vc4_dsi.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670
  1. /*
  2. * Copyright (C) 2016 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /**
  17. * DOC: VC4 DSI0/DSI1 module
  18. *
  19. * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
  20. * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  21. * controller.
  22. *
  23. * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  24. * while the compute module brings both DSI0 and DSI1 out.
  25. *
  26. * This driver has been tested for DSI1 video-mode display only
  27. * currently, with most of the information necessary for DSI0
  28. * hopefully present.
  29. */
  30. #include <drm/drm_atomic_helper.h>
  31. #include <drm/drm_crtc_helper.h>
  32. #include <drm/drm_edid.h>
  33. #include <drm/drm_mipi_dsi.h>
  34. #include <drm/drm_panel.h>
  35. #include <linux/clk.h>
  36. #include <linux/clk-provider.h>
  37. #include <linux/completion.h>
  38. #include <linux/component.h>
  39. #include <linux/dmaengine.h>
  40. #include <linux/i2c.h>
  41. #include <linux/of_address.h>
  42. #include <linux/of_platform.h>
  43. #include <linux/pm_runtime.h>
  44. #include "vc4_drv.h"
  45. #include "vc4_regs.h"
  46. #define DSI_CMD_FIFO_DEPTH 16
  47. #define DSI_PIX_FIFO_DEPTH 256
  48. #define DSI_PIX_FIFO_WIDTH 4
  49. #define DSI0_CTRL 0x00
  50. /* Command packet control. */
  51. #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
  52. #define DSI1_TXPKT1C 0x04
  53. # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
  54. # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
  55. # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
  56. # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
  57. # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
  58. # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
  59. /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  60. # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
  61. /* Primary display where cmdfifo provides part of the payload and
  62. * pixelvalve the rest.
  63. */
  64. # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
  65. /* Secondary display where cmdfifo provides part of the payload and
  66. * pixfifo the rest.
  67. */
  68. # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
  69. # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
  70. # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
  71. # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
  72. # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
  73. /* Command only. Uses TXPKT1H and DISPLAY_NO */
  74. # define DSI_TXPKT1C_CMD_CTRL_TX 0
  75. /* Command with BTA for either ack or read data. */
  76. # define DSI_TXPKT1C_CMD_CTRL_RX 1
  77. /* Trigger according to TRIG_CMD */
  78. # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
  79. /* BTA alone for getting error status after a command, or a TE trigger
  80. * without a previous command.
  81. */
  82. # define DSI_TXPKT1C_CMD_CTRL_BTA 3
  83. # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
  84. # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
  85. # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
  86. # define DSI_TXPKT1C_CMD_EN BIT(0)
  87. /* Command packet header. */
  88. #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
  89. #define DSI1_TXPKT1H 0x08
  90. # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
  91. # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
  92. # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  93. # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
  94. # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
  95. # define DSI_TXPKT1H_BC_DT_SHIFT 0
  96. #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
  97. #define DSI1_RXPKT1H 0x14
  98. # define DSI_RXPKT1H_CRC_ERR BIT(31)
  99. # define DSI_RXPKT1H_DET_ERR BIT(30)
  100. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  101. # define DSI_RXPKT1H_COR_ERR BIT(28)
  102. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  103. # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
  104. /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
  105. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  106. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  107. /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
  108. # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
  109. # define DSI_RXPKT1H_SHORT_1_SHIFT 16
  110. # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
  111. # define DSI_RXPKT1H_SHORT_0_SHIFT 8
  112. # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
  113. # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
  114. #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
  115. #define DSI1_RXPKT2H 0x18
  116. # define DSI_RXPKT1H_DET_ERR BIT(30)
  117. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  118. # define DSI_RXPKT1H_COR_ERR BIT(28)
  119. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  120. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  121. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  122. # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
  123. # define DSI_RXPKT1H_DT_SHIFT 0
  124. #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
  125. #define DSI1_TXPKT_CMD_FIFO 0x1c
  126. #define DSI0_DISP0_CTRL 0x18
  127. # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
  128. # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
  129. # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
  130. # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
  131. # define DSI_DISP0_LP_STOP_DISABLE 0
  132. # define DSI_DISP0_LP_STOP_PERLINE 1
  133. # define DSI_DISP0_LP_STOP_PERFRAME 2
  134. /* Transmit RGB pixels and null packets only during HACTIVE, instead
  135. * of going to LP-STOP.
  136. */
  137. # define DSI_DISP_HACTIVE_NULL BIT(10)
  138. /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
  139. # define DSI_DISP_VBLP_CTRL BIT(9)
  140. /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
  141. # define DSI_DISP_HFP_CTRL BIT(8)
  142. /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
  143. # define DSI_DISP_HBP_CTRL BIT(7)
  144. # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
  145. # define DSI_DISP0_CHANNEL_SHIFT 5
  146. /* Enables end events for HSYNC/VSYNC, not just start events. */
  147. # define DSI_DISP0_ST_END BIT(4)
  148. # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
  149. # define DSI_DISP0_PFORMAT_SHIFT 2
  150. # define DSI_PFORMAT_RGB565 0
  151. # define DSI_PFORMAT_RGB666_PACKED 1
  152. # define DSI_PFORMAT_RGB666 2
  153. # define DSI_PFORMAT_RGB888 3
  154. /* Default is VIDEO mode. */
  155. # define DSI_DISP0_COMMAND_MODE BIT(1)
  156. # define DSI_DISP0_ENABLE BIT(0)
  157. #define DSI0_DISP1_CTRL 0x1c
  158. #define DSI1_DISP1_CTRL 0x2c
  159. /* Format of the data written to TXPKT_PIX_FIFO. */
  160. # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
  161. # define DSI_DISP1_PFORMAT_SHIFT 1
  162. # define DSI_DISP1_PFORMAT_16BIT 0
  163. # define DSI_DISP1_PFORMAT_24BIT 1
  164. # define DSI_DISP1_PFORMAT_32BIT_LE 2
  165. # define DSI_DISP1_PFORMAT_32BIT_BE 3
  166. /* DISP1 is always command mode. */
  167. # define DSI_DISP1_ENABLE BIT(0)
  168. #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
  169. #define DSI0_INT_STAT 0x24
  170. #define DSI0_INT_EN 0x28
  171. # define DSI1_INT_PHY_D3_ULPS BIT(30)
  172. # define DSI1_INT_PHY_D3_STOP BIT(29)
  173. # define DSI1_INT_PHY_D2_ULPS BIT(28)
  174. # define DSI1_INT_PHY_D2_STOP BIT(27)
  175. # define DSI1_INT_PHY_D1_ULPS BIT(26)
  176. # define DSI1_INT_PHY_D1_STOP BIT(25)
  177. # define DSI1_INT_PHY_D0_ULPS BIT(24)
  178. # define DSI1_INT_PHY_D0_STOP BIT(23)
  179. # define DSI1_INT_FIFO_ERR BIT(22)
  180. # define DSI1_INT_PHY_DIR_RTF BIT(21)
  181. # define DSI1_INT_PHY_RXLPDT BIT(20)
  182. # define DSI1_INT_PHY_RXTRIG BIT(19)
  183. # define DSI1_INT_PHY_D0_LPDT BIT(18)
  184. # define DSI1_INT_PHY_DIR_FTR BIT(17)
  185. /* Signaled when the clock lane enters the given state. */
  186. # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
  187. # define DSI1_INT_PHY_CLOCK_HS BIT(15)
  188. # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
  189. /* Signaled on timeouts */
  190. # define DSI1_INT_PR_TO BIT(13)
  191. # define DSI1_INT_TA_TO BIT(12)
  192. # define DSI1_INT_LPRX_TO BIT(11)
  193. # define DSI1_INT_HSTX_TO BIT(10)
  194. /* Contention on a line when trying to drive the line low */
  195. # define DSI1_INT_ERR_CONT_LP1 BIT(9)
  196. # define DSI1_INT_ERR_CONT_LP0 BIT(8)
  197. /* Control error: incorrect line state sequence on data lane 0. */
  198. # define DSI1_INT_ERR_CONTROL BIT(7)
  199. /* LPDT synchronization error (bits received not a multiple of 8. */
  200. # define DSI1_INT_ERR_SYNC_ESC BIT(6)
  201. /* Signaled after receiving an error packet from the display in
  202. * response to a read.
