bmc150-accel-core.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/pm.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/iio/iio.h>
  30. #include <linux/iio/sysfs.h>
  31. #include <linux/iio/buffer.h>
  32. #include <linux/iio/events.h>
  33. #include <linux/iio/trigger.h>
  34. #include <linux/iio/trigger_consumer.h>
  35. #include <linux/iio/triggered_buffer.h>
  36. #include <linux/regmap.h>
  37. #include "bmc150-accel.h"
  38. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  39. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_RESET 0x14
  61. #define BMC150_ACCEL_RESET_VAL 0xB6
  62. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  63. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  64. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  66. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  67. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  68. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  69. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  70. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  71. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  72. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  74. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  75. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  76. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  77. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  78. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  79. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  80. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  81. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  82. #define BMC150_ACCEL_REG_INT_5 0x27
  83. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  84. #define BMC150_ACCEL_REG_INT_6 0x28
  85. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  86. /* Slope duration in terms of number of samples */
  87. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  88. /* in terms of multiples of g's/LSB, based on range */
  89. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  90. #define BMC150_ACCEL_REG_XOUT_L 0x02
  91. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  92. /* Sleep Duration values */
  93. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  94. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  95. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  96. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  97. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  98. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  99. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  100. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  101. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  102. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  103. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  104. #define BMC150_ACCEL_REG_TEMP 0x08
  105. #define BMC150_ACCEL_TEMP_CENTER_VAL 24
  106. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  107. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  108. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  109. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  110. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  111. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  112. #define BMC150_ACCEL_FIFO_LENGTH 32
  113. enum bmc150_accel_axis {
  114. AXIS_X,
  115. AXIS_Y,
  116. AXIS_Z,
  117. AXIS_MAX,
  118. };
  119. enum bmc150_power_modes {
  120. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  121. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  122. BMC150_ACCEL_SLEEP_MODE_LPM,
  123. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  124. };
  125. struct bmc150_scale_info {
  126. int scale;
  127. u8 reg_range;
  128. };
  129. struct bmc150_accel_chip_info {
  130. const char *name;
  131. u8 chip_id;
  132. const struct iio_chan_spec *channels;
  133. int num_channels;
  134. const struct bmc150_scale_info scale_table[4];
  135. };
  136. struct bmc150_accel_interrupt {
  137. const struct bmc150_accel_interrupt_info *info;
  138. atomic_t users;
  139. };
  140. struct bmc150_accel_trigger {
  141. struct bmc150_accel_data *data;
  142. struct iio_trigger *indio_trig;
  143. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  144. int intr;
  145. bool enabled;
  146. };
  147. enum bmc150_accel_interrupt_id {
  148. BMC150_ACCEL_INT_DATA_READY,
  149. BMC150_ACCEL_INT_ANY_MOTION,
  150. BMC150_ACCEL_INT_WATERMARK,
  151. BMC150_ACCEL_INTERRUPTS,
  152. };
  153. enum bmc150_accel_trigger_id {
  154. BMC150_ACCEL_TRIGGER_DATA_READY,
  155. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  156. BMC150_ACCEL_TRIGGERS,
  157. };
  158. struct bmc150_accel_data {
  159. struct regmap *regmap;
  160. int irq;
  161. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  162. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  163. struct mutex mutex;
  164. u8 fifo_mode, watermark;
  165. s16 buffer[8];
  166. u8 bw_bits;
  167. u32 slope_dur;
  168. u32 slope_thres;
  169. u32 range;
  170. int ev_enable_state;
  171. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  172. const struct bmc150_accel_chip_info *chip_info;
  173. };
  174. static const struct {
  175. int val;
  176. int val2;
  177. u8 bw_bits;
  178. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  179. {31, 260000, 0x09},
  180. {62, 500000, 0x0A},
  181. {125, 0, 0x0B},
  182. {250, 0, 0x0C},
  183. {500, 0, 0x0D},
  184. {1000, 0, 0x0E},
  185. {2000, 0, 0x0F} };
  186. static const struct {
  187. int bw_bits;
  188. int msec;
  189. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  190. {0x09, 32},
  191. {0x0A, 16},
  192. {0x0B, 8},
  193. {0x0C, 4},
  194. {0x0D, 2},
  195. {0x0E, 1},
  196. {0x0F, 1} };
  197. static const struct {
  198. int sleep_dur;
  199. u8 reg_value;
  200. } bmc150_accel_sleep_value_table[] = { {0, 0},
  201. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  202. {1000, BMC150_ACCEL_SLEEP_1_MS},
  203. {2000, BMC150_ACCEL_SLEEP_2_MS},
  204. {4000, BMC150_ACCEL_SLEEP_4_MS},
  205. {6000, BMC150_ACCEL_SLEEP_6_MS},
  206. {10000, BMC150_ACCEL_SLEEP_10_MS},
  207. {25000, BMC150_ACCEL_SLEEP_25_MS},
  208. {50000, BMC150_ACCEL_SLEEP_50_MS},
  209. {100000, BMC150_ACCEL_SLEEP_100_MS},
  210. {500000, BMC150_ACCEL_SLEEP_500_MS},
