hts221_core.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * STMicroelectronics hts221 sensor driver
  3. *
  4. * Copyright 2016 STMicroelectronics Inc.
  5. *
  6. * Lorenzo Bianconi <lorenzo.bianconi@st.com>
  7. *
  8. * Licensed under the GPL-2.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/device.h>
  13. #include <linux/iio/sysfs.h>
  14. #include <linux/delay.h>
  15. #include <linux/pm.h>
  16. #include <asm/unaligned.h>
  17. #include "hts221.h"
  18. #define HTS221_REG_WHOAMI_ADDR 0x0f
  19. #define HTS221_REG_WHOAMI_VAL 0xbc
  20. #define HTS221_REG_CNTRL1_ADDR 0x20
  21. #define HTS221_REG_CNTRL2_ADDR 0x21
  22. #define HTS221_REG_AVG_ADDR 0x10
  23. #define HTS221_REG_H_OUT_L 0x28
  24. #define HTS221_REG_T_OUT_L 0x2a
  25. #define HTS221_HUMIDITY_AVG_MASK 0x07
  26. #define HTS221_TEMP_AVG_MASK 0x38
  27. #define HTS221_ODR_MASK 0x03
  28. #define HTS221_BDU_MASK BIT(2)
  29. #define HTS221_ENABLE_MASK BIT(7)
  30. /* calibration registers */
  31. #define HTS221_REG_0RH_CAL_X_H 0x36
  32. #define HTS221_REG_1RH_CAL_X_H 0x3a
  33. #define HTS221_REG_0RH_CAL_Y_H 0x30
  34. #define HTS221_REG_1RH_CAL_Y_H 0x31
  35. #define HTS221_REG_0T_CAL_X_L 0x3c
  36. #define HTS221_REG_1T_CAL_X_L 0x3e
  37. #define HTS221_REG_0T_CAL_Y_H 0x32
  38. #define HTS221_REG_1T_CAL_Y_H 0x33
  39. #define HTS221_REG_T1_T0_CAL_Y_H 0x35
  40. struct hts221_odr {
  41. u8 hz;
  42. u8 val;
  43. };
  44. #define HTS221_AVG_DEPTH 8
  45. struct hts221_avg {
  46. u8 addr;
  47. u8 mask;
  48. u16 avg_avl[HTS221_AVG_DEPTH];
  49. };
  50. static const struct hts221_odr hts221_odr_table[] = {
  51. { 1, 0x01 }, /* 1Hz */
  52. { 7, 0x02 }, /* 7Hz */
  53. { 13, 0x03 }, /* 12.5Hz */
  54. };
  55. static const struct hts221_avg hts221_avg_list[] = {
  56. {
  57. .addr = HTS221_REG_AVG_ADDR,
  58. .mask = HTS221_HUMIDITY_AVG_MASK,
  59. .avg_avl = {
  60. 4, /* 0.4 %RH */
  61. 8, /* 0.3 %RH */
  62. 16, /* 0.2 %RH */
  63. 32, /* 0.15 %RH */
  64. 64, /* 0.1 %RH */
  65. 128, /* 0.07 %RH */
  66. 256, /* 0.05 %RH */
  67. 512, /* 0.03 %RH */
  68. },
  69. },
  70. {
  71. .addr = HTS221_REG_AVG_ADDR,
  72. .mask = HTS221_TEMP_AVG_MASK,
  73. .avg_avl = {
  74. 2, /* 0.08 degC */
  75. 4, /* 0.05 degC */
  76. 8, /* 0.04 degC */
  77. 16, /* 0.03 degC */
  78. 32, /* 0.02 degC */
  79. 64, /* 0.015 degC */
  80. 128, /* 0.01 degC */
  81. 256, /* 0.007 degC */
  82. },
  83. },
  84. };
  85. static const struct iio_chan_spec hts221_channels[] = {
  86. {
  87. .type = IIO_HUMIDITYRELATIVE,
  88. .address = HTS221_REG_H_OUT_L,
  89. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  90. BIT(IIO_CHAN_INFO_OFFSET) |
  91. BIT(IIO_CHAN_INFO_SCALE) |
  92. BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
  93. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  94. .scan_index = 0,
  95. .scan_type = {
  96. .sign = 's',
  97. .realbits = 16,
  98. .storagebits = 16,
  99. .endianness = IIO_LE,
  100. },
  101. },
  102. {
  103. .type = IIO_TEMP,
  104. .address = HTS221_REG_T_OUT_L,
