repaper.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117
  1. /*
  2. * DRM driver for Pervasive Displays RePaper branded e-ink panels
  3. *
  4. * Copyright 2013-2017 Pervasive Displays, Inc.
  5. * Copyright 2017 Noralf Trønnes
  6. *
  7. * The driver supports:
  8. * Material Film: Aurora Mb (V231)
  9. * Driver IC: G2 (eTC)
  10. *
  11. * The controller code was taken from the userspace driver:
  12. * https://github.com/repaper/gratis
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/dma-buf.h>
  21. #include <linux/gpio/consumer.h>
  22. #include <linux/module.h>
  23. #include <linux/of_device.h>
  24. #include <linux/sched/clock.h>
  25. #include <linux/spi/spi.h>
  26. #include <linux/thermal.h>
  27. #include <drm/tinydrm/tinydrm.h>
  28. #include <drm/tinydrm/tinydrm-helpers.h>
  29. #define REPAPER_RID_G2_COG_ID 0x12
  30. enum repaper_model {
  31. E1144CS021 = 1,
  32. E1190CS021,
  33. E2200CS021,
  34. E2271CS021,
  35. };
  36. enum repaper_stage { /* Image pixel -> Display pixel */
  37. REPAPER_COMPENSATE, /* B -> W, W -> B (Current Image) */
  38. REPAPER_WHITE, /* B -> N, W -> W (Current Image) */
  39. REPAPER_INVERSE, /* B -> N, W -> B (New Image) */
  40. REPAPER_NORMAL /* B -> B, W -> W (New Image) */
  41. };
  42. enum repaper_epd_border_byte {
  43. REPAPER_BORDER_BYTE_NONE,
  44. REPAPER_BORDER_BYTE_ZERO,
  45. REPAPER_BORDER_BYTE_SET,
  46. };
  47. struct repaper_epd {
  48. struct tinydrm_device tinydrm;
  49. struct spi_device *spi;
  50. struct gpio_desc *panel_on;
  51. struct gpio_desc *border;
  52. struct gpio_desc *discharge;
  53. struct gpio_desc *reset;
  54. struct gpio_desc *busy;
  55. struct thermal_zone_device *thermal;
  56. unsigned int height;
  57. unsigned int width;
  58. unsigned int bytes_per_scan;
  59. const u8 *channel_select;
  60. unsigned int stage_time;
  61. unsigned int factored_stage_time;
  62. bool middle_scan;
  63. bool pre_border_byte;
  64. enum repaper_epd_border_byte border_byte;
  65. u8 *line_buffer;
  66. void *current_frame;
  67. bool enabled;
  68. bool cleared;
  69. bool partial;
  70. };
  71. static inline struct repaper_epd *
  72. epd_from_tinydrm(struct tinydrm_device *tdev)
  73. {
  74. return container_of(tdev, struct repaper_epd, tinydrm);
  75. }
  76. static int repaper_spi_transfer(struct spi_device *spi, u8 header,
  77. const void *tx, void *rx, size_t len)
  78. {
  79. void *txbuf = NULL, *rxbuf = NULL;
  80. struct spi_transfer tr[2] = {};
  81. u8 *headerbuf;
  82. int ret;
  83. headerbuf = kmalloc(1, GFP_KERNEL);
  84. if (!headerbuf)
  85. return -ENOMEM;
  86. headerbuf[0] = header;
  87. tr[0].tx_buf = headerbuf;
  88. tr[0].len = 1;
  89. /* Stack allocated tx? */
  90. if (tx && len <= 32) {
  91. txbuf = kmalloc(len, GFP_KERNEL);
  92. if (!txbuf) {
  93. ret = -ENOMEM;
  94. goto out_free;
  95. }
  96. memcpy(txbuf, tx, len);
  97. }
  98. if (rx) {
  99. rxbuf = kmalloc(len, GFP_KERNEL);
  100. if (!rxbuf) {
  101. ret = -ENOMEM;
  102. goto out_free;
  103. }
  104. }
  105. tr[1].tx_buf = txbuf ? txbuf : tx;
  106. tr[1].rx_buf = rxbuf;
  107. tr[1].len = len;
  108. ndelay(80);
  109. ret = spi_sync_transfer(spi, tr, 2);
  110. if (rx && !ret)
  111. memcpy(rx, rxbuf, len);
  112. out_free:
  113. kfree(headerbuf);
  114. kfree(txbuf);
  115. kfree(rxbuf);
  116. return ret;
  117. }
  118. static int repaper_write_buf(struct spi_device *spi, u8 reg,
  119. const u8 *buf, size_t len)
  120. {
  121. int ret;
  122. ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
  123. if (ret)
  124. return ret;
  125. return repaper_spi_transfer(spi, 0x72, buf, NULL, len);
  126. }
  127. static int repaper_write_val(struct spi_device *spi, u8 reg, u8 val)
  128. {