  211. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  212. const struct regmap_config bmc150_regmap_conf = {
  213. .reg_bits = 8,
  214. .val_bits = 8,
  215. .max_register = 0x3f,
  216. };
  217. EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
  218. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  219. enum bmc150_power_modes mode,
  220. int dur_us)
  221. {
  222. struct device *dev = regmap_get_device(data->regmap);
  223. int i;
  224. int ret;
  225. u8 lpw_bits;
  226. int dur_val = -1;
  227. if (dur_us > 0) {
  228. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  229. ++i) {
  230. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  231. dur_us)
  232. dur_val =
  233. bmc150_accel_sleep_value_table[i].reg_value;
  234. }
  235. } else {
  236. dur_val = 0;
  237. }
  238. if (dur_val < 0)
  239. return -EINVAL;
  240. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  241. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  242. dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
  243. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  244. if (ret < 0) {
  245. dev_err(dev, "Error writing reg_pmu_lpw\n");
  246. return ret;
  247. }
  248. return 0;
  249. }
  250. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  251. int val2)
  252. {
  253. int i;
  254. int ret;
  255. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  256. if (bmc150_accel_samp_freq_table[i].val == val &&
  257. bmc150_accel_samp_freq_table[i].val2 == val2) {
  258. ret = regmap_write(data->regmap,
  259. BMC150_ACCEL_REG_PMU_BW,
  260. bmc150_accel_samp_freq_table[i].bw_bits);
  261. if (ret < 0)
  262. return ret;
  263. data->bw_bits =
  264. bmc150_accel_samp_freq_table[i].bw_bits;
  265. return 0;
  266. }
  267. }
  268. return -EINVAL;
  269. }
  270. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  271. {
  272. struct device *dev = regmap_get_device(data->regmap);
  273. int ret;
  274. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  275. data->slope_thres);
  276. if (ret < 0) {
  277. dev_err(dev, "Error writing reg_int_6\n");
  278. return ret;
  279. }
  280. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  281. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  282. if (ret < 0) {
  283. dev_err(dev, "Error updating reg_int_5\n");
  284. return ret;
  285. }
  286. dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
  287. data->slope_dur);
  288. return ret;
  289. }
  290. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  291. bool state)
  292. {
  293. if (state)
  294. return bmc150_accel_update_slope(t->data);
  295. return 0;
  296. }
  297. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  298. int *val2)
  299. {
  300. int i;
  301. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  302. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  303. *val = bmc150_accel_samp_freq_table[i].val;
  304. *val2 = bmc150_accel_samp_freq_table[i].val2;
  305. return IIO_VAL_INT_PLUS_MICRO;
  306. }
  307. }
  308. return -EINVAL;
  309. }
  310. #ifdef CONFIG_PM
  311. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  312. {
  313. int i;
  314. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  315. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  316. return bmc150_accel_sample_upd_time[i].msec;
  317. }
  318. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  319. }
  320. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  321. {
  322. struct device *dev = regmap_get_device(data->regmap);
  323. int ret;
  324. if (on) {
  325. ret = pm_runtime_get_sync(dev);
  326. } else {
  327. pm_runtime_mark_last_busy(dev);
  328. ret = pm_runtime_put_autosuspend(dev);
  329. }
  330. if (ret < 0) {
  331. dev_err(dev,
  332. "Failed: bmc150_accel_set_power_state for %d\n", on);
  333. if (on)
  334. pm_runtime_put_noidle(dev);
  335. return ret;
  336. }
  337. return 0;
  338. }
  339. #else
  340. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  341. {
  342. return 0;
  343. }
  344. #endif
  345. static const struct bmc150_accel_interrupt_info {
  346. u8 map_reg;
  347. u8 map_bitmask;
  348. u8 en_reg;
  349. u8 en_bitmask;
  350. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  351. { /* data ready interrupt */
  352. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  353. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  354. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  355. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  356. },
  357. { /* motion interrupt */
  358. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  359. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  360. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  361. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  362. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  363. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  364. },
  365. { /* fifo watermark interrupt */
  366. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  367. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  368. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  369. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  370. },
  371. };
  372. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  373. struct bmc150_accel_data *data)
  374. {
  375. int i;
  376. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  377. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  378. }
  379. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  380. bool state)
  381. {
  382. struct device *dev = regmap_get_device(data->regmap);
  383. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  384. const struct bmc150_accel_interrupt_info *info = intr->info;
  385. int ret;
  386. if (state) {
  387. if (atomic_inc_return(&intr->users) > 1)
  388. return 0;
  389. } else {
  390. if (atomic_dec_return(&intr->users) > 0)
  391. return 0;
  392. }
  393. /*
  394. * We will expect the enable and disable to do operation in reverse
  395. * order. This will happen here anyway, as our resume operation uses
  396. * sync mode runtime pm calls. The suspend operation will be delayed
  397. * by autosuspend delay.
  398. * So the disable operation will still happen in reverse order of
  399. * enable operation. When runtime pm is disabled the mode is always on,
  400. * so sequence doesn't matter.