  203. */
  204. # define DSI1_INT_RXPKT2 BIT(5)
  205. /* Signaled after receiving a packet. The header and optional short
  206. * response will be in RXPKT1H, and a long response will be in the
  207. * RXPKT_FIFO.
  208. */
  209. # define DSI1_INT_RXPKT1 BIT(4)
  210. # define DSI1_INT_TXPKT2_DONE BIT(3)
  211. # define DSI1_INT_TXPKT2_END BIT(2)
  212. /* Signaled after all repeats of TXPKT1 are transferred. */
  213. # define DSI1_INT_TXPKT1_DONE BIT(1)
  214. /* Signaled after each TXPKT1 repeat is scheduled. */
  215. # define DSI1_INT_TXPKT1_END BIT(0)
  216. #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
  217. DSI1_INT_ERR_CONTROL | \
  218. DSI1_INT_ERR_CONT_LP0 | \
  219. DSI1_INT_ERR_CONT_LP1 | \
  220. DSI1_INT_HSTX_TO | \
  221. DSI1_INT_LPRX_TO | \
  222. DSI1_INT_TA_TO | \
  223. DSI1_INT_PR_TO)
  224. #define DSI0_STAT 0x2c
  225. #define DSI0_HSTX_TO_CNT 0x30
  226. #define DSI0_LPRX_TO_CNT 0x34
  227. #define DSI0_TA_TO_CNT 0x38
  228. #define DSI0_PR_TO_CNT 0x3c
  229. #define DSI0_PHYC 0x40
  230. # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
  231. # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
  232. # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
  233. # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
  234. # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
  235. # define DSI1_PHYC_CLANE_ULPS BIT(17)
  236. # define DSI1_PHYC_CLANE_ENABLE BIT(16)
  237. # define DSI_PHYC_DLANE3_ULPS BIT(13)
  238. # define DSI_PHYC_DLANE3_ENABLE BIT(12)
  239. # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
  240. # define DSI0_PHYC_CLANE_ULPS BIT(9)
  241. # define DSI_PHYC_DLANE2_ULPS BIT(9)
  242. # define DSI0_PHYC_CLANE_ENABLE BIT(8)
  243. # define DSI_PHYC_DLANE2_ENABLE BIT(8)
  244. # define DSI_PHYC_DLANE1_ULPS BIT(5)
  245. # define DSI_PHYC_DLANE1_ENABLE BIT(4)
  246. # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
  247. # define DSI_PHYC_DLANE0_ULPS BIT(1)
  248. # define DSI_PHYC_DLANE0_ENABLE BIT(0)
  249. #define DSI0_HS_CLT0 0x44
  250. #define DSI0_HS_CLT1 0x48
  251. #define DSI0_HS_CLT2 0x4c
  252. #define DSI0_HS_DLT3 0x50
  253. #define DSI0_HS_DLT4 0x54
  254. #define DSI0_HS_DLT5 0x58
  255. #define DSI0_HS_DLT6 0x5c
  256. #define DSI0_HS_DLT7 0x60
  257. #define DSI0_PHY_AFEC0 0x64
  258. # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
  259. # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
  260. # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
  261. # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
  262. # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
  263. # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
  264. # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
  265. # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
  266. # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
  267. # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
  268. # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
  269. # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
  270. # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
  271. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
  272. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
  273. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
  274. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
  275. # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
  276. # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
  277. # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
  278. # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
  279. # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
  280. # define DSI1_PHY_AFEC0_RESET BIT(13)
  281. # define DSI1_PHY_AFEC0_PD BIT(12)
  282. # define DSI0_PHY_AFEC0_RESET BIT(11)
  283. # define DSI1_PHY_AFEC0_PD_BG BIT(11)
  284. # define DSI0_PHY_AFEC0_PD BIT(10)
  285. # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
  286. # define DSI0_PHY_AFEC0_PD_BG BIT(9)
  287. # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
  288. # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
  289. # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
  290. # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
  291. # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
  292. # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
  293. # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
  294. #define DSI0_PHY_AFEC1 0x68
  295. # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
  296. # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
  297. # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
  298. # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
  299. # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
  300. # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
  301. #define DSI0_TST_SEL 0x6c
  302. #define DSI0_TST_MON 0x70
  303. #define DSI0_ID 0x74
  304. # define DSI_ID_VALUE 0x00647369
  305. #define DSI1_CTRL 0x00
  306. # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
  307. # define DSI_CTRL_HS_CLKC_SHIFT 14
  308. # define DSI_CTRL_HS_CLKC_BYTE 0
  309. # define DSI_CTRL_HS_CLKC_DDR2 1
  310. # define DSI_CTRL_HS_CLKC_DDR 2
  311. # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
  312. # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
  313. # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
  314. # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
  315. # define DSI_CTRL_CAL_BYTE BIT(9)
  316. # define DSI_CTRL_INV_BYTE BIT(8)
  317. # define DSI_CTRL_CLR_LDF BIT(7)
  318. # define DSI0_CTRL_CLR_PBCF BIT(6)
  319. # define DSI1_CTRL_CLR_RXF BIT(6)
  320. # define DSI0_CTRL_CLR_CPBCF BIT(5)
  321. # define DSI1_CTRL_CLR_PDF BIT(5)
  322. # define DSI0_CTRL_CLR_PDF BIT(4)
  323. # define DSI1_CTRL_CLR_CDF BIT(4)
  324. # define DSI0_CTRL_CLR_CDF BIT(3)
  325. # define DSI0_CTRL_CTRL2 BIT(2)
  326. # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
  327. # define DSI0_CTRL_CTRL1 BIT(1)
  328. # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
  329. # define DSI0_CTRL_CTRL0 BIT(0)
  330. # define DSI1_CTRL_EN BIT(0)
  331. # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  332. DSI0_CTRL_CLR_PBCF | \
  333. DSI0_CTRL_CLR_CPBCF | \
  334. DSI0_CTRL_CLR_PDF | \
  335. DSI0_CTRL_CLR_CDF)
  336. # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  337. DSI1_CTRL_CLR_RXF | \
  338. DSI1_CTRL_CLR_PDF | \
  339. DSI1_CTRL_CLR_CDF)
  340. #define DSI1_TXPKT2C 0x0c
  341. #define DSI1_TXPKT2H 0x10
  342. #define DSI1_TXPKT_PIX_FIFO 0x20
  343. #define DSI1_RXPKT_FIFO 0x24
  344. #define DSI1_DISP0_CTRL 0x28
  345. #define DSI1_INT_STAT 0x30
  346. #define DSI1_INT_EN 0x34
  347. /* State reporting bits. These mostly behave like INT_STAT, where
  348. * writing a 1 clears the bit.