  129. return repaper_write_buf(spi, reg, &val, 1);
  130. }
  131. static int repaper_read_val(struct spi_device *spi, u8 reg)
  132. {
  133. int ret;
  134. u8 val;
  135. ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
  136. if (ret)
  137. return ret;
  138. ret = repaper_spi_transfer(spi, 0x73, NULL, &val, 1);
  139. return ret ? ret : val;
  140. }
  141. static int repaper_read_id(struct spi_device *spi)
  142. {
  143. int ret;
  144. u8 id;
  145. ret = repaper_spi_transfer(spi, 0x71, NULL, &id, 1);
  146. return ret ? ret : id;
  147. }
  148. static void repaper_spi_mosi_low(struct spi_device *spi)
  149. {
  150. const u8 buf[1] = { 0 };
  151. spi_write(spi, buf, 1);
  152. }
  153. /* pixels on display are numbered from 1 so even is actually bits 1,3,5,... */
  154. static void repaper_even_pixels(struct repaper_epd *epd, u8 **pp,
  155. const u8 *data, u8 fixed_value, const u8 *mask,
  156. enum repaper_stage stage)
  157. {
  158. unsigned int b;
  159. for (b = 0; b < (epd->width / 8); b++) {
  160. if (data) {
  161. u8 pixels = data[b] & 0xaa;
  162. u8 pixel_mask = 0xff;
  163. u8 p1, p2, p3, p4;
  164. if (mask) {
  165. pixel_mask = (mask[b] ^ pixels) & 0xaa;
  166. pixel_mask |= pixel_mask >> 1;
  167. }
  168. switch (stage) {
  169. case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
  170. pixels = 0xaa | ((pixels ^ 0xaa) >> 1);
  171. break;
  172. case REPAPER_WHITE: /* B -> N, W -> W (Current) */
  173. pixels = 0x55 + ((pixels ^ 0xaa) >> 1);
  174. break;
  175. case REPAPER_INVERSE: /* B -> N, W -> B (New) */
  176. pixels = 0x55 | (pixels ^ 0xaa);
  177. break;
  178. case REPAPER_NORMAL: /* B -> B, W -> W (New) */
  179. pixels = 0xaa | (pixels >> 1);
  180. break;
  181. }
  182. pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
  183. p1 = (pixels >> 6) & 0x03;
  184. p2 = (pixels >> 4) & 0x03;
  185. p3 = (pixels >> 2) & 0x03;
  186. p4 = (pixels >> 0) & 0x03;
  187. pixels = (p1 << 0) | (p2 << 2) | (p3 << 4) | (p4 << 6);
  188. *(*pp)++ = pixels;
  189. } else {
  190. *(*pp)++ = fixed_value;
  191. }
  192. }
  193. }
  194. /* pixels on display are numbered from 1 so odd is actually bits 0,2,4,... */
  195. static void repaper_odd_pixels(struct repaper_epd *epd, u8 **pp,
  196. const u8 *data, u8 fixed_value, const u8 *mask,
  197. enum repaper_stage stage)
  198. {
  199. unsigned int b;
  200. for (b = epd->width / 8; b > 0; b--) {
  201. if (data) {
  202. u8 pixels = data[b - 1] & 0x55;
  203. u8 pixel_mask = 0xff;
  204. if (mask) {
  205. pixel_mask = (mask[b - 1] ^ pixels) & 0x55;
  206. pixel_mask |= pixel_mask << 1;
  207. }
  208. switch (stage) {
  209. case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
  210. pixels = 0xaa | (pixels ^ 0x55);
  211. break;
  212. case REPAPER_WHITE: /* B -> N, W -> W (Current) */
  213. pixels = 0x55 + (pixels ^ 0x55);
  214. break;
  215. case REPAPER_INVERSE: /* B -> N, W -> B (New) */
  216. pixels = 0x55 | ((pixels ^ 0x55) << 1);
  217. break;
  218. case REPAPER_NORMAL: /* B -> B, W -> W (New) */
  219. pixels = 0xaa | pixels;
  220. break;
  221. }
  222. pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
  223. *(*pp)++ = pixels;
  224. } else {
  225. *(*pp)++ = fixed_value;
  226. }
  227. }
  228. }
  229. /* interleave bits: (byte)76543210 -> (16 bit).7.6.5.4.3.2.1 */
  230. static inline u16 repaper_interleave_bits(u16 value)
  231. {
  232. value = (value | (value << 4)) & 0x0f0f;
  233. value = (value | (value << 2)) & 0x3333;
  234. value = (value | (value << 1)) & 0x5555;
  235. return value;
  236. }
  237. /* pixels on display are numbered from 1 */
  238. static void repaper_all_pixels(struct repaper_epd *epd, u8 **pp,
  239. const u8 *data, u8 fixed_value, const u8 *mask,