  401. */
  402. ret = bmc150_accel_set_power_state(data, state);
  403. if (ret < 0)
  404. return ret;
  405. /* map the interrupt to the appropriate pins */
  406. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  407. (state ? info->map_bitmask : 0));
  408. if (ret < 0) {
  409. dev_err(dev, "Error updating reg_int_map\n");
  410. goto out_fix_power_state;
  411. }
  412. /* enable/disable the interrupt */
  413. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  414. (state ? info->en_bitmask : 0));
  415. if (ret < 0) {
  416. dev_err(dev, "Error updating reg_int_en\n");
  417. goto out_fix_power_state;
  418. }
  419. return 0;
  420. out_fix_power_state:
  421. bmc150_accel_set_power_state(data, false);
  422. return ret;
  423. }
  424. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  425. {
  426. struct device *dev = regmap_get_device(data->regmap);
  427. int ret, i;
  428. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  429. if (data->chip_info->scale_table[i].scale == val) {
  430. ret = regmap_write(data->regmap,
  431. BMC150_ACCEL_REG_PMU_RANGE,
  432. data->chip_info->scale_table[i].reg_range);
  433. if (ret < 0) {
  434. dev_err(dev, "Error writing pmu_range\n");
  435. return ret;
  436. }
  437. data->range = data->chip_info->scale_table[i].reg_range;
  438. return 0;
  439. }
  440. }
  441. return -EINVAL;
  442. }
  443. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  444. {
  445. struct device *dev = regmap_get_device(data->regmap);
  446. int ret;
  447. unsigned int value;
  448. mutex_lock(&data->mutex);
  449. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  450. if (ret < 0) {
  451. dev_err(dev, "Error reading reg_temp\n");
  452. mutex_unlock(&data->mutex);
  453. return ret;
  454. }
  455. *val = sign_extend32(value, 7);
  456. mutex_unlock(&data->mutex);
  457. return IIO_VAL_INT;
  458. }
  459. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  460. struct iio_chan_spec const *chan,
  461. int *val)
  462. {
  463. struct device *dev = regmap_get_device(data->regmap);
  464. int ret;
  465. int axis = chan->scan_index;
  466. __le16 raw_val;
  467. mutex_lock(&data->mutex);
  468. ret = bmc150_accel_set_power_state(data, true);
  469. if (ret < 0) {
  470. mutex_unlock(&data->mutex);
  471. return ret;
  472. }
  473. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  474. &raw_val, sizeof(raw_val));
  475. if (ret < 0) {
  476. dev_err(dev, "Error reading axis %d\n", axis);
  477. bmc150_accel_set_power_state(data, false);
  478. mutex_unlock(&data->mutex);
  479. return ret;
  480. }
  481. *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
  482. chan->scan_type.realbits - 1);
  483. ret = bmc150_accel_set_power_state(data, false);
  484. mutex_unlock(&data->mutex);
  485. if (ret < 0)
  486. return ret;
  487. return IIO_VAL_INT;
  488. }
  489. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  490. struct iio_chan_spec const *chan,
  491. int *val, int *val2, long mask)
  492. {
  493. struct bmc150_accel_data *data = iio_priv(indio_dev);
  494. int ret;
  495. switch (mask) {
  496. case IIO_CHAN_INFO_RAW:
  497. switch (chan->type) {
  498. case IIO_TEMP:
  499. return bmc150_accel_get_temp(data, val);
  500. case IIO_ACCEL:
  501. if (iio_buffer_enabled(indio_dev))
  502. return -EBUSY;
  503. else
  504. return bmc150_accel_get_axis(data, chan, val);
  505. default:
  506. return -EINVAL;
  507. }
  508. case IIO_CHAN_INFO_OFFSET:
  509. if (chan->type == IIO_TEMP) {
  510. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  511. return IIO_VAL_INT;
  512. } else {
  513. return -EINVAL;
  514. }
  515. case IIO_CHAN_INFO_SCALE:
  516. *val = 0;
  517. switch (chan->type) {
  518. case IIO_TEMP:
  519. *val2 = 500000;
  520. return IIO_VAL_INT_PLUS_MICRO;
  521. case IIO_ACCEL:
  522. {
  523. int i;
  524. const struct bmc150_scale_info *si;
  525. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  526. for (i = 0; i < st_size; ++i) {
  527. si = &data->chip_info->scale_table[i];
  528. if (si->reg_range == data->range) {
  529. *val2 = si->scale;
  530. return IIO_VAL_INT_PLUS_MICRO;
  531. }
  532. }
  533. return -EINVAL;
  534. }
  535. default:
  536. return -EINVAL;
  537. }
  538. case IIO_CHAN_INFO_SAMP_FREQ:
  539. mutex_lock(&data->mutex);
  540. ret = bmc150_accel_get_bw(data, val, val2);
  541. mutex_unlock(&data->mutex);
  542. return ret;
  543. default:
  544. return -EINVAL;
  545. }
  546. }
  547. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  548. struct iio_chan_spec const *chan,
  549. int val, int val2, long mask)
  550. {
  551. struct bmc150_accel_data *data = iio_priv(indio_dev);
  552. int ret;
  553. switch (mask) {
  554. case IIO_CHAN_INFO_SAMP_FREQ:
  555. mutex_lock(&data->mutex);
  556. ret = bmc150_accel_set_bw(data, val, val2);
  557. mutex_unlock(&data->mutex);
  558. break;
  559. case IIO_CHAN_INFO_SCALE:
  560. if (val)
  561. return -EINVAL;
  562. mutex_lock(&data->mutex);
  563. ret = bmc150_accel_set_scale(data, val2);
  564. mutex_unlock(&data->mutex);
  565. return ret;
  566. default:
  567. ret = -EINVAL;
  568. }
  569. return ret;
  570. }
  571. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  572. const struct iio_chan_spec *chan,
  573. enum iio_event_type type,
  574. enum iio_event_direction dir,
  575. enum iio_event_info info,
  576. int *val, int *val2)
  577. {
  578. struct bmc150_accel_data *data = iio_priv(indio_dev);
  579. *val2 = 0;
  580. switch (info) {
  581. case IIO_EV_INFO_VALUE:
  582. *val = data->slope_thres;
  583. break;
  584. case IIO_EV_INFO_PERIOD:
  585. *val = data->slope_dur;
  586. break;
  587. default:
  588. return -EINVAL;
  589. }
  590. return IIO_VAL_INT;
  591. }
  592. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  593. const struct iio_chan_spec *chan,
  594. enum iio_event_type type,
  595. enum iio_event_direction dir,
  596. enum iio_event_info info,
  597. int val, int val2)
  598. {
  599. struct bmc150_accel_data *data = iio_priv(indio_dev);
  600. if (data->ev_enable_state)
  601. return -EBUSY;
  602. switch (info) {
  603. case IIO_EV_INFO_VALUE:
  604. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  605. break;
