intel_pm.c 263 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include <drm/drm_plane_helper.h>
  29. #include "i915_drv.h"
  30. #include "intel_drv.h"
  31. #include "../../../platform/x86/intel_ips.h"
  32. #include <linux/module.h>
  33. #include <drm/drm_atomic_helper.h>
  34. /**
  35. * DOC: RC6
  36. *
  37. * RC6 is a special power stage which allows the GPU to enter an very
  38. * low-voltage mode when idle, using down to 0V while at this stage. This
  39. * stage is entered automatically when the GPU is idle when RC6 support is
  40. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41. *
  42. * There are different RC6 modes available in Intel GPU, which differentiate
  43. * among each other with the latency required to enter and leave RC6 and
  44. * voltage consumed by the GPU in different states.
  45. *
  46. * The combination of the following flags define which states GPU is allowed
  47. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48. * RC6pp is deepest RC6. Their support by hardware varies according to the
  49. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50. * which brings the most power savings; deeper states save more power, but
  51. * require higher latency to switch to and wake up.
  52. */
  53. #define INTEL_RC6_ENABLE (1<<0)
  54. #define INTEL_RC6p_ENABLE (1<<1)
  55. #define INTEL_RC6pp_ENABLE (1<<2)
  56. static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  57. {
  58. /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
  59. I915_WRITE(CHICKEN_PAR1_1,
  60. I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  61. /*
  62. * Display WA#0390: skl,bxt,kbl,glk
  63. *
  64. * Must match Sampler, Pixel Back End, and Media
  65. * (0xE194 bit 8, 0x7014 bit 13, 0x4DDC bits 27 and 31).
  66. *
  67. * Including bits outside the page in the hash would
  68. * require 2 (or 4?) MiB alignment of resources. Just
  69. * assume the defaul hashing mode which only uses bits
  70. * within the page.
  71. */
  72. I915_WRITE(CHICKEN_PAR1_1,
  73. I915_READ(CHICKEN_PAR1_1) & ~SKL_RC_HASH_OUTSIDE);
  74. I915_WRITE(GEN8_CONFIG0,
  75. I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  76. /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
  77. I915_WRITE(GEN8_CHICKEN_DCPR_1,
  78. I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  79. /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
  80. /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
  81. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  82. DISP_FBC_WM_DIS |
  83. DISP_FBC_MEMORY_WAKE);
  84. /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
  85. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  86. ILK_DPFC_DISABLE_DUMMY0);
  87. if (IS_SKYLAKE(dev_priv)) {
  88. /* WaDisableDopClockGating */
  89. I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
  90. & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  91. }
  92. }
  93. static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  94. {
  95. gen9_init_clock_gating(dev_priv);
  96. /* WaDisableSDEUnitClockGating:bxt */
  97. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  98. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  99. /*
  100. * FIXME:
  101. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  102. */
  103. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  104. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  105. /*
  106. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  107. * to stay fully on.
  108. */
  109. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  110. PWM1_GATING_DIS | PWM2_GATING_DIS);
  111. }
  112. static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
  113. {
  114. gen9_init_clock_gating(dev_priv);
  115. /*
  116. * WaDisablePWMClockGating:glk
  117. * Backlight PWM may stop in the asserted state, causing backlight
  118. * to stay fully on.
  119. */
  120. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  121. PWM1_GATING_DIS | PWM2_GATING_DIS);
  122. /* WaDDIIOTimeout:glk */
  123. if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
  124. u32 val = I915_READ(CHICKEN_MISC_2);
  125. val &= ~(GLK_CL0_PWR_DOWN |
  126. GLK_CL1_PWR_DOWN |
  127. GLK_CL2_PWR_DOWN);
  128. I915_WRITE(CHICKEN_MISC_2, val);
  129. }
  130. }
  131. static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
  132. {
  133. u32 tmp;
  134. tmp = I915_READ(CLKCFG);
  135. switch (tmp & CLKCFG_FSB_MASK) {
  136. case CLKCFG_FSB_533:
  137. dev_priv->fsb_freq = 533; /* 133*4 */
  138. break;
  139. case CLKCFG_FSB_800:
  140. dev_priv->fsb_freq = 800; /* 200*4 */
  141. break;
  142. case CLKCFG_FSB_667:
  143. dev_priv->fsb_freq = 667; /* 167*4 */
  144. break;
  145. case CLKCFG_FSB_400:
  146. dev_priv->fsb_freq = 400; /* 100*4 */
  147. break;
  148. }
  149. switch (tmp & CLKCFG_MEM_MASK) {
  150. case CLKCFG_MEM_533:
  151. dev_priv->mem_freq = 533;
  152. break;
  153. case CLKCFG_MEM_667:
  154. dev_priv->mem_freq = 667;
  155. break;
  156. case CLKCFG_MEM_800:
  157. dev_priv->mem_freq = 800;
  158. break;
  159. }
  160. /* detect pineview DDR3 setting */
  161. tmp = I915_READ(CSHRDDR3CTL);
  162. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  163. }
  164. static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
  165. {
  166. u16 ddrpll, csipll;
  167. ddrpll = I915_READ16(DDRMPLL1);
  168. csipll = I915_READ16(CSIPLL0);
  169. switch (ddrpll & 0xff) {
  170. case 0xc:
  171. dev_priv->mem_freq = 800;
  172. break;
  173. case 0x10:
  174. dev_priv->mem_freq = 1066;
  175. break;
  176. case 0x14:
  177. dev_priv->mem_freq = 1333;
  178. break;
  179. case 0x18:
  180. dev_priv->mem_freq = 1600;
  181. break;
  182. default:
  183. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  184. ddrpll & 0xff);
  185. dev_priv->mem_freq = 0;
  186. break;
  187. }
  188. dev_priv->ips.r_t = dev_priv->mem_freq;
  189. switch (csipll & 0x3ff) {
  190. case 0x00c:
  191. dev_priv->fsb_freq = 3200;
  192. break;
  193. case 0x00e:
  194. dev_priv->fsb_freq = 3733;
  195. break;
  196. case 0x010:
  197. dev_priv->fsb_freq = 4266;
  198. break;
  199. case 0x012:
  200. dev_priv->fsb_freq = 4800;
  201. break;
  202. case 0x014:
  203. dev_priv->fsb_freq = 5333;
  204. break;
  205. case 0x016:
  206. dev_priv->fsb_freq = 5866;
  207. break;
  208. case 0x018:
  209. dev_priv->fsb_freq = 6400;
  210. break;
  211. default:
  212. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  213. csipll & 0x3ff);
  214. dev_priv->fsb_freq = 0;
  215. break;
  216. }
  217. if (dev_priv->fsb_freq == 3200) {
  218. dev_priv->ips.c_m = 0;
  219. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  220. dev_priv->ips.c_m = 1;
  221. } else {
  222. dev_priv->ips.c_m = 2;
  223. }
  224. }
  225. static const struct cxsr_latency cxsr_latency_table[] = {
  226. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  227. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  228. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  229. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  230. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  231. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  232. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  233. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  234. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  235. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  236. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  237. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  238. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  239. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  240. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  241. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  242. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  243. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  244. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  245. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  246. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  247. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  248. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  249. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  250. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  251. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  252. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  253. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  254. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  255. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  256. };
  257. static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
  258. bool is_ddr3,
  259. int fsb,
  260. int mem)
  261. {
  262. const struct cxsr_latency *latency;
  263. int i;
  264. if (fsb == 0 || mem == 0)
  265. return NULL;
  266. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  267. latency = &cxsr_latency_table[i];
  268. if (is_desktop == latency->is_desktop &&
  269. is_ddr3 == latency->is_ddr3 &&
  270. fsb == latency->fsb_freq && mem == latency->mem_freq)
  271. return latency;
  272. }
  273. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  274. return NULL;
  275. }
  276. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  277. {
  278. u32 val;
  279. mutex_lock(&dev_priv->rps.hw_lock);
  280. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  281. if (enable)
  282. val &= ~FORCE_DDR_HIGH_FREQ;
  283. else
  284. val |= FORCE_DDR_HIGH_FREQ;
  285. val &= ~FORCE_DDR_LOW_FREQ;
  286. val |= FORCE_DDR_FREQ_REQ_ACK;
  287. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  288. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  289. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  290. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  291. mutex_unlock(&dev_priv->rps.hw_lock);
  292. }
  293. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  294. {
  295. u32 val;
  296. mutex_lock(&dev_priv->rps.hw_lock);
  297. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  298. if (enable)
  299. val |= DSP_MAXFIFO_PM5_ENABLE;
  300. else
  301. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  302. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  303. mutex_unlock(&dev_priv->rps.hw_lock);
  304. }
  305. #define FW_WM(value, plane) \
  306. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  307. static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  308. {
  309. bool was_enabled;
  310. u32 val;
  311. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  312. was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  313. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  314. POSTING_READ(FW_BLC_SELF_VLV);
  315. } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
  316. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  317. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  318. POSTING_READ(FW_BLC_SELF);
  319. } else if (IS_PINEVIEW(dev_priv)) {
  320. val = I915_READ(DSPFW3);
  321. was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
  322. if (enable)
  323. val |= PINEVIEW_SELF_REFRESH_EN;
  324. else
  325. val &= ~PINEVIEW_SELF_REFRESH_EN;
  326. I915_WRITE(DSPFW3, val);
  327. POSTING_READ(DSPFW3);
  328. } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
  329. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  330. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  331. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  332. I915_WRITE(FW_BLC_SELF, val);
  333. POSTING_READ(FW_BLC_SELF);
  334. } else if (IS_I915GM(dev_priv)) {
  335. /*
  336. * FIXME can't find a bit like this for 915G, and
  337. * and yet it does have the related watermark in
  338. * FW_BLC_SELF. What's going on?