  240. enum repaper_stage stage)
  241. {
  242. unsigned int b;
  243. for (b = epd->width / 8; b > 0; b--) {
  244. if (data) {
  245. u16 pixels = repaper_interleave_bits(data[b - 1]);
  246. u16 pixel_mask = 0xffff;
  247. if (mask) {
  248. pixel_mask = repaper_interleave_bits(mask[b - 1]);
  249. pixel_mask = (pixel_mask ^ pixels) & 0x5555;
  250. pixel_mask |= pixel_mask << 1;
  251. }
  252. switch (stage) {
  253. case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
  254. pixels = 0xaaaa | (pixels ^ 0x5555);
  255. break;
  256. case REPAPER_WHITE: /* B -> N, W -> W (Current) */
  257. pixels = 0x5555 + (pixels ^ 0x5555);
  258. break;
  259. case REPAPER_INVERSE: /* B -> N, W -> B (New) */
  260. pixels = 0x5555 | ((pixels ^ 0x5555) << 1);
  261. break;
  262. case REPAPER_NORMAL: /* B -> B, W -> W (New) */
  263. pixels = 0xaaaa | pixels;
  264. break;
  265. }
  266. pixels = (pixels & pixel_mask) | (~pixel_mask & 0x5555);
  267. *(*pp)++ = pixels >> 8;
  268. *(*pp)++ = pixels;
  269. } else {
  270. *(*pp)++ = fixed_value;
  271. *(*pp)++ = fixed_value;
  272. }
  273. }
  274. }
  275. /* output one line of scan and data bytes to the display */
  276. static void repaper_one_line(struct repaper_epd *epd, unsigned int line,
  277. const u8 *data, u8 fixed_value, const u8 *mask,
  278. enum repaper_stage stage)
  279. {
  280. u8 *p = epd->line_buffer;
  281. unsigned int b;
  282. repaper_spi_mosi_low(epd->spi);
  283. if (epd->pre_border_byte)
  284. *p++ = 0x00;
  285. if (epd->middle_scan) {
  286. /* data bytes */
  287. repaper_odd_pixels(epd, &p, data, fixed_value, mask, stage);
  288. /* scan line */
  289. for (b = epd->bytes_per_scan; b > 0; b--) {
  290. if (line / 4 == b - 1)
  291. *p++ = 0x03 << (2 * (line & 0x03));
  292. else
  293. *p++ = 0x00;
  294. }
  295. /* data bytes */
  296. repaper_even_pixels(epd, &p, data, fixed_value, mask, stage);
  297. } else {
  298. /*
  299. * even scan line, but as lines on display are numbered from 1,
  300. * line: 1,3,5,...
  301. */
  302. for (b = 0; b < epd->bytes_per_scan; b++) {
  303. if (0 != (line & 0x01) && line / 8 == b)
  304. *p++ = 0xc0 >> (line & 0x06);
  305. else
  306. *p++ = 0x00;
  307. }
  308. /* data bytes */
  309. repaper_all_pixels(epd, &p, data, fixed_value, mask, stage);
  310. /*
  311. * odd scan line, but as lines on display are numbered from 1,
  312. * line: 0,2,4,6,...
  313. */
  314. for (b = epd->bytes_per_scan; b > 0; b--) {
  315. if (0 == (line & 0x01) && line / 8 == b - 1)
  316. *p++ = 0x03 << (line & 0x06);
  317. else
  318. *p++ = 0x00;
  319. }
  320. }
  321. switch (epd->border_byte) {
  322. case REPAPER_BORDER_BYTE_NONE:
  323. break;
  324. case REPAPER_BORDER_BYTE_ZERO:
  325. *p++ = 0x00;
  326. break;
  327. case REPAPER_BORDER_BYTE_SET:
  328. switch (stage) {
  329. case REPAPER_COMPENSATE:
  330. case REPAPER_WHITE:
  331. case REPAPER_INVERSE:
  332. *p++ = 0x00;
  333. break;
  334. case REPAPER_NORMAL:
  335. *p++ = 0xaa;
  336. break;
  337. }
  338. break;
  339. }
  340. repaper_write_buf(epd->spi, 0x0a, epd->line_buffer,
  341. p - epd->line_buffer);
  342. /* Output data to panel */
  343. repaper_write_val(epd->spi, 0x02, 0x07);
  344. repaper_spi_mosi_low(epd->spi);
  345. }
  346. static void repaper_frame_fixed(struct repaper_epd *epd, u8 fixed_value,
  347. enum repaper_stage stage)
  348. {
  349. unsigned int line;
  350. for (line = 0; line < epd->height; line++)
  351. repaper_one_line(epd, line, NULL, fixed_value, NULL, stage);
  352. }
  353. static void repaper_frame_data(struct repaper_epd *epd, const u8 *image,
  354. const u8 *mask, enum repaper_stage stage)
  355. {
  356. unsigned int line;
  357. if (!mask) {
  358. for (line = 0; line < epd->height; line++) {