  105. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  106. BIT(IIO_CHAN_INFO_OFFSET) |
  107. BIT(IIO_CHAN_INFO_SCALE) |
  108. BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
  109. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  110. .scan_index = 1,
  111. .scan_type = {
  112. .sign = 's',
  113. .realbits = 16,
  114. .storagebits = 16,
  115. .endianness = IIO_LE,
  116. },
  117. },
  118. IIO_CHAN_SOFT_TIMESTAMP(2),
  119. };
  120. int hts221_write_with_mask(struct hts221_hw *hw, u8 addr, u8 mask, u8 val)
  121. {
  122. u8 data;
  123. int err;
  124. mutex_lock(&hw->lock);
  125. err = hw->tf->read(hw->dev, addr, sizeof(data), &data);
  126. if (err < 0) {
  127. dev_err(hw->dev, "failed to read %02x register\n", addr);
  128. goto unlock;
  129. }
  130. data = (data & ~mask) | ((val << __ffs(mask)) & mask);
  131. err = hw->tf->write(hw->dev, addr, sizeof(data), &data);
  132. if (err < 0)
  133. dev_err(hw->dev, "failed to write %02x register\n", addr);
  134. unlock:
  135. mutex_unlock(&hw->lock);
  136. return err;
  137. }
  138. static int hts221_check_whoami(struct hts221_hw *hw)
  139. {
  140. u8 data;
  141. int err;
  142. err = hw->tf->read(hw->dev, HTS221_REG_WHOAMI_ADDR, sizeof(data),
  143. &data);
  144. if (err < 0) {
  145. dev_err(hw->dev, "failed to read whoami register\n");
  146. return err;
  147. }
  148. if (data != HTS221_REG_WHOAMI_VAL) {
  149. dev_err(hw->dev, "wrong whoami {%02x vs %02x}\n",
  150. data, HTS221_REG_WHOAMI_VAL);
  151. return -ENODEV;
  152. }
  153. return 0;
  154. }
  155. static int hts221_update_odr(struct hts221_hw *hw, u8 odr)
  156. {
  157. int i, err;
  158. for (i = 0; i < ARRAY_SIZE(hts221_odr_table); i++)
  159. if (hts221_odr_table[i].hz == odr)
  160. break;
  161. if (i == ARRAY_SIZE(hts221_odr_table))
  162. return -EINVAL;
  163. err = hts221_write_with_mask(hw, HTS221_REG_CNTRL1_ADDR,
  164. HTS221_ODR_MASK, hts221_odr_table[i].val);
  165. if (err < 0)
  166. return err;
  167. hw->odr = odr;
  168. return 0;
  169. }
  170. static int hts221_update_avg(struct hts221_hw *hw,
  171. enum hts221_sensor_type type,
  172. u16 val)
  173. {
  174. int i, err;
  175. const struct hts221_avg *avg = &hts221_avg_list[type];
  176. for (i = 0; i < HTS221_AVG_DEPTH; i++)
  177. if (avg->avg_avl[i] == val)
  178. break;
  179. if (i == HTS221_AVG_DEPTH)
  180. return -EINVAL;
  181. err = hts221_write_with_mask(hw, avg->addr, avg->mask, i);
  182. if (err < 0)
  183. return err;
  184. hw->sensors[type].cur_avg_idx = i;
  185. return 0;
  186. }
  187. static ssize_t hts221_sysfs_sampling_freq(struct device *dev,
  188. struct device_attribute *attr,
  189. char *buf)
  190. {
  191. int i;
  192. ssize_t len = 0;
  193. for (i = 0; i < ARRAY_SIZE(hts221_odr_table); i++)
  194. len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
  195. hts221_odr_table[i].hz);
  196. buf[len - 1] = '\n';
  197. return len;
  198. }
  199. static ssize_t
  200. hts221_sysfs_rh_oversampling_avail(struct device *dev,
