odp.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. /*
  2. * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <rdma/ib_umem.h>
  33. #include <rdma/ib_umem_odp.h>
  34. #include "mlx5_ib.h"
  35. #include "cmd.h"
  36. #define MAX_PREFETCH_LEN (4*1024*1024U)
  37. /* Timeout in ms to wait for an active mmu notifier to complete when handling
  38. * a pagefault. */
  39. #define MMU_NOTIFIER_TIMEOUT 1000
  40. #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
  41. #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
  42. #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
  43. #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
  44. #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
  45. #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
  46. static u64 mlx5_imr_ksm_entries;
  47. static int check_parent(struct ib_umem_odp *odp,
  48. struct mlx5_ib_mr *parent)
  49. {
  50. struct mlx5_ib_mr *mr = odp->private;
  51. return mr && mr->parent == parent && !odp->dying;
  52. }
  53. static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
  54. {
  55. struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
  56. struct ib_ucontext *ctx = odp->umem->context;
  57. struct rb_node *rb;
  58. down_read(&ctx->umem_rwsem);
  59. while (1) {
  60. rb = rb_next(&odp->interval_tree.rb);
  61. if (!rb)
  62. goto not_found;
  63. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  64. if (check_parent(odp, parent))
  65. goto end;
  66. }
  67. not_found:
  68. odp = NULL;
  69. end:
  70. up_read(&ctx->umem_rwsem);
  71. return odp;
  72. }
  73. static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
  74. u64 start, u64 length,
  75. struct mlx5_ib_mr *parent)
  76. {
  77. struct ib_umem_odp *odp;
  78. struct rb_node *rb;
  79. down_read(&ctx->umem_rwsem);
  80. odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
  81. if (!odp)
  82. goto end;
  83. while (1) {
  84. if (check_parent(odp, parent))
  85. goto end;
  86. rb = rb_next(&odp->interval_tree.rb);
  87. if (!rb)
  88. goto not_found;
  89. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  90. if (ib_umem_start(odp->umem) > start + length)
  91. goto not_found;
  92. }
  93. not_found:
  94. odp = NULL;
  95. end:
  96. up_read(&ctx->umem_rwsem);
  97. return odp;
  98. }
  99. void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
  100. size_t nentries, struct mlx5_ib_mr *mr, int flags)
  101. {
  102. struct ib_pd *pd = mr->ibmr.pd;
  103. struct ib_ucontext *ctx = pd->uobject->context;
  104. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  105. struct ib_umem_odp *odp;
  106. unsigned long va;
  107. int i;
  108. if (flags & MLX5_IB_UPD_XLT_ZAP) {
  109. for (i = 0; i < nentries; i++, pklm++) {
  110. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  111. pklm->key = cpu_to_be32(dev->null_mkey);
  112. pklm->va = 0;
  113. }
  114. return;
  115. }
  116. odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
  117. nentries * MLX5_IMR_MTT_SIZE, mr);
  118. for (i = 0; i < nentries; i++, pklm++) {
  119. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  120. va = (offset + i) * MLX5_IMR_MTT_SIZE;
  121. if (odp && odp->umem->address == va) {
  122. struct mlx5_ib_mr *mtt = odp->private;
  123. pklm->key = cpu_to_be32(mtt->ibmr.lkey);
  124. odp = odp_next(odp);
  125. } else {
  126. pklm->key = cpu_to_be32(dev->null_mkey);
  127. }
  128. mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
  129. i, va, be32_to_cpu(pklm->key));
  130. }
  131. }
  132. static void mr_leaf_free_action(struct work_struct *work)
  133. {
  134. struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
  135. int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
  136. struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
  137. mr->parent = NULL;
  138. synchronize_srcu(&mr->dev->mr_srcu);
  139. ib_umem_release(odp->umem);
  140. if (imr->live)
  141. mlx5_ib_update_xlt(imr, idx, 1, 0,
  142. MLX5_IB_UPD_XLT_INDIRECT |
  143. MLX5_IB_UPD_XLT_ATOMIC);
  144. mlx5_mr_cache_free(mr->dev, mr);
  145. if (atomic_dec_and_test(&imr->num_leaf_free))
  146. wake_up(&imr->q_leaf_free);
  147. }
  148. void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
  149. unsigned long end)
  150. {
  151. struct mlx5_ib_mr *mr;
  152. const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
  153. sizeof(struct mlx5_mtt)) - 1;
  154. u64 idx = 0, blk_start_idx = 0;
  155. int in_block = 0;
  156. u64 addr;
  157. if (!umem || !umem->odp_data) {
  158. pr_err("invalidation called on NULL umem or non-ODP umem\n");
  159. return;
  160. }
  161. mr = umem->odp_data->private;
  162. if (!mr || !mr->ibmr.pd)
  163. return;
  164. start = max_t(u64, ib_umem_start(umem), start);
  165. end = min_t(u64, ib_umem_end(umem), end);
  166. /*
  167. * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
  168. * while we are doing the invalidation, no page fault will attempt to
  169. * overwrite the same MTTs. Concurent invalidations might race us,
  170. * but they will write 0s as well, so no difference in the end result.