  359. repaper_one_line(epd, line,
  360. &image[line * (epd->width / 8)],
  361. 0, NULL, stage);
  362. }
  363. } else {
  364. for (line = 0; line < epd->height; line++) {
  365. size_t n = line * epd->width / 8;
  366. repaper_one_line(epd, line, &image[n], 0, &mask[n],
  367. stage);
  368. }
  369. }
  370. }
  371. static void repaper_frame_fixed_repeat(struct repaper_epd *epd, u8 fixed_value,
  372. enum repaper_stage stage)
  373. {
  374. u64 start = local_clock();
  375. u64 end = start + (epd->factored_stage_time * 1000 * 1000);
  376. do {
  377. repaper_frame_fixed(epd, fixed_value, stage);
  378. } while (local_clock() < end);
  379. }
  380. static void repaper_frame_data_repeat(struct repaper_epd *epd, const u8 *image,
  381. const u8 *mask, enum repaper_stage stage)
  382. {
  383. u64 start = local_clock();
  384. u64 end = start + (epd->factored_stage_time * 1000 * 1000);
  385. do {
  386. repaper_frame_data(epd, image, mask, stage);
  387. } while (local_clock() < end);
  388. }
  389. static void repaper_get_temperature(struct repaper_epd *epd)
  390. {
  391. int ret, temperature = 0;
  392. unsigned int factor10x;
  393. if (!epd->thermal)
  394. return;
  395. ret = thermal_zone_get_temp(epd->thermal, &temperature);
  396. if (ret) {
  397. dev_err(&epd->spi->dev, "Failed to get temperature (%d)\n",
  398. ret);
  399. return;
  400. }
  401. temperature /= 1000;
  402. if (temperature <= -10)
  403. factor10x = 170;
  404. else if (temperature <= -5)
  405. factor10x = 120;
  406. else if (temperature <= 5)
  407. factor10x = 80;
  408. else if (temperature <= 10)
  409. factor10x = 40;
  410. else if (temperature <= 15)
  411. factor10x = 30;
  412. else if (temperature <= 20)
  413. factor10x = 20;
  414. else if (temperature <= 40)
  415. factor10x = 10;
  416. else
  417. factor10x = 7;
  418. epd->factored_stage_time = epd->stage_time * factor10x / 10;
  419. }
  420. static void repaper_gray8_to_mono_reversed(u8 *buf, u32 width, u32 height)
  421. {
  422. u8 *gray8 = buf, *mono = buf;
  423. int y, xb, i;
  424. for (y = 0; y < height; y++)
  425. for (xb = 0; xb < width / 8; xb++) {
  426. u8 byte = 0x00;
  427. for (i = 0; i < 8; i++) {
  428. int x = xb * 8 + i;
  429. byte >>= 1;
  430. if (gray8[y * width + x] >> 7)
  431. byte |= BIT(7);
  432. }
  433. *mono++ = byte;
  434. }
  435. }
  436. static int repaper_fb_dirty(struct drm_framebuffer *fb,
  437. struct drm_file *file_priv,
  438. unsigned int flags, unsigned int color,
  439. struct drm_clip_rect *clips,
  440. unsigned int num_clips)
  441. {
  442. struct drm_gem_cma_object *cma_obj = drm_fb_cma_get_gem_obj(fb, 0);
  443. struct dma_buf_attachment *import_attach = cma_obj->base.import_attach;
  444. struct tinydrm_device *tdev = fb->dev->dev_private;
  445. struct repaper_epd *epd = epd_from_tinydrm(tdev);
  446. struct drm_clip_rect clip;
  447. u8 *buf = NULL;
  448. int ret = 0;
  449. /* repaper can't do partial updates */
  450. clip.x1 = 0;
  451. clip.x2 = fb->width;
  452. clip.y1 = 0;
  453. clip.y2 = fb->height;
  454. mutex_lock(&tdev->dirty_lock);
  455. if (!epd->enabled)
  456. goto out_unlock;
  457. /* fbdev can flush even when we're not interested */
  458. if (tdev->pipe.plane.fb != fb)
  459. goto out_unlock;
  460. repaper_get_temperature(epd);
  461. DRM_DEBUG("Flushing [FB:%d] st=%ums\n", fb->base.id,
  462. epd->factored_stage_time);
  463. buf = kmalloc(fb->width * fb->height, GFP_KERNEL);
  464. if (!buf) {
  465. ret = -ENOMEM;
  466. goto out_unlock;
  467. }
  468. if (import_attach) {
  469. ret = dma_buf_begin_cpu_access(import_attach->dmabuf,
  470. DMA_FROM_DEVICE);
  471. if (ret)
  472. goto out_unlock;
  473. }
  474. tinydrm_xrgb8888_to_gray8(buf, cma_obj->vaddr, fb, &clip);