  606. case IIO_EV_INFO_PERIOD:
  607. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  608. break;
  609. default:
  610. return -EINVAL;
  611. }
  612. return 0;
  613. }
  614. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  615. const struct iio_chan_spec *chan,
  616. enum iio_event_type type,
  617. enum iio_event_direction dir)
  618. {
  619. struct bmc150_accel_data *data = iio_priv(indio_dev);
  620. return data->ev_enable_state;
  621. }
  622. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  623. const struct iio_chan_spec *chan,
  624. enum iio_event_type type,
  625. enum iio_event_direction dir,
  626. int state)
  627. {
  628. struct bmc150_accel_data *data = iio_priv(indio_dev);
  629. int ret;
  630. if (state == data->ev_enable_state)
  631. return 0;
  632. mutex_lock(&data->mutex);
  633. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  634. state);
  635. if (ret < 0) {
  636. mutex_unlock(&data->mutex);
  637. return ret;
  638. }
  639. data->ev_enable_state = state;
  640. mutex_unlock(&data->mutex);
  641. return 0;
  642. }
  643. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  644. struct iio_trigger *trig)
  645. {
  646. struct bmc150_accel_data *data = iio_priv(indio_dev);
  647. int i;
  648. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  649. if (data->triggers[i].indio_trig == trig)
  650. return 0;
  651. }
  652. return -EINVAL;
  653. }
  654. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  655. struct device_attribute *attr,
  656. char *buf)
  657. {
  658. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  659. struct bmc150_accel_data *data = iio_priv(indio_dev);
  660. int wm;
  661. mutex_lock(&data->mutex);
  662. wm = data->watermark;
  663. mutex_unlock(&data->mutex);
  664. return sprintf(buf, "%d\n", wm);
  665. }
  666. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  667. struct device_attribute *attr,
  668. char *buf)
  669. {
  670. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  671. struct bmc150_accel_data *data = iio_priv(indio_dev);
  672. bool state;
  673. mutex_lock(&data->mutex);
  674. state = data->fifo_mode;
  675. mutex_unlock(&data->mutex);
  676. return sprintf(buf, "%d\n", state);
  677. }
  678. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  679. static IIO_CONST_ATTR(hwfifo_watermark_max,
  680. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  681. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  682. bmc150_accel_get_fifo_state, NULL, 0);
  683. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  684. bmc150_accel_get_fifo_watermark, NULL, 0);
  685. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  686. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  687. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  688. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  689. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  690. NULL,
  691. };
  692. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  693. {
  694. struct bmc150_accel_data *data = iio_priv(indio_dev);
  695. if (val > BMC150_ACCEL_FIFO_LENGTH)
  696. val = BMC150_ACCEL_FIFO_LENGTH;
  697. mutex_lock(&data->mutex);
  698. data->watermark = val;
  699. mutex_unlock(&data->mutex);
  700. return 0;
  701. }
  702. /*
  703. * We must read at least one full frame in one burst, otherwise the rest of the
  704. * frame data is discarded.
  705. */
  706. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  707. char *buffer, int samples)
  708. {
  709. struct device *dev = regmap_get_device(data->regmap);
  710. int sample_length = 3 * 2;
  711. int ret;
  712. int total_length = samples * sample_length;
  713. int i;
  714. size_t step = regmap_get_raw_read_max(data->regmap);
  715. if (!step || step > total_length)
  716. step = total_length;
  717. else if (step < total_length)
  718. step = sample_length;
  719. /*
  720. * Seems we have a bus with size limitation so we have to execute
  721. * multiple reads
  722. */
  723. for (i = 0; i < total_length; i += step) {
  724. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  725. &buffer[i], step);
  726. if (ret)
  727. break;
  728. }
  729. if (ret)
  730. dev_err(dev,
  731. "Error transferring data from fifo in single steps of %zu\n",
  732. step);
  733. return ret;
  734. }
  735. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  736. unsigned samples, bool irq)
  737. {
  738. struct bmc150_accel_data *data = iio_priv(indio_dev);
  739. struct device *dev = regmap_get_device(data->regmap);
  740. int ret, i;
  741. u8 count;
  742. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  743. int64_t tstamp;
  744. uint64_t sample_period;
  745. unsigned int val;
  746. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  747. if (ret < 0) {
  748. dev_err(dev, "Error reading reg_fifo_status\n");
  749. return ret;
  750. }
  751. count = val & 0x7F;
  752. if (!count)
  753. return 0;
  754. /*
  755. * If we getting called from IRQ handler we know the stored timestamp is
  756. * fairly accurate for the last stored sample. Otherwise, if we are
  757. * called as a result of a read operation from userspace and hence
  758. * before the watermark interrupt was triggered, take a timestamp
  759. * now. We can fall anywhere in between two samples so the error in this
  760. * case is at most one sample period.
  761. */
  762. if (!irq) {
  763. data->old_timestamp = data->timestamp;
  764. data->timestamp = iio_get_time_ns(indio_dev);
  765. }
  766. /*
  767. * Approximate timestamps for each of the sample based on the sampling
  768. * frequency, timestamp for last sample and number of samples.
  769. *
  770. * Note that we can't use the current bandwidth settings to compute the
  771. * sample period because the sample rate varies with the device
  772. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  773. * small variation adds when we store a large number of samples and
  774. * creates significant jitter between the last and first samples in
  775. * different batches (e.g. 32ms vs 21ms).
  776. *
  777. * To avoid this issue we compute the actual sample period ourselves
  778. * based on the timestamp delta between the last two flush operations.