  171. */
  172. for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
  173. idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
  174. /*
  175. * Strive to write the MTTs in chunks, but avoid overwriting
  176. * non-existing MTTs. The huristic here can be improved to
  177. * estimate the cost of another UMR vs. the cost of bigger
  178. * UMR.
  179. */
  180. if (umem->odp_data->dma_list[idx] &
  181. (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
  182. if (!in_block) {
  183. blk_start_idx = idx;
  184. in_block = 1;
  185. }
  186. } else {
  187. u64 umr_offset = idx & umr_block_mask;
  188. if (in_block && umr_offset == 0) {
  189. mlx5_ib_update_xlt(mr, blk_start_idx,
  190. idx - blk_start_idx, 0,
  191. MLX5_IB_UPD_XLT_ZAP |
  192. MLX5_IB_UPD_XLT_ATOMIC);
  193. in_block = 0;
  194. }
  195. }
  196. }
  197. if (in_block)
  198. mlx5_ib_update_xlt(mr, blk_start_idx,
  199. idx - blk_start_idx + 1, 0,
  200. MLX5_IB_UPD_XLT_ZAP |
  201. MLX5_IB_UPD_XLT_ATOMIC);
  202. /*
  203. * We are now sure that the device will not access the
  204. * memory. We can safely unmap it, and mark it as dirty if
  205. * needed.
  206. */
  207. ib_umem_odp_unmap_dma_pages(umem, start, end);
  208. if (unlikely(!umem->npages && mr->parent &&
  209. !umem->odp_data->dying)) {
  210. WRITE_ONCE(umem->odp_data->dying, 1);
  211. atomic_inc(&mr->parent->num_leaf_free);
  212. schedule_work(&umem->odp_data->work);
  213. }
  214. }
  215. void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
  216. {
  217. struct ib_odp_caps *caps = &dev->odp_caps;
  218. memset(caps, 0, sizeof(*caps));
  219. if (!MLX5_CAP_GEN(dev->mdev, pg))
  220. return;
  221. caps->general_caps = IB_ODP_SUPPORT;
  222. if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  223. dev->odp_max_size = U64_MAX;
  224. else
  225. dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
  226. if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
  227. caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
  228. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
  229. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
  230. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
  231. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
  232. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
  233. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
  234. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
  235. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
  236. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
  237. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
  238. if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
  239. MLX5_CAP_GEN(dev->mdev, null_mkey) &&
  240. MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  241. caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
  242. return;
  243. }
  244. static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
  245. struct mlx5_pagefault *pfault,
  246. int error)
  247. {
  248. int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
  249. pfault->wqe.wq_num : pfault->token;
  250. int ret = mlx5_core_page_fault_resume(dev->mdev,
  251. pfault->token,
  252. wq_num,
  253. pfault->type,
  254. error);
  255. if (ret)
  256. mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
  257. wq_num);
  258. }
  259. static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
  260. struct ib_umem *umem,
  261. bool ksm, int access_flags)
  262. {
  263. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  264. struct mlx5_ib_mr *mr;
  265. int err;
  266. mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
  267. MLX5_IMR_MTT_CACHE_ENTRY);
  268. if (IS_ERR(mr))
  269. return mr;
  270. mr->ibmr.pd = pd;
  271. mr->dev = dev;
  272. mr->access_flags = access_flags;
  273. mr->mmkey.iova = 0;
  274. mr->umem = umem;
  275. if (ksm) {
  276. err = mlx5_ib_update_xlt(mr, 0,
  277. mlx5_imr_ksm_entries,
  278. MLX5_KSM_PAGE_SHIFT,