  475. if (import_attach) {
  476. ret = dma_buf_end_cpu_access(import_attach->dmabuf,
  477. DMA_FROM_DEVICE);
  478. if (ret)
  479. goto out_unlock;
  480. }
  481. repaper_gray8_to_mono_reversed(buf, fb->width, fb->height);
  482. if (epd->partial) {
  483. repaper_frame_data_repeat(epd, buf, epd->current_frame,
  484. REPAPER_NORMAL);
  485. } else if (epd->cleared) {
  486. repaper_frame_data_repeat(epd, epd->current_frame, NULL,
  487. REPAPER_COMPENSATE);
  488. repaper_frame_data_repeat(epd, epd->current_frame, NULL,
  489. REPAPER_WHITE);
  490. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
  491. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
  492. epd->partial = true;
  493. } else {
  494. /* Clear display (anything -> white) */
  495. repaper_frame_fixed_repeat(epd, 0xff, REPAPER_COMPENSATE);
  496. repaper_frame_fixed_repeat(epd, 0xff, REPAPER_WHITE);
  497. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_INVERSE);
  498. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_NORMAL);
  499. /* Assuming a clear (white) screen output an image */
  500. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_COMPENSATE);
  501. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_WHITE);
  502. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
  503. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
  504. epd->cleared = true;
  505. epd->partial = true;
  506. }
  507. memcpy(epd->current_frame, buf, fb->width * fb->height / 8);
  508. /*
  509. * An extra frame write is needed if pixels are set in the bottom line,
  510. * or else grey lines rises up from the pixels
  511. */
  512. if (epd->pre_border_byte) {
  513. unsigned int x;
  514. for (x = 0; x < (fb->width / 8); x++)
  515. if (buf[x + (fb->width * (fb->height - 1) / 8)]) {
  516. repaper_frame_data_repeat(epd, buf,
  517. epd->current_frame,
  518. REPAPER_NORMAL);
  519. break;
  520. }
  521. }
  522. out_unlock:
  523. mutex_unlock(&tdev->dirty_lock);
  524. if (ret)
  525. dev_err(fb->dev->dev, "Failed to update display (%d)\n", ret);
  526. kfree(buf);
  527. return ret;
  528. }
  529. static const struct drm_framebuffer_funcs repaper_fb_funcs = {
  530. .destroy = drm_fb_cma_destroy,
  531. .create_handle = drm_fb_cma_create_handle,
  532. .dirty = repaper_fb_dirty,
  533. };
  534. static void power_off(struct repaper_epd *epd)
  535. {
  536. /* Turn off power and all signals */
  537. gpiod_set_value_cansleep(epd->reset, 0);
  538. gpiod_set_value_cansleep(epd->panel_on, 0);
  539. if (epd->border)
  540. gpiod_set_value_cansleep(epd->border, 0);
  541. /* Ensure SPI MOSI and CLOCK are Low before CS Low */
  542. repaper_spi_mosi_low(epd->spi);
  543. /* Discharge pulse */
  544. gpiod_set_value_cansleep(epd->discharge, 1);
  545. msleep(150);
  546. gpiod_set_value_cansleep(epd->discharge, 0);
  547. }
  548. static void repaper_pipe_enable(struct drm_simple_display_pipe *pipe,
  549. struct drm_crtc_state *crtc_state)
  550. {
  551. struct tinydrm_device *tdev = pipe_to_tinydrm(pipe);
  552. struct repaper_epd *epd = epd_from_tinydrm(tdev);
  553. struct spi_device *spi = epd->spi;
  554. struct device *dev = &spi->dev;
  555. bool dc_ok = false;
  556. int i, ret;
  557. DRM_DEBUG_DRIVER("\n");
  558. /* Power up sequence */
  559. gpiod_set_value_cansleep(epd->reset, 0);
  560. gpiod_set_value_cansleep(epd->panel_on, 0);
  561. gpiod_set_value_cansleep(epd->discharge, 0);
  562. if (epd->border)
  563. gpiod_set_value_cansleep(epd->border, 0);
  564. repaper_spi_mosi_low(spi);
  565. usleep_range(5000, 10000);
  566. gpiod_set_value_cansleep(epd->panel_on, 1);
  567. /*
  568. * This delay comes from the repaper.org userspace driver, it's not
  569. * mentioned in the datasheet.