  779. */
  780. sample_period = (data->timestamp - data->old_timestamp);
  781. do_div(sample_period, count);
  782. tstamp = data->timestamp - (count - 1) * sample_period;
  783. if (samples && count > samples)
  784. count = samples;
  785. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  786. if (ret)
  787. return ret;
  788. /*
  789. * Ideally we want the IIO core to handle the demux when running in fifo
  790. * mode but not when running in triggered buffer mode. Unfortunately
  791. * this does not seem to be possible, so stick with driver demux for
  792. * now.
  793. */
  794. for (i = 0; i < count; i++) {
  795. u16 sample[8];
  796. int j, bit;
  797. j = 0;
  798. for_each_set_bit(bit, indio_dev->active_scan_mask,
  799. indio_dev->masklength)
  800. memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
  801. iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
  802. tstamp += sample_period;
  803. }
  804. return count;
  805. }
  806. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  807. {
  808. struct bmc150_accel_data *data = iio_priv(indio_dev);
  809. int ret;
  810. mutex_lock(&data->mutex);
  811. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  812. mutex_unlock(&data->mutex);
  813. return ret;
  814. }
  815. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  816. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  817. static struct attribute *bmc150_accel_attributes[] = {
  818. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  819. NULL,
  820. };
  821. static const struct attribute_group bmc150_accel_attrs_group = {
  822. .attrs = bmc150_accel_attributes,
  823. };
  824. static const struct iio_event_spec bmc150_accel_event = {
  825. .type = IIO_EV_TYPE_ROC,
  826. .dir = IIO_EV_DIR_EITHER,
  827. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  828. BIT(IIO_EV_INFO_ENABLE) |
  829. BIT(IIO_EV_INFO_PERIOD)
  830. };
  831. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  832. .type = IIO_ACCEL, \
  833. .modified = 1, \
  834. .channel2 = IIO_MOD_##_axis, \
  835. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  836. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  837. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  838. .scan_index = AXIS_##_axis, \
  839. .scan_type = { \
  840. .sign = 's', \
  841. .realbits = (bits), \
  842. .storagebits = 16, \
  843. .shift = 16 - (bits), \
  844. .endianness = IIO_LE, \
  845. }, \
  846. .event_spec = &bmc150_accel_event, \
  847. .num_event_specs = 1 \
  848. }
  849. #define BMC150_ACCEL_CHANNELS(bits) { \
  850. { \
  851. .type = IIO_TEMP, \
  852. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  853. BIT(IIO_CHAN_INFO_SCALE) | \
  854. BIT(IIO_CHAN_INFO_OFFSET), \
  855. .scan_index = -1, \
  856. }, \
  857. BMC150_ACCEL_CHANNEL(X, bits), \
  858. BMC150_ACCEL_CHANNEL(Y, bits), \
  859. BMC150_ACCEL_CHANNEL(Z, bits), \
  860. IIO_CHAN_SOFT_TIMESTAMP(3), \
  861. }
  862. static const struct iio_chan_spec bma222e_accel_channels[] =
  863. BMC150_ACCEL_CHANNELS(8);
  864. static const struct iio_chan_spec bma250e_accel_channels[] =
  865. BMC150_ACCEL_CHANNELS(10);
  866. static const struct iio_chan_spec bmc150_accel_channels[] =
  867. BMC150_ACCEL_CHANNELS(12);
  868. static const struct iio_chan_spec bma280_accel_channels[] =
  869. BMC150_ACCEL_CHANNELS(14);
  870. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  871. [bmc150] = {
  872. .name = "BMC150A",
  873. .chip_id = 0xFA,
  874. .channels = bmc150_accel_channels,
  875. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  876. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  877. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  878. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  879. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  880. },
  881. [bmi055] = {
  882. .name = "BMI055A",
  883. .chip_id = 0xFA,
  884. .channels = bmc150_accel_channels,
  885. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  886. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  887. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  888. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  889. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  890. },
  891. [bma255] = {
  892. .name = "BMA0255",
  893. .chip_id = 0xFA,
  894. .channels = bmc150_accel_channels,
  895. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  896. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  897. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  898. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  899. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  900. },
  901. [bma250e] = {
  902. .name = "BMA250E",
  903. .chip_id = 0xF9,
  904. .channels = bma250e_accel_channels,
  905. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  906. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  907. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  908. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  909. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  910. },
  911. [bma222e] = {
  912. .name = "BMA222E",
  913. .chip_id = 0xF8,
  914. .channels = bma222e_accel_channels,
  915. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  916. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  917. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  918. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  919. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  920. },
  921. [bma280] = {
  922. .name = "BMA0280",
  923. .chip_id = 0xFB,
  924. .channels = bma280_accel_channels,
  925. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  926. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  927. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  928. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  929. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  930. },