  279. MLX5_IB_UPD_XLT_INDIRECT |
  280. MLX5_IB_UPD_XLT_ZAP |
  281. MLX5_IB_UPD_XLT_ENABLE);
  282. } else {
  283. err = mlx5_ib_update_xlt(mr, 0,
  284. MLX5_IMR_MTT_ENTRIES,
  285. PAGE_SHIFT,
  286. MLX5_IB_UPD_XLT_ZAP |
  287. MLX5_IB_UPD_XLT_ENABLE |
  288. MLX5_IB_UPD_XLT_ATOMIC);
  289. }
  290. if (err)
  291. goto fail;
  292. mr->ibmr.lkey = mr->mmkey.key;
  293. mr->ibmr.rkey = mr->mmkey.key;
  294. mr->live = 1;
  295. mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
  296. mr->mmkey.key, dev->mdev, mr);
  297. return mr;
  298. fail:
  299. mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
  300. mlx5_mr_cache_free(dev, mr);
  301. return ERR_PTR(err);
  302. }
  303. static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
  304. u64 io_virt, size_t bcnt)
  305. {
  306. struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
  307. struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
  308. struct ib_umem_odp *odp, *result = NULL;
  309. u64 addr = io_virt & MLX5_IMR_MTT_MASK;
  310. int nentries = 0, start_idx = 0, ret;
  311. struct mlx5_ib_mr *mtt;
  312. struct ib_umem *umem;
  313. mutex_lock(&mr->umem->odp_data->umem_mutex);
  314. odp = odp_lookup(ctx, addr, 1, mr);
  315. mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
  316. io_virt, bcnt, addr, odp);
  317. next_mr:
  318. if (likely(odp)) {
  319. if (nentries)
  320. nentries++;
  321. } else {
  322. umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
  323. if (IS_ERR(umem)) {
  324. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  325. return ERR_CAST(umem);
  326. }
  327. mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
  328. if (IS_ERR(mtt)) {
  329. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  330. ib_umem_release(umem);
  331. return ERR_CAST(mtt);
  332. }
  333. odp = umem->odp_data;
  334. odp->private = mtt;
  335. mtt->umem = umem;
  336. mtt->mmkey.iova = addr;
  337. mtt->parent = mr;
  338. INIT_WORK(&odp->work, mr_leaf_free_action);
  339. if (!nentries)
  340. start_idx = addr >> MLX5_IMR_MTT_SHIFT;
  341. nentries++;
  342. }
  343. /* Return first odp if region not covered by single one */
  344. if (likely(!result))
  345. result = odp;
  346. addr += MLX5_IMR_MTT_SIZE;
  347. if (unlikely(addr < io_virt + bcnt)) {
  348. odp = odp_next(odp);
  349. if (odp && odp->umem->address != addr)
  350. odp = NULL;
  351. goto next_mr;
  352. }
  353. if (unlikely(nentries)) {
  354. ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
  355. MLX5_IB_UPD_XLT_INDIRECT |
  356. MLX5_IB_UPD_XLT_ATOMIC);
  357. if (ret) {
  358. mlx5_ib_err(dev, "Failed to update PAS\n");
  359. result = ERR_PTR(ret);
  360. }
  361. }
  362. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  363. return result;
  364. }
  365. struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
  366. int access_flags)
  367. {
  368. struct ib_ucontext *ctx = pd->ibpd.uobject->context;
  369. struct mlx5_ib_mr *imr;
  370. struct ib_umem *umem;
  371. umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
  372. if (IS_ERR(umem))
  373. return ERR_CAST(umem);
  374. imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
  375. if (IS_ERR(imr)) {
  376. ib_umem_release(umem);
  377. return ERR_CAST(imr);
  378. }
  379. imr->umem = umem;
  380. init_waitqueue_head(&imr->q_leaf_free);
  381. atomic_set(&imr->num_leaf_free, 0);
  382. return imr;
  383. }
  384. static int mr_leaf_free(struct ib_umem *umem, u64 start,
  385. u64 end, void *cookie)
  386. {
  387. struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
  388. if (mr->parent != imr)
  389. return 0;
  390. ib_umem_odp_unmap_dma_pages(umem,
  391. ib_umem_start(umem),
  392. ib_umem_end(umem));
  393. if (umem->odp_data->dying)
  394. return 0;
  395. WRITE_ONCE(umem->odp_data->dying, 1);
  396. atomic_inc(&imr->num_leaf_free);
  397. schedule_work(&umem->odp_data->work);
  398. return 0;
  399. }
