struct request_queue *q = pblk->dev->q;
  457. struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
  458. struct pblk_rb_entry *entry;
  459. struct page *page;
  460. unsigned int pad = 0, to_read = nr_entries;
  461. unsigned int i;
  462. int flags;
  463. if (count < nr_entries) {
  464. pad = nr_entries - count;
  465. to_read = count;
  466. }
  467. c_ctx->sentry = pos;
  468. c_ctx->nr_valid = to_read;
  469. c_ctx->nr_padded = pad;
  470. for (i = 0; i < to_read; i++) {
  471. entry = &rb->entries[pos];
  472. /* A write has been allowed into the buffer, but data is still
  473. * being copied to it. It is ok to busy wait.
  474. */
  475. try:
  476. flags = READ_ONCE(entry->w_ctx.flags);
  477. if (!(flags & PBLK_WRITTEN_DATA)) {
  478. io_schedule();
  479. goto try;
  480. }
  481. page = virt_to_page(entry->data);
  482. if (!page) {
  483. pr_err("pblk: could not allocate write bio page\n");
  484. flags &= ~PBLK_WRITTEN_DATA;
  485. flags |= PBLK_SUBMITTED_ENTRY;
  486. /* Release flags on context. Protect from writes */
  487. smp_store_release(&entry->w_ctx.flags, flags);
  488. return NVM_IO_ERR;
  489. }
  490. if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
  491. rb->seg_size) {
  492. pr_err("pblk: could not add page to write bio\n");
  493. flags &= ~PBLK_WRITTEN_DATA;
  494. flags |= PBLK_SUBMITTED_ENTRY;
  495. /* Release flags on context. Protect from writes */
  496. smp_store_release(&entry->w_ctx.flags, flags);
  497. return NVM_IO_ERR;
  498. }
  499. if (flags & PBLK_FLUSH_ENTRY) {
  500. unsigned int sync_point;
  501. sync_point = READ_ONCE(rb->sync_point);
  502. if (sync_point == pos) {
  503. /* Protect syncs */
  504. smp_store_release(&rb->sync_point, EMPTY_ENTRY);
  505. }
  506. flags &= ~PBLK_FLUSH_ENTRY;
  507. #ifdef CONFIG_NVM_DEBUG
  508. atomic_dec(&rb->inflight_sync_point);
  509. #endif
  510. }
  511. flags &= ~PBLK_WRITTEN_DATA;
  512. flags |= PBLK_SUBMITTED_ENTRY;
  513. /* Release flags on context. Protect from writes */
  514. smp_store_release(&entry->w_ctx.flags, flags);
  515. pos = (pos + 1) & (rb->nr_entries - 1);
  516. }
  517. if (pad) {
  518. if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
  519. pr_err("pblk: could not pad page in write bio\n");
  520. return NVM_IO_ERR;
  521. }
  522. }
  523. #ifdef CONFIG_NVM_DEBUG
  524. atomic_long_add(pad, &((struct pblk *)
  525. (container_of(rb, struct pblk, rwb)))->padded_writes);
  526. #endif
  527. return NVM_IO_OK;
  528. }
  529. /*
  530. * Copy to bio only if the lba matches the one on the given cache entry.
  531. * Otherwise, it means that the entry has been overwritten, and the bio should
  532. * be directed to disk.
  533. */
  534. int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
  535. struct ppa_addr ppa, int bio_iter, bool advanced_bio)
  536. {
  537. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  538. struct pblk_rb_entry *entry;
  539. struct pblk_w_ctx *w_ctx;
  540. struct ppa_addr l2p_ppa;
  541. u64 pos = pblk_addr_to_cacheline(ppa);
  542. void *data;
  543. int flags;
  544. int ret = 1;
  545. #ifdef CONFIG_NVM_DEBUG
  546. /* Caller must ensure that the access will not cause an overflow */
  547. BUG_ON(pos >= rb->nr_entries);
  548. #endif
  549. entry = &rb->entries[pos];
  550. w_ctx = &entry->w_ctx;
  551. flags = READ_ONCE(w_ctx->flags);
  552. spin_lock(&rb->w_lock);
  553. spin_lock(&pblk->trans_lock);
  554. l2p_ppa = pblk_trans_map_get(pblk, lba);
  555. spin_unlock(&pblk->trans_lock);
  556. /* Check if the entry has been overwritten or is scheduled to be */
  557. if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba ||
  558. flags & PBLK_WRITABLE_ENTRY) {
  559. ret = 0;
  560. goto out;
  561. }
  562. /* Only advance the bio if it hasn't been advanced already. If advanced,
  563. * this bio is at least a partial bio (i.e., it has partially been
  564. * filled with data from the cache). If part of the data resides on the
  565. * media, we will read later on
  566. */
  567. if (unlikely(!advanced_bio))
  568. bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE);
  569. data = bio_data(bio);
  570. memcpy(data, entry->data, rb->seg_size);
  571. out:
  572. spin_unlock(&rb->w_lock);
  573. return ret;
  574. }
  575. struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
  576. {
  577. unsigned int entry = pos & (rb->nr_entries - 1);
  578. return &rb->entries[entry].w_ctx;
  579. }
  580. unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
  581. __acquires(&rb->s_lock)
  582. {