  349. */
  350. #define DSI1_STAT 0x38
  351. # define DSI1_STAT_PHY_D3_ULPS BIT(31)
  352. # define DSI1_STAT_PHY_D3_STOP BIT(30)
  353. # define DSI1_STAT_PHY_D2_ULPS BIT(29)
  354. # define DSI1_STAT_PHY_D2_STOP BIT(28)
  355. # define DSI1_STAT_PHY_D1_ULPS BIT(27)
  356. # define DSI1_STAT_PHY_D1_STOP BIT(26)
  357. # define DSI1_STAT_PHY_D0_ULPS BIT(25)
  358. # define DSI1_STAT_PHY_D0_STOP BIT(24)
  359. # define DSI1_STAT_FIFO_ERR BIT(23)
  360. # define DSI1_STAT_PHY_RXLPDT BIT(22)
  361. # define DSI1_STAT_PHY_RXTRIG BIT(21)
  362. # define DSI1_STAT_PHY_D0_LPDT BIT(20)
  363. /* Set when in forward direction */
  364. # define DSI1_STAT_PHY_DIR BIT(19)
  365. # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
  366. # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
  367. # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
  368. # define DSI1_STAT_PR_TO BIT(15)
  369. # define DSI1_STAT_TA_TO BIT(14)
  370. # define DSI1_STAT_LPRX_TO BIT(13)
  371. # define DSI1_STAT_HSTX_TO BIT(12)
  372. # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
  373. # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
  374. # define DSI1_STAT_ERR_CONTROL BIT(9)
  375. # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
  376. # define DSI1_STAT_RXPKT2 BIT(7)
  377. # define DSI1_STAT_RXPKT1 BIT(6)
  378. # define DSI1_STAT_TXPKT2_BUSY BIT(5)
  379. # define DSI1_STAT_TXPKT2_DONE BIT(4)
  380. # define DSI1_STAT_TXPKT2_END BIT(3)
  381. # define DSI1_STAT_TXPKT1_BUSY BIT(2)
  382. # define DSI1_STAT_TXPKT1_DONE BIT(1)
  383. # define DSI1_STAT_TXPKT1_END BIT(0)
  384. #define DSI1_HSTX_TO_CNT 0x3c
  385. #define DSI1_LPRX_TO_CNT 0x40
  386. #define DSI1_TA_TO_CNT 0x44
  387. #define DSI1_PR_TO_CNT 0x48
  388. #define DSI1_PHYC 0x4c
  389. #define DSI1_HS_CLT0 0x50
  390. # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
  391. # define DSI_HS_CLT0_CZERO_SHIFT 18
  392. # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
  393. # define DSI_HS_CLT0_CPRE_SHIFT 9
  394. # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
  395. # define DSI_HS_CLT0_CPREP_SHIFT 0
  396. #define DSI1_HS_CLT1 0x54
  397. # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
  398. # define DSI_HS_CLT1_CTRAIL_SHIFT 9
  399. # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
  400. # define DSI_HS_CLT1_CPOST_SHIFT 0
  401. #define DSI1_HS_CLT2 0x58
  402. # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
  403. # define DSI_HS_CLT2_WUP_SHIFT 0
  404. #define DSI1_HS_DLT3 0x5c
  405. # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
  406. # define DSI_HS_DLT3_EXIT_SHIFT 18
  407. # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
  408. # define DSI_HS_DLT3_ZERO_SHIFT 9
  409. # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
  410. # define DSI_HS_DLT3_PRE_SHIFT 0
  411. #define DSI1_HS_DLT4 0x60
  412. # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
  413. # define DSI_HS_DLT4_ANLAT_SHIFT 18
  414. # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
  415. # define DSI_HS_DLT4_TRAIL_SHIFT 9
  416. # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
  417. # define DSI_HS_DLT4_LPX_SHIFT 0
  418. #define DSI1_HS_DLT5 0x64
  419. # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
  420. # define DSI_HS_DLT5_INIT_SHIFT 0
  421. #define DSI1_HS_DLT6 0x68
  422. # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
  423. # define DSI_HS_DLT6_TA_GET_SHIFT 24
  424. # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
  425. # define DSI_HS_DLT6_TA_SURE_SHIFT 16
  426. # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
  427. # define DSI_HS_DLT6_TA_GO_SHIFT 8
  428. # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
  429. # define DSI_HS_DLT6_LP_LPX_SHIFT 0
  430. #define DSI1_HS_DLT7 0x6c
  431. # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
  432. # define DSI_HS_DLT7_LP_WUP_SHIFT 0
  433. #define DSI1_PHY_AFEC0 0x70
  434. #define DSI1_PHY_AFEC1 0x74
  435. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
  436. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
  437. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
  438. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
  439. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
  440. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
  441. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
  442. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
  443. # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
  444. # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
  445. #define DSI1_TST_SEL 0x78
  446. #define DSI1_TST_MON 0x7c
  447. #define DSI1_PHY_TST1 0x80
  448. #define DSI1_PHY_TST2 0x84
  449. #define DSI1_PHY_FIFO_STAT 0x88
  450. /* Actually, all registers in the range that aren't otherwise claimed
  451. * will return the ID.
  452. */
  453. #define DSI1_ID 0x8c
  454. /* General DSI hardware state. */
  455. struct vc4_dsi {
  456. struct platform_device *pdev;
  457. struct mipi_dsi_host dsi_host;
  458. struct drm_encoder *encoder;
  459. struct drm_bridge *bridge;
  460. bool is_panel_bridge;
  461. void __iomem *regs;
  462. struct dma_chan *reg_dma_chan;
  463. dma_addr_t reg_dma_paddr;
  464. u32 *reg_dma_mem;
  465. dma_addr_t reg_paddr;
  466. /* Whether we're on bcm2835's DSI0 or DSI1. */
  467. int port;
  468. /* DSI channel for the panel we're connected to. */
  469. u32 channel;
  470. u32 lanes;
  471. u32 format;
  472. u32 divider;
  473. u32 mode_flags;
  474. /* Input clock from CPRMAN to the digital PHY, for the DSI
  475. * escape clock.
  476. */
  477. struct clk *escape_clock;
  478. /* Input clock to the analog PHY, used to generate the DSI bit
  479. * clock.
  480. */
  481. struct clk *pll_phy_clock;
  482. /* HS Clocks generated within the DSI analog PHY. */
  483. struct clk_fixed_factor phy_clocks[3];
  484. struct clk_hw_onecell_data *clk_onecell;
  485. /* Pixel clock output to the pixelvalve, generated from the HS
  486. * clock.
