vc4_crtc.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111
  1. /*
  2. * Copyright (C) 2015 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. /**
  9. * DOC: VC4 CRTC module
  10. *
  11. * In VC4, the Pixel Valve is what most closely corresponds to the
  12. * DRM's concept of a CRTC. The PV generates video timings from the
  13. * encoder's clock plus its configuration. It pulls scaled pixels from
  14. * the HVS at that timing, and feeds it to the encoder.
  15. *
  16. * However, the DRM CRTC also collects the configuration of all the
  17. * DRM planes attached to it. As a result, the CRTC is also
  18. * responsible for writing the display list for the HVS channel that
  19. * the CRTC will use.
  20. *
  21. * The 2835 has 3 different pixel valves. pv0 in the audio power
  22. * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
  23. * image domain can feed either HDMI or the SDTV controller. The
  24. * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  25. * SDTV, etc.) according to which output type is chosen in the mux.
  26. *
  27. * For power management, the pixel valve's registers are all clocked
  28. * by the AXI clock, while the timings and FIFOs make use of the
  29. * output-specific clock. Since the encoders also directly consume
  30. * the CPRMAN clocks, and know what timings they need, they are the
  31. * ones that set the clock.
  32. */
  33. #include <drm/drm_atomic.h>
  34. #include <drm/drm_atomic_helper.h>
  35. #include <drm/drm_crtc_helper.h>
  36. #include <linux/clk.h>
  37. #include <drm/drm_fb_cma_helper.h>
  38. #include <linux/component.h>
  39. #include <linux/of_device.h>
  40. #include "vc4_drv.h"
  41. #include "vc4_regs.h"
  42. struct vc4_crtc {
  43. struct drm_crtc base;
  44. const struct vc4_crtc_data *data;
  45. void __iomem *regs;
  46. /* Timestamp at start of vblank irq - unaffected by lock delays. */
  47. ktime_t t_vblank;
  48. /* Which HVS channel we're using for our CRTC. */
  49. int channel;
  50. u8 lut_r[256];
  51. u8 lut_g[256];
  52. u8 lut_b[256];
  53. /* Size in pixels of the COB memory allocated to this CRTC. */
  54. u32 cob_size;
  55. struct drm_pending_vblank_event *event;
  56. };
  57. struct vc4_crtc_state {
  58. struct drm_crtc_state base;
  59. /* Dlist area for this CRTC configuration. */
  60. struct drm_mm_node mm;
  61. };
  62. static inline struct vc4_crtc *
  63. to_vc4_crtc(struct drm_crtc *crtc)
  64. {
  65. return (struct vc4_crtc *)crtc;
  66. }
  67. static inline struct vc4_crtc_state *
  68. to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  69. {
  70. return (struct vc4_crtc_state *)crtc_state;
  71. }
  72. struct vc4_crtc_data {
  73. /* Which channel of the HVS this pixelvalve sources from. */
  74. int hvs_channel;
  75. enum vc4_encoder_type encoder_types[4];
  76. };
  77. #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  78. #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  79. #define CRTC_REG(reg) { reg, #reg }
  80. static const struct {
  81. u32 reg;
  82. const char *name;
  83. } crtc_regs[] = {
  84. CRTC_REG(PV_CONTROL),
  85. CRTC_REG(PV_V_CONTROL),
  86. CRTC_REG(PV_VSYNCD_EVEN),
  87. CRTC_REG(PV_HORZA),
  88. CRTC_REG(PV_HORZB),
  89. CRTC_REG(PV_VERTA),
  90. CRTC_REG(PV_VERTB),
  91. CRTC_REG(PV_VERTA_EVEN),
  92. CRTC_REG(PV_VERTB_EVEN),
  93. CRTC_REG(PV_INTEN),
  94. CRTC_REG(PV_INTSTAT),
  95. CRTC_REG(PV_STAT),
  96. CRTC_REG(PV_HACT_ACT),
  97. };
  98. static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
  99. {
  100. int i;
  101. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  102. DRM_INFO("0x%04x (%s): 0x%08x\n",
  103. crtc_regs[i].reg, crtc_regs[i].name,
  104. CRTC_READ(crtc_regs[i].reg));
  105. }
  106. }
  107. #ifdef CONFIG_DEBUG_FS
  108. int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
  109. {
  110. struct drm_info_node *node = (struct drm_info_node *)m->private;
  111. struct drm_device *dev = node->minor->dev;
  112. int crtc_index = (uintptr_t)node->info_ent->data;
  113. struct drm_crtc *crtc;
  114. struct vc4_crtc *vc4_crtc;
  115. int i;
  116. i = 0;
  117. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  118. if (i == crtc_index)
  119. break;
  120. i++;
  121. }
  122. if (!crtc)
  123. return 0;
  124. vc4_crtc = to_vc4_crtc(crtc);
  125. for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
  126. seq_printf(m, "%s (0x%04x): 0x%08x\n",
  127. crtc_regs[i].name, crtc_regs[i].reg,
  128. CRTC_READ(crtc_regs[i].reg));
  129. }
  130. return 0;
  131. }
  132. #endif
  133. bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
  134. bool in_vblank_irq, int *vpos, int *hpos,
  135. ktime_t *stime, ktime_t *etime,
  136. const struct drm_display_mode *mode)
  137. {
  138. struct vc4_dev *vc4 = to_vc4_dev(dev);
  139. struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
  140. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  141. u32 val;
  142. int fifo_lines;
  143. int vblank_lines;
  144. bool ret = false;
  145. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  146. /* Get optional system timestamp before query. */
  147. if (stime)
  148. *stime = ktime_get();
  149. /*
  150. * Read vertical scanline which is currently composed for our
  151. * pixelvalve by the HVS, and also the scaler status.