  570. */
  571. usleep_range(10000, 15000);
  572. gpiod_set_value_cansleep(epd->reset, 1);
  573. if (epd->border)
  574. gpiod_set_value_cansleep(epd->border, 1);
  575. usleep_range(5000, 10000);
  576. gpiod_set_value_cansleep(epd->reset, 0);
  577. usleep_range(5000, 10000);
  578. gpiod_set_value_cansleep(epd->reset, 1);
  579. usleep_range(5000, 10000);
  580. /* Wait for COG to become ready */
  581. for (i = 100; i > 0; i--) {
  582. if (!gpiod_get_value_cansleep(epd->busy))
  583. break;
  584. usleep_range(10, 100);
  585. }
  586. if (!i) {
  587. dev_err(dev, "timeout waiting for panel to become ready.\n");
  588. power_off(epd);
  589. return;
  590. }
  591. repaper_read_id(spi);
  592. ret = repaper_read_id(spi);
  593. if (ret != REPAPER_RID_G2_COG_ID) {
  594. if (ret < 0)
  595. dev_err(dev, "failed to read chip (%d)\n", ret);
  596. else
  597. dev_err(dev, "wrong COG ID 0x%02x\n", ret);
  598. power_off(epd);
  599. return;
  600. }
  601. /* Disable OE */
  602. repaper_write_val(spi, 0x02, 0x40);
  603. ret = repaper_read_val(spi, 0x0f);
  604. if (ret < 0 || !(ret & 0x80)) {
  605. if (ret < 0)
  606. dev_err(dev, "failed to read chip (%d)\n", ret);
  607. else
  608. dev_err(dev, "panel is reported broken\n");
  609. power_off(epd);
  610. return;
  611. }
  612. /* Power saving mode */
  613. repaper_write_val(spi, 0x0b, 0x02);
  614. /* Channel select */
  615. repaper_write_buf(spi, 0x01, epd->channel_select, 8);
  616. /* High power mode osc */
  617. repaper_write_val(spi, 0x07, 0xd1);
  618. /* Power setting */
  619. repaper_write_val(spi, 0x08, 0x02);
  620. /* Vcom level */
  621. repaper_write_val(spi, 0x09, 0xc2);
  622. /* Power setting */
  623. repaper_write_val(spi, 0x04, 0x03);
  624. /* Driver latch on */
  625. repaper_write_val(spi, 0x03, 0x01);
  626. /* Driver latch off */
  627. repaper_write_val(spi, 0x03, 0x00);
  628. usleep_range(5000, 10000);
  629. /* Start chargepump */
  630. for (i = 0; i < 4; ++i) {
  631. /* Charge pump positive voltage on - VGH/VDL on */
  632. repaper_write_val(spi, 0x05, 0x01);
  633. msleep(240);
  634. /* Charge pump negative voltage on - VGL/VDL on */
  635. repaper_write_val(spi, 0x05, 0x03);
  636. msleep(40);
  637. /* Charge pump Vcom on - Vcom driver on */
  638. repaper_write_val(spi, 0x05, 0x0f);
  639. msleep(40);
  640. /* check DC/DC */
  641. ret = repaper_read_val(spi, 0x0f);
  642. if (ret < 0) {
  643. dev_err(dev, "failed to read chip (%d)\n", ret);
  644. power_off(epd);
  645. return;
  646. }
  647. if (ret & 0x40) {
  648. dc_ok = true;
  649. break;
  650. }
  651. }
  652. if (!dc_ok) {
  653. dev_err(dev, "dc/dc failed\n");
  654. power_off(epd);
  655. return;
  656. }
  657. /*
  658. * Output enable to disable
  659. * The userspace driver sets this to 0x04, but the datasheet says 0x06
  660. */
  661. repaper_write_val(spi, 0x02, 0x04);
  662. epd->enabled = true;
  663. epd->partial = false;
  664. }
  665. static void repaper_pipe_disable(struct drm_simple_display_pipe *pipe)
  666. {
  667. struct tinydrm_device *tdev = pipe_to_tinydrm(pipe);
  668. struct repaper_epd *epd = epd_from_tinydrm(tdev);
  669. struct spi_device *spi = epd->spi;
  670. unsigned int line;
  671. DRM_DEBUG_DRIVER("\n");
  672. mutex_lock(&tdev->dirty_lock);
  673. epd->enabled = false;
  674. mutex_unlock(&tdev->dirty_lock);
  675. /* Nothing frame */
  676. for (line = 0; line < epd->height; line++)
  677. repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
  678. REPAPER_COMPENSATE);
  679. /* 2.7" */
  680. if (epd->border) {
  681. /* Dummy line */
  682. repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
  683. REPAPER_COMPENSATE);
  684. msleep(25);
  685. gpiod_set_value_cansleep(epd->border, 0);
  686. msleep(200);
  687. gpiod_set_value_cansleep(epd->border, 1);
  688. } else {
  689. /* Border dummy line */
  690. repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
  691. REPAPER_NORMAL);
  692. msleep(200);
  693. }
  694. /* not described in datasheet */
  695. repaper_write_val(spi, 0x0b, 0x00);
  696. /* Latch reset turn on */
  697. repaper_write_val(spi, 0x03, 0x01);
  698. /* Power off charge pump Vcom */
  699. repaper_write_val(spi, 0x05, 0x03);
  700. /* Power off charge pump neg voltage */
  701. repaper_write_val(spi, 0x05, 0x01);