  931. };
  932. static const struct iio_info bmc150_accel_info = {
  933. .attrs = &bmc150_accel_attrs_group,
  934. .read_raw = bmc150_accel_read_raw,
  935. .write_raw = bmc150_accel_write_raw,
  936. .read_event_value = bmc150_accel_read_event,
  937. .write_event_value = bmc150_accel_write_event,
  938. .write_event_config = bmc150_accel_write_event_config,
  939. .read_event_config = bmc150_accel_read_event_config,
  940. .driver_module = THIS_MODULE,
  941. };
  942. static const struct iio_info bmc150_accel_info_fifo = {
  943. .attrs = &bmc150_accel_attrs_group,
  944. .read_raw = bmc150_accel_read_raw,
  945. .write_raw = bmc150_accel_write_raw,
  946. .read_event_value = bmc150_accel_read_event,
  947. .write_event_value = bmc150_accel_write_event,
  948. .write_event_config = bmc150_accel_write_event_config,
  949. .read_event_config = bmc150_accel_read_event_config,
  950. .validate_trigger = bmc150_accel_validate_trigger,
  951. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  952. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  953. .driver_module = THIS_MODULE,
  954. };
  955. static const unsigned long bmc150_accel_scan_masks[] = {
  956. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  957. 0};
  958. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  959. {
  960. struct iio_poll_func *pf = p;
  961. struct iio_dev *indio_dev = pf->indio_dev;
  962. struct bmc150_accel_data *data = iio_priv(indio_dev);
  963. int ret;
  964. mutex_lock(&data->mutex);
  965. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  966. data->buffer, AXIS_MAX * 2);
  967. mutex_unlock(&data->mutex);
  968. if (ret < 0)
  969. goto err_read;
  970. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  971. pf->timestamp);
  972. err_read:
  973. iio_trigger_notify_done(indio_dev->trig);
  974. return IRQ_HANDLED;
  975. }
  976. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  977. {
  978. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  979. struct bmc150_accel_data *data = t->data;
  980. struct device *dev = regmap_get_device(data->regmap);
  981. int ret;
  982. /* new data interrupts don't need ack */
  983. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  984. return 0;
  985. mutex_lock(&data->mutex);
  986. /* clear any latched interrupt */
  987. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  988. BMC150_ACCEL_INT_MODE_LATCH_INT |
  989. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  990. mutex_unlock(&data->mutex);
  991. if (ret < 0) {
  992. dev_err(dev, "Error writing reg_int_rst_latch\n");
  993. return ret;
  994. }
  995. return 0;
  996. }
  997. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  998. bool state)
  999. {
  1000. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1001. struct bmc150_accel_data *data = t->data;
  1002. int ret;
  1003. mutex_lock(&data->mutex);
  1004. if (t->enabled == state) {
  1005. mutex_unlock(&data->mutex);
  1006. return 0;
  1007. }
  1008. if (t->setup) {
  1009. ret = t->setup(t, state);
  1010. if (ret < 0) {
  1011. mutex_unlock(&data->mutex);
  1012. return ret;
  1013. }
  1014. }
  1015. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1016. if (ret < 0) {
  1017. mutex_unlock(&data->mutex);
  1018. return ret;
  1019. }
  1020. t->enabled = state;
  1021. mutex_unlock(&data->mutex);
  1022. return ret;
  1023. }
  1024. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1025. .set_trigger_state = bmc150_accel_trigger_set_state,
  1026. .try_reenable = bmc150_accel_trig_try_reen,
  1027. .owner = THIS_MODULE,
  1028. };
  1029. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1030. {
  1031. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1032. struct device *dev = regmap_get_device(data->regmap);
  1033. int dir;
  1034. int ret;
  1035. unsigned int val;
  1036. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1037. if (ret < 0) {
  1038. dev_err(dev, "Error reading reg_int_status_2\n");
  1039. return ret;
  1040. }
  1041. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1042. dir = IIO_EV_DIR_FALLING;
  1043. else
  1044. dir = IIO_EV_DIR_RISING;
  1045. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1046. iio_push_event(indio_dev,
  1047. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1048. 0,
  1049. IIO_MOD_X,
  1050. IIO_EV_TYPE_ROC,
  1051. dir),
  1052. data->timestamp);
  1053. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1054. iio_push_event(indio_dev,
  1055. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1056. 0,
  1057. IIO_MOD_Y,
  1058. IIO_EV_TYPE_ROC,
  1059. dir),
  1060. data->timestamp);
  1061. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1062. iio_push_event(indio_dev,
  1063. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1064. 0,
  1065. IIO_MOD_Z,
  1066. IIO_EV_TYPE_ROC,
  1067. dir),
  1068. data->timestamp);
  1069. return ret;
  1070. }
  1071. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1072. {
  1073. struct iio_dev *indio_dev = private;
  1074. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1075. struct device *dev = regmap_get_device(data->regmap);
  1076. bool ack = false;
  1077. int ret;
  1078. mutex_lock(&data->mutex);
  1079. if (data->fifo_mode) {
  1080. ret = __bmc150_accel_fifo_flush(indio_dev,
  1081. BMC150_ACCEL_FIFO_LENGTH, true);
  1082. if (ret > 0)
  1083. ack = true;
  1084. }
  1085. if (data->ev_enable_state) {
  1086. ret = bmc150_accel_handle_roc_event(indio_dev);
  1087. if (ret > 0)
  1088. ack = true;
  1089. }
  1090. if (ack) {
  1091. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1092. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1093. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1094. if (ret)