  339. */
  340. was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  341. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  342. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  343. I915_WRITE(INSTPM, val);
  344. POSTING_READ(INSTPM);
  345. } else {
  346. return false;
  347. }
  348. trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
  349. DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
  350. enableddisabled(enable),
  351. enableddisabled(was_enabled));
  352. return was_enabled;
  353. }
  354. /**
  355. * intel_set_memory_cxsr - Configure CxSR state
  356. * @dev_priv: i915 device
  357. * @enable: Allow vs. disallow CxSR
  358. *
  359. * Allow or disallow the system to enter a special CxSR
  360. * (C-state self refresh) state. What typically happens in CxSR mode
  361. * is that several display FIFOs may get combined into a single larger
  362. * FIFO for a particular plane (so called max FIFO mode) to allow the
  363. * system to defer memory fetches longer, and the memory will enter
  364. * self refresh.
  365. *
  366. * Note that enabling CxSR does not guarantee that the system enter
  367. * this special mode, nor does it guarantee that the system stays
  368. * in that mode once entered. So this just allows/disallows the system
  369. * to autonomously utilize the CxSR mode. Other factors such as core
  370. * C-states will affect when/if the system actually enters/exits the
  371. * CxSR mode.
  372. *
  373. * Note that on VLV/CHV this actually only controls the max FIFO mode,
  374. * and the system is free to enter/exit memory self refresh at any time
  375. * even when the use of CxSR has been disallowed.
  376. *
  377. * While the system is actually in the CxSR/max FIFO mode, some plane
  378. * control registers will not get latched on vblank. Thus in order to
  379. * guarantee the system will respond to changes in the plane registers
  380. * we must always disallow CxSR prior to making changes to those registers.
  381. * Unfortunately the system will re-evaluate the CxSR conditions at
  382. * frame start which happens after vblank start (which is when the plane
  383. * registers would get latched), so we can't proceed with the plane update
  384. * during the same frame where we disallowed CxSR.
  385. *
  386. * Certain platforms also have a deeper HPLL SR mode. Fortunately the
  387. * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
  388. * the hardware w.r.t. HPLL SR when writing to plane registers.
  389. * Disallowing just CxSR is sufficient.
  390. */
  391. bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  392. {
  393. bool ret;
  394. mutex_lock(&dev_priv->wm.wm_mutex);
  395. ret = _intel_set_memory_cxsr(dev_priv, enable);
  396. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  397. dev_priv->wm.vlv.cxsr = enable;
  398. else if (IS_G4X(dev_priv))
  399. dev_priv->wm.g4x.cxsr = enable;
  400. mutex_unlock(&dev_priv->wm.wm_mutex);
  401. return ret;
  402. }
  403. /*
  404. * Latency for FIFO fetches is dependent on several factors:
  405. * - memory configuration (speed, channels)
  406. * - chipset
  407. * - current MCH state
  408. * It can be fairly high in some situations, so here we assume a fairly
  409. * pessimal value. It's a tradeoff between extra memory fetches (if we
  410. * set this value too high, the FIFO will fetch frequently to stay full)
  411. * and power consumption (set it too low to save power and we might see
  412. * FIFO underruns and display "flicker").
  413. *
  414. * A value of 5us seems to be a good balance; safe for very low end
  415. * platforms but not overly aggressive on lower latency configs.
  416. */
  417. static const int pessimal_latency_ns = 5000;
  418. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  419. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  420. static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
  421. {
  422. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  423. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  424. struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
  425. enum pipe pipe = crtc->pipe;
  426. int sprite0_start, sprite1_start;
  427. switch (pipe) {
  428. uint32_t dsparb, dsparb2, dsparb3;
  429. case PIPE_A:
  430. dsparb = I915_READ(DSPARB);
  431. dsparb2 = I915_READ(DSPARB2);
  432. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  433. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  434. break;
  435. case PIPE_B:
  436. dsparb = I915_READ(DSPARB);
  437. dsparb2 = I915_READ(DSPARB2);
  438. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  439. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  440. break;
  441. case PIPE_C:
  442. dsparb2 = I915_READ(DSPARB2);
  443. dsparb3 = I915_READ(DSPARB3);
  444. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  445. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  446. break;
  447. default:
  448. MISSING_CASE(pipe);
  449. return;
  450. }
  451. fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
  452. fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
  453. fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
  454. fifo_state->plane[PLANE_CURSOR] = 63;
  455. }
  456. static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  457. {
  458. uint32_t dsparb = I915_READ(DSPARB);
  459. int size;
  460. size = dsparb & 0x7f;
  461. if (plane)
  462. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  463. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  464. plane ? "B" : "A", size);
  465. return size;
  466. }
  467. static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  468. {
  469. uint32_t dsparb = I915_READ(DSPARB);
  470. int size;
  471. size = dsparb & 0x1ff;
  472. if (plane)
  473. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  474. size >>= 1; /* Convert to cachelines */
  475. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  476. plane ? "B" : "A", size);
  477. return size;
  478. }
  479. static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  480. {
  481. uint32_t dsparb = I915_READ(DSPARB);
  482. int size;
  483. size = dsparb & 0x7f;
  484. size >>= 2; /* Convert to cachelines */
  485. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  486. plane ? "B" : "A",
  487. size);
  488. return size;
  489. }
  490. /* Pineview has different values for various configs */
  491. static const struct intel_watermark_params pineview_display_wm = {
  492. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  493. .max_wm = PINEVIEW_MAX_WM,
  494. .default_wm = PINEVIEW_DFT_WM,
  495. .guard_size = PINEVIEW_GUARD_WM,
  496. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  497. };
  498. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  499. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  500. .max_wm = PINEVIEW_MAX_WM,
  501. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  502. .guard_size = PINEVIEW_GUARD_WM,
  503. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  504. };
  505. static const struct intel_watermark_params pineview_cursor_wm = {
  506. .fifo_size = PINEVIEW_CURSOR_FIFO,
  507. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  508. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  509. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  510. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  511. };
  512. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  513. .fifo_size = PINEVIEW_CURSOR_FIFO,
  514. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  515. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  516. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  517. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  518. };
  519. static const struct intel_watermark_params i965_cursor_wm_info = {
  520. .fifo_size = I965_CURSOR_FIFO,
  521. .max_wm = I965_CURSOR_MAX_WM,
  522. .default_wm = I965_CURSOR_DFT_WM,
  523. .guard_size = 2,
  524. .cacheline_size = I915_FIFO_LINE_SIZE,
  525. };
  526. static const struct intel_watermark_params i945_wm_info = {
  527. .fifo_size = I945_FIFO_SIZE,
  528. .max_wm = I915_MAX_WM,
  529. .default_wm = 1,
  530. .guard_size = 2,
  531. .cacheline_size = I915_FIFO_LINE_SIZE,
  532. };
  533. static const struct intel_watermark_params i915_wm_info = {
  534. .fifo_size = I915_FIFO_SIZE,
  535. .max_wm = I915_MAX_WM,
  536. .default_wm = 1,
  537. .guard_size = 2,
  538. .cacheline_size = I915_FIFO_LINE_SIZE,
  539. };
  540. static const struct intel_watermark_params i830_a_wm_info = {
  541. .fifo_size = I855GM_FIFO_SIZE,
  542. .max_wm = I915_MAX_WM,
  543. .default_wm = 1,
  544. .guard_size = 2,
  545. .cacheline_size = I830_FIFO_LINE_SIZE,
  546. };
  547. static const struct intel_watermark_params i830_bc_wm_info = {
  548. .fifo_size = I855GM_FIFO_SIZE,
  549. .max_wm = I915_MAX_WM/2,
  550. .default_wm = 1,
  551. .guard_size = 2,
  552. .cacheline_size = I830_FIFO_LINE_SIZE,
  553. };
  554. static const struct intel_watermark_params i845_wm_info = {
  555. .fifo_size = I830_FIFO_SIZE,
  556. .max_wm = I915_MAX_WM,
  557. .default_wm = 1,
  558. .guard_size = 2,
  559. .cacheline_size = I830_FIFO_LINE_SIZE,
  560. };
  561. /**
  562. * intel_wm_method1 - Method 1 / "small buffer" watermark formula
  563. * @pixel_rate: Pipe pixel rate in kHz
  564. * @cpp: Plane bytes per pixel
  565. * @latency: Memory wakeup latency in 0.1us units
  566. *
  567. * Compute the watermark using the method 1 or "small buffer"
  568. * formula. The caller may additonally add extra cachelines
  569. * to account for TLB misses and clock crossings.
  570. *
  571. * This method is concerned with the short term drain rate
  572. * of the FIFO, ie. it does not account for blanking periods
  573. * which would effectively reduce the average drain rate across
  574. * a longer period. The name "small" refers to the fact the
  575. * FIFO is relatively small compared to the amount of data
  576. * fetched.