  152. */
  153. val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
  154. /* Get optional system timestamp after query. */
  155. if (etime)
  156. *etime = ktime_get();
  157. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  158. /* Vertical position of hvs composed scanline. */
  159. *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
  160. *hpos = 0;
  161. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  162. *vpos /= 2;
  163. /* Use hpos to correct for field offset in interlaced mode. */
  164. if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
  165. *hpos += mode->crtc_htotal / 2;
  166. }
  167. /* This is the offset we need for translating hvs -> pv scanout pos. */
  168. fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
  169. if (fifo_lines > 0)
  170. ret = true;
  171. /* HVS more than fifo_lines into frame for compositing? */
  172. if (*vpos > fifo_lines) {
  173. /*
  174. * We are in active scanout and can get some meaningful results
  175. * from HVS. The actual PV scanout can not trail behind more
  176. * than fifo_lines as that is the fifo's capacity. Assume that
  177. * in active scanout the HVS and PV work in lockstep wrt. HVS
  178. * refilling the fifo and PV consuming from the fifo, ie.
  179. * whenever the PV consumes and frees up a scanline in the
  180. * fifo, the HVS will immediately refill it, therefore
  181. * incrementing vpos. Therefore we choose HVS read position -
  182. * fifo size in scanlines as a estimate of the real scanout
  183. * position of the PV.
  184. */
  185. *vpos -= fifo_lines + 1;
  186. return ret;
  187. }
  188. /*
  189. * Less: This happens when we are in vblank and the HVS, after getting
  190. * the VSTART restart signal from the PV, just started refilling its
  191. * fifo with new lines from the top-most lines of the new framebuffers.
  192. * The PV does not scan out in vblank, so does not remove lines from
  193. * the fifo, so the fifo will be full quickly and the HVS has to pause.
  194. * We can't get meaningful readings wrt. scanline position of the PV
  195. * and need to make things up in a approximative but consistent way.
  196. */
  197. vblank_lines = mode->vtotal - mode->vdisplay;
  198. if (in_vblank_irq) {
  199. /*
  200. * Assume the irq handler got called close to first
  201. * line of vblank, so PV has about a full vblank
  202. * scanlines to go, and as a base timestamp use the
  203. * one taken at entry into vblank irq handler, so it
  204. * is not affected by random delays due to lock
  205. * contention on event_lock or vblank_time lock in
  206. * the core.
  207. */
  208. *vpos = -vblank_lines;
  209. if (stime)
  210. *stime = vc4_crtc->t_vblank;
  211. if (etime)
  212. *etime = vc4_crtc->t_vblank;
  213. /*
  214. * If the HVS fifo is not yet full then we know for certain
  215. * we are at the very beginning of vblank, as the hvs just
  216. * started refilling, and the stime and etime timestamps
  217. * truly correspond to start of vblank.
  218. *
  219. * Unfortunately there's no way to report this to upper levels
  220. * and make it more useful.
  221. */
  222. } else {
  223. /*
  224. * No clue where we are inside vblank. Return a vpos of zero,
  225. * which will cause calling code to just return the etime
  226. * timestamp uncorrected. At least this is no worse than the
  227. * standard fallback.