  400. void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
  401. {
  402. struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
  403. down_read(&ctx->umem_rwsem);
  404. rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
  405. mr_leaf_free, imr);
  406. up_read(&ctx->umem_rwsem);
  407. wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
  408. }
  409. static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
  410. u64 io_virt, size_t bcnt, u32 *bytes_mapped)
  411. {
  412. u64 access_mask = ODP_READ_ALLOWED_BIT;
  413. int npages = 0, page_shift, np;
  414. u64 start_idx, page_mask;
  415. struct ib_umem_odp *odp;
  416. int current_seq;
  417. size_t size;
  418. int ret;
  419. if (!mr->umem->odp_data->page_list) {
  420. odp = implicit_mr_get_data(mr, io_virt, bcnt);
  421. if (IS_ERR(odp))
  422. return PTR_ERR(odp);
  423. mr = odp->private;
  424. } else {
  425. odp = mr->umem->odp_data;
  426. }
  427. next_mr:
  428. size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
  429. page_shift = mr->umem->page_shift;
  430. page_mask = ~(BIT(page_shift) - 1);
  431. start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
  432. if (mr->umem->writable)
  433. access_mask |= ODP_WRITE_ALLOWED_BIT;
  434. current_seq = READ_ONCE(odp->notifiers_seq);
  435. /*
  436. * Ensure the sequence number is valid for some time before we call
  437. * gup.
  438. */
  439. smp_rmb();
  440. ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
  441. access_mask, current_seq);
  442. if (ret < 0)
  443. goto out;
  444. np = ret;
  445. mutex_lock(&odp->umem_mutex);
  446. if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
  447. /*
  448. * No need to check whether the MTTs really belong to
  449. * this MR, since ib_umem_odp_map_dma_pages already
  450. * checks this.
  451. */
  452. ret = mlx5_ib_update_xlt(mr, start_idx, np,
  453. page_shift, MLX5_IB_UPD_XLT_ATOMIC);
  454. } else {
  455. ret = -EAGAIN;
  456. }
  457. mutex_unlock(&odp->umem_mutex);
  458. if (ret < 0) {
  459. if (ret != -EAGAIN)
  460. mlx5_ib_err(dev, "Failed to update mkey page tables\n");
  461. goto out;
  462. }
  463. if (bytes_mapped) {
  464. u32 new_mappings = (np << page_shift) -
  465. (io_virt - round_down(io_virt, 1 << page_shift));
  466. *bytes_mapped += min_t(u32, new_mappings, size);
  467. }
  468. npages += np << (page_shift - PAGE_SHIFT);
  469. bcnt -= size;
  470. if (unlikely(bcnt)) {
  471. struct ib_umem_odp *next;
  472. io_virt += size;
  473. next = odp_next(odp);
  474. if (unlikely(!next || next->umem->address != io_virt)) {
  475. mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
  476. io_virt, next);
  477. return -EAGAIN;
  478. }
  479. odp = next;
  480. mr = odp->private;
  481. goto next_mr;
  482. }
  483. return npages;
  484. out:
  485. if (ret == -EAGAIN) {
  486. if (mr->parent || !odp->dying) {
  487. unsigned long timeout =
  488. msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
  489. if (!wait_for_completion_timeout(
  490. &odp->notifier_completion,
  491. timeout)) {
  492. mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
  493. current_seq, odp->notifiers_seq);
  494. }
  495. } else {
  496. /* The MR is being killed, kill the QP as well. */
  497. ret = -EFAULT;
  498. }
  499. }
  500. return ret;
  501. }
  502. struct pf_frame {
  503. struct pf_frame *next;
  504. u32 key;
  505. u64 io_virt;
  506. size_t bcnt;
  507. int depth;
  508. };
  509. /*
  510. * Handle a single data segment in a page-fault WQE or RDMA region.
  511. *
  512. * Returns number of OS pages retrieved on success. The caller may continue to
  513. * the next data segment.
  514. * Can return the following error codes:
  515. * -EAGAIN to designate a temporary error. The caller will abort handling the
  516. * page fault and resolve it.
  517. * -EFAULT when there's an error mapping the requested pages. The caller will
  518. * abort the page fault handling.