  577. *
  578. * The FIFO level vs. time graph might look something like:
  579. *
  580. * |\ |\
  581. * | \ | \
  582. * __---__---__ (- plane active, _ blanking)
  583. * -> time
  584. *
  585. * or perhaps like this:
  586. *
  587. * |\|\ |\|\
  588. * __----__----__ (- plane active, _ blanking)
  589. * -> time
  590. *
  591. * Returns:
  592. * The watermark in bytes
  593. */
  594. static unsigned int intel_wm_method1(unsigned int pixel_rate,
  595. unsigned int cpp,
  596. unsigned int latency)
  597. {
  598. uint64_t ret;
  599. ret = (uint64_t) pixel_rate * cpp * latency;
  600. ret = DIV_ROUND_UP_ULL(ret, 10000);
  601. return ret;
  602. }
  603. /**
  604. * intel_wm_method2 - Method 2 / "large buffer" watermark formula
  605. * @pixel_rate: Pipe pixel rate in kHz
  606. * @htotal: Pipe horizontal total
  607. * @width: Plane width in pixels
  608. * @cpp: Plane bytes per pixel
  609. * @latency: Memory wakeup latency in 0.1us units
  610. *
  611. * Compute the watermark using the method 2 or "large buffer"
  612. * formula. The caller may additonally add extra cachelines
  613. * to account for TLB misses and clock crossings.
  614. *
  615. * This method is concerned with the long term drain rate
  616. * of the FIFO, ie. it does account for blanking periods
  617. * which effectively reduce the average drain rate across
  618. * a longer period. The name "large" refers to the fact the
  619. * FIFO is relatively large compared to the amount of data
  620. * fetched.
  621. *
  622. * The FIFO level vs. time graph might look something like:
  623. *
  624. * |\___ |\___
  625. * | \___ | \___
  626. * | \ | \
  627. * __ --__--__--__--__--__--__ (- plane active, _ blanking)
  628. * -> time
  629. *
  630. * Returns:
  631. * The watermark in bytes
  632. */
  633. static unsigned int intel_wm_method2(unsigned int pixel_rate,
  634. unsigned int htotal,
  635. unsigned int width,
  636. unsigned int cpp,
  637. unsigned int latency)
  638. {
  639. unsigned int ret;
  640. /*
  641. * FIXME remove once all users are computing
  642. * watermarks in the correct place.
  643. */
  644. if (WARN_ON_ONCE(htotal == 0))
  645. htotal = 1;
  646. ret = (latency * pixel_rate) / (htotal * 10000);
  647. ret = (ret + 1) * width * cpp;
  648. return ret;
  649. }
  650. /**
  651. * intel_calculate_wm - calculate watermark level
  652. * @pixel_rate: pixel clock
  653. * @wm: chip FIFO params
  654. * @cpp: bytes per pixel
  655. * @latency_ns: memory latency for the platform
  656. *
  657. * Calculate the watermark level (the level at which the display plane will
  658. * start fetching from memory again). Each chip has a different display
  659. * FIFO size and allocation, so the caller needs to figure that out and pass
  660. * in the correct intel_watermark_params structure.
  661. *
  662. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  663. * on the pixel size. When it reaches the watermark level, it'll start
  664. * fetching FIFO line sized based chunks from memory until the FIFO fills
  665. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  666. * will occur, and a display engine hang could result.
  667. */
  668. static unsigned int intel_calculate_wm(int pixel_rate,
  669. const struct intel_watermark_params *wm,
  670. int fifo_size, int cpp,
  671. unsigned int latency_ns)
  672. {
  673. int entries, wm_size;
  674. /*
  675. * Note: we need to make sure we don't overflow for various clock &
  676. * latency values.
  677. * clocks go from a few thousand to several hundred thousand.
  678. * latency is usually a few thousand
  679. */
  680. entries = intel_wm_method1(pixel_rate, cpp,
  681. latency_ns / 100);
  682. entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
  683. wm->guard_size;
  684. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
  685. wm_size = fifo_size - entries;
  686. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  687. /* Don't promote wm_size to unsigned... */
  688. if (wm_size > wm->max_wm)
  689. wm_size = wm->max_wm;
  690. if (wm_size <= 0)
  691. wm_size = wm->default_wm;
  692. /*
  693. * Bspec seems to indicate that the value shouldn't be lower than
  694. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  695. * Lets go for 8 which is the burst size since certain platforms
  696. * already use a hardcoded 8 (which is what the spec says should be
  697. * done).
  698. */
  699. if (wm_size <= 8)
  700. wm_size = 8;
  701. return wm_size;
  702. }
  703. static bool is_disabling(int old, int new, int threshold)
  704. {
  705. return old >= threshold && new < threshold;
  706. }
  707. static bool is_enabling(int old, int new, int threshold)
  708. {
  709. return old < threshold && new >= threshold;
  710. }
  711. static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
  712. {
  713. return dev_priv->wm.max_level + 1;
  714. }
  715. static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
  716. const struct intel_plane_state *plane_state)
  717. {
  718. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  719. /* FIXME check the 'enable' instead */
  720. if (!crtc_state->base.active)
  721. return false;
  722. /*
  723. * Treat cursor with fb as always visible since cursor updates
  724. * can happen faster than the vrefresh rate, and the current
  725. * watermark code doesn't handle that correctly. Cursor updates
  726. * which set/clear the fb or change the cursor size are going
  727. * to get throttled by intel_legacy_cursor_update() to work
  728. * around this problem with the watermark code.
  729. */
  730. if (plane->id == PLANE_CURSOR)
  731. return plane_state->base.fb != NULL;
  732. else
  733. return plane_state->base.visible;
  734. }
  735. static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
  736. {
  737. struct intel_crtc *crtc, *enabled = NULL;
  738. for_each_intel_crtc(&dev_priv->drm, crtc) {
  739. if (intel_crtc_active(crtc)) {
  740. if (enabled)
  741. return NULL;
  742. enabled = crtc;
  743. }
  744. }
  745. return enabled;
  746. }
  747. static void pineview_update_wm(struct intel_crtc *unused_crtc)
  748. {
  749. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  750. struct intel_crtc *crtc;
  751. const struct cxsr_latency *latency;
  752. u32 reg;
  753. unsigned int wm;
  754. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  755. dev_priv->is_ddr3,
  756. dev_priv->fsb_freq,
  757. dev_priv->mem_freq);
  758. if (!latency) {
  759. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  760. intel_set_memory_cxsr(dev_priv, false);
  761. return;
  762. }
  763. crtc = single_enabled_crtc(dev_priv);
  764. if (crtc) {
  765. const struct drm_display_mode *adjusted_mode =
  766. &crtc->config->base.adjusted_mode;
  767. const struct drm_framebuffer *fb =
  768. crtc->base.primary->state->fb;
  769. int cpp = fb->format->cpp[0];
  770. int clock = adjusted_mode->crtc_clock;
  771. /* Display SR */
  772. wm = intel_calculate_wm(clock, &pineview_display_wm,
  773. pineview_display_wm.fifo_size,
  774. cpp, latency->display_sr);
  775. reg = I915_READ(DSPFW1);
  776. reg &= ~DSPFW_SR_MASK;
  777. reg |= FW_WM(wm, SR);
  778. I915_WRITE(DSPFW1, reg);
  779. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  780. /* cursor SR */
  781. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  782. pineview_display_wm.fifo_size,
  783. 4, latency->cursor_sr);
  784. reg = I915_READ(DSPFW3);
  785. reg &= ~DSPFW_CURSOR_SR_MASK;
  786. reg |= FW_WM(wm, CURSOR_SR);
  787. I915_WRITE(DSPFW3, reg);
  788. /* Display HPLL off SR */
  789. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  790. pineview_display_hplloff_wm.fifo_size,
  791. cpp, latency->display_hpll_disable);
  792. reg = I915_READ(DSPFW3);
  793. reg &= ~DSPFW_HPLL_SR_MASK;
  794. reg |= FW_WM(wm, HPLL_SR);
  795. I915_WRITE(DSPFW3, reg);
  796. /* cursor HPLL off SR */
  797. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  798. pineview_display_hplloff_wm.fifo_size,
  799. 4, latency->cursor_hpll_disable);
  800. reg = I915_READ(DSPFW3);
  801. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  802. reg |= FW_WM(wm, HPLL_CURSOR);
  803. I915_WRITE(DSPFW3, reg);
  804. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  805. intel_set_memory_cxsr(dev_priv, true);
  806. } else {
  807. intel_set_memory_cxsr(dev_priv, false);
  808. }
  809. }
  810. /*
  811. * Documentation says:
  812. * "If the line size is small, the TLB fetches can get in the way of the
  813. * data fetches, causing some lag in the pixel data return which is not
  814. * accounted for in the above formulas. The following adjustment only
  815. * needs to be applied if eight whole lines fit in the buffer at once.
  816. * The WM is adjusted upwards by the difference between the FIFO size
  817. * and the size of 8 whole lines. This adjustment is always performed
  818. * in the actual pixel depth regardless of whether FBC is enabled or not."