  1095. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1096. ret = IRQ_HANDLED;
  1097. } else {
  1098. ret = IRQ_NONE;
  1099. }
  1100. mutex_unlock(&data->mutex);
  1101. return ret;
  1102. }
  1103. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1104. {
  1105. struct iio_dev *indio_dev = private;
  1106. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1107. bool ack = false;
  1108. int i;
  1109. data->old_timestamp = data->timestamp;
  1110. data->timestamp = iio_get_time_ns(indio_dev);
  1111. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1112. if (data->triggers[i].enabled) {
  1113. iio_trigger_poll(data->triggers[i].indio_trig);
  1114. ack = true;
  1115. break;
  1116. }
  1117. }
  1118. if (data->ev_enable_state || data->fifo_mode)
  1119. return IRQ_WAKE_THREAD;
  1120. if (ack)
  1121. return IRQ_HANDLED;
  1122. return IRQ_NONE;
  1123. }
  1124. static const struct {
  1125. int intr;
  1126. const char *name;
  1127. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1128. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1129. {
  1130. .intr = 0,
  1131. .name = "%s-dev%d",
  1132. },
  1133. {
  1134. .intr = 1,
  1135. .name = "%s-any-motion-dev%d",
  1136. .setup = bmc150_accel_any_motion_setup,
  1137. },
  1138. };
  1139. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1140. int from)
  1141. {
  1142. int i;
  1143. for (i = from; i >= 0; i--) {
  1144. if (data->triggers[i].indio_trig) {
  1145. iio_trigger_unregister(data->triggers[i].indio_trig);
  1146. data->triggers[i].indio_trig = NULL;
  1147. }
  1148. }
  1149. }
  1150. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1151. struct bmc150_accel_data *data)
  1152. {
  1153. struct device *dev = regmap_get_device(data->regmap);
  1154. int i, ret;
  1155. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1156. struct bmc150_accel_trigger *t = &data->triggers[i];
  1157. t->indio_trig = devm_iio_trigger_alloc(dev,
  1158. bmc150_accel_triggers[i].name,
  1159. indio_dev->name,
  1160. indio_dev->id);
  1161. if (!t->indio_trig) {
  1162. ret = -ENOMEM;
  1163. break;
  1164. }
  1165. t->indio_trig->dev.parent = dev;
  1166. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1167. t->intr = bmc150_accel_triggers[i].intr;
  1168. t->data = data;
  1169. t->setup = bmc150_accel_triggers[i].setup;
  1170. iio_trigger_set_drvdata(t->indio_trig, t);
  1171. ret = iio_trigger_register(t->indio_trig);
  1172. if (ret)
  1173. break;
  1174. }
  1175. if (ret)
  1176. bmc150_accel_unregister_triggers(data, i - 1);
  1177. return ret;
  1178. }
  1179. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1180. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1181. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1182. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1183. {
  1184. struct device *dev = regmap_get_device(data->regmap);
  1185. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1186. int ret;
  1187. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1188. if (ret < 0) {
  1189. dev_err(dev, "Error writing reg_fifo_config1\n");
  1190. return ret;
  1191. }
  1192. if (!data->fifo_mode)
  1193. return 0;
  1194. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1195. data->watermark);
  1196. if (ret < 0)
  1197. dev_err(dev, "Error writing reg_fifo_config0\n");
  1198. return ret;
  1199. }
  1200. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1201. {
  1202. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1203. return bmc150_accel_set_power_state(data, true);
  1204. }
  1205. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1206. {
  1207. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1208. int ret = 0;
  1209. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1210. return iio_triggered_buffer_postenable(indio_dev);
  1211. mutex_lock(&data->mutex);
  1212. if (!data->watermark)
  1213. goto out;
  1214. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1215. true);
  1216. if (ret)
  1217. goto out;
  1218. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1219. ret = bmc150_accel_fifo_set_mode(data);
  1220. if (ret) {
  1221. data->fifo_mode = 0;
  1222. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1223. false);
  1224. }
  1225. out:
  1226. mutex_unlock(&data->mutex);
  1227. return ret;
  1228. }
  1229. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1230. {
  1231. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1232. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1233. return iio_triggered_buffer_predisable(indio_dev);
  1234. mutex_lock(&data->mutex);
  1235. if (!data->fifo_mode)
  1236. goto out;
  1237. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1238. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1239. data->fifo_mode = 0;
  1240. bmc150_accel_fifo_set_mode(data);
  1241. out:
  1242. mutex_unlock(&data->mutex);
  1243. return 0;
  1244. }
  1245. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1246. {
  1247. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1248. return bmc150_accel_set_power_state(data, false);
  1249. }
  1250. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1251. .preenable = bmc150_accel_buffer_preenable,
  1252. .postenable = bmc150_accel_buffer_postenable,
  1253. .predisable = bmc150_accel_buffer_predisable,
  1254. .postdisable = bmc150_accel_buffer_postdisable,
  1255. };
  1256. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1257. {
  1258. struct device *dev = regmap_get_device(data->regmap);
  1259. int ret, i;
  1260. unsigned int val;
  1261. /*
  1262. * Reset chip to get it in a known good state. A delay of 1.8ms after
  1263. * reset is required according to the data sheets of supported chips.