  228. */
  229. *vpos = 0;
  230. }
  231. return ret;
  232. }
  233. static void vc4_crtc_destroy(struct drm_crtc *crtc)
  234. {
  235. drm_crtc_cleanup(crtc);
  236. }
  237. static void
  238. vc4_crtc_lut_load(struct drm_crtc *crtc)
  239. {
  240. struct drm_device *dev = crtc->dev;
  241. struct vc4_dev *vc4 = to_vc4_dev(dev);
  242. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  243. u32 i;
  244. /* The LUT memory is laid out with each HVS channel in order,
  245. * each of which takes 256 writes for R, 256 for G, then 256
  246. * for B.
  247. */
  248. HVS_WRITE(SCALER_GAMADDR,
  249. SCALER_GAMADDR_AUTOINC |
  250. (vc4_crtc->channel * 3 * crtc->gamma_size));
  251. for (i = 0; i < crtc->gamma_size; i++)
  252. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
  253. for (i = 0; i < crtc->gamma_size; i++)
  254. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
  255. for (i = 0; i < crtc->gamma_size; i++)
  256. HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
  257. }
  258. static int
  259. vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  260. uint32_t size,
  261. struct drm_modeset_acquire_ctx *ctx)
  262. {
  263. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  264. u32 i;
  265. for (i = 0; i < size; i++) {
  266. vc4_crtc->lut_r[i] = r[i] >> 8;
  267. vc4_crtc->lut_g[i] = g[i] >> 8;
  268. vc4_crtc->lut_b[i] = b[i] >> 8;
  269. }
  270. vc4_crtc_lut_load(crtc);
  271. return 0;
  272. }
  273. static u32 vc4_get_fifo_full_level(u32 format)
  274. {
  275. static const u32 fifo_len_bytes = 64;
  276. static const u32 hvs_latency_pix = 6;
  277. switch (format) {
  278. case PV_CONTROL_FORMAT_DSIV_16:
  279. case PV_CONTROL_FORMAT_DSIC_16:
  280. return fifo_len_bytes - 2 * hvs_latency_pix;
  281. case PV_CONTROL_FORMAT_DSIV_18:
  282. return fifo_len_bytes - 14;
  283. case PV_CONTROL_FORMAT_24:
  284. case PV_CONTROL_FORMAT_DSIV_24:
  285. default:
  286. return fifo_len_bytes - 3 * hvs_latency_pix;
  287. }
  288. }
  289. /*
  290. * Returns the encoder attached to the CRTC.
  291. *
  292. * VC4 can only scan out to one encoder at a time, while the DRM core
  293. * allows drivers to push pixels to more than one encoder from the
  294. * same CRTC.
  295. */
  296. static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
  297. {
  298. struct drm_connector *connector;
  299. struct drm_connector_list_iter conn_iter;
  300. drm_connector_list_iter_begin(crtc->dev, &conn_iter);
  301. drm_for_each_connector_iter(connector, &conn_iter) {
  302. if (connector->state->crtc == crtc) {
  303. drm_connector_list_iter_end(&conn_iter);
  304. return connector->encoder;
  305. }
  306. }
  307. drm_connector_list_iter_end(&conn_iter);
  308. return NULL;
  309. }
  310. static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
  311. {
  312. struct drm_device *dev = crtc->dev;
  313. struct vc4_dev *vc4 = to_vc4_dev(dev);
  314. struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
  315. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  316. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  317. struct drm_crtc_state *state = crtc->state;
  318. struct drm_display_mode *mode = &state->adjusted_mode;
  319. bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
  320. u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
  321. bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
  322. vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
  323. u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
  324. bool debug_dump_regs = false;
  325. if (debug_dump_regs) {
  326. DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
  327. vc4_crtc_dump_regs(vc4_crtc);
  328. }
  329. /* Reset the PV fifo. */
  330. CRTC_WRITE(PV_CONTROL, 0);
  331. CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
  332. CRTC_WRITE(PV_CONTROL, 0);
  333. CRTC_WRITE(PV_HORZA,
  334. VC4_SET_FIELD((mode->htotal -
  335. mode->hsync_end) * pixel_rep,
  336. PV_HORZA_HBP) |
  337. VC4_SET_FIELD((mode->hsync_end -
  338. mode->hsync_start) * pixel_rep,
  339. PV_HORZA_HSYNC));
  340. CRTC_WRITE(PV_HORZB,
  341. VC4_SET_FIELD((mode->hsync_start -
  342. mode->hdisplay) * pixel_rep,
  343. PV_HORZB_HFP) |
  344. VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
  345. CRTC_WRITE(PV_VERTA,
  346. VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
  347. PV_VERTA_VBP) |
  348. VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
  349. PV_VERTA_VSYNC));
  350. CRTC_WRITE(PV_VERTB,
  351. VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
  352. PV_VERTB_VFP) |
  353. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  354. if (interlace) {
  355. CRTC_WRITE(PV_VERTA_EVEN,
  356. VC4_SET_FIELD(mode->crtc_vtotal -
  357. mode->crtc_vsync_end - 1,
  358. PV_VERTA_VBP) |
  359. VC4_SET_FIELD(mode->crtc_vsync_end -
  360. mode->crtc_vsync_start,
  361. PV_VERTA_VSYNC));
  362. CRTC_WRITE(PV_VERTB_EVEN,
  363. VC4_SET_FIELD(mode->crtc_vsync_start -
  364. mode->crtc_vdisplay,
  365. PV_VERTB_VFP) |
  366. VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
  367. /* We set up first field even mode for HDMI. VEC's
  368. * NTSC mode would want first field odd instead, once
  369. * we support it (to do so, set ODD_FIRST and put the
  370. * delay in VSYNCD_EVEN instead).