  201. struct device_attribute *attr,
  202. char *buf)
  203. {
  204. const struct hts221_avg *avg = &hts221_avg_list[HTS221_SENSOR_H];
  205. ssize_t len = 0;
  206. int i;
  207. for (i = 0; i < ARRAY_SIZE(avg->avg_avl); i++)
  208. len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
  209. avg->avg_avl[i]);
  210. buf[len - 1] = '\n';
  211. return len;
  212. }
  213. static ssize_t
  214. hts221_sysfs_temp_oversampling_avail(struct device *dev,
  215. struct device_attribute *attr,
  216. char *buf)
  217. {
  218. const struct hts221_avg *avg = &hts221_avg_list[HTS221_SENSOR_T];
  219. ssize_t len = 0;
  220. int i;
  221. for (i = 0; i < ARRAY_SIZE(avg->avg_avl); i++)
  222. len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
  223. avg->avg_avl[i]);
  224. buf[len - 1] = '\n';
  225. return len;
  226. }
  227. int hts221_set_enable(struct hts221_hw *hw, bool enable)
  228. {
  229. int err;
  230. err = hts221_write_with_mask(hw, HTS221_REG_CNTRL1_ADDR,
  231. HTS221_ENABLE_MASK, enable);
  232. if (err < 0)
  233. return err;
  234. hw->enabled = enable;
  235. return 0;
  236. }
  237. static int hts221_parse_temp_caldata(struct hts221_hw *hw)
  238. {
  239. int err, *slope, *b_gen;
  240. s16 cal_x0, cal_x1, cal_y0, cal_y1;
  241. u8 cal0, cal1;
  242. err = hw->tf->read(hw->dev, HTS221_REG_0T_CAL_Y_H,
  243. sizeof(cal0), &cal0);
  244. if (err < 0)
  245. return err;
  246. err = hw->tf->read(hw->dev, HTS221_REG_T1_T0_CAL_Y_H,
  247. sizeof(cal1), &cal1);
  248. if (err < 0)
  249. return err;
  250. cal_y0 = (le16_to_cpu(cal1 & 0x3) << 8) | cal0;
  251. err = hw->tf->read(hw->dev, HTS221_REG_1T_CAL_Y_H,
  252. sizeof(cal0), &cal0);
  253. if (err < 0)
  254. return err;
  255. cal_y1 = (((cal1 & 0xc) >> 2) << 8) | cal0;
  256. err = hw->tf->read(hw->dev, HTS221_REG_0T_CAL_X_L, sizeof(cal_x0),
  257. (u8 *)&cal_x0);
  258. if (err < 0)
  259. return err;
  260. cal_x0 = le16_to_cpu(cal_x0);
  261. err = hw->tf->read(hw->dev, HTS221_REG_1T_CAL_X_L, sizeof(cal_x1),
  262. (u8 *)&cal_x1);
  263. if (err < 0)
  264. return err;
  265. cal_x1 = le16_to_cpu(cal_x1);
  266. slope = &hw->sensors[HTS221_SENSOR_T].slope;
  267. b_gen = &hw->sensors[HTS221_SENSOR_T].b_gen;
  268. *slope = ((cal_y1 - cal_y0) * 8000) / (cal_x1 - cal_x0);
  269. *b_gen = (((s32)cal_x1 * cal_y0 - (s32)cal_x0 * cal_y1) * 1000) /
  270. (cal_x1 - cal_x0);
  271. *b_gen *= 8;
  272. return 0;
  273. }
  274. static int hts221_parse_rh_caldata(struct hts221_hw *hw)
  275. {
  276. int err, *slope, *b_gen;
  277. s16 cal_x0, cal_x1, cal_y0, cal_y1;
  278. u8 data;
  279. err = hw->tf->read(hw->dev, HTS221_REG_0RH_CAL_Y_H, sizeof(data),
  280. &data);
  281. if (err < 0)
  282. return err;
  283. cal_y0 = data;
  284. err = hw->tf->read(hw->dev, HTS221_REG_1RH_CAL_Y_H, sizeof(data),
  285. &data);
  286. if (err < 0)
  287. return err;
  288. cal_y1 = data;
  289. err = hw->tf->read(hw->dev, HTS221_REG_0RH_CAL_X_H, sizeof(cal_x0),
  290. (u8 *)&cal_x0);
  291. if (err < 0)
  292. return err;
  293. cal_x0 = le16_to_cpu(cal_x0);