  1264. */
  1265. regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
  1266. BMC150_ACCEL_RESET_VAL);
  1267. usleep_range(1800, 2500);
  1268. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1269. if (ret < 0) {
  1270. dev_err(dev, "Error: Reading chip id\n");
  1271. return ret;
  1272. }
  1273. dev_dbg(dev, "Chip Id %x\n", val);
  1274. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1275. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1276. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1277. break;
  1278. }
  1279. }
  1280. if (!data->chip_info) {
  1281. dev_err(dev, "Invalid chip %x\n", val);
  1282. return -ENODEV;
  1283. }
  1284. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1285. if (ret < 0)
  1286. return ret;
  1287. /* Set Bandwidth */
  1288. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1289. if (ret < 0)
  1290. return ret;
  1291. /* Set Default Range */
  1292. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1293. BMC150_ACCEL_DEF_RANGE_4G);
  1294. if (ret < 0) {
  1295. dev_err(dev, "Error writing reg_pmu_range\n");
  1296. return ret;
  1297. }
  1298. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1299. /* Set default slope duration and thresholds */
  1300. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1301. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1302. ret = bmc150_accel_update_slope(data);
  1303. if (ret < 0)
  1304. return ret;
  1305. /* Set default as latched interrupts */
  1306. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1307. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1308. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1309. if (ret < 0) {
  1310. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1311. return ret;
  1312. }
  1313. return 0;
  1314. }
  1315. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1316. const char *name, bool block_supported)
  1317. {
  1318. struct bmc150_accel_data *data;
  1319. struct iio_dev *indio_dev;
  1320. int ret;
  1321. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1322. if (!indio_dev)
  1323. return -ENOMEM;
  1324. data = iio_priv(indio_dev);
  1325. dev_set_drvdata(dev, indio_dev);
  1326. data->irq = irq;
  1327. data->regmap = regmap;
  1328. ret = bmc150_accel_chip_init(data);
  1329. if (ret < 0)
  1330. return ret;
  1331. mutex_init(&data->mutex);
  1332. indio_dev->dev.parent = dev;
  1333. indio_dev->channels = data->chip_info->channels;
  1334. indio_dev->num_channels = data->chip_info->num_channels;
  1335. indio_dev->name = name ? name : data->chip_info->name;
  1336. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1337. indio_dev->modes = INDIO_DIRECT_MODE;
  1338. indio_dev->info = &bmc150_accel_info;
  1339. ret = iio_triggered_buffer_setup(indio_dev,
  1340. &iio_pollfunc_store_time,
  1341. bmc150_accel_trigger_handler,
  1342. &bmc150_accel_buffer_ops);
  1343. if (ret < 0) {
  1344. dev_err(dev, "Failed: iio triggered buffer setup\n");
  1345. return ret;
  1346. }
  1347. if (data->irq > 0) {
  1348. ret = devm_request_threaded_irq(
  1349. dev, data->irq,
  1350. bmc150_accel_irq_handler,
  1351. bmc150_accel_irq_thread_handler,
  1352. IRQF_TRIGGER_RISING,
  1353. BMC150_ACCEL_IRQ_NAME,
  1354. indio_dev);
  1355. if (ret)
  1356. goto err_buffer_cleanup;
  1357. /*
  1358. * Set latched mode interrupt. While certain interrupts are
  1359. * non-latched regardless of this settings (e.g. new data) we
  1360. * want to use latch mode when we can to prevent interrupt
  1361. * flooding.
  1362. */
  1363. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1364. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1365. if (ret < 0) {
  1366. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1367. goto err_buffer_cleanup;
  1368. }
  1369. bmc150_accel_interrupts_setup(indio_dev, data);
  1370. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1371. if (ret)
  1372. goto err_buffer_cleanup;
  1373. if (block_supported) {
  1374. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1375. indio_dev->info = &bmc150_accel_info_fifo;
  1376. iio_buffer_set_attrs(indio_dev->buffer,
  1377. bmc150_accel_fifo_attributes);
  1378. }
  1379. }
  1380. ret = pm_runtime_set_active(dev);
  1381. if (ret)
  1382. goto err_trigger_unregister;
  1383. pm_runtime_enable(dev);
  1384. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1385. pm_runtime_use_autosuspend(dev);
  1386. ret = iio_device_register(indio_dev);
  1387. if (ret < 0) {
  1388. dev_err(dev, "Unable to register iio device\n");
  1389. goto err_trigger_unregister;
  1390. }
  1391. return 0;
  1392. err_trigger_unregister:
  1393. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1394. err_buffer_cleanup:
  1395. iio_triggered_buffer_cleanup(indio_dev);
  1396. return ret;
  1397. }
  1398. EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
  1399. int bmc150_accel_core_remove(struct device *dev)
  1400. {
  1401. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1402. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1403. iio_device_unregister(indio_dev);
  1404. pm_runtime_disable(dev);
  1405. pm_runtime_set_suspended(dev);
  1406. pm_runtime_put_noidle(dev);
  1407. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1408. iio_triggered_buffer_cleanup(indio_dev);
  1409. mutex_lock(&data->mutex);
  1410. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1411. mutex_unlock(&data->mutex);
  1412. return 0;
  1413. }
  1414. EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
  1415. #ifdef CONFIG_PM_SLEEP
  1416. static int bmc150_accel_suspend(struct device *dev)
  1417. {
  1418. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1419. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1420. mutex_lock(&data->mutex);
  1421. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1422. mutex_unlock(&data->mutex);
  1423. return 0;
  1424. }
  1425. static int bmc150_accel_resume(struct device *dev)
  1426. {
  1427. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1428. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1429. mutex_lock(&data->mutex);
  1430. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1431. bmc150_accel_fifo_set_mode(data);
  1432. mutex_unlock(&data->mutex);
  1433. return 0;
  1434. }
  1435. #endif
  1436. #ifdef CONFIG_PM
  1437. static int bmc150_accel_runtime_suspend(struct device *dev)
  1438. {
  1439. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1440. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1441. int ret;
  1442. dev_dbg(dev, __func__);
  1443. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1444. if (ret < 0)
  1445. return -EAGAIN;
  1446. return 0;
  1447. }
  1448. static int bmc150_accel_runtime_resume(struct device *dev)
  1449. {
  1450. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1451. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1452. int ret;
  1453. int sleep_val;
  1454. dev_dbg(dev, __func__);
  1455. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1456. if (ret < 0)
  1457. return ret;
  1458. ret = bmc150_accel_fifo_set_mode(data);
  1459. if (ret < 0)
  1460. return ret;
  1461. sleep_val = bmc150_accel_get_startup_times(data);
  1462. if (sleep_val < 20)
  1463. usleep_range(sleep_val * 1000, 20000);
  1464. else
  1465. msleep_interruptible(sleep_val);
  1466. return 0;
  1467. }
  1468. #endif
  1469. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1470. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1471. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1472. bmc150_accel_runtime_resume, NULL)
  1473. };
  1474. EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
  1475. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1476. MODULE_LICENSE("GPL v2");
  1477. MODULE_DESCRIPTION("BMC150 accelerometer driver");