  371. */
  372. CRTC_WRITE(PV_V_CONTROL,
  373. PV_VCONTROL_CONTINUOUS |
  374. (is_dsi ? PV_VCONTROL_DSI : 0) |
  375. PV_VCONTROL_INTERLACE |
  376. VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
  377. PV_VCONTROL_ODD_DELAY));
  378. CRTC_WRITE(PV_VSYNCD_EVEN, 0);
  379. } else {
  380. CRTC_WRITE(PV_V_CONTROL,
  381. PV_VCONTROL_CONTINUOUS |
  382. (is_dsi ? PV_VCONTROL_DSI : 0));
  383. }
  384. CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
  385. CRTC_WRITE(PV_CONTROL,
  386. VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
  387. VC4_SET_FIELD(vc4_get_fifo_full_level(format),
  388. PV_CONTROL_FIFO_LEVEL) |
  389. VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
  390. PV_CONTROL_CLR_AT_START |
  391. PV_CONTROL_TRIGGER_UNDERFLOW |
  392. PV_CONTROL_WAIT_HSTART |
  393. VC4_SET_FIELD(vc4_encoder->clock_select,
  394. PV_CONTROL_CLK_SELECT) |
  395. PV_CONTROL_FIFO_CLR |
  396. PV_CONTROL_EN);
  397. HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
  398. SCALER_DISPBKGND_AUTOHS |
  399. SCALER_DISPBKGND_GAMMA |
  400. (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
  401. /* Reload the LUT, since the SRAMs would have been disabled if
  402. * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
  403. */
  404. vc4_crtc_lut_load(crtc);
  405. if (debug_dump_regs) {
  406. DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
  407. vc4_crtc_dump_regs(vc4_crtc);
  408. }
  409. }
  410. static void require_hvs_enabled(struct drm_device *dev)
  411. {
  412. struct vc4_dev *vc4 = to_vc4_dev(dev);
  413. WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
  414. SCALER_DISPCTRL_ENABLE);
  415. }
  416. static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
  417. struct drm_crtc_state *old_state)
  418. {
  419. struct drm_device *dev = crtc->dev;
  420. struct vc4_dev *vc4 = to_vc4_dev(dev);
  421. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  422. u32 chan = vc4_crtc->channel;
  423. int ret;
  424. require_hvs_enabled(dev);
  425. /* Disable vblank irq handling before crtc is disabled. */
  426. drm_crtc_vblank_off(crtc);
  427. CRTC_WRITE(PV_V_CONTROL,
  428. CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
  429. ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
  430. WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
  431. if (HVS_READ(SCALER_DISPCTRLX(chan)) &
  432. SCALER_DISPCTRLX_ENABLE) {
  433. HVS_WRITE(SCALER_DISPCTRLX(chan),
  434. SCALER_DISPCTRLX_RESET);
  435. /* While the docs say that reset is self-clearing, it
  436. * seems it doesn't actually.
  437. */
  438. HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
  439. }
  440. /* Once we leave, the scaler should be disabled and its fifo empty. */
  441. WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
  442. WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
  443. SCALER_DISPSTATX_MODE) !=
  444. SCALER_DISPSTATX_MODE_DISABLED);
  445. WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
  446. (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
  447. SCALER_DISPSTATX_EMPTY);
  448. /*
  449. * Make sure we issue a vblank event after disabling the CRTC if
  450. * someone was waiting it.