  519. */
  520. static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
  521. u32 key, u64 io_virt, size_t bcnt,
  522. u32 *bytes_committed,
  523. u32 *bytes_mapped)
  524. {
  525. int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
  526. struct pf_frame *head = NULL, *frame;
  527. struct mlx5_core_mkey *mmkey;
  528. struct mlx5_ib_mw *mw;
  529. struct mlx5_ib_mr *mr;
  530. struct mlx5_klm *pklm;
  531. u32 *out = NULL;
  532. size_t offset;
  533. srcu_key = srcu_read_lock(&dev->mr_srcu);
  534. io_virt += *bytes_committed;
  535. bcnt -= *bytes_committed;
  536. next_mr:
  537. mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
  538. if (!mmkey || mmkey->key != key) {
  539. mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
  540. ret = -EFAULT;
  541. goto srcu_unlock;
  542. }
  543. switch (mmkey->type) {
  544. case MLX5_MKEY_MR:
  545. mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
  546. if (!mr->live || !mr->ibmr.pd) {
  547. mlx5_ib_dbg(dev, "got dead MR\n");
  548. ret = -EFAULT;
  549. goto srcu_unlock;
  550. }
  551. ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
  552. if (ret < 0)
  553. goto srcu_unlock;
  554. npages += ret;
  555. ret = 0;
  556. break;
  557. case MLX5_MKEY_MW:
  558. mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
  559. if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
  560. mlx5_ib_dbg(dev, "indirection level exceeded\n");
  561. ret = -EFAULT;
  562. goto srcu_unlock;
  563. }
  564. outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
  565. sizeof(*pklm) * (mw->ndescs - 2);
  566. if (outlen > cur_outlen) {
  567. kfree(out);
  568. out = kzalloc(outlen, GFP_KERNEL);
  569. if (!out) {
  570. ret = -ENOMEM;
  571. goto srcu_unlock;
  572. }
  573. cur_outlen = outlen;
  574. }
  575. pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
  576. bsf0_klm0_pas_mtt0_1);
  577. ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
  578. if (ret)
  579. goto srcu_unlock;
  580. offset = io_virt - MLX5_GET64(query_mkey_out, out,
  581. memory_key_mkey_entry.start_addr);
  582. for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
  583. if (offset >= be32_to_cpu(pklm->bcount)) {
  584. offset -= be32_to_cpu(pklm->bcount);
  585. continue;
  586. }
  587. frame = kzalloc(sizeof(*frame), GFP_KERNEL);
  588. if (!frame) {
  589. ret = -ENOMEM;
  590. goto srcu_unlock;
  591. }
  592. frame->key = be32_to_cpu(pklm->key);
  593. frame->io_virt = be64_to_cpu(pklm->va) + offset;
  594. frame->bcnt = min_t(size_t, bcnt,
  595. be32_to_cpu(pklm->bcount) - offset);
  596. frame->depth = depth + 1;
  597. frame->next = head;
  598. head = frame;
  599. bcnt -= frame->bcnt;
  600. }
  601. break;
  602. default:
  603. mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
  604. ret = -EFAULT;
  605. goto srcu_unlock;
  606. }
  607. if (head) {
  608. frame = head;
  609. head = frame->next;
  610. key = frame->key;
  611. io_virt = frame->io_virt;
  612. bcnt = frame->bcnt;
  613. depth = frame->depth;
  614. kfree(frame);
  615. goto next_mr;
  616. }
  617. srcu_unlock:
  618. while (head) {
  619. frame = head;
  620. head = frame->next;
  621. kfree(frame);
  622. }
  623. kfree(out);
  624. srcu_read_unlock(&dev->mr_srcu, srcu_key);
  625. *bytes_committed = 0;
  626. return ret ? ret : npages;
  627. }
  628. /**
  629. * Parse a series of data segments for page fault handling.
  630. *
  631. * @qp the QP on which the fault occurred.
  632. * @pfault contains page fault information.
  633. * @wqe points at the first data segment in the WQE.
  634. * @wqe_end points after the end of the WQE.
  635. * @bytes_mapped receives the number of bytes that the function was able to
  636. * map. This allows the caller to decide intelligently whether
  637. * enough memory was mapped to resolve the page fault
  638. * successfully (e.g. enough for the next MTU, or the entire
  639. * WQE).
  640. * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
  641. * the committed bytes).
  642. *
  643. * Returns the number of pages loaded if positive, zero for an empty WQE, or a
  644. * negative error code.