  819. */
  820. static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
  821. {
  822. int tlb_miss = fifo_size * 64 - width * cpp * 8;
  823. return max(0, tlb_miss);
  824. }
  825. static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
  826. const struct g4x_wm_values *wm)
  827. {
  828. enum pipe pipe;
  829. for_each_pipe(dev_priv, pipe)
  830. trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  831. I915_WRITE(DSPFW1,
  832. FW_WM(wm->sr.plane, SR) |
  833. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  834. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  835. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  836. I915_WRITE(DSPFW2,
  837. (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
  838. FW_WM(wm->sr.fbc, FBC_SR) |
  839. FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
  840. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
  841. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  842. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  843. I915_WRITE(DSPFW3,
  844. (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
  845. FW_WM(wm->sr.cursor, CURSOR_SR) |
  846. FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
  847. FW_WM(wm->hpll.plane, HPLL_SR));
  848. POSTING_READ(DSPFW1);
  849. }
  850. #define FW_WM_VLV(value, plane) \
  851. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  852. static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
  853. const struct vlv_wm_values *wm)
  854. {
  855. enum pipe pipe;
  856. for_each_pipe(dev_priv, pipe) {
  857. trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  858. I915_WRITE(VLV_DDL(pipe),
  859. (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
  860. (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
  861. (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
  862. (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
  863. }
  864. /*
  865. * Zero the (unused) WM1 watermarks, and also clear all the
  866. * high order bits so that there are no out of bounds values
  867. * present in the registers during the reprogramming.
  868. */
  869. I915_WRITE(DSPHOWM, 0);
  870. I915_WRITE(DSPHOWM1, 0);
  871. I915_WRITE(DSPFW4, 0);
  872. I915_WRITE(DSPFW5, 0);
  873. I915_WRITE(DSPFW6, 0);
  874. I915_WRITE(DSPFW1,
  875. FW_WM(wm->sr.plane, SR) |
  876. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  877. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  878. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  879. I915_WRITE(DSPFW2,
  880. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
  881. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  882. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  883. I915_WRITE(DSPFW3,
  884. FW_WM(wm->sr.cursor, CURSOR_SR));
  885. if (IS_CHERRYVIEW(dev_priv)) {
  886. I915_WRITE(DSPFW7_CHV,
  887. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  888. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  889. I915_WRITE(DSPFW8_CHV,
  890. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
  891. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
  892. I915_WRITE(DSPFW9_CHV,
  893. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
  894. FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
  895. I915_WRITE(DSPHOWM,
  896. FW_WM(wm->sr.plane >> 9, SR_HI) |
  897. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
  898. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
  899. FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
  900. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  901. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  902. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  903. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  904. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  905. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  906. } else {
  907. I915_WRITE(DSPFW7,
  908. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  909. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  910. I915_WRITE(DSPHOWM,
  911. FW_WM(wm->sr.plane >> 9, SR_HI) |
  912. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  913. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  914. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  915. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  916. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  917. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  918. }
  919. POSTING_READ(DSPFW1);
  920. }
  921. #undef FW_WM_VLV
  922. static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
  923. {
  924. /* all latencies in usec */
  925. dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
  926. dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
  927. dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
  928. dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
  929. }
  930. static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
  931. {
  932. /*
  933. * DSPCNTR[13] supposedly controls whether the
  934. * primary plane can use the FIFO space otherwise
  935. * reserved for the sprite plane. It's not 100% clear
  936. * what the actual FIFO size is, but it looks like we
  937. * can happily set both primary and sprite watermarks
  938. * up to 127 cachelines. So that would seem to mean
  939. * that either DSPCNTR[13] doesn't do anything, or that
  940. * the total FIFO is >= 256 cachelines in size. Either
  941. * way, we don't seem to have to worry about this
  942. * repartitioning as the maximum watermark value the
  943. * register can hold for each plane is lower than the
  944. * minimum FIFO size.
  945. */
  946. switch (plane_id) {
  947. case PLANE_CURSOR:
  948. return 63;
  949. case PLANE_PRIMARY:
  950. return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
  951. case PLANE_SPRITE0:
  952. return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
  953. default:
  954. MISSING_CASE(plane_id);
  955. return 0;
  956. }
  957. }
  958. static int g4x_fbc_fifo_size(int level)
  959. {
  960. switch (level) {
  961. case G4X_WM_LEVEL_SR:
  962. return 7;
  963. case G4X_WM_LEVEL_HPLL:
  964. return 15;
  965. default:
  966. MISSING_CASE(level);
  967. return 0;
  968. }
  969. }
  970. static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
  971. const struct intel_plane_state *plane_state,
  972. int level)
  973. {
  974. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  975. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  976. const struct drm_display_mode *adjusted_mode =
  977. &crtc_state->base.adjusted_mode;
  978. int clock, htotal, cpp, width, wm;
  979. int latency = dev_priv->wm.pri_latency[level] * 10;
  980. if (latency == 0)
  981. return USHRT_MAX;
  982. if (!intel_wm_plane_visible(crtc_state, plane_state))
  983. return 0;
  984. /*
  985. * Not 100% sure which way ELK should go here as the
  986. * spec only says CL/CTG should assume 32bpp and BW
  987. * doesn't need to. But as these things followed the
  988. * mobile vs. desktop lines on gen3 as well, let's
  989. * assume ELK doesn't need this.
  990. *
  991. * The spec also fails to list such a restriction for
  992. * the HPLL watermark, which seems a little strange.
  993. * Let's use 32bpp for the HPLL watermark as well.
  994. */
  995. if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
  996. level != G4X_WM_LEVEL_NORMAL)
  997. cpp = 4;
  998. else
  999. cpp = plane_state->base.fb->format->cpp[0];
  1000. clock = adjusted_mode->crtc_clock;
  1001. htotal = adjusted_mode->crtc_htotal;
  1002. if (plane->id == PLANE_CURSOR)
  1003. width = plane_state->base.crtc_w;
  1004. else
  1005. width = drm_rect_width(&plane_state->base.dst);
  1006. if (plane->id == PLANE_CURSOR) {
  1007. wm = intel_wm_method2(clock, htotal, width, cpp, latency);
  1008. } else if (plane->id == PLANE_PRIMARY &&
  1009. level == G4X_WM_LEVEL_NORMAL) {
  1010. wm = intel_wm_method1(clock, cpp, latency);
  1011. } else {
  1012. int small, large;
  1013. small = intel_wm_method1(clock, cpp, latency);
  1014. large = intel_wm_method2(clock, htotal, width, cpp, latency);
  1015. wm = min(small, large);
  1016. }
  1017. wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
  1018. width, cpp);
  1019. wm = DIV_ROUND_UP(wm, 64) + 2;
  1020. return min_t(int, wm, USHRT_MAX);
  1021. }
  1022. static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
  1023. int level, enum plane_id plane_id, u16 value)
  1024. {
  1025. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1026. bool dirty = false;
  1027. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1028. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1029. dirty |= raw->plane[plane_id] != value;
  1030. raw->plane[plane_id] = value;
  1031. }
  1032. return dirty;
  1033. }
  1034. static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
  1035. int level, u16 value)
  1036. {
  1037. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1038. bool dirty = false;
  1039. /* NORMAL level doesn't have an FBC watermark */
  1040. level = max(level, G4X_WM_LEVEL_SR);
  1041. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1042. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1043. dirty |= raw->fbc != value;
  1044. raw->fbc = value;
  1045. }
  1046. return dirty;
  1047. }
  1048. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1049. const struct intel_plane_state *pstate,
  1050. uint32_t pri_val);
  1051. static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
  1052. const struct intel_plane_state *plane_state)
  1053. {
  1054. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1055. int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
  1056. enum plane_id plane_id = plane->id;
  1057. bool dirty = false;
  1058. int level;
  1059. if (!intel_wm_plane_visible(crtc_state, plane_state)) {
  1060. dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
  1061. if (plane_id == PLANE_PRIMARY)
  1062. dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
  1063. goto out;
  1064. }
  1065. for (level = 0; level < num_levels; level++) {
  1066. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1067. int wm, max_wm;
  1068. wm = g4x_compute_wm(crtc_state, plane_state, level);
  1069. max_wm = g4x_plane_fifo_size(plane_id, level);
  1070. if (wm > max_wm)
  1071. break;
  1072. dirty |= raw->plane[plane_id] != wm;
  1073. raw->plane[plane_id] = wm;
  1074. if (plane_id != PLANE_PRIMARY ||
  1075. level == G4X_WM_LEVEL_NORMAL)
  1076. continue;
  1077. wm = ilk_compute_fbc_wm(crtc_state, plane_state,
  1078. raw->plane[plane_id]);
  1079. max_wm = g4x_fbc_fifo_size(level);
  1080. /*
  1081. * FBC wm is not mandatory as we
  1082. * can always just disable its use.