  702. msleep(120);
  703. /* Discharge internal */
  704. repaper_write_val(spi, 0x04, 0x80);
  705. /* turn off all charge pumps */
  706. repaper_write_val(spi, 0x05, 0x00);
  707. /* Turn off osc */
  708. repaper_write_val(spi, 0x07, 0x01);
  709. msleep(50);
  710. power_off(epd);
  711. }
  712. static const struct drm_simple_display_pipe_funcs repaper_pipe_funcs = {
  713. .enable = repaper_pipe_enable,
  714. .disable = repaper_pipe_disable,
  715. .update = tinydrm_display_pipe_update,
  716. .prepare_fb = tinydrm_display_pipe_prepare_fb,
  717. };
  718. static const uint32_t repaper_formats[] = {
  719. DRM_FORMAT_XRGB8888,
  720. };
  721. static const struct drm_display_mode repaper_e1144cs021_mode = {
  722. TINYDRM_MODE(128, 96, 29, 22),
  723. };
  724. static const u8 repaper_e1144cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
  725. 0x00, 0x0f, 0xff, 0x00 };
  726. static const struct drm_display_mode repaper_e1190cs021_mode = {
  727. TINYDRM_MODE(144, 128, 36, 32),
  728. };
  729. static const u8 repaper_e1190cs021_cs[] = { 0x00, 0x00, 0x00, 0x03,
  730. 0xfc, 0x00, 0x00, 0xff };
  731. static const struct drm_display_mode repaper_e2200cs021_mode = {
  732. TINYDRM_MODE(200, 96, 46, 22),
  733. };
  734. static const u8 repaper_e2200cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
  735. 0x01, 0xff, 0xe0, 0x00 };
  736. static const struct drm_display_mode repaper_e2271cs021_mode = {
  737. TINYDRM_MODE(264, 176, 57, 38),
  738. };
  739. static const u8 repaper_e2271cs021_cs[] = { 0x00, 0x00, 0x00, 0x7f,
  740. 0xff, 0xfe, 0x00, 0x00 };
  741. DEFINE_DRM_GEM_CMA_FOPS(repaper_fops);
  742. static struct drm_driver repaper_driver = {
  743. .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_PRIME |
  744. DRIVER_ATOMIC,
  745. .fops = &repaper_fops,
  746. TINYDRM_GEM_DRIVER_OPS,
  747. .name = "repaper",
  748. .desc = "Pervasive Displays RePaper e-ink panels",
  749. .date = "20170405",
  750. .major = 1,
  751. .minor = 0,
  752. };
  753. static const struct of_device_id repaper_of_match[] = {
  754. { .compatible = "pervasive,e1144cs021", .data = (void *)E1144CS021 },
  755. { .compatible = "pervasive,e1190cs021", .data = (void *)E1190CS021 },
  756. { .compatible = "pervasive,e2200cs021", .data = (void *)E2200CS021 },
  757. { .compatible = "pervasive,e2271cs021", .data = (void *)E2271CS021 },
  758. {},
  759. };
  760. MODULE_DEVICE_TABLE(of, repaper_of_match);
  761. static const struct spi_device_id repaper_id[] = {
  762. { "e1144cs021", E1144CS021 },
  763. { "e1190cs021", E1190CS021 },
  764. { "e2200cs021", E2200CS021 },
  765. { "e2271cs021", E2271CS021 },
  766. { },
  767. };
  768. MODULE_DEVICE_TABLE(spi, repaper_id);
  769. static int repaper_probe(struct spi_device *spi)
  770. {
  771. const struct drm_display_mode *mode;
  772. const struct spi_device_id *spi_id;
  773. const struct of_device_id *match;
  774. struct device *dev = &spi->dev;
  775. struct tinydrm_device *tdev;
  776. enum repaper_model model;
  777. const char *thermal_zone;
  778. struct repaper_epd *epd;
  779. size_t line_buffer_size;
  780. int ret;
  781. match = of_match_device(repaper_of_match, dev);
  782. if (match) {
  783. model = (enum repaper_model)match->data;
  784. } else {
  785. spi_id = spi_get_device_id(spi);
  786. model = spi_id->driver_data;
  787. }
  788. /* The SPI device is used to allocate dma memory */
  789. if (!dev->coherent_dma_mask) {
  790. ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
  791. if (ret) {
  792. dev_warn(dev, "Failed to set dma mask %d\n", ret);
  793. return ret;
  794. }
  795. }
  796. epd = devm_kzalloc(dev, sizeof(*epd), GFP_KERNEL);
  797. if (!epd)
  798. return -ENOMEM;
  799. epd->spi = spi;
  800. epd->panel_on = devm_gpiod_get(dev, "panel-on", GPIOD_OUT_LOW);
  801. if (IS_ERR(epd->panel_on)) {
  802. ret = PTR_ERR(epd->panel_on);
  803. if (ret != -EPROBE_DEFER)
  804. dev_err(dev, "Failed to get gpio 'panel-on'\n");
  805. return ret;
  806. }
  807. epd->discharge = devm_gpiod_get(dev, "discharge", GPIOD_OUT_LOW);
  808. if (IS_ERR(epd->discharge)) {
  809. ret = PTR_ERR(epd->discharge);
  810. if (ret != -EPROBE_DEFER)
  811. dev_err(dev, "Failed to get gpio 'discharge'\n");
  812. return ret;
  813. }