  487. */
  488. struct clk *pixel_clock;
  489. struct completion xfer_completion;
  490. int xfer_result;
  491. };
  492. #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
  493. static inline void
  494. dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
  495. {
  496. struct dma_chan *chan = dsi->reg_dma_chan;
  497. struct dma_async_tx_descriptor *tx;
  498. dma_cookie_t cookie;
  499. int ret;
  500. /* DSI0 should be able to write normally. */
  501. if (!chan) {
  502. writel(val, dsi->regs + offset);
  503. return;
  504. }
  505. *dsi->reg_dma_mem = val;
  506. tx = chan->device->device_prep_dma_memcpy(chan,
  507. dsi->reg_paddr + offset,
  508. dsi->reg_dma_paddr,
  509. 4, 0);
  510. if (!tx) {
  511. DRM_ERROR("Failed to set up DMA register write\n");
  512. return;
  513. }
  514. cookie = tx->tx_submit(tx);
  515. ret = dma_submit_error(cookie);
  516. if (ret) {
  517. DRM_ERROR("Failed to submit DMA: %d\n", ret);
  518. return;
  519. }
  520. ret = dma_sync_wait(chan, cookie);
  521. if (ret)
  522. DRM_ERROR("Failed to wait for DMA: %d\n", ret);
  523. }
  524. #define DSI_READ(offset) readl(dsi->regs + (offset))
  525. #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
  526. #define DSI_PORT_READ(offset) \
  527. DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
  528. #define DSI_PORT_WRITE(offset, val) \
  529. DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
  530. #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
  531. /* VC4 DSI encoder KMS struct */
  532. struct vc4_dsi_encoder {
  533. struct vc4_encoder base;
  534. struct vc4_dsi *dsi;
  535. };
  536. static inline struct vc4_dsi_encoder *
  537. to_vc4_dsi_encoder(struct drm_encoder *encoder)
  538. {
  539. return container_of(encoder, struct vc4_dsi_encoder, base.base);
  540. }
  541. #define DSI_REG(reg) { reg, #reg }
  542. static const struct {
  543. u32 reg;
  544. const char *name;
  545. } dsi0_regs[] = {
  546. DSI_REG(DSI0_CTRL),
  547. DSI_REG(DSI0_STAT),
  548. DSI_REG(DSI0_HSTX_TO_CNT),
  549. DSI_REG(DSI0_LPRX_TO_CNT),
  550. DSI_REG(DSI0_TA_TO_CNT),
  551. DSI_REG(DSI0_PR_TO_CNT),
  552. DSI_REG(DSI0_DISP0_CTRL),
  553. DSI_REG(DSI0_DISP1_CTRL),
  554. DSI_REG(DSI0_INT_STAT),
  555. DSI_REG(DSI0_INT_EN),
  556. DSI_REG(DSI0_PHYC),
  557. DSI_REG(DSI0_HS_CLT0),
  558. DSI_REG(DSI0_HS_CLT1),
  559. DSI_REG(DSI0_HS_CLT2),
  560. DSI_REG(DSI0_HS_DLT3),
  561. DSI_REG(DSI0_HS_DLT4),
  562. DSI_REG(DSI0_HS_DLT5),
  563. DSI_REG(DSI0_HS_DLT6),
  564. DSI_REG(DSI0_HS_DLT7),
  565. DSI_REG(DSI0_PHY_AFEC0),
  566. DSI_REG(DSI0_PHY_AFEC1),
  567. DSI_REG(DSI0_ID),
  568. };
  569. static const struct {
  570. u32 reg;
  571. const char *name;
  572. } dsi1_regs[] = {
  573. DSI_REG(DSI1_CTRL),
  574. DSI_REG(DSI1_STAT),
  575. DSI_REG(DSI1_HSTX_TO_CNT),
  576. DSI_REG(DSI1_LPRX_TO_CNT),
  577. DSI_REG(DSI1_TA_TO_CNT),
  578. DSI_REG(DSI1_PR_TO_CNT),
  579. DSI_REG(DSI1_DISP0_CTRL),
  580. DSI_REG(DSI1_DISP1_CTRL),
  581. DSI_REG(DSI1_INT_STAT),
  582. DSI_REG(DSI1_INT_EN),
  583. DSI_REG(DSI1_PHYC),
  584. DSI_REG(DSI1_HS_CLT0),
  585. DSI_REG(DSI1_HS_CLT1),
  586. DSI_REG(DSI1_HS_CLT2),
  587. DSI_REG(DSI1_HS_DLT3),
  588. DSI_REG(DSI1_HS_DLT4),
  589. DSI_REG(DSI1_HS_DLT5),
  590. DSI_REG(DSI1_HS_DLT6),
  591. DSI_REG(DSI1_HS_DLT7),
  592. DSI_REG(DSI1_PHY_AFEC0),
  593. DSI_REG(DSI1_PHY_AFEC1),
  594. DSI_REG(DSI1_ID),
  595. };
  596. static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
  597. {
  598. int i;
  599. if (dsi->port == 0) {
  600. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  601. DRM_INFO("0x%04x (%s): 0x%08x\n",
  602. dsi0_regs[i].reg, dsi0_regs[i].name,
  603. DSI_READ(dsi0_regs[i].reg));
  604. }
  605. } else {
  606. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  607. DRM_INFO("0x%04x (%s): 0x%08x\n",
  608. dsi1_regs[i].reg, dsi1_regs[i].name,
  609. DSI_READ(dsi1_regs[i].reg));
  610. }
  611. }
  612. }
  613. #ifdef CONFIG_DEBUG_FS
  614. int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
  615. {
  616. struct drm_info_node *node = (struct drm_info_node *)m->private;
  617. struct drm_device *drm = node->minor->dev;
  618. struct vc4_dev *vc4 = to_vc4_dev(drm);
  619. int dsi_index = (uintptr_t)node->info_ent->data;
  620. struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
  621. int i;
  622. if (!dsi)
  623. return 0;
  624. if (dsi->port == 0) {
  625. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  626. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  627. dsi0_regs[i].reg, dsi0_regs[i].name,
  628. DSI_READ(dsi0_regs[i].reg));
  629. }
  630. } else {
  631. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  632. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  633. dsi1_regs[i].reg, dsi1_regs[i].name,
  634. DSI_READ(dsi1_regs[i].reg));
  635. }
  636. }
  637. return 0;
  638. }
  639. #endif
  640. static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
  641. {
  642. drm_encoder_cleanup(encoder);
  643. }
  644. static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
  645. .destroy = vc4_dsi_encoder_destroy,
  646. };
  647. static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
  648. {
  649. u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
  650. if (latch)
  651. afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  652. else
  653. afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  654. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  655. }
  656. /* Enters or exits Ultra Low Power State. */
  657. static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
  658. {
  659. bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
  660. u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
  661. DSI_PHYC_DLANE0_ULPS |
  662. (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
  663. (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
  664. (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
  665. u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
  666. DSI1_STAT_PHY_D0_ULPS |
  667. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
  668. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
  669. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
  670. u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
  671. DSI1_STAT_PHY_D0_STOP |
  672. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
  673. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
  674. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
  675. int ret;
  676. DSI_PORT_WRITE(STAT, stat_ulps);
  677. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
  678. ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
  679. if (ret) {
  680. dev_warn(&dsi->pdev->dev,
  681. "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
  682. DSI_PORT_READ(STAT));
  683. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  684. vc4_dsi_latch_ulps(dsi, false);
  685. return;
  686. }
  687. /* The DSI module can't be disabled while the module is
  688. * generating ULPS state. So, to be able to disable the
  689. * module, we have the AFE latch the ULPS state and continue
  690. * on to having the module enter STOP.
  691. */
  692. vc4_dsi_latch_ulps(dsi, ulps);
  693. DSI_PORT_WRITE(STAT, stat_stop);
  694. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  695. ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
  696. if (ret) {
  697. dev_warn(&dsi->pdev->dev,
  698. "Timeout waiting for DSI STOP entry: STAT 0x%08x",
  699. DSI_PORT_READ(STAT));
  700. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  701. return;
  702. }
  703. }
  704. static u32
  705. dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
  706. {
  707. /* The HS timings have to be rounded up to a multiple of 8
  708. * because we're using the byte clock.