  1083. */
  1084. if (wm > max_wm)
  1085. wm = USHRT_MAX;
  1086. dirty |= raw->fbc != wm;
  1087. raw->fbc = wm;
  1088. }
  1089. /* mark watermarks as invalid */
  1090. dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
  1091. if (plane_id == PLANE_PRIMARY)
  1092. dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
  1093. out:
  1094. if (dirty) {
  1095. DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
  1096. plane->base.name,
  1097. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
  1098. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
  1099. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
  1100. if (plane_id == PLANE_PRIMARY)
  1101. DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
  1102. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
  1103. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
  1104. }
  1105. return dirty;
  1106. }
  1107. static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1108. enum plane_id plane_id, int level)
  1109. {
  1110. const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1111. return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
  1112. }
  1113. static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1114. int level)
  1115. {
  1116. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1117. if (level > dev_priv->wm.max_level)
  1118. return false;
  1119. return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
  1120. g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
  1121. g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
  1122. }
  1123. /* mark all levels starting from 'level' as invalid */
  1124. static void g4x_invalidate_wms(struct intel_crtc *crtc,
  1125. struct g4x_wm_state *wm_state, int level)
  1126. {
  1127. if (level <= G4X_WM_LEVEL_NORMAL) {
  1128. enum plane_id plane_id;
  1129. for_each_plane_id_on_crtc(crtc, plane_id)
  1130. wm_state->wm.plane[plane_id] = USHRT_MAX;
  1131. }
  1132. if (level <= G4X_WM_LEVEL_SR) {
  1133. wm_state->cxsr = false;
  1134. wm_state->sr.cursor = USHRT_MAX;
  1135. wm_state->sr.plane = USHRT_MAX;
  1136. wm_state->sr.fbc = USHRT_MAX;
  1137. }
  1138. if (level <= G4X_WM_LEVEL_HPLL) {
  1139. wm_state->hpll_en = false;
  1140. wm_state->hpll.cursor = USHRT_MAX;
  1141. wm_state->hpll.plane = USHRT_MAX;
  1142. wm_state->hpll.fbc = USHRT_MAX;
  1143. }
  1144. }
  1145. static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
  1146. {
  1147. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1148. struct intel_atomic_state *state =
  1149. to_intel_atomic_state(crtc_state->base.state);
  1150. struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
  1151. int num_active_planes = hweight32(crtc_state->active_planes &
  1152. ~BIT(PLANE_CURSOR));
  1153. const struct g4x_pipe_wm *raw;
  1154. struct intel_plane_state *plane_state;
  1155. struct intel_plane *plane;
  1156. enum plane_id plane_id;
  1157. int i, level;
  1158. unsigned int dirty = 0;
  1159. for_each_intel_plane_in_state(state, plane, plane_state, i) {
  1160. const struct intel_plane_state *old_plane_state =
  1161. to_intel_plane_state(plane->base.state);
  1162. if (plane_state->base.crtc != &crtc->base &&
  1163. old_plane_state->base.crtc != &crtc->base)
  1164. continue;
  1165. if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
  1166. dirty |= BIT(plane->id);
  1167. }
  1168. if (!dirty)
  1169. return 0;
  1170. level = G4X_WM_LEVEL_NORMAL;
  1171. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1172. goto out;
  1173. raw = &crtc_state->wm.g4x.raw[level];
  1174. for_each_plane_id_on_crtc(crtc, plane_id)
  1175. wm_state->wm.plane[plane_id] = raw->plane[plane_id];
  1176. level = G4X_WM_LEVEL_SR;
  1177. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1178. goto out;
  1179. raw = &crtc_state->wm.g4x.raw[level];
  1180. wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
  1181. wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
  1182. wm_state->sr.fbc = raw->fbc;
  1183. wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
  1184. level = G4X_WM_LEVEL_HPLL;
  1185. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1186. goto out;
  1187. raw = &crtc_state->wm.g4x.raw[level];
  1188. wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
  1189. wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
  1190. wm_state->hpll.fbc = raw->fbc;
  1191. wm_state->hpll_en = wm_state->cxsr;
  1192. level++;
  1193. out:
  1194. if (level == G4X_WM_LEVEL_NORMAL)
  1195. return -EINVAL;
  1196. /* invalidate the higher levels */
  1197. g4x_invalidate_wms(crtc, wm_state, level);
  1198. /*
  1199. * Determine if the FBC watermark(s) can be used. IF
  1200. * this isn't the case we prefer to disable the FBC
  1201. ( watermark(s) rather than disable the SR/HPLL
  1202. * level(s) entirely.
  1203. */
  1204. wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
  1205. if (level >= G4X_WM_LEVEL_SR &&
  1206. wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
  1207. wm_state->fbc_en = false;
  1208. else if (level >= G4X_WM_LEVEL_HPLL &&
  1209. wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
  1210. wm_state->fbc_en = false;
  1211. return 0;
  1212. }
  1213. static int g4x_compute_intermediate_wm(struct drm_device *dev,
  1214. struct intel_crtc *crtc,
  1215. struct intel_crtc_state *crtc_state)
  1216. {
  1217. struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
  1218. const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
  1219. const struct g4x_wm_state *active = &crtc->wm.active.g4x;
  1220. enum plane_id plane_id;
  1221. intermediate->cxsr = optimal->cxsr && active->cxsr &&
  1222. !crtc_state->disable_cxsr;
  1223. intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
  1224. !crtc_state->disable_cxsr;
  1225. intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
  1226. for_each_plane_id_on_crtc(crtc, plane_id) {
  1227. intermediate->wm.plane[plane_id] =
  1228. max(optimal->wm.plane[plane_id],
  1229. active->wm.plane[plane_id]);
  1230. WARN_ON(intermediate->wm.plane[plane_id] >
  1231. g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
  1232. }
  1233. intermediate->sr.plane = max(optimal->sr.plane,
  1234. active->sr.plane);
  1235. intermediate->sr.cursor = max(optimal->sr.cursor,
  1236. active->sr.cursor);
  1237. intermediate->sr.fbc = max(optimal->sr.fbc,
  1238. active->sr.fbc);
  1239. intermediate->hpll.plane = max(optimal->hpll.plane,
  1240. active->hpll.plane);
  1241. intermediate->hpll.cursor = max(optimal->hpll.cursor,
  1242. active->hpll.cursor);
  1243. intermediate->hpll.fbc = max(optimal->hpll.fbc,
  1244. active->hpll.fbc);
  1245. WARN_ON((intermediate->sr.plane >
  1246. g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
  1247. intermediate->sr.cursor >
  1248. g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
  1249. intermediate->cxsr);
  1250. WARN_ON((intermediate->sr.plane >
  1251. g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
  1252. intermediate->sr.cursor >
  1253. g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
  1254. intermediate->hpll_en);
  1255. WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
  1256. intermediate->fbc_en && intermediate->cxsr);
  1257. WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
  1258. intermediate->fbc_en && intermediate->hpll_en);
  1259. /*
  1260. * If our intermediate WM are identical to the final WM, then we can
  1261. * omit the post-vblank programming; only update if it's different.
  1262. */
  1263. if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
  1264. crtc_state->wm.need_postvbl_update = true;
  1265. return 0;
  1266. }
  1267. static void g4x_merge_wm(struct drm_i915_private *dev_priv,
  1268. struct g4x_wm_values *wm)
  1269. {
  1270. struct intel_crtc *crtc;
  1271. int num_active_crtcs = 0;
  1272. wm->cxsr = true;
  1273. wm->hpll_en = true;
  1274. wm->fbc_en = true;
  1275. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1276. const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
  1277. if (!crtc->active)
  1278. continue;
  1279. if (!wm_state->cxsr)
  1280. wm->cxsr = false;
  1281. if (!wm_state->hpll_en)
  1282. wm->hpll_en = false;
  1283. if (!wm_state->fbc_en)
  1284. wm->fbc_en = false;
  1285. num_active_crtcs++;
  1286. }
  1287. if (num_active_crtcs != 1) {
  1288. wm->cxsr = false;
  1289. wm->hpll_en = false;
  1290. wm->fbc_en = false;
  1291. }
  1292. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1293. const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
  1294. enum pipe pipe = crtc->pipe;
  1295. wm->pipe[pipe] = wm_state->wm;
  1296. if (crtc->active && wm->cxsr)
  1297. wm->sr = wm_state->sr;
  1298. if (crtc->active && wm->hpll_en)
  1299. wm->hpll = wm_state->hpll;
  1300. }
  1301. }
  1302. static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
  1303. {
  1304. struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
  1305. struct g4x_wm_values new_wm = {};
  1306. g4x_merge_wm(dev_priv, &new_wm);
  1307. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
  1308. return;
  1309. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1310. _intel_set_memory_cxsr(dev_priv, false);
  1311. g4x_write_wm_values(dev_priv, &new_wm);
  1312. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1313. _intel_set_memory_cxsr(dev_priv, true);
  1314. *old_wm = new_wm;
  1315. }
  1316. static void g4x_initial_watermarks(struct intel_atomic_state *state,
  1317. struct intel_crtc_state *crtc_state)
  1318. {
  1319. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1320. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1321. mutex_lock(&dev_priv->wm.wm_mutex);
  1322. crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
  1323. g4x_program_watermarks(dev_priv);
  1324. mutex_unlock(&dev_priv->wm.wm_mutex);
  1325. }
  1326. static void g4x_optimize_watermarks(struct intel_atomic_state *state,
  1327. struct intel_crtc_state *crtc_state)
  1328. {
  1329. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1330. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  1331. if (!crtc_state->wm.need_postvbl_update)
  1332. return;
  1333. mutex_lock(&dev_priv->wm.wm_mutex);
  1334. intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
  1335. g4x_program_watermarks(dev_priv);
  1336. mutex_unlock(&dev_priv->wm.wm_mutex);
  1337. }
  1338. /* latency must be in 0.1us units. */
  1339. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  1340. unsigned int htotal,
  1341. unsigned int width,
  1342. unsigned int cpp,
  1343. unsigned int latency)
  1344. {
  1345. unsigned int ret;
  1346. ret = intel_wm_method2(pixel_rate, htotal,
  1347. width, cpp, latency);
  1348. ret = DIV_ROUND_UP(ret, 64);
  1349. return ret;
  1350. }
  1351. static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
  1352. {
  1353. /* all latencies in usec */
  1354. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  1355. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  1356. if (IS_CHERRYVIEW(dev_priv)) {
  1357. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  1358. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  1359. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  1360. }
  1361. }
  1362. static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
  1363. const struct intel_plane_state *plane_state,
  1364. int level)
  1365. {
  1366. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1367. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  1368. const struct drm_display_mode *adjusted_mode =
  1369. &crtc_state->base.adjusted_mode;
  1370. int clock, htotal, cpp, width, wm;
  1371. if (dev_priv->wm.pri_latency[level] == 0)
  1372. return USHRT_MAX;
  1373. if (!intel_wm_plane_visible(crtc_state, plane_state))
  1374. return 0;
  1375. cpp = plane_state->base.fb->format->cpp[0];
  1376. clock = adjusted_mode->crtc_clock;
  1377. htotal = adjusted_mode->crtc_htotal;
  1378. width = crtc_state->pipe_src_w;
  1379. if (plane->id == PLANE_CURSOR) {
  1380. /*
  1381. * FIXME the formula gives values that are
  1382. * too big for the cursor FIFO, and hence we
  1383. * would never be able to use cursors. For
  1384. * now just hardcode the watermark.