  583. if (flags)
  584. spin_lock_irqsave(&rb->s_lock, *flags);
  585. else
  586. spin_lock_irq(&rb->s_lock);
  587. return rb->sync;
  588. }
  589. void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
  590. __releases(&rb->s_lock)
  591. {
  592. lockdep_assert_held(&rb->s_lock);
  593. if (flags)
  594. spin_unlock_irqrestore(&rb->s_lock, *flags);
  595. else
  596. spin_unlock_irq(&rb->s_lock);
  597. }
  598. unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
  599. {
  600. unsigned int sync;
  601. unsigned int i;
  602. lockdep_assert_held(&rb->s_lock);
  603. sync = READ_ONCE(rb->sync);
  604. for (i = 0; i < nr_entries; i++)
  605. sync = (sync + 1) & (rb->nr_entries - 1);
  606. /* Protect from counts */
  607. smp_store_release(&rb->sync, sync);
  608. return sync;
  609. }
  610. unsigned int pblk_rb_sync_point_count(struct pblk_rb *rb)
  611. {
  612. unsigned int subm, sync_point;
  613. unsigned int count;
  614. /* Protect syncs */
  615. sync_point = smp_load_acquire(&rb->sync_point);
  616. if (sync_point == EMPTY_ENTRY)
  617. return 0;
  618. subm = READ_ONCE(rb->subm);
  619. /* The sync point itself counts as a sector to sync */
  620. count = pblk_rb_ring_count(sync_point, subm, rb->nr_entries) + 1;
  621. return count;
  622. }
  623. /*
  624. * Scan from the current position of the sync pointer to find the entry that
  625. * corresponds to the given ppa. This is necessary since write requests can be
  626. * completed out of order. The assumption is that the ppa is close to the sync
  627. * pointer thus the search will not take long.
  628. *
  629. * The caller of this function must guarantee that the sync pointer will no
  630. * reach the entry while it is using the metadata associated with it. With this
  631. * assumption in mind, there is no need to take the sync lock.
  632. */
  633. struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb,
  634. struct ppa_addr *ppa)
  635. {
  636. unsigned int sync, subm, count;
  637. unsigned int i;
  638. sync = READ_ONCE(rb->sync);
  639. subm = READ_ONCE(rb->subm);
  640. count = pblk_rb_ring_count(subm, sync, rb->nr_entries);
  641. for (i = 0; i < count; i++)
  642. sync = (sync + 1) & (rb->nr_entries - 1);
  643. return NULL;
  644. }
  645. int pblk_rb_tear_down_check(struct pblk_rb *rb)
  646. {
  647. struct pblk_rb_entry *entry;
  648. int i;
  649. int ret = 0;
  650. spin_lock(&rb->w_lock);
  651. spin_lock_irq(&rb->s_lock);
  652. if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
  653. (rb->sync == rb->l2p_update) &&
  654. (rb->sync_point == EMPTY_ENTRY)) {
  655. goto out;
  656. }
  657. if (!rb->entries) {
  658. ret = 1;
  659. goto out;
  660. }
  661. for (i = 0; i < rb->nr_entries; i++) {
  662. entry = &rb->entries[i];
  663. if (!entry->data) {
  664. ret = 1;
  665. goto out;
  666. }
  667. }
  668. out:
  669. spin_unlock(&rb->w_lock);
  670. spin_unlock_irq(&rb->s_lock);
  671. return ret;
  672. }
  673. unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
  674. {
  675. return (pos & (rb->nr_entries - 1));
  676. }
  677. int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
  678. {
  679. return (pos >= rb->nr_entries);
  680. }
  681. ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
  682. {
  683. struct pblk *pblk = container_of(rb, struct pblk, rwb);
  684. struct pblk_c_ctx *c;
  685. ssize_t offset;
  686. int queued_entries = 0;
  687. spin_lock_irq(&rb->s_lock);
  688. list_for_each_entry(c, &pblk->compl_list, list)
  689. queued_entries++;
  690. spin_unlock_irq(&rb->s_lock);
  691. if (rb->sync_point != EMPTY_ENTRY)
  692. offset = scnprintf(buf, PAGE_SIZE,
  693. "%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
  694. rb->nr_entries,
  695. rb->mem,
  696. rb->subm,
  697. rb->sync,
  698. rb->l2p_update,
  699. #ifdef CONFIG_NVM_DEBUG
  700. atomic_read(&rb->inflight_sync_point),
  701. #else
  702. 0,
  703. #endif
  704. rb->sync_point,
  705. pblk_rb_read_count(rb),
  706. pblk_rb_space(rb),
  707. pblk_rb_sync_point_count(rb),
  708. queued_entries);
  709. else
  710. offset = scnprintf(buf, PAGE_SIZE,
  711. "%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
  712. rb->nr_entries,
  713. rb->mem,
  714. rb->subm,
  715. rb->sync,
  716. rb->l2p_update,
  717. #ifdef CONFIG_NVM_DEBUG
  718. atomic_read(&rb->inflight_sync_point),
  719. #else
  720. 0,
  721. #endif
  722. pblk_rb_read_count(rb),
  723. pblk_rb_space(rb),
  724. pblk_rb_sync_point_count(rb),
  725. queued_entries);
  726. return offset;
  727. }