  294. err = hw->tf->read(hw->dev, HTS221_REG_1RH_CAL_X_H, sizeof(cal_x1),
  295. (u8 *)&cal_x1);
  296. if (err < 0)
  297. return err;
  298. cal_x1 = le16_to_cpu(cal_x1);
  299. slope = &hw->sensors[HTS221_SENSOR_H].slope;
  300. b_gen = &hw->sensors[HTS221_SENSOR_H].b_gen;
  301. *slope = ((cal_y1 - cal_y0) * 8000) / (cal_x1 - cal_x0);
  302. *b_gen = (((s32)cal_x1 * cal_y0 - (s32)cal_x0 * cal_y1) * 1000) /
  303. (cal_x1 - cal_x0);
  304. *b_gen *= 8;
  305. return 0;
  306. }
  307. static int hts221_get_sensor_scale(struct hts221_hw *hw,
  308. enum iio_chan_type ch_type,
  309. int *val, int *val2)
  310. {
  311. s64 tmp;
  312. s32 rem, div, data;
  313. switch (ch_type) {
  314. case IIO_HUMIDITYRELATIVE:
  315. data = hw->sensors[HTS221_SENSOR_H].slope;
  316. div = (1 << 4) * 1000;
  317. break;
  318. case IIO_TEMP:
  319. data = hw->sensors[HTS221_SENSOR_T].slope;
  320. div = (1 << 6) * 1000;
  321. break;
  322. default:
  323. return -EINVAL;
  324. }
  325. tmp = div_s64(data * 1000000000LL, div);
  326. tmp = div_s64_rem(tmp, 1000000000LL, &rem);
  327. *val = tmp;
  328. *val2 = rem;
  329. return IIO_VAL_INT_PLUS_NANO;
  330. }
  331. static int hts221_get_sensor_offset(struct hts221_hw *hw,
  332. enum iio_chan_type ch_type,
  333. int *val, int *val2)
  334. {
  335. s64 tmp;
  336. s32 rem, div, data;
  337. switch (ch_type) {
  338. case IIO_HUMIDITYRELATIVE:
  339. data = hw->sensors[HTS221_SENSOR_H].b_gen;
  340. div = hw->sensors[HTS221_SENSOR_H].slope;
  341. break;
  342. case IIO_TEMP:
  343. data = hw->sensors[HTS221_SENSOR_T].b_gen;
  344. div = hw->sensors[HTS221_SENSOR_T].slope;
  345. break;
  346. default:
  347. return -EINVAL;
  348. }
  349. tmp = div_s64(data * 1000000000LL, div);
  350. tmp = div_s64_rem(tmp, 1000000000LL, &rem);
  351. *val = tmp;
  352. *val2 = rem;
  353. return IIO_VAL_INT_PLUS_NANO;
  354. }
  355. static int hts221_read_oneshot(struct hts221_hw *hw, u8 addr, int *val)
  356. {
  357. u8 data[HTS221_DATA_SIZE];
  358. int err;
  359. err = hts221_set_enable(hw, true);
  360. if (err < 0)
  361. return err;
  362. msleep(50);
  363. err = hw->tf->read(hw->dev, addr, sizeof(data), data);
  364. if (err < 0)
  365. return err;
  366. hts221_set_enable(hw, false);
  367. *val = (s16)get_unaligned_le16(data);
  368. return IIO_VAL_INT;
  369. }
  370. static int hts221_read_raw(struct iio_dev *iio_dev,
  371. struct iio_chan_spec const *ch,
  372. int *val, int *val2, long mask)
  373. {
  374. struct hts221_hw *hw = iio_priv(iio_dev);
  375. int ret;
  376. ret = iio_device_claim_direct_mode(iio_dev);
  377. if (ret)
  378. return ret;
  379. switch (mask) {
  380. case IIO_CHAN_INFO_RAW:
  381. ret = hts221_read_oneshot(hw, ch->address, val);
  382. break;
  383. case IIO_CHAN_INFO_SCALE:
  384. ret = hts221_get_sensor_scale(hw, ch->type, val, val2);
  385. break;
  386. case IIO_CHAN_INFO_OFFSET:
  387. ret = hts221_get_sensor_offset(hw, ch->type, val, val2);
  388. break;
  389. case IIO_CHAN_INFO_SAMP_FREQ:
  390. *val = hw->odr;
  391. ret = IIO_VAL_INT;
  392. break;
  393. case IIO_CHAN_INFO_OVERSAMPLING_RATIO: {
  394. u8 idx;
  395. const struct hts221_avg *avg;
  396. switch (ch->type) {
  397. case IIO_HUMIDITYRELATIVE:
  398. avg = &hts221_avg_list[HTS221_SENSOR_H];
  399. idx = hw->sensors[HTS221_SENSOR_H].cur_avg_idx;
  400. *val = avg->avg_avl[idx];
  401. ret = IIO_VAL_INT;
  402. break;
  403. case IIO_TEMP:
  404. avg = &hts221_avg_list[HTS221_SENSOR_T];
  405. idx = hw->sensors[HTS221_SENSOR_T].cur_avg_idx;
  406. *val = avg->avg_avl[idx];
  407. ret = IIO_VAL_INT;
  408. break;
  409. default:
  410. ret = -EINVAL;
  411. break;
  412. }
  413. break;
  414. }
  415. default:
  416. ret = -EINVAL;
  417. break;
  418. }
  419. iio_device_release_direct_mode(iio_dev);
  420. return ret;
  421. }
  422. static int hts221_write_raw(struct iio_dev *iio_dev,
  423. struct iio_chan_spec const *chan,
  424. int val, int val2, long mask)
  425. {
  426. struct hts221_hw *hw = iio_priv(iio_dev);
  427. int ret;
  428. ret = iio_device_claim_direct_mode(iio_dev);
  429. if (ret)
  430. return ret;
  431. switch (mask) {
  432. case IIO_CHAN_INFO_SAMP_FREQ:
  433. ret = hts221_update_odr(hw, val);
  434. break;
  435. case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
  436. switch (chan->type) {
  437. case IIO_HUMIDITYRELATIVE:
  438. ret = hts221_update_avg(hw, HTS221_SENSOR_H, val);
  439. break;
  440. case IIO_TEMP:
  441. ret = hts221_update_avg(hw, HTS221_SENSOR_T, val);
  442. break;
  443. default:
  444. ret = -EINVAL;
  445. break;
  446. }
  447. break;
  448. default:
  449. ret = -EINVAL;
  450. break;
  451. }
  452. iio_device_release_direct_mode(iio_dev);
  453. return ret;
  454. }
  455. static int hts221_validate_trigger(struct iio_dev *iio_dev,
  456. struct iio_trigger *trig)
  457. {
  458. struct hts221_hw *hw = iio_priv(iio_dev);
  459. return hw->trig == trig ? 0 : -EINVAL;
  460. }
  461. static IIO_DEVICE_ATTR(in_humidity_oversampling_ratio_available, S_IRUGO,
  462. hts221_sysfs_rh_oversampling_avail, NULL, 0);
  463. static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available, S_IRUGO,
  464. hts221_sysfs_temp_oversampling_avail, NULL, 0);
  465. static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(hts221_sysfs_sampling_freq);
  466. static struct attribute *hts221_attributes[] = {
  467. &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
  468. &iio_dev_attr_in_humidity_oversampling_ratio_available.dev_attr.attr,
  469. &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
  470. NULL,
  471. };
  472. static const struct attribute_group hts221_attribute_group = {
  473. .attrs = hts221_attributes,
  474. };
  475. static const struct iio_info hts221_info = {
  476. .driver_module = THIS_MODULE,
  477. .attrs = &hts221_attribute_group,
  478. .read_raw = hts221_read_raw,
  479. .write_raw = hts221_write_raw,
  480. .validate_trigger = hts221_validate_trigger,
  481. };
  482. static const unsigned long hts221_scan_masks[] = {0x3, 0x0};