  1385. */
  1386. wm = 63;
  1387. } else {
  1388. wm = vlv_wm_method2(clock, htotal, width, cpp,
  1389. dev_priv->wm.pri_latency[level] * 10);
  1390. }
  1391. return min_t(int, wm, USHRT_MAX);
  1392. }
  1393. static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
  1394. {
  1395. return (active_planes & (BIT(PLANE_SPRITE0) |
  1396. BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
  1397. }
  1398. static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
  1399. {
  1400. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1401. const struct g4x_pipe_wm *raw =
  1402. &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
  1403. struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
  1404. unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
  1405. int num_active_planes = hweight32(active_planes);
  1406. const int fifo_size = 511;
  1407. int fifo_extra, fifo_left = fifo_size;
  1408. int sprite0_fifo_extra = 0;
  1409. unsigned int total_rate;
  1410. enum plane_id plane_id;
  1411. /*
  1412. * When enabling sprite0 after sprite1 has already been enabled
  1413. * we tend to get an underrun unless sprite0 already has some
  1414. * FIFO space allcoated. Hence we always allocate at least one
  1415. * cacheline for sprite0 whenever sprite1 is enabled.
  1416. *
  1417. * All other plane enable sequences appear immune to this problem.
  1418. */
  1419. if (vlv_need_sprite0_fifo_workaround(active_planes))
  1420. sprite0_fifo_extra = 1;
  1421. total_rate = raw->plane[PLANE_PRIMARY] +
  1422. raw->plane[PLANE_SPRITE0] +
  1423. raw->plane[PLANE_SPRITE1] +
  1424. sprite0_fifo_extra;
  1425. if (total_rate > fifo_size)
  1426. return -EINVAL;
  1427. if (total_rate == 0)
  1428. total_rate = 1;
  1429. for_each_plane_id_on_crtc(crtc, plane_id) {
  1430. unsigned int rate;
  1431. if ((active_planes & BIT(plane_id)) == 0) {
  1432. fifo_state->plane[plane_id] = 0;
  1433. continue;
  1434. }
  1435. rate = raw->plane[plane_id];
  1436. fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
  1437. fifo_left -= fifo_state->plane[plane_id];
  1438. }
  1439. fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
  1440. fifo_left -= sprite0_fifo_extra;
  1441. fifo_state->plane[PLANE_CURSOR] = 63;
  1442. fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
  1443. /* spread the remainder evenly */
  1444. for_each_plane_id_on_crtc(crtc, plane_id) {
  1445. int plane_extra;
  1446. if (fifo_left == 0)
  1447. break;
  1448. if ((active_planes & BIT(plane_id)) == 0)
  1449. continue;
  1450. plane_extra = min(fifo_extra, fifo_left);
  1451. fifo_state->plane[plane_id] += plane_extra;
  1452. fifo_left -= plane_extra;
  1453. }
  1454. WARN_ON(active_planes != 0 && fifo_left != 0);
  1455. /* give it all to the first plane if none are active */
  1456. if (active_planes == 0) {
  1457. WARN_ON(fifo_left != fifo_size);
  1458. fifo_state->plane[PLANE_PRIMARY] = fifo_left;
  1459. }
  1460. return 0;
  1461. }
  1462. /* mark all levels starting from 'level' as invalid */
  1463. static void vlv_invalidate_wms(struct intel_crtc *crtc,
  1464. struct vlv_wm_state *wm_state, int level)
  1465. {
  1466. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1467. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1468. enum plane_id plane_id;
  1469. for_each_plane_id_on_crtc(crtc, plane_id)
  1470. wm_state->wm[level].plane[plane_id] = USHRT_MAX;
  1471. wm_state->sr[level].cursor = USHRT_MAX;
  1472. wm_state->sr[level].plane = USHRT_MAX;
  1473. }
  1474. }
  1475. static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
  1476. {
  1477. if (wm > fifo_size)
  1478. return USHRT_MAX;
  1479. else
  1480. return fifo_size - wm;
  1481. }
  1482. /*
  1483. * Starting from 'level' set all higher
  1484. * levels to 'value' in the "raw" watermarks.
  1485. */
  1486. static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
  1487. int level, enum plane_id plane_id, u16 value)
  1488. {
  1489. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1490. int num_levels = intel_wm_num_levels(dev_priv);
  1491. bool dirty = false;
  1492. for (; level < num_levels; level++) {
  1493. struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1494. dirty |= raw->plane[plane_id] != value;
  1495. raw->plane[plane_id] = value;
  1496. }
  1497. return dirty;
  1498. }
  1499. static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
  1500. const struct intel_plane_state *plane_state)
  1501. {
  1502. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1503. enum plane_id plane_id = plane->id;
  1504. int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
  1505. int level;
  1506. bool dirty = false;
  1507. if (!intel_wm_plane_visible(crtc_state, plane_state)) {
  1508. dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
  1509. goto out;
  1510. }
  1511. for (level = 0; level < num_levels; level++) {
  1512. struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1513. int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
  1514. int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
  1515. if (wm > max_wm)
  1516. break;
  1517. dirty |= raw->plane[plane_id] != wm;
  1518. raw->plane[plane_id] = wm;
  1519. }
  1520. /* mark all higher levels as invalid */
  1521. dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
  1522. out:
  1523. if (dirty)
  1524. DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
  1525. plane->base.name,
  1526. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
  1527. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
  1528. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
  1529. return dirty;
  1530. }
  1531. static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1532. enum plane_id plane_id, int level)
  1533. {
  1534. const struct g4x_pipe_wm *raw =
  1535. &crtc_state->wm.vlv.raw[level];
  1536. const struct vlv_fifo_state *fifo_state =
  1537. &crtc_state->wm.vlv.fifo_state;
  1538. return raw->plane[plane_id] <= fifo_state->plane[plane_id];
  1539. }
  1540. static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
  1541. {
  1542. return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
  1543. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
  1544. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
  1545. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
  1546. }
  1547. static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
  1548. {
  1549. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1550. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1551. struct intel_atomic_state *state =
  1552. to_intel_atomic_state(crtc_state->base.state);
  1553. struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
  1554. const struct vlv_fifo_state *fifo_state =
  1555. &crtc_state->wm.vlv.fifo_state;
  1556. int num_active_planes = hweight32(crtc_state->active_planes &
  1557. ~BIT(PLANE_CURSOR));
  1558. bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
  1559. struct intel_plane_state *plane_state;
  1560. struct intel_plane *plane;
  1561. enum plane_id plane_id;
  1562. int level, ret, i;
  1563. unsigned int dirty = 0;
  1564. for_each_intel_plane_in_state(state, plane, plane_state, i) {
  1565. const struct intel_plane_state *old_plane_state =
  1566. to_intel_plane_state(plane->base.state);
  1567. if (plane_state->base.crtc != &crtc->base &&
  1568. old_plane_state->base.crtc != &crtc->base)
  1569. continue;
  1570. if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
  1571. dirty |= BIT(plane->id);
  1572. }
  1573. /*
  1574. * DSPARB registers may have been reset due to the
  1575. * power well being turned off. Make sure we restore
  1576. * them to a consistent state even if no primary/sprite
  1577. * planes are initially active.
  1578. */
  1579. if (needs_modeset)
  1580. crtc_state->fifo_changed = true;
  1581. if (!dirty)
  1582. return 0;
  1583. /* cursor changes don't warrant a FIFO recompute */
  1584. if (dirty & ~BIT(PLANE_CURSOR)) {
  1585. const struct intel_crtc_state *old_crtc_state =
  1586. to_intel_crtc_state(crtc->base.state);
  1587. const struct vlv_fifo_state *old_fifo_state =
  1588. &old_crtc_state->wm.vlv.fifo_state;
  1589. ret = vlv_compute_fifo(crtc_state);
  1590. if (ret)
  1591. return ret;
  1592. if (needs_modeset ||
  1593. memcmp(old_fifo_state, fifo_state,
  1594. sizeof(*fifo_state)) != 0)
  1595. crtc_state->fifo_changed = true;
  1596. }
  1597. /* initially allow all levels */
  1598. wm_state->num_levels = intel_wm_num_levels(dev_priv);
  1599. /*
  1600. * Note that enabling cxsr with no primary/sprite planes
  1601. * enabled can wedge the pipe. Hence we only allow cxsr
  1602. * with exactly one enabled primary/sprite plane.