  645. */
  646. static int pagefault_data_segments(struct mlx5_ib_dev *dev,
  647. struct mlx5_pagefault *pfault,
  648. struct mlx5_ib_qp *qp, void *wqe,
  649. void *wqe_end, u32 *bytes_mapped,
  650. u32 *total_wqe_bytes, int receive_queue)
  651. {
  652. int ret = 0, npages = 0;
  653. u64 io_virt;
  654. u32 key;
  655. u32 byte_count;
  656. size_t bcnt;
  657. int inline_segment;
  658. /* Skip SRQ next-WQE segment. */
  659. if (receive_queue && qp->ibqp.srq)
  660. wqe += sizeof(struct mlx5_wqe_srq_next_seg);
  661. if (bytes_mapped)
  662. *bytes_mapped = 0;
  663. if (total_wqe_bytes)
  664. *total_wqe_bytes = 0;
  665. while (wqe < wqe_end) {
  666. struct mlx5_wqe_data_seg *dseg = wqe;
  667. io_virt = be64_to_cpu(dseg->addr);
  668. key = be32_to_cpu(dseg->lkey);
  669. byte_count = be32_to_cpu(dseg->byte_count);
  670. inline_segment = !!(byte_count & MLX5_INLINE_SEG);
  671. bcnt = byte_count & ~MLX5_INLINE_SEG;
  672. if (inline_segment) {
  673. bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
  674. wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
  675. 16);
  676. } else {
  677. wqe += sizeof(*dseg);
  678. }
  679. /* receive WQE end of sg list. */
  680. if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
  681. io_virt == 0)
  682. break;
  683. if (!inline_segment && total_wqe_bytes) {
  684. *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
  685. pfault->bytes_committed);
  686. }
  687. /* A zero length data segment designates a length of 2GB. */
  688. if (bcnt == 0)
  689. bcnt = 1U << 31;
  690. if (inline_segment || bcnt <= pfault->bytes_committed) {
  691. pfault->bytes_committed -=
  692. min_t(size_t, bcnt,
  693. pfault->bytes_committed);
  694. continue;
  695. }
  696. ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
  697. &pfault->bytes_committed,
  698. bytes_mapped);
  699. if (ret < 0)
  700. break;
  701. npages += ret;
  702. }
  703. return ret < 0 ? ret : npages;
  704. }
  705. static const u32 mlx5_ib_odp_opcode_cap[] = {
  706. [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
  707. [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
  708. [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
  709. [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
  710. [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
  711. [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
  712. [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
  713. [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
  714. };
  715. /*
  716. * Parse initiator WQE. Advances the wqe pointer to point at the
  717. * scatter-gather list, and set wqe_end to the end of the WQE.
  718. */
  719. static int mlx5_ib_mr_initiator_pfault_handler(
  720. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  721. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  722. {
  723. struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
  724. u16 wqe_index = pfault->wqe.wqe_index;
  725. u32 transport_caps;
  726. struct mlx5_base_av *av;
  727. unsigned ds, opcode;
  728. #if defined(DEBUG)
  729. u32 ctrl_wqe_index, ctrl_qpn;
  730. #endif
  731. u32 qpn = qp->trans_qp.base.mqp.qpn;
  732. ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
  733. if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
  734. mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
  735. ds, wqe_length);
  736. return -EFAULT;
  737. }
  738. if (ds == 0) {
  739. mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
  740. wqe_index, qpn);
  741. return -EFAULT;
  742. }
  743. #if defined(DEBUG)
  744. ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
  745. MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
  746. MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
  747. if (wqe_index != ctrl_wqe_index) {
  748. mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
  749. wqe_index, qpn,
  750. ctrl_wqe_index);
  751. return -EFAULT;
  752. }
  753. ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
  754. MLX5_WQE_CTRL_QPN_SHIFT;
  755. if (qpn != ctrl_qpn) {
  756. mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
  757. wqe_index, qpn,
  758. ctrl_qpn);
  759. return -EFAULT;
  760. }
  761. #endif /* DEBUG */
  762. *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
  763. *wqe += sizeof(*ctrl);
  764. opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
  765. MLX5_WQE_CTRL_OPCODE_MASK;
  766. switch (qp->ibqp.qp_type) {
  767. case IB_QPT_RC:
  768. transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
  769. break;
  770. case IB_QPT_UD:
  771. transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
  772. break;
  773. default:
  774. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
  775. qp->ibqp.qp_type);
  776. return -EFAULT;
  777. }
  778. if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) /
  779. sizeof(mlx5_ib_odp_opcode_cap[0]) ||
  780. !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
  781. mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
  782. opcode);
  783. return -EFAULT;
  784. }
  785. if (qp->ibqp.qp_type != IB_QPT_RC) {
  786. av = *wqe;
  787. if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
  788. *wqe += sizeof(struct mlx5_av);
  789. else
  790. *wqe += sizeof(struct mlx5_base_av);
  791. }
  792. switch (opcode) {
  793. case MLX5_OPCODE_RDMA_WRITE:
  794. case MLX5_OPCODE_RDMA_WRITE_IMM:
  795. case MLX5_OPCODE_RDMA_READ:
  796. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  797. break;
  798. case MLX5_OPCODE_ATOMIC_CS:
  799. case MLX5_OPCODE_ATOMIC_FA:
  800. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  801. *wqe += sizeof(struct mlx5_wqe_atomic_seg);
  802. break;
  803. }
  804. return 0;
  805. }
  806. /*
  807. * Parse responder WQE. Advances the wqe pointer to point at the
  808. * scatter-gather list, and set wqe_end to the end of the WQE.