  709. */
  710. return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
  711. }
  712. /* ESC always runs at 100Mhz. */
  713. #define ESC_TIME_NS 10
  714. static u32
  715. dsi_esc_timing(u32 ns)
  716. {
  717. return DIV_ROUND_UP(ns, ESC_TIME_NS);
  718. }
  719. static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
  720. {
  721. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  722. struct vc4_dsi *dsi = vc4_encoder->dsi;
  723. struct device *dev = &dsi->pdev->dev;
  724. vc4_dsi_ulps(dsi, true);
  725. clk_disable_unprepare(dsi->pll_phy_clock);
  726. clk_disable_unprepare(dsi->escape_clock);
  727. clk_disable_unprepare(dsi->pixel_clock);
  728. pm_runtime_put(dev);
  729. }
  730. /* Extends the mode's blank intervals to handle BCM2835's integer-only
  731. * DSI PLL divider.
  732. *
  733. * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
  734. * driver since most peripherals are hanging off of the PLLD_PER
  735. * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
  736. * the pixel clock), only has an integer divider off of DSI.
  737. *
  738. * To get our panel mode to refresh at the expected 60Hz, we need to
  739. * extend the horizontal blank time. This means we drive a
  740. * higher-than-expected clock rate to the panel, but that's what the
  741. * firmware does too.
  742. */
  743. static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
  744. const struct drm_display_mode *mode,
  745. struct drm_display_mode *adjusted_mode)
  746. {
  747. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  748. struct vc4_dsi *dsi = vc4_encoder->dsi;
  749. struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
  750. unsigned long parent_rate = clk_get_rate(phy_parent);
  751. unsigned long pixel_clock_hz = mode->clock * 1000;
  752. unsigned long pll_clock = pixel_clock_hz * dsi->divider;
  753. int divider;
  754. /* Find what divider gets us a faster clock than the requested
  755. * pixel clock.
  756. */
  757. for (divider = 1; divider < 8; divider++) {
  758. if (parent_rate / divider < pll_clock) {
  759. divider--;
  760. break;
  761. }
  762. }
  763. /* Now that we've picked a PLL divider, calculate back to its
  764. * pixel clock.
  765. */
  766. pll_clock = parent_rate / divider;
  767. pixel_clock_hz = pll_clock / dsi->divider;
  768. /* Round up the clk_set_rate() request slightly, since
  769. * PLLD_DSI1 is an integer divider and its rate selection will
  770. * never round up.
  771. */
  772. adjusted_mode->clock = pixel_clock_hz / 1000 + 1;
  773. /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
  774. adjusted_mode->htotal = pixel_clock_hz / (mode->vrefresh * mode->vtotal);
  775. adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
  776. adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
  777. return true;
  778. }
  779. static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
  780. {
  781. struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
  782. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  783. struct vc4_dsi *dsi = vc4_encoder->dsi;
  784. struct device *dev = &dsi->pdev->dev;
  785. bool debug_dump_regs = false;
  786. unsigned long hs_clock;
  787. u32 ui_ns;
  788. /* Minimum LP state duration in escape clock cycles. */
  789. u32 lpx = dsi_esc_timing(60);
  790. unsigned long pixel_clock_hz = mode->clock * 1000;
  791. unsigned long dsip_clock;
  792. unsigned long phy_clock;
  793. int ret;
  794. ret = pm_runtime_get_sync(dev);
  795. if (ret) {
  796. DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
  797. return;
  798. }
  799. if (debug_dump_regs) {
  800. DRM_INFO("DSI regs before:\n");
  801. vc4_dsi_dump_regs(dsi);
  802. }
  803. phy_clock = pixel_clock_hz * dsi->divider;
  804. ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
  805. if (ret) {
  806. dev_err(&dsi->pdev->dev,
  807. "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
  808. }
  809. /* Reset the DSI and all its fifos. */
  810. DSI_PORT_WRITE(CTRL,
  811. DSI_CTRL_SOFT_RESET_CFG |
  812. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  813. DSI_PORT_WRITE(CTRL,
  814. DSI_CTRL_HSDT_EOT_DISABLE |
  815. DSI_CTRL_RX_LPDT_EOT_DISABLE);
  816. /* Clear all stat bits so we see what has happened during enable. */
  817. DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
  818. /* Set AFE CTR00/CTR1 to release powerdown of analog. */
  819. if (dsi->port == 0) {
  820. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  821. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
  822. if (dsi->lanes < 2)
  823. afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
  824. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
  825. afec0 |= DSI0_PHY_AFEC0_RESET;
  826. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  827. DSI_PORT_WRITE(PHY_AFEC1,
  828. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
  829. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
  830. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
  831. } else {
  832. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  833. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
  834. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
  835. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
  836. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
  837. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
  838. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
  839. if (dsi->lanes < 4)
  840. afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
  841. if (dsi->lanes < 3)
  842. afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
  843. if (dsi->lanes < 2)
  844. afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
  845. afec0 |= DSI1_PHY_AFEC0_RESET;
  846. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  847. DSI_PORT_WRITE(PHY_AFEC1, 0);
  848. /* AFEC reset hold time */
  849. mdelay(1);
  850. }
  851. ret = clk_prepare_enable(dsi->escape_clock);
  852. if (ret) {
  853. DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
  854. return;
  855. }
  856. ret = clk_prepare_enable(dsi->pll_phy_clock);
  857. if (ret) {
  858. DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
  859. return;
  860. }
  861. hs_clock = clk_get_rate(dsi->pll_phy_clock);
  862. /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
  863. * not the pixel clock rate. DSIxP take from the APHY's byte,
  864. * DDR2, or DDR4 clock (we use byte) and feed into the PV at
  865. * that rate. Separately, a value derived from PIX_CLK_DIV
  866. * and HS_CLKC is fed into the PV to divide down to the actual
  867. * pixel clock for pushing pixels into DSI.
  868. */
  869. dsip_clock = phy_clock / 8;
  870. ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
  871. if (ret) {
  872. dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
  873. dsip_clock, ret);
  874. }
  875. ret = clk_prepare_enable(dsi->pixel_clock);
  876. if (ret) {
  877. DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
  878. return;
  879. }
  880. /* How many ns one DSI unit interval is. Note that the clock
  881. * is DDR, so there's an extra divide by 2.
  882. */
  883. ui_ns = DIV_ROUND_UP(500000000, hs_clock);
  884. DSI_PORT_WRITE(HS_CLT0,
  885. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
  886. DSI_HS_CLT0_CZERO) |
  887. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
  888. DSI_HS_CLT0_CPRE) |
  889. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
  890. DSI_HS_CLT0_CPREP));
  891. DSI_PORT_WRITE(HS_CLT1,
  892. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
  893. DSI_HS_CLT1_CTRAIL) |
  894. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
  895. DSI_HS_CLT1_CPOST));
  896. DSI_PORT_WRITE(HS_CLT2,
  897. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
  898. DSI_HS_CLT2_WUP));
  899. DSI_PORT_WRITE(HS_DLT3,
  900. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
  901. DSI_HS_DLT3_EXIT) |
  902. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
  903. DSI_HS_DLT3_ZERO) |
  904. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
  905. DSI_HS_DLT3_PRE));
  906. DSI_PORT_WRITE(HS_DLT4,
  907. VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
  908. DSI_HS_DLT4_LPX) |
  909. VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
  910. dsi_hs_timing(ui_ns, 60, 4)),
  911. DSI_HS_DLT4_TRAIL) |
  912. VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
  913. /* T_INIT is how long STOP is driven after power-up to
  914. * indicate to the slave (also coming out of power-up) that
  915. * master init is complete, and should be greater than the
  916. * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
  917. * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
  918. * T_INIT,SLAVE, while allowing protocols on top of it to give
  919. * greater minimums. The vc4 firmware uses an extremely
  920. * conservative 5ms, and we maintain that here.