  1603. */
  1604. wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
  1605. for (level = 0; level < wm_state->num_levels; level++) {
  1606. const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1607. const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  1608. if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
  1609. break;
  1610. for_each_plane_id_on_crtc(crtc, plane_id) {
  1611. wm_state->wm[level].plane[plane_id] =
  1612. vlv_invert_wm_value(raw->plane[plane_id],
  1613. fifo_state->plane[plane_id]);
  1614. }
  1615. wm_state->sr[level].plane =
  1616. vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
  1617. raw->plane[PLANE_SPRITE0],
  1618. raw->plane[PLANE_SPRITE1]),
  1619. sr_fifo_size);
  1620. wm_state->sr[level].cursor =
  1621. vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
  1622. 63);
  1623. }
  1624. if (level == 0)
  1625. return -EINVAL;
  1626. /* limit to only levels we can actually handle */
  1627. wm_state->num_levels = level;
  1628. /* invalidate the higher levels */
  1629. vlv_invalidate_wms(crtc, wm_state, level);
  1630. return 0;
  1631. }
  1632. #define VLV_FIFO(plane, value) \
  1633. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1634. static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
  1635. struct intel_crtc_state *crtc_state)
  1636. {
  1637. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1638. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1639. const struct vlv_fifo_state *fifo_state =
  1640. &crtc_state->wm.vlv.fifo_state;
  1641. int sprite0_start, sprite1_start, fifo_size;
  1642. if (!crtc_state->fifo_changed)
  1643. return;
  1644. sprite0_start = fifo_state->plane[PLANE_PRIMARY];
  1645. sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
  1646. fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
  1647. WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
  1648. WARN_ON(fifo_size != 511);
  1649. trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
  1650. /*
  1651. * uncore.lock serves a double purpose here. It allows us to
  1652. * use the less expensive I915_{READ,WRITE}_FW() functions, and
  1653. * it protects the DSPARB registers from getting clobbered by
  1654. * parallel updates from multiple pipes.
  1655. *
  1656. * intel_pipe_update_start() has already disabled interrupts
  1657. * for us, so a plain spin_lock() is sufficient here.
  1658. */
  1659. spin_lock(&dev_priv->uncore.lock);
  1660. switch (crtc->pipe) {
  1661. uint32_t dsparb, dsparb2, dsparb3;
  1662. case PIPE_A:
  1663. dsparb = I915_READ_FW(DSPARB);
  1664. dsparb2 = I915_READ_FW(DSPARB2);
  1665. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1666. VLV_FIFO(SPRITEB, 0xff));
  1667. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1668. VLV_FIFO(SPRITEB, sprite1_start));
  1669. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1670. VLV_FIFO(SPRITEB_HI, 0x1));
  1671. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1672. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1673. I915_WRITE_FW(DSPARB, dsparb);
  1674. I915_WRITE_FW(DSPARB2, dsparb2);
  1675. break;
  1676. case PIPE_B:
  1677. dsparb = I915_READ_FW(DSPARB);
  1678. dsparb2 = I915_READ_FW(DSPARB2);
  1679. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1680. VLV_FIFO(SPRITED, 0xff));
  1681. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1682. VLV_FIFO(SPRITED, sprite1_start));
  1683. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1684. VLV_FIFO(SPRITED_HI, 0xff));
  1685. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1686. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1687. I915_WRITE_FW(DSPARB, dsparb);
  1688. I915_WRITE_FW(DSPARB2, dsparb2);
  1689. break;
  1690. case PIPE_C:
  1691. dsparb3 = I915_READ_FW(DSPARB3);
  1692. dsparb2 = I915_READ_FW(DSPARB2);
  1693. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1694. VLV_FIFO(SPRITEF, 0xff));
  1695. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1696. VLV_FIFO(SPRITEF, sprite1_start));
  1697. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1698. VLV_FIFO(SPRITEF_HI, 0xff));
  1699. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1700. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1701. I915_WRITE_FW(DSPARB3, dsparb3);
  1702. I915_WRITE_FW(DSPARB2, dsparb2);
  1703. break;
  1704. default:
  1705. break;
  1706. }
  1707. POSTING_READ_FW(DSPARB);
  1708. spin_unlock(&dev_priv->uncore.lock);
  1709. }
  1710. #undef VLV_FIFO
  1711. static int vlv_compute_intermediate_wm(struct drm_device *dev,
  1712. struct intel_crtc *crtc,
  1713. struct intel_crtc_state *crtc_state)
  1714. {
  1715. struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
  1716. const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
  1717. const struct vlv_wm_state *active = &crtc->wm.active.vlv;
  1718. int level;
  1719. intermediate->num_levels = min(optimal->num_levels, active->num_levels);
  1720. intermediate->cxsr = optimal->cxsr && active->cxsr &&
  1721. !crtc_state->disable_cxsr;
  1722. for (level = 0; level < intermediate->num_levels; level++) {
  1723. enum plane_id plane_id;
  1724. for_each_plane_id_on_crtc(crtc, plane_id) {
  1725. intermediate->wm[level].plane[plane_id] =
  1726. min(optimal->wm[level].plane[plane_id],
  1727. active->wm[level].plane[plane_id]);
  1728. }
  1729. intermediate->sr[level].plane = min(optimal->sr[level].plane,
  1730. active->sr[level].plane);
  1731. intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
  1732. active->sr[level].cursor);
  1733. }
  1734. vlv_invalidate_wms(crtc, intermediate, level);
  1735. /*
  1736. * If our intermediate WM are identical to the final WM, then we can
  1737. * omit the post-vblank programming; only update if it's different.
  1738. */
  1739. if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
  1740. crtc_state->wm.need_postvbl_update = true;
  1741. return 0;
  1742. }
  1743. static void vlv_merge_wm(struct drm_i915_private *dev_priv,
  1744. struct vlv_wm_values *wm)
  1745. {
  1746. struct intel_crtc *crtc;
  1747. int num_active_crtcs = 0;
  1748. wm->level = dev_priv->wm.max_level;
  1749. wm->cxsr = true;
  1750. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1751. const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
  1752. if (!crtc->active)
  1753. continue;
  1754. if (!wm_state->cxsr)
  1755. wm->cxsr = false;
  1756. num_active_crtcs++;
  1757. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1758. }
  1759. if (num_active_crtcs != 1)
  1760. wm->cxsr = false;
  1761. if (num_active_crtcs > 1)
  1762. wm->level = VLV_WM_LEVEL_PM2;
  1763. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1764. const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
  1765. enum pipe pipe = crtc->pipe;
  1766. wm->pipe[pipe] = wm_state->wm[wm->level];
  1767. if (crtc->active && wm->cxsr)
  1768. wm->sr = wm_state->sr[wm->level];
  1769. wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
  1770. wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
  1771. wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
  1772. wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
  1773. }
  1774. }
  1775. static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
  1776. {
  1777. struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
  1778. struct vlv_wm_values new_wm = {};
  1779. vlv_merge_wm(dev_priv, &new_wm);
  1780. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
  1781. return;
  1782. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1783. chv_set_memory_dvfs(dev_priv, false);
  1784. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1785. chv_set_memory_pm5(dev_priv, false);
  1786. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1787. _intel_set_memory_cxsr(dev_priv, false);
  1788. vlv_write_wm_values(dev_priv, &new_wm);
  1789. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1790. _intel_set_memory_cxsr(dev_priv, true);
  1791. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1792. chv_set_memory_pm5(dev_priv, true);
  1793. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1794. chv_set_memory_dvfs(dev_priv, true);
  1795. *old_wm = new_wm;
  1796. }
  1797. static void vlv_initial_watermarks(struct intel_atomic_state *state,
  1798. struct intel_crtc_state *crtc_state)
  1799. {
  1800. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1801. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1802. mutex_lock(&dev_priv->wm.wm_mutex);
  1803. crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
  1804. vlv_program_watermarks(dev_priv);
  1805. mutex_unlock(&dev_priv->wm.wm_mutex);
  1806. }
  1807. static void vlv_optimize_watermarks(struct intel_atomic_state *state,
  1808. struct intel_crtc_state *crtc_state)
  1809. {
  1810. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1811. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  1812. if (!crtc_state->wm.need_postvbl_update)
  1813. return;
  1814. mutex_lock(&dev_priv->wm.wm_mutex);
  1815. intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
  1816. vlv_program_watermarks(dev_priv);
  1817. mutex_unlock(&dev_priv->wm.wm_mutex);
  1818. }
  1819. static void i965_update_wm(struct intel_crtc *unused_crtc)
  1820. {
  1821. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1822. struct intel_crtc *crtc;
  1823. int srwm = 1;
  1824. int cursor_sr = 16;
  1825. bool cxsr_enabled;
  1826. /* Calc sr entries for one plane configs */