  483. int hts221_probe(struct iio_dev *iio_dev)
  484. {
  485. struct hts221_hw *hw = iio_priv(iio_dev);
  486. int err;
  487. u8 data;
  488. mutex_init(&hw->lock);
  489. err = hts221_check_whoami(hw);
  490. if (err < 0)
  491. return err;
  492. iio_dev->modes = INDIO_DIRECT_MODE;
  493. iio_dev->dev.parent = hw->dev;
  494. iio_dev->available_scan_masks = hts221_scan_masks;
  495. iio_dev->channels = hts221_channels;
  496. iio_dev->num_channels = ARRAY_SIZE(hts221_channels);
  497. iio_dev->name = HTS221_DEV_NAME;
  498. iio_dev->info = &hts221_info;
  499. /* enable Block Data Update */
  500. err = hts221_write_with_mask(hw, HTS221_REG_CNTRL1_ADDR,
  501. HTS221_BDU_MASK, 1);
  502. if (err < 0)
  503. return err;
  504. err = hts221_update_odr(hw, hts221_odr_table[0].hz);
  505. if (err < 0)
  506. return err;
  507. /* configure humidity sensor */
  508. err = hts221_parse_rh_caldata(hw);
  509. if (err < 0) {
  510. dev_err(hw->dev, "failed to get rh calibration data\n");
  511. return err;
  512. }
  513. data = hts221_avg_list[HTS221_SENSOR_H].avg_avl[3];
  514. err = hts221_update_avg(hw, HTS221_SENSOR_H, data);
  515. if (err < 0) {
  516. dev_err(hw->dev, "failed to set rh oversampling ratio\n");
  517. return err;
  518. }
  519. /* configure temperature sensor */
  520. err = hts221_parse_temp_caldata(hw);
  521. if (err < 0) {
  522. dev_err(hw->dev,
  523. "failed to get temperature calibration data\n");
  524. return err;
  525. }
  526. data = hts221_avg_list[HTS221_SENSOR_T].avg_avl[3];
  527. err = hts221_update_avg(hw, HTS221_SENSOR_T, data);
  528. if (err < 0) {
  529. dev_err(hw->dev,
  530. "failed to set temperature oversampling ratio\n");
  531. return err;
  532. }
  533. if (hw->irq > 0) {
  534. err = hts221_allocate_buffers(hw);
  535. if (err < 0)
  536. return err;
  537. err = hts221_allocate_trigger(hw);
  538. if (err)
  539. return err;
  540. }
  541. return devm_iio_device_register(hw->dev, iio_dev);
  542. }
  543. EXPORT_SYMBOL(hts221_probe);
  544. static int __maybe_unused hts221_suspend(struct device *dev)
  545. {
  546. struct iio_dev *iio_dev = dev_get_drvdata(dev);
  547. struct hts221_hw *hw = iio_priv(iio_dev);
  548. int err;
  549. err = hts221_write_with_mask(hw, HTS221_REG_CNTRL1_ADDR,
  550. HTS221_ENABLE_MASK, false);
  551. return err < 0 ? err : 0;
  552. }
  553. static int __maybe_unused hts221_resume(struct device *dev)
  554. {
  555. struct iio_dev *iio_dev = dev_get_drvdata(dev);
  556. struct hts221_hw *hw = iio_priv(iio_dev);
  557. int err = 0;
  558. if (hw->enabled)
  559. err = hts221_write_with_mask(hw, HTS221_REG_CNTRL1_ADDR,
  560. HTS221_ENABLE_MASK, true);
  561. return err;
  562. }
  563. const struct dev_pm_ops hts221_pm_ops = {
  564. SET_SYSTEM_SLEEP_PM_OPS(hts221_suspend, hts221_resume)
  565. };
  566. EXPORT_SYMBOL(hts221_pm_ops);
  567. MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi@st.com>");
  568. MODULE_DESCRIPTION("STMicroelectronics hts221 sensor driver");
  569. MODULE_LICENSE("GPL v2");