  921. */
  922. DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
  923. 5 * 1000 * 1000, 0),
  924. DSI_HS_DLT5_INIT));
  925. DSI_PORT_WRITE(HS_DLT6,
  926. VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
  927. VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
  928. VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
  929. VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
  930. DSI_PORT_WRITE(HS_DLT7,
  931. VC4_SET_FIELD(dsi_esc_timing(1000000),
  932. DSI_HS_DLT7_LP_WUP));
  933. DSI_PORT_WRITE(PHYC,
  934. DSI_PHYC_DLANE0_ENABLE |
  935. (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
  936. (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
  937. (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
  938. DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
  939. ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
  940. 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
  941. (dsi->port == 0 ?
  942. VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
  943. VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
  944. DSI_PORT_WRITE(CTRL,
  945. DSI_PORT_READ(CTRL) |
  946. DSI_CTRL_CAL_BYTE);
  947. /* HS timeout in HS clock cycles: disabled. */
  948. DSI_PORT_WRITE(HSTX_TO_CNT, 0);
  949. /* LP receive timeout in HS clocks. */
  950. DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
  951. /* Bus turnaround timeout */
  952. DSI_PORT_WRITE(TA_TO_CNT, 100000);
  953. /* Display reset sequence timeout */
  954. DSI_PORT_WRITE(PR_TO_CNT, 100000);
  955. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  956. DSI_PORT_WRITE(DISP0_CTRL,
  957. VC4_SET_FIELD(dsi->divider,
  958. DSI_DISP0_PIX_CLK_DIV) |
  959. VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
  960. VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
  961. DSI_DISP0_LP_STOP_CTRL) |
  962. DSI_DISP0_ST_END |
  963. DSI_DISP0_ENABLE);
  964. } else {
  965. DSI_PORT_WRITE(DISP0_CTRL,
  966. DSI_DISP0_COMMAND_MODE |
  967. DSI_DISP0_ENABLE);
  968. }
  969. /* Set up DISP1 for transferring long command payloads through
  970. * the pixfifo.
  971. */
  972. DSI_PORT_WRITE(DISP1_CTRL,
  973. VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
  974. DSI_DISP1_PFORMAT) |
  975. DSI_DISP1_ENABLE);
  976. /* Ungate the block. */
  977. if (dsi->port == 0)
  978. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
  979. else
  980. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
  981. /* Bring AFE out of reset. */
  982. if (dsi->port == 0) {
  983. } else {
  984. DSI_PORT_WRITE(PHY_AFEC0,
  985. DSI_PORT_READ(PHY_AFEC0) &
  986. ~DSI1_PHY_AFEC0_RESET);
  987. }
  988. vc4_dsi_ulps(dsi, false);
  989. if (debug_dump_regs) {
  990. DRM_INFO("DSI regs after:\n");
  991. vc4_dsi_dump_regs(dsi);
  992. }
  993. }
  994. static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
  995. const struct mipi_dsi_msg *msg)
  996. {
  997. struct vc4_dsi *dsi = host_to_dsi(host);
  998. struct mipi_dsi_packet packet;
  999. u32 pkth = 0, pktc = 0;
  1000. int i, ret;
  1001. bool is_long = mipi_dsi_packet_format_is_long(msg->type);
  1002. u32 cmd_fifo_len = 0, pix_fifo_len = 0;
  1003. mipi_dsi_create_packet(&packet, msg);
  1004. pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
  1005. pkth |= VC4_SET_FIELD(packet.header[1] |
  1006. (packet.header[2] << 8),
  1007. DSI_TXPKT1H_BC_PARAM);
  1008. if (is_long) {
  1009. /* Divide data across the various FIFOs we have available.
  1010. * The command FIFO takes byte-oriented data, but is of
  1011. * limited size. The pixel FIFO (never actually used for
  1012. * pixel data in reality) is word oriented, and substantially
  1013. * larger. So, we use the pixel FIFO for most of the data,
  1014. * sending the residual bytes in the command FIFO at the start.
  1015. *
  1016. * With this arrangement, the command FIFO will never get full.
  1017. */
  1018. if (packet.payload_length <= 16) {
  1019. cmd_fifo_len = packet.payload_length;
  1020. pix_fifo_len = 0;
  1021. } else {
  1022. cmd_fifo_len = (packet.payload_length %
  1023. DSI_PIX_FIFO_WIDTH);
  1024. pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
  1025. DSI_PIX_FIFO_WIDTH);
  1026. }
  1027. WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
  1028. pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
  1029. }
  1030. if (msg->rx_len) {
  1031. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
  1032. DSI_TXPKT1C_CMD_CTRL);
  1033. } else {
  1034. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
  1035. DSI_TXPKT1C_CMD_CTRL);
  1036. }
  1037. for (i = 0; i < cmd_fifo_len; i++)
  1038. DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
  1039. for (i = 0; i < pix_fifo_len; i++) {
  1040. const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
  1041. DSI_PORT_WRITE(TXPKT_PIX_FIFO,
  1042. pix[0] |
  1043. pix[1] << 8 |
  1044. pix[2] << 16 |
  1045. pix[3] << 24);
  1046. }
  1047. if (msg->flags & MIPI_DSI_MSG_USE_LPM)
  1048. pktc |= DSI_TXPKT1C_CMD_MODE_LP;
  1049. if (is_long)
  1050. pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
  1051. /* Send one copy of the packet. Larger repeats are used for pixel
  1052. * data in command mode.