  1827. crtc = single_enabled_crtc(dev_priv);
  1828. if (crtc) {
  1829. /* self-refresh has much higher latency */
  1830. static const int sr_latency_ns = 12000;
  1831. const struct drm_display_mode *adjusted_mode =
  1832. &crtc->config->base.adjusted_mode;
  1833. const struct drm_framebuffer *fb =
  1834. crtc->base.primary->state->fb;
  1835. int clock = adjusted_mode->crtc_clock;
  1836. int htotal = adjusted_mode->crtc_htotal;
  1837. int hdisplay = crtc->config->pipe_src_w;
  1838. int cpp = fb->format->cpp[0];
  1839. int entries;
  1840. entries = intel_wm_method2(clock, htotal,
  1841. hdisplay, cpp, sr_latency_ns / 100);
  1842. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1843. srwm = I965_FIFO_SIZE - entries;
  1844. if (srwm < 0)
  1845. srwm = 1;
  1846. srwm &= 0x1ff;
  1847. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1848. entries, srwm);
  1849. entries = intel_wm_method2(clock, htotal,
  1850. crtc->base.cursor->state->crtc_w, 4,
  1851. sr_latency_ns / 100);
  1852. entries = DIV_ROUND_UP(entries,
  1853. i965_cursor_wm_info.cacheline_size) +
  1854. i965_cursor_wm_info.guard_size;
  1855. cursor_sr = i965_cursor_wm_info.fifo_size - entries;
  1856. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1857. cursor_sr = i965_cursor_wm_info.max_wm;
  1858. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1859. "cursor %d\n", srwm, cursor_sr);
  1860. cxsr_enabled = true;
  1861. } else {
  1862. cxsr_enabled = false;
  1863. /* Turn off self refresh if both pipes are enabled */
  1864. intel_set_memory_cxsr(dev_priv, false);
  1865. }
  1866. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1867. srwm);
  1868. /* 965 has limitations... */
  1869. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1870. FW_WM(8, CURSORB) |
  1871. FW_WM(8, PLANEB) |
  1872. FW_WM(8, PLANEA));
  1873. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1874. FW_WM(8, PLANEC_OLD));
  1875. /* update cursor SR watermark */
  1876. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1877. if (cxsr_enabled)
  1878. intel_set_memory_cxsr(dev_priv, true);
  1879. }
  1880. #undef FW_WM
  1881. static void i9xx_update_wm(struct intel_crtc *unused_crtc)
  1882. {
  1883. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1884. const struct intel_watermark_params *wm_info;
  1885. uint32_t fwater_lo;
  1886. uint32_t fwater_hi;
  1887. int cwm, srwm = 1;
  1888. int fifo_size;
  1889. int planea_wm, planeb_wm;
  1890. struct intel_crtc *crtc, *enabled = NULL;
  1891. if (IS_I945GM(dev_priv))
  1892. wm_info = &i945_wm_info;
  1893. else if (!IS_GEN2(dev_priv))
  1894. wm_info = &i915_wm_info;
  1895. else
  1896. wm_info = &i830_a_wm_info;
  1897. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
  1898. crtc = intel_get_crtc_for_plane(dev_priv, 0);
  1899. if (intel_crtc_active(crtc)) {
  1900. const struct drm_display_mode *adjusted_mode =
  1901. &crtc->config->base.adjusted_mode;
  1902. const struct drm_framebuffer *fb =
  1903. crtc->base.primary->state->fb;
  1904. int cpp;
  1905. if (IS_GEN2(dev_priv))
  1906. cpp = 4;
  1907. else
  1908. cpp = fb->format->cpp[0];
  1909. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1910. wm_info, fifo_size, cpp,
  1911. pessimal_latency_ns);
  1912. enabled = crtc;
  1913. } else {
  1914. planea_wm = fifo_size - wm_info->guard_size;
  1915. if (planea_wm > (long)wm_info->max_wm)
  1916. planea_wm = wm_info->max_wm;
  1917. }
  1918. if (IS_GEN2(dev_priv))
  1919. wm_info = &i830_bc_wm_info;
  1920. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
  1921. crtc = intel_get_crtc_for_plane(dev_priv, 1);
  1922. if (intel_crtc_active(crtc)) {
  1923. const struct drm_display_mode *adjusted_mode =
  1924. &crtc->config->base.adjusted_mode;
  1925. const struct drm_framebuffer *fb =
  1926. crtc->base.primary->state->fb;
  1927. int cpp;
  1928. if (IS_GEN2(dev_priv))
  1929. cpp = 4;
  1930. else
  1931. cpp = fb->format->cpp[0];
  1932. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1933. wm_info, fifo_size, cpp,
  1934. pessimal_latency_ns);
  1935. if (enabled == NULL)
  1936. enabled = crtc;
  1937. else
  1938. enabled = NULL;
  1939. } else {
  1940. planeb_wm = fifo_size - wm_info->guard_size;
  1941. if (planeb_wm > (long)wm_info->max_wm)
  1942. planeb_wm = wm_info->max_wm;
  1943. }
  1944. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1945. if (IS_I915GM(dev_priv) && enabled) {
  1946. struct drm_i915_gem_object *obj;
  1947. obj = intel_fb_obj(enabled->base.primary->state->fb);
  1948. /* self-refresh seems busted with untiled */
  1949. if (!i915_gem_object_is_tiled(obj))
  1950. enabled = NULL;
  1951. }
  1952. /*
  1953. * Overlay gets an aggressive default since video jitter is bad.
  1954. */
  1955. cwm = 2;
  1956. /* Play safe and disable self-refresh before adjusting watermarks. */
  1957. intel_set_memory_cxsr(dev_priv, false);
  1958. /* Calc sr entries for one plane configs */
  1959. if (HAS_FW_BLC(dev_priv) && enabled) {
  1960. /* self-refresh has much higher latency */
  1961. static const int sr_latency_ns = 6000;
  1962. const struct drm_display_mode *adjusted_mode =
  1963. &enabled->config->base.adjusted_mode;
  1964. const struct drm_framebuffer *fb =
  1965. enabled->base.primary->state->fb;
  1966. int clock = adjusted_mode->crtc_clock;
  1967. int htotal = adjusted_mode->crtc_htotal;
  1968. int hdisplay = enabled->config->pipe_src_w;
  1969. int cpp;
  1970. int entries;
  1971. if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
  1972. cpp = 4;
  1973. else
  1974. cpp = fb->format->cpp[0];
  1975. entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
  1976. sr_latency_ns / 100);
  1977. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1978. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1979. srwm = wm_info->fifo_size - entries;
  1980. if (srwm < 0)
  1981. srwm = 1;
  1982. if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1983. I915_WRITE(FW_BLC_SELF,
  1984. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1985. else
  1986. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1987. }
  1988. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1989. planea_wm, planeb_wm, cwm, srwm);
  1990. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1991. fwater_hi = (cwm & 0x1f);
  1992. /* Set request length to 8 cachelines per fetch */
  1993. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1994. fwater_hi = fwater_hi | (1 << 8);
  1995. I915_WRITE(FW_BLC, fwater_lo);
  1996. I915_WRITE(FW_BLC2, fwater_hi);
  1997. if (enabled)
  1998. intel_set_memory_cxsr(dev_priv, true);
  1999. }
  2000. static void i845_update_wm(struct intel_crtc *unused_crtc)
  2001. {
  2002. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  2003. struct intel_crtc *crtc;
  2004. const struct drm_display_mode *adjusted_mode;
  2005. uint32_t fwater_lo;
  2006. int planea_wm;
  2007. crtc = single_enabled_crtc(dev_priv);
  2008. if (crtc == NULL)
  2009. return;
  2010. adjusted_mode = &crtc->config->base.adjusted_mode;
  2011. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  2012. &i845_wm_info,
  2013. dev_priv->display.get_fifo_size(dev_priv, 0),
  2014. 4, pessimal_latency_ns);
  2015. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2016. fwater_lo |= (3<<8) | planea_wm;
  2017. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2018. I915_WRITE(FW_BLC, fwater_lo);
  2019. }
  2020. /* latency must be in 0.1us units. */
  2021. static unsigned int ilk_wm_method1(unsigned int pixel_rate,
  2022. unsigned int cpp,
  2023. unsigned int latency)
  2024. {
  2025. unsigned int ret;
  2026. ret = intel_wm_method1(pixel_rate, cpp, latency);
  2027. ret = DIV_ROUND_UP(ret, 64) + 2;
  2028. return ret;
  2029. }
  2030. /* latency must be in 0.1us units. */
  2031. static unsigned int ilk_wm_method2(unsigned int pixel_rate,
  2032. unsigned int htotal,
  2033. unsigned int width,
  2034. unsigned int cpp,
  2035. unsigned int latency)
  2036. {
  2037. unsigned int ret;
  2038. ret = intel_wm_method2(pixel_rate, htotal,
  2039. width, cpp, latency);
  2040. ret = DIV_ROUND_UP(ret, 64) + 2;
  2041. return ret;
  2042. }
  2043. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  2044. uint8_t cpp)
  2045. {
  2046. /*
  2047. * Neither of these should be possible since this function shouldn't be
  2048. * called if the CRTC is off or the plane is invisible. But let's be
  2049. * extra paranoid to avoid a potential divide-by-zero if we screw up
  2050. * elsewhere in the driver.
  2051. */
  2052. if (WARN_ON(!cpp))
  2053. return 0;
  2054. if (WARN_ON(!horiz_pixels))
  2055. return 0;
  2056. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  2057. }
  2058. struct ilk_wm_maximums {
  2059. uint16_t pri;
  2060. uint16_t spr;
  2061. uint16_t cur;
  2062. uint16_t fbc;
  2063. };
  2064. /*
  2065. * For both WM_PIPE and WM_LP.
  2066. * mem_value must be in 0.1us units.
  2067. */
  2068. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  2069. const struct intel_plane_state *pstate,
  2070. uint32_t mem_value,
  2071. bool is_lp)
  2072. {
  2073. uint32_t method1, method2;
  2074. int cpp;
  2075. if (!intel_wm_plane_visible(cstate, pstate))
  2076. return 0;
  2077. cpp = pstate->base.fb->format->cpp[0];
  2078. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  2079. if (!is_lp)
  2080. return method1;
  2081. method2 = ilk_wm_method2(cstate->pixel_rate,
  2082. cstate->base.adjusted_mode.crtc_htotal,
  2083