  814. epd->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
  815. if (IS_ERR(epd->reset)) {
  816. ret = PTR_ERR(epd->reset);
  817. if (ret != -EPROBE_DEFER)
  818. dev_err(dev, "Failed to get gpio 'reset'\n");
  819. return ret;
  820. }
  821. epd->busy = devm_gpiod_get(dev, "busy", GPIOD_IN);
  822. if (IS_ERR(epd->busy)) {
  823. ret = PTR_ERR(epd->busy);
  824. if (ret != -EPROBE_DEFER)
  825. dev_err(dev, "Failed to get gpio 'busy'\n");
  826. return ret;
  827. }
  828. if (!device_property_read_string(dev, "pervasive,thermal-zone",
  829. &thermal_zone)) {
  830. epd->thermal = thermal_zone_get_zone_by_name(thermal_zone);
  831. if (IS_ERR(epd->thermal)) {
  832. dev_err(dev, "Failed to get thermal zone: %s\n",
  833. thermal_zone);
  834. return PTR_ERR(epd->thermal);
  835. }
  836. }
  837. switch (model) {
  838. case E1144CS021:
  839. mode = &repaper_e1144cs021_mode;
  840. epd->channel_select = repaper_e1144cs021_cs;
  841. epd->stage_time = 480;
  842. epd->bytes_per_scan = 96 / 4;
  843. epd->middle_scan = true; /* data-scan-data */
  844. epd->pre_border_byte = false;
  845. epd->border_byte = REPAPER_BORDER_BYTE_ZERO;
  846. break;
  847. case E1190CS021:
  848. mode = &repaper_e1190cs021_mode;
  849. epd->channel_select = repaper_e1190cs021_cs;
  850. epd->stage_time = 480;
  851. epd->bytes_per_scan = 128 / 4 / 2;
  852. epd->middle_scan = false; /* scan-data-scan */
  853. epd->pre_border_byte = false;
  854. epd->border_byte = REPAPER_BORDER_BYTE_SET;
  855. break;
  856. case E2200CS021:
  857. mode = &repaper_e2200cs021_mode;
  858. epd->channel_select = repaper_e2200cs021_cs;
  859. epd->stage_time = 480;
  860. epd->bytes_per_scan = 96 / 4;
  861. epd->middle_scan = true; /* data-scan-data */
  862. epd->pre_border_byte = true;
  863. epd->border_byte = REPAPER_BORDER_BYTE_NONE;
  864. break;
  865. case E2271CS021:
  866. epd->border = devm_gpiod_get(dev, "border", GPIOD_OUT_LOW);
  867. if (IS_ERR(epd->border)) {
  868. ret = PTR_ERR(epd->border);
  869. if (ret != -EPROBE_DEFER)
  870. dev_err(dev, "Failed to get gpio 'border'\n");
  871. return ret;
  872. }
  873. mode = &repaper_e2271cs021_mode;
  874. epd->channel_select = repaper_e2271cs021_cs;
  875. epd->stage_time = 630;
  876. epd->bytes_per_scan = 176 / 4;
  877. epd->middle_scan = true; /* data-scan-data */
  878. epd->pre_border_byte = true;
  879. epd->border_byte = REPAPER_BORDER_BYTE_NONE;
  880. break;
  881. default:
  882. return -ENODEV;
  883. }
  884. epd->width = mode->hdisplay;
  885. epd->height = mode->vdisplay;
  886. epd->factored_stage_time = epd->stage_time;
  887. line_buffer_size = 2 * epd->width / 8 + epd->bytes_per_scan + 2;
  888. epd->line_buffer = devm_kzalloc(dev, line_buffer_size, GFP_KERNEL);
  889. if (!epd->line_buffer)
  890. return -ENOMEM;
  891. epd->current_frame = devm_kzalloc(dev, epd->width * epd->height / 8,
  892. GFP_KERNEL);
  893. if (!epd->current_frame)
  894. return -ENOMEM;
  895. tdev = &epd->tinydrm;
  896. ret = devm_tinydrm_init(dev, tdev, &repaper_fb_funcs, &repaper_driver);
  897. if (ret)
  898. return ret;
  899. ret = tinydrm_display_pipe_init(tdev, &repaper_pipe_funcs,
  900. DRM_MODE_CONNECTOR_VIRTUAL,
  901. repaper_formats,
  902. ARRAY_SIZE(repaper_formats), mode, 0);
  903. if (ret)
  904. return ret;
  905. drm_mode_config_reset(tdev->drm);
  906. ret = devm_tinydrm_register(tdev);
  907. if (ret)
  908. return ret;
  909. spi_set_drvdata(spi, tdev);
  910. DRM_DEBUG_DRIVER("Initialized %s:%s @%uMHz on minor %d\n",
  911. tdev->drm->driver->name, dev_name(dev),
  912. spi->max_speed_hz / 1000000,
  913. tdev->drm->primary->index);
  914. return 0;
  915. }
  916. static void repaper_shutdown(struct spi_device *spi)
  917. {
  918. struct tinydrm_device *tdev = spi_get_drvdata(spi);
  919. tinydrm_shutdown(tdev);
  920. }
  921. static struct spi_driver repaper_spi_driver = {
  922. .driver = {
  923. .name = "repaper",
  924. .owner = THIS_MODULE,
  925. .of_match_table = repaper_of_match,
  926. },
  927. .id_table = repaper_id,
  928. .probe = repaper_probe,
  929. .shutdown = repaper_shutdown,
  930. };
  931. module_spi_driver(repaper_spi_driver);
  932. MODULE_DESCRIPTION("Pervasive Displays RePaper DRM driver");
  933. MODULE_AUTHOR("Noralf Trønnes");
  934. MODULE_LICENSE("GPL");