  451. */
  452. if (crtc->state->event) {
  453. unsigned long flags;
  454. spin_lock_irqsave(&dev->event_lock, flags);
  455. drm_crtc_send_vblank_event(crtc, crtc->state->event);
  456. crtc->state->event = NULL;
  457. spin_unlock_irqrestore(&dev->event_lock, flags);
  458. }
  459. }
  460. static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
  461. {
  462. struct drm_device *dev = crtc->dev;
  463. struct vc4_dev *vc4 = to_vc4_dev(dev);
  464. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  465. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  466. if (crtc->state->event) {
  467. unsigned long flags;
  468. crtc->state->event->pipe = drm_crtc_index(crtc);
  469. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  470. spin_lock_irqsave(&dev->event_lock, flags);
  471. vc4_crtc->event = crtc->state->event;
  472. crtc->state->event = NULL;
  473. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  474. vc4_state->mm.start);
  475. spin_unlock_irqrestore(&dev->event_lock, flags);
  476. } else {
  477. HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
  478. vc4_state->mm.start);
  479. }
  480. }
  481. static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
  482. struct drm_crtc_state *old_state)
  483. {
  484. struct drm_device *dev = crtc->dev;
  485. struct vc4_dev *vc4 = to_vc4_dev(dev);
  486. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  487. struct drm_crtc_state *state = crtc->state;
  488. struct drm_display_mode *mode = &state->adjusted_mode;
  489. require_hvs_enabled(dev);
  490. /* Enable vblank irq handling before crtc is started otherwise
  491. * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
  492. */
  493. drm_crtc_vblank_on(crtc);
  494. vc4_crtc_update_dlist(crtc);
  495. /* Turn on the scaler, which will wait for vstart to start
  496. * compositing.
  497. */
  498. HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
  499. VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
  500. VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
  501. SCALER_DISPCTRLX_ENABLE);
  502. /* Turn on the pixel valve, which will emit the vstart signal. */
  503. CRTC_WRITE(PV_V_CONTROL,
  504. CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
  505. }
  506. static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
  507. const struct drm_display_mode *mode)
  508. {
  509. /* Do not allow doublescan modes from user space */
  510. if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  511. DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
  512. crtc->base.id);
  513. return MODE_NO_DBLESCAN;
  514. }
  515. return MODE_OK;
  516. }
  517. static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
  518. struct drm_crtc_state *state)
  519. {
  520. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  521. struct drm_device *dev = crtc->dev;
  522. struct vc4_dev *vc4 = to_vc4_dev(dev);
  523. struct drm_plane *plane;
  524. unsigned long flags;
  525. const struct drm_plane_state *plane_state;
  526. u32 dlist_count = 0;
  527. int ret;
  528. /* The pixelvalve can only feed one encoder (and encoders are
  529. * 1:1 with connectors.)
  530. */
  531. if (hweight32(state->connector_mask) > 1)
  532. return -EINVAL;
  533. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
  534. dlist_count += vc4_plane_dlist_size(plane_state);
  535. dlist_count++; /* Account for SCALER_CTL0_END. */
  536. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  537. ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
  538. dlist_count);
  539. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  540. if (ret)
  541. return ret;
  542. return 0;
  543. }
  544. static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
  545. struct drm_crtc_state *old_state)
  546. {
  547. struct drm_device *dev = crtc->dev;
  548. struct vc4_dev *vc4 = to_vc4_dev(dev);
  549. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  550. struct drm_plane *plane;
  551. bool debug_dump_regs = false;
  552. u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
  553. u32 __iomem *dlist_next = dlist_start;
  554. if (debug_dump_regs) {
  555. DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
  556. vc4_hvs_dump_state(dev);
  557. }
  558. /* Copy all the active planes' dlist contents to the hardware dlist. */
  559. drm_atomic_crtc_for_each_plane(plane, crtc) {
  560. dlist_next += vc4_plane_write_dlist(plane, dlist_next);
  561. }
  562. writel(SCALER_CTL0_END, dlist_next);
  563. dlist_next++;
  564. WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
  565. /* Only update DISPLIST if the CRTC was already running and is not
  566. * being disabled.
  567. * vc4_crtc_enable() takes care of updating the dlist just after
  568. * re-enabling VBLANK interrupts and before enabling the engine.
  569. * If the CRTC is being disabled, there's no point in updating this
  570. * information.