  1053. */
  1054. pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
  1055. pktc |= DSI_TXPKT1C_CMD_EN;
  1056. if (pix_fifo_len) {
  1057. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
  1058. DSI_TXPKT1C_DISPLAY_NO);
  1059. } else {
  1060. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
  1061. DSI_TXPKT1C_DISPLAY_NO);
  1062. }
  1063. /* Enable the appropriate interrupt for the transfer completion. */
  1064. dsi->xfer_result = 0;
  1065. reinit_completion(&dsi->xfer_completion);
  1066. DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
  1067. if (msg->rx_len) {
  1068. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1069. DSI1_INT_PHY_DIR_RTF));
  1070. } else {
  1071. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1072. DSI1_INT_TXPKT1_DONE));
  1073. }
  1074. /* Send the packet. */
  1075. DSI_PORT_WRITE(TXPKT1H, pkth);
  1076. DSI_PORT_WRITE(TXPKT1C, pktc);
  1077. if (!wait_for_completion_timeout(&dsi->xfer_completion,
  1078. msecs_to_jiffies(1000))) {
  1079. dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
  1080. dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
  1081. DSI_PORT_READ(INT_STAT));
  1082. ret = -ETIMEDOUT;
  1083. } else {
  1084. ret = dsi->xfer_result;
  1085. }
  1086. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1087. if (ret)
  1088. goto reset_fifo_and_return;
  1089. if (ret == 0 && msg->rx_len) {
  1090. u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
  1091. u8 *msg_rx = msg->rx_buf;
  1092. if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
  1093. u32 rxlen = VC4_GET_FIELD(rxpkt1h,
  1094. DSI_RXPKT1H_BC_PARAM);
  1095. if (rxlen != msg->rx_len) {
  1096. DRM_ERROR("DSI returned %db, expecting %db\n",
  1097. rxlen, (int)msg->rx_len);
  1098. ret = -ENXIO;
  1099. goto reset_fifo_and_return;
  1100. }
  1101. for (i = 0; i < msg->rx_len; i++)
  1102. msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
  1103. } else {
  1104. /* FINISHME: Handle AWER */
  1105. msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
  1106. DSI_RXPKT1H_SHORT_0);
  1107. if (msg->rx_len > 1) {
  1108. msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
  1109. DSI_RXPKT1H_SHORT_1);
  1110. }
  1111. }
  1112. }
  1113. return ret;
  1114. reset_fifo_and_return:
  1115. DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
  1116. DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
  1117. udelay(1);
  1118. DSI_PORT_WRITE(CTRL,
  1119. DSI_PORT_READ(CTRL) |
  1120. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  1121. DSI_PORT_WRITE(TXPKT1C, 0);
  1122. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1123. return ret;
  1124. }
  1125. static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
  1126. struct mipi_dsi_device *device)
  1127. {
  1128. struct vc4_dsi *dsi = host_to_dsi(host);
  1129. int ret = 0;
  1130. dsi->lanes = device->lanes;
  1131. dsi->channel = device->channel;
  1132. dsi->mode_flags = device->mode_flags;
  1133. switch (device->format) {
  1134. case MIPI_DSI_FMT_RGB888:
  1135. dsi->format = DSI_PFORMAT_RGB888;
  1136. dsi->divider = 24 / dsi->lanes;
  1137. break;
  1138. case MIPI_DSI_FMT_RGB666:
  1139. dsi->format = DSI_PFORMAT_RGB666;
  1140. dsi->divider = 24 / dsi->lanes;
  1141. break;
  1142. case MIPI_DSI_FMT_RGB666_PACKED:
  1143. dsi->format = DSI_PFORMAT_RGB666_PACKED;
  1144. dsi->divider = 18 / dsi->lanes;
  1145. break;
  1146. case MIPI_DSI_FMT_RGB565:
  1147. dsi->format = DSI_PFORMAT_RGB565;
  1148. dsi->divider = 16 / dsi->lanes;
  1149. break;
  1150. default:
  1151. dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
  1152. dsi->format);
  1153. return 0;
  1154. }
  1155. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
  1156. dev_err(&dsi->pdev->dev,
  1157. "Only VIDEO mode panels supported currently.\n");
  1158. return 0;
  1159. }
  1160. dsi->bridge = of_drm_find_bridge(device->dev.of_node);
  1161. if (!dsi->bridge) {
  1162. struct drm_panel *panel =
  1163. of_drm_find_panel(device->dev.of_node);
  1164. dsi->bridge = drm_panel_bridge_add(panel,
  1165. DRM_MODE_CONNECTOR_DSI);
  1166. if (IS_ERR(dsi->bridge)) {
  1167. ret = PTR_ERR(dsi->bridge);
  1168. dsi->bridge = NULL;
  1169. return ret;
  1170. }
  1171. dsi->is_panel_bridge = true;
  1172. }
  1173. return drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
  1174. }
  1175. static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
  1176. struct mipi_dsi_device *device)
  1177. {
  1178. struct vc4_dsi *dsi = host_to_dsi(host);
  1179. if (dsi->is_panel_bridge) {
  1180. drm_panel_bridge_remove(dsi->bridge);
  1181. dsi->bridge = NULL;
  1182. }
  1183. return 0;
  1184. }
  1185. static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
  1186. .attach = vc4_dsi_host_attach,
  1187. .detach = vc4_dsi_host_detach,
  1188. .transfer = vc4_dsi_host_transfer,
  1189. };
  1190. static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
  1191. .disable = vc4_dsi_encoder_disable,
  1192. .enable = vc4_dsi_encoder_enable,
  1193. .mode_fixup = vc4_dsi_encoder_mode_fixup,
  1194. };
  1195. static const struct of_device_id vc4_dsi_dt_match[] = {
  1196. { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
  1197. {}
  1198. };
  1199. static void dsi_handle_error(struct vc4_dsi *dsi,
  1200. irqreturn_t *ret, u32 stat, u32 bit,
  1201. const char *type)
  1202. {
  1203. if (!(stat & bit))
  1204. return;
  1205. DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
  1206. *ret = IRQ_HANDLED;
  1207. }
  1208. static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
  1209. {
  1210. struct vc4_dsi *dsi = data;
  1211. u32 stat = DSI_PORT_READ(INT_STAT);
  1212. irqreturn_t ret = IRQ_NONE;
  1213. DSI_PORT_WRITE(INT_STAT, stat);
  1214. dsi_handle_error(dsi, &ret, stat,
  1215. DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
  1216. dsi_handle_error(dsi, &ret, stat,
  1217. DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
  1218. dsi_handle_error(dsi, &ret, stat,
  1219. DSI1_INT_ERR_CONT_LP0, "LP0 contention");
  1220. dsi_handle_error(dsi, &ret, stat,
  1221. DSI1_INT_ERR_CONT_LP1, "LP1 contention");
  1222. dsi_handle_error(dsi, &ret, stat,
  1223. DSI1_INT_HSTX_TO, "HSTX timeout");
  1224. dsi_handle_error(dsi, &ret, stat,
  1225. DSI1_INT_LPRX_TO, "LPRX timeout");
  1226. dsi_handle_error(dsi, &ret, stat,
  1227. DSI1_INT_TA_TO, "turnaround timeout");
  1228. dsi_handle_error(dsi, &ret, stat,
  1229. DSI1_INT_PR_TO, "peripheral reset timeout");
  1230. if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
  1231. complete(&dsi->xfer_completion);
  1232. ret = IRQ_HANDLED;
  1233. } else if (stat & DSI1_INT_HSTX_TO) {
  1234. complete(&dsi->xfer_completion);
  1235. dsi->xfer_result = -ETIMEDOUT;
  1236. ret = IRQ_HANDLED;
  1237. }
  1238. return ret;
  1239. }
  1240. /**
  1241. * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
  1242. * PHY that are consumed by CPRMAN (clk-bcm2835.c).
  1243. * @dsi: DSI encoder
  1244. */
  1245. static int
  1246. vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
  1247. {
  1248. struct device *dev = &dsi->pdev->dev;
  1249. const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
  1250. static const struct {
  1251. const char *dsi0_name, *dsi1_name;
  1252. int div;
  1253. } phy_clocks[] = {
  1254. { "dsi0_byte", "dsi1_byte", 8 },
  1255. { "dsi0_ddr2", "dsi1_ddr2", 4 },
  1256. { "dsi0_ddr", "dsi1_ddr", 2 },
  1257. };
  1258. int i;
  1259. dsi->clk_onecell = devm_kzalloc(dev,
  1260. sizeof(*dsi->clk_onecell) +
  1261. ARRAY_SIZE(phy_clocks) *
  1262. sizeof(struct clk_hw *),
  1263. GFP_KERNEL);
  1264. if (!dsi->clk_onecell)
  1265. return -ENOMEM;
  1266. dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
  1267. for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
  1268. struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
  1269. struct clk_init_data init;
  1270. int ret;
  1271. /* We just use core fixed factor clock ops for the PHY
  1272. * clocks. The clocks are actually gated by the
  1273. * PHY_AFEC0_DDRCLK_EN bits, which we should be
  1274. * setting if we use the DDR/DDR2 clocks. However,
  1275. * vc4_dsi_encoder_enable() is setting up both AFEC0,
  1276. * setting both our parent DSI PLL's rate and this
  1277. * clock's rate, so it knows if DDR/DDR2 are going to
  1278. * be used and could enable the gates itself.