  809. */
  810. static int mlx5_ib_mr_responder_pfault_handler(
  811. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  812. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  813. {
  814. struct mlx5_ib_wq *wq = &qp->rq;
  815. int wqe_size = 1 << wq->wqe_shift;
  816. if (qp->ibqp.srq) {
  817. mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
  818. return -EFAULT;
  819. }
  820. if (qp->wq_sig) {
  821. mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
  822. return -EFAULT;
  823. }
  824. if (wqe_size > wqe_length) {
  825. mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
  826. return -EFAULT;
  827. }
  828. switch (qp->ibqp.qp_type) {
  829. case IB_QPT_RC:
  830. if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
  831. IB_ODP_SUPPORT_RECV))
  832. goto invalid_transport_or_opcode;
  833. break;
  834. default:
  835. invalid_transport_or_opcode:
  836. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
  837. qp->ibqp.qp_type);
  838. return -EFAULT;
  839. }
  840. *wqe_end = *wqe + wqe_size;
  841. return 0;
  842. }
  843. static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
  844. u32 wq_num)
  845. {
  846. struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
  847. if (!mqp) {
  848. mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
  849. return NULL;
  850. }
  851. return to_mibqp(mqp);
  852. }
  853. static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
  854. struct mlx5_pagefault *pfault)
  855. {
  856. int ret;
  857. void *wqe, *wqe_end;
  858. u32 bytes_mapped, total_wqe_bytes;
  859. char *buffer = NULL;
  860. int resume_with_error = 1;
  861. u16 wqe_index = pfault->wqe.wqe_index;
  862. int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
  863. struct mlx5_ib_qp *qp;
  864. buffer = (char *)__get_free_page(GFP_KERNEL);
  865. if (!buffer) {
  866. mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
  867. goto resolve_page_fault;
  868. }
  869. qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
  870. if (!qp)
  871. goto resolve_page_fault;
  872. ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
  873. PAGE_SIZE, &qp->trans_qp.base);
  874. if (ret < 0) {
  875. mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
  876. ret, wqe_index, pfault->token);
  877. goto resolve_page_fault;
  878. }
  879. wqe = buffer;
  880. if (requestor)
  881. ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
  882. &wqe_end, ret);
  883. else
  884. ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
  885. &wqe_end, ret);
  886. if (ret < 0)
  887. goto resolve_page_fault;
  888. if (wqe >= wqe_end) {
  889. mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
  890. goto resolve_page_fault;
  891. }
  892. ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
  893. &bytes_mapped, &total_wqe_bytes,
  894. !requestor);
  895. if (ret == -EAGAIN) {
  896. resume_with_error = 0;
  897. goto resolve_page_fault;
  898. } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
  899. goto resolve_page_fault;
  900. }
  901. resume_with_error = 0;
  902. resolve_page_fault:
  903. mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
  904. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
  905. pfault->wqe.wq_num, resume_with_error,
  906. pfault->type);
  907. free_page((unsigned long)buffer);
  908. }
  909. static int pages_in_range(u64 address, u32 length)
  910. {
  911. return (ALIGN(address + length, PAGE_SIZE) -
  912. (address & PAGE_MASK)) >> PAGE_SHIFT;
  913. }
  914. static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
  915. struct mlx5_pagefault *pfault)
  916. {
  917. u64 address;
  918. u32 length;
  919. u32 prefetch_len = pfault->bytes_committed;
  920. int prefetch_activated = 0;
  921. u32 rkey = pfault->rdma.r_key;
  922. int ret;
  923. /* The RDMA responder handler handles the page fault in two parts.