  571. */
  572. if (crtc->state->active && old_state->active)
  573. vc4_crtc_update_dlist(crtc);
  574. if (debug_dump_regs) {
  575. DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
  576. vc4_hvs_dump_state(dev);
  577. }
  578. }
  579. static int vc4_enable_vblank(struct drm_crtc *crtc)
  580. {
  581. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  582. CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
  583. return 0;
  584. }
  585. static void vc4_disable_vblank(struct drm_crtc *crtc)
  586. {
  587. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  588. CRTC_WRITE(PV_INTEN, 0);
  589. }
  590. static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
  591. {
  592. struct drm_crtc *crtc = &vc4_crtc->base;
  593. struct drm_device *dev = crtc->dev;
  594. struct vc4_dev *vc4 = to_vc4_dev(dev);
  595. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
  596. u32 chan = vc4_crtc->channel;
  597. unsigned long flags;
  598. spin_lock_irqsave(&dev->event_lock, flags);
  599. if (vc4_crtc->event &&
  600. (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
  601. drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
  602. vc4_crtc->event = NULL;
  603. drm_crtc_vblank_put(crtc);
  604. }
  605. spin_unlock_irqrestore(&dev->event_lock, flags);
  606. }
  607. static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
  608. {
  609. struct vc4_crtc *vc4_crtc = data;
  610. u32 stat = CRTC_READ(PV_INTSTAT);
  611. irqreturn_t ret = IRQ_NONE;
  612. if (stat & PV_INT_VFP_START) {
  613. vc4_crtc->t_vblank = ktime_get();
  614. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  615. drm_crtc_handle_vblank(&vc4_crtc->base);
  616. vc4_crtc_handle_page_flip(vc4_crtc);
  617. ret = IRQ_HANDLED;
  618. }
  619. return ret;
  620. }
  621. struct vc4_async_flip_state {
  622. struct drm_crtc *crtc;
  623. struct drm_framebuffer *fb;
  624. struct drm_pending_vblank_event *event;
  625. struct vc4_seqno_cb cb;
  626. };
  627. /* Called when the V3D execution for the BO being flipped to is done, so that
  628. * we can actually update the plane's address to point to it.
  629. */
  630. static void
  631. vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
  632. {
  633. struct vc4_async_flip_state *flip_state =
  634. container_of(cb, struct vc4_async_flip_state, cb);
  635. struct drm_crtc *crtc = flip_state->crtc;
  636. struct drm_device *dev = crtc->dev;
  637. struct vc4_dev *vc4 = to_vc4_dev(dev);
  638. struct drm_plane *plane = crtc->primary;
  639. vc4_plane_async_set_fb(plane, flip_state->fb);
  640. if (flip_state->event) {
  641. unsigned long flags;
  642. spin_lock_irqsave(&dev->event_lock, flags);
  643. drm_crtc_send_vblank_event(crtc, flip_state->event);
  644. spin_unlock_irqrestore(&dev->event_lock, flags);
  645. }
  646. drm_crtc_vblank_put(crtc);
  647. drm_framebuffer_put(flip_state->fb);
  648. kfree(flip_state);
  649. up(&vc4->async_modeset);
  650. }
  651. /* Implements async (non-vblank-synced) page flips.
  652. *
  653. * The page flip ioctl needs to return immediately, so we grab the
  654. * modeset semaphore on the pipe, and queue the address update for
  655. * when V3D is done with the BO being flipped to.
  656. */
  657. static int vc4_async_page_flip(struct drm_crtc *crtc,
  658. struct drm_framebuffer *fb,
  659. struct drm_pending_vblank_event *event,
  660. uint32_t flags)
  661. {
  662. struct drm_device *dev = crtc->dev;
  663. struct vc4_dev *vc4 = to_vc4_dev(dev);
  664. struct drm_plane *plane = crtc->primary;
  665. int ret = 0;
  666. struct vc4_async_flip_state *flip_state;
  667. struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
  668. struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
  669. flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
  670. if (!flip_state)
  671. return -ENOMEM;
  672. drm_framebuffer_get(fb);
  673. flip_state->fb = fb;
  674. flip_state->crtc = crtc;
  675. flip_state->event = event;
  676. /* Make sure all other async modesetes have landed. */
  677. ret = down_interruptible(&vc4->async_modeset);
  678. if (ret) {
  679. drm_framebuffer_put(fb);
  680. kfree(flip_state);
  681. return ret;
  682. }
  683. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  684. /* Immediately update the plane's legacy fb pointer, so that later
  685. * modeset prep sees the state that will be present when the semaphore
  686. * is released.