  1279. */
  1280. fix->mult = 1;
  1281. fix->div = phy_clocks[i].div;
  1282. fix->hw.init = &init;
  1283. memset(&init, 0, sizeof(init));
  1284. init.parent_names = &parent_name;
  1285. init.num_parents = 1;
  1286. if (dsi->port == 1)
  1287. init.name = phy_clocks[i].dsi1_name;
  1288. else
  1289. init.name = phy_clocks[i].dsi0_name;
  1290. init.ops = &clk_fixed_factor_ops;
  1291. ret = devm_clk_hw_register(dev, &fix->hw);
  1292. if (ret)
  1293. return ret;
  1294. dsi->clk_onecell->hws[i] = &fix->hw;
  1295. }
  1296. return of_clk_add_hw_provider(dev->of_node,
  1297. of_clk_hw_onecell_get,
  1298. dsi->clk_onecell);
  1299. }
  1300. static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
  1301. {
  1302. struct platform_device *pdev = to_platform_device(dev);
  1303. struct drm_device *drm = dev_get_drvdata(master);
  1304. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1305. struct vc4_dsi *dsi;
  1306. struct vc4_dsi_encoder *vc4_dsi_encoder;
  1307. const struct of_device_id *match;
  1308. dma_cap_mask_t dma_mask;
  1309. int ret;
  1310. dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
  1311. if (!dsi)
  1312. return -ENOMEM;
  1313. match = of_match_device(vc4_dsi_dt_match, dev);
  1314. if (!match)
  1315. return -ENODEV;
  1316. dsi->port = (uintptr_t)match->data;
  1317. vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
  1318. GFP_KERNEL);
  1319. if (!vc4_dsi_encoder)
  1320. return -ENOMEM;
  1321. vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
  1322. vc4_dsi_encoder->dsi = dsi;
  1323. dsi->encoder = &vc4_dsi_encoder->base.base;
  1324. dsi->pdev = pdev;
  1325. dsi->regs = vc4_ioremap_regs(pdev, 0);
  1326. if (IS_ERR(dsi->regs))
  1327. return PTR_ERR(dsi->regs);
  1328. if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
  1329. dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
  1330. DSI_PORT_READ(ID), DSI_ID_VALUE);
  1331. return -ENODEV;
  1332. }
  1333. /* DSI1 has a broken AXI slave that doesn't respond to writes
  1334. * from the ARM. It does handle writes from the DMA engine,
  1335. * so set up a channel for talking to it.
  1336. */
  1337. if (dsi->port == 1) {
  1338. dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
  1339. &dsi->reg_dma_paddr,
  1340. GFP_KERNEL);
  1341. if (!dsi->reg_dma_mem) {
  1342. DRM_ERROR("Failed to get DMA memory\n");
  1343. return -ENOMEM;
  1344. }
  1345. dma_cap_zero(dma_mask);
  1346. dma_cap_set(DMA_MEMCPY, dma_mask);
  1347. dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
  1348. if (IS_ERR(dsi->reg_dma_chan)) {
  1349. ret = PTR_ERR(dsi->reg_dma_chan);
  1350. if (ret != -EPROBE_DEFER)
  1351. DRM_ERROR("Failed to get DMA channel: %d\n",
  1352. ret);
  1353. return ret;
  1354. }
  1355. /* Get the physical address of the device's registers. The
  1356. * struct resource for the regs gives us the bus address
  1357. * instead.
  1358. */
  1359. dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
  1360. 0, NULL, NULL));
  1361. }
  1362. init_completion(&dsi->xfer_completion);
  1363. /* At startup enable error-reporting interrupts and nothing else. */
  1364. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1365. /* Clear any existing interrupt state. */
  1366. DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
  1367. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  1368. vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
  1369. if (ret) {
  1370. if (ret != -EPROBE_DEFER)
  1371. dev_err(dev, "Failed to get interrupt: %d\n", ret);
  1372. return ret;
  1373. }
  1374. dsi->escape_clock = devm_clk_get(dev, "escape");
  1375. if (IS_ERR(dsi->escape_clock)) {
  1376. ret = PTR_ERR(dsi->escape_clock);
  1377. if (ret != -EPROBE_DEFER)
  1378. dev_err(dev, "Failed to get escape clock: %d\n", ret);
  1379. return ret;
  1380. }
  1381. dsi->pll_phy_clock = devm_clk_get(dev, "phy");
  1382. if (IS_ERR(dsi->pll_phy_clock)) {
  1383. ret = PTR_ERR(dsi->pll_phy_clock);
  1384. if (ret != -EPROBE_DEFER)
  1385. dev_err(dev, "Failed to get phy clock: %d\n", ret);
  1386. return ret;
  1387. }
  1388. dsi->pixel_clock = devm_clk_get(dev, "pixel");
  1389. if (IS_ERR(dsi->pixel_clock)) {
  1390. ret = PTR_ERR(dsi->pixel_clock);
  1391. if (ret != -EPROBE_DEFER)
  1392. dev_err(dev, "Failed to get pixel clock: %d\n", ret);
  1393. return ret;
  1394. }
  1395. /* The esc clock rate is supposed to always be 100Mhz. */
  1396. ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
  1397. if (ret) {
  1398. dev_err(dev, "Failed to set esc clock: %d\n", ret);
  1399. return ret;
  1400. }
  1401. ret = vc4_dsi_init_phy_clocks(dsi);
  1402. if (ret)
  1403. return ret;
  1404. if (dsi->port == 1)
  1405. vc4->dsi1 = dsi;
  1406. drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
  1407. DRM_MODE_ENCODER_DSI, NULL);
  1408. drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
  1409. dsi->dsi_host.ops = &vc4_dsi_host_ops;
  1410. dsi->dsi_host.dev = dev;
  1411. mipi_dsi_host_register(&dsi->dsi_host);
  1412. dev_set_drvdata(dev, dsi);
  1413. pm_runtime_enable(dev);
  1414. return 0;
  1415. }
  1416. static void vc4_dsi_unbind(struct device *dev, struct device *master,
  1417. void *data)
  1418. {
  1419. struct drm_device *drm = dev_get_drvdata(master);
  1420. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1421. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1422. pm_runtime_disable(dev);
  1423. vc4_dsi_encoder_destroy(dsi->encoder);
  1424. mipi_dsi_host_unregister(&dsi->dsi_host);
  1425. if (dsi->port == 1)
  1426. vc4->dsi1 = NULL;
  1427. }
  1428. static const struct component_ops vc4_dsi_ops = {
  1429. .bind = vc4_dsi_bind,
  1430. .unbind = vc4_dsi_unbind,
  1431. };
  1432. static int vc4_dsi_dev_probe(struct platform_device *pdev)
  1433. {
  1434. return component_add(&pdev->dev, &vc4_dsi_ops);
  1435. }
  1436. static int vc4_dsi_dev_remove(struct platform_device *pdev)
  1437. {
  1438. component_del(&pdev->dev, &vc4_dsi_ops);
  1439. return 0;
  1440. }
  1441. struct platform_driver vc4_dsi_driver = {
  1442. .probe = vc4_dsi_dev_probe,
  1443. .remove = vc4_dsi_dev_remove,
  1444. .driver = {
  1445. .name = "vc4_dsi",
  1446. .of_match_table = vc4_dsi_dt_match,
  1447. },
  1448. };