  924. * First it brings the necessary pages for the current packet
  925. * (and uses the pfault context), and then (after resuming the QP)
  926. * prefetches more pages. The second operation cannot use the pfault
  927. * context and therefore uses the dummy_pfault context allocated on
  928. * the stack */
  929. pfault->rdma.rdma_va += pfault->bytes_committed;
  930. pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
  931. pfault->rdma.rdma_op_len);
  932. pfault->bytes_committed = 0;
  933. address = pfault->rdma.rdma_va;
  934. length = pfault->rdma.rdma_op_len;
  935. /* For some operations, the hardware cannot tell the exact message
  936. * length, and in those cases it reports zero. Use prefetch
  937. * logic. */
  938. if (length == 0) {
  939. prefetch_activated = 1;
  940. length = pfault->rdma.packet_size;
  941. prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
  942. }
  943. ret = pagefault_single_data_segment(dev, rkey, address, length,
  944. &pfault->bytes_committed, NULL);
  945. if (ret == -EAGAIN) {
  946. /* We're racing with an invalidation, don't prefetch */
  947. prefetch_activated = 0;
  948. } else if (ret < 0 || pages_in_range(address, length) > ret) {
  949. mlx5_ib_page_fault_resume(dev, pfault, 1);
  950. if (ret != -ENOENT)
  951. mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
  952. ret, pfault->token, pfault->type);
  953. return;
  954. }
  955. mlx5_ib_page_fault_resume(dev, pfault, 0);
  956. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
  957. pfault->token, pfault->type,
  958. prefetch_activated);
  959. /* At this point, there might be a new pagefault already arriving in
  960. * the eq, switch to the dummy pagefault for the rest of the
  961. * processing. We're still OK with the objects being alive as the
  962. * work-queue is being fenced. */
  963. if (prefetch_activated) {
  964. u32 bytes_committed = 0;
  965. ret = pagefault_single_data_segment(dev, rkey, address,
  966. prefetch_len,
  967. &bytes_committed, NULL);
  968. if (ret < 0 && ret != -EAGAIN) {
  969. mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
  970. ret, pfault->token, address, prefetch_len);
  971. }
  972. }
  973. }
  974. void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
  975. struct mlx5_pagefault *pfault)
  976. {
  977. struct mlx5_ib_dev *dev = context;
  978. u8 event_subtype = pfault->event_subtype;
  979. switch (event_subtype) {
  980. case MLX5_PFAULT_SUBTYPE_WQE:
  981. mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
  982. break;
  983. case MLX5_PFAULT_SUBTYPE_RDMA:
  984. mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
  985. break;
  986. default:
  987. mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
  988. event_subtype);
  989. mlx5_ib_page_fault_resume(dev, pfault, 1);
  990. }
  991. }
  992. void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
  993. {
  994. if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
  995. return;
  996. switch (ent->order - 2) {
  997. case MLX5_IMR_MTT_CACHE_ENTRY:
  998. ent->page = PAGE_SHIFT;
  999. ent->xlt = MLX5_IMR_MTT_ENTRIES *
  1000. sizeof(struct mlx5_mtt) /
  1001. MLX5_IB_UMR_OCTOWORD;
  1002. ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
  1003. ent->limit = 0;
  1004. break;
  1005. case MLX5_IMR_KSM_CACHE_ENTRY:
  1006. ent->page = MLX5_KSM_PAGE_SHIFT;
  1007. ent->xlt = mlx5_imr_ksm_entries *
  1008. sizeof(struct mlx5_klm) /
  1009. MLX5_IB_UMR_OCTOWORD;
  1010. ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
  1011. ent->limit = 0;
  1012. break;
  1013. }
  1014. }
  1015. int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
  1016. {
  1017. int ret;
  1018. ret = init_srcu_struct(&dev->mr_srcu);
  1019. if (ret)
  1020. return ret;
  1021. if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
  1022. ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
  1023. if (ret) {
  1024. mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
  1025. return ret;
  1026. }
  1027. }
  1028. return 0;
  1029. }
  1030. void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev)
  1031. {
  1032. cleanup_srcu_struct(&dev->mr_srcu);
  1033. }
  1034. int mlx5_ib_odp_init(void)
  1035. {
  1036. mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
  1037. MLX5_IMR_MTT_BITS);
  1038. return 0;
  1039. }