  687. */
  688. drm_atomic_set_fb_for_plane(plane->state, fb);
  689. plane->fb = fb;
  690. vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
  691. vc4_async_page_flip_complete);
  692. /* Driver takes ownership of state on successful async commit. */
  693. return 0;
  694. }
  695. static int vc4_page_flip(struct drm_crtc *crtc,
  696. struct drm_framebuffer *fb,
  697. struct drm_pending_vblank_event *event,
  698. uint32_t flags,
  699. struct drm_modeset_acquire_ctx *ctx)
  700. {
  701. if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
  702. return vc4_async_page_flip(crtc, fb, event, flags);
  703. else
  704. return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
  705. }
  706. static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
  707. {
  708. struct vc4_crtc_state *vc4_state;
  709. vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
  710. if (!vc4_state)
  711. return NULL;
  712. __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
  713. return &vc4_state->base;
  714. }
  715. static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
  716. struct drm_crtc_state *state)
  717. {
  718. struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
  719. struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
  720. if (vc4_state->mm.allocated) {
  721. unsigned long flags;
  722. spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
  723. drm_mm_remove_node(&vc4_state->mm);
  724. spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
  725. }
  726. drm_atomic_helper_crtc_destroy_state(crtc, state);
  727. }
  728. static void
  729. vc4_crtc_reset(struct drm_crtc *crtc)
  730. {
  731. if (crtc->state)
  732. __drm_atomic_helper_crtc_destroy_state(crtc->state);
  733. crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
  734. if (crtc->state)
  735. crtc->state->crtc = crtc;
  736. }
  737. static const struct drm_crtc_funcs vc4_crtc_funcs = {
  738. .set_config = drm_atomic_helper_set_config,
  739. .destroy = vc4_crtc_destroy,
  740. .page_flip = vc4_page_flip,
  741. .set_property = NULL,
  742. .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
  743. .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
  744. .reset = vc4_crtc_reset,
  745. .atomic_duplicate_state = vc4_crtc_duplicate_state,
  746. .atomic_destroy_state = vc4_crtc_destroy_state,
  747. .gamma_set = vc4_crtc_gamma_set,
  748. .enable_vblank = vc4_enable_vblank,
  749. .disable_vblank = vc4_disable_vblank,
  750. };
  751. static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
  752. .mode_set_nofb = vc4_crtc_mode_set_nofb,
  753. .mode_valid = vc4_crtc_mode_valid,
  754. .atomic_check = vc4_crtc_atomic_check,
  755. .atomic_flush = vc4_crtc_atomic_flush,
  756. .atomic_enable = vc4_crtc_atomic_enable,
  757. .atomic_disable = vc4_crtc_atomic_disable,
  758. };
  759. static const struct vc4_crtc_data pv0_data = {
  760. .hvs_channel = 0,
  761. .encoder_types = {
  762. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
  763. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
  764. },
  765. };
  766. static const struct vc4_crtc_data pv1_data = {
  767. .hvs_channel = 2,
  768. .encoder_types = {
  769. [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
  770. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
  771. },
  772. };
  773. static const struct vc4_crtc_data pv2_data = {
  774. .hvs_channel = 1,
  775. .encoder_types = {
  776. [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
  777. [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
  778. },
  779. };
  780. static const struct of_device_id vc4_crtc_dt_match[] = {
  781. { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
  782. { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
  783. { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
  784. {}
  785. };
  786. static void vc4_set_crtc_possible_masks(struct drm_device *drm,
  787. struct drm_crtc *crtc)
  788. {
  789. struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
  790. const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
  791. const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
  792. struct drm_encoder *encoder;
  793. drm_for_each_encoder(encoder, drm) {
  794. struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
  795. int i;
  796. for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
  797. if (vc4_encoder->type == encoder_types[i]) {
  798. vc4_encoder->clock_select = i;
  799. encoder->possible_crtcs |= drm_crtc_mask(crtc);
  800. break;
  801. }
  802. }
  803. }
  804. }
  805. static void
  806. vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
  807. {
  808. struct drm_device *drm = vc4_crtc->base.dev;
  809. struct vc4_dev *vc4 = to_vc4_dev(drm);
  810. u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
  811. /* Top/base are supposed to be 4-pixel aligned, but the
  812. * Raspberry Pi firmware fills the low bits (which are
  813. * presumably ignored).
  814. */
  815. u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  816. u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  817. vc4_crtc->cob_size = top - base + 4;
  818. }
  819. static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
  820. {
  821. struct platform_device *pdev = to_platform_device(dev);
  822. struct drm_device *drm = dev_get_drvdata(master);
  823. struct vc4_crtc *vc4_crtc;
  824. struct drm_crtc *crtc;
  825. struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
  826. const struct of_device_id *match;
  827. int ret, i;
  828. vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
  829. if (!vc4_crtc)
  830. return -ENOMEM;
  831. crtc = &vc4_crtc->base;
  832. match = of_match_device(vc4_crtc_dt_match, dev);
  833. if (!match)
  834. return -ENODEV;
  835. vc4_crtc->data = match->data;
  836. vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
  837. if (IS_ERR(vc4_crtc->regs))
  838. return PTR_ERR(vc4_crtc->regs);
  839. /* For now, we create just the primary and the legacy cursor
  840. * planes. We should be able to stack more planes on easily,
  841. * but to do that we would need to compute the bandwidth
  842. * requirement of the plane configuration, and reject ones
  843. * that will take too much.
  844. */
  845. primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
  846. if (IS_ERR(primary_plane)) {
  847. dev_err(dev, "failed to construct primary plane\n");
  848. ret = PTR_ERR(primary_plane);
  849. goto err;
  850. }
  851. drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
  852. &vc4_crtc_funcs, NULL);
  853. drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
  854. primary_plane->crtc = crtc;
  855. vc4_crtc->channel = vc4_crtc->data->hvs_channel;
  856. drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
  857. /* Set up some arbitrary number of planes. We're not limited
  858. * by a set number of physical registers, just the space in
  859. * the HVS (16k) and how small an plane can be (28 bytes).
  860. * However, each plane we set up takes up some memory, and
  861. * increases the cost of looping over planes, which atomic
  862. * modesetting does quite a bit. As a result, we pick a
  863. * modest number of planes to expose, that should hopefully
  864. * still cover any sane usecase.
  865. */
  866. for (i = 0; i < 8; i++) {
  867. struct drm_plane *plane =
  868. vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
  869. if (IS_ERR(plane))
  870. continue;
  871. plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  872. }
  873. /* Set up the legacy cursor after overlay initialization,
  874. * since we overlay planes on the CRTC in the order they were
  875. * initialized.
  876. */
  877. cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
  878. if (!IS_ERR(cursor_plane)) {
  879. cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
  880. cursor_plane->crtc = crtc;
  881. crtc->cursor = cursor_plane;
  882. }
  883. vc4_crtc_get_cob_allocation(vc4_crtc);
  884. CRTC_WRITE(PV_INTEN, 0);
  885. CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
  886. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  887. vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
  888. if (ret)
  889. goto err_destroy_planes;
  890. vc4_set_crtc_possible_masks(drm, crtc);
  891. for (i = 0; i < crtc->gamma_size; i++) {
  892. vc4_crtc->lut_r[i] = i;
  893. vc4_crtc->lut_g[i] = i;
  894. vc4_crtc->lut_b[i] = i;
  895. }
  896. platform_set_drvdata(pdev, vc4_crtc);
  897. return 0;
  898. err_destroy_planes:
  899. list_for_each_entry_safe(destroy_plane, temp,
  900. &drm->mode_config.plane_list, head) {
  901. if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
  902. destroy_plane->funcs->destroy(destroy_plane);
  903. }
  904. err:
  905. return ret;
  906. }
  907. static void vc4_crtc_unbind(struct device *dev, struct device *master,
  908. void *data)
  909. {
  910. struct platform_device *pdev = to_platform_device(dev);
  911. struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
  912. vc4_crtc_destroy(&vc4_crtc->base);
  913. CRTC_WRITE(PV_INTEN, 0);
  914. platform_set_drvdata(pdev, NULL);
  915. }
  916. static const struct component_ops vc4_crtc_ops = {
  917. .bind = vc4_crtc_bind,
  918. .unbind = vc4_crtc_unbind,
  919. };
  920. static int vc4_crtc_dev_probe(struct platform_device *pdev)
  921. {
  922. return component_add(&pdev->dev, &vc4_crtc_ops);
  923. }
  924. static int vc4_crtc_dev_remove(struct platform_device *pdev)
  925. {
  926. component_del(&pdev->dev, &vc4_crtc_ops);
  927. return 0;
  928. }
  929. struct platform_driver vc4_crtc_driver = {
  930. .probe = vc4_crtc_dev_probe,
  931. .remove = vc4_crtc_dev_remove,
  932. .driver = {
  933. .name = "vc4_crtc",
  934. .of_match_table = vc4_crtc_dt_match,
  935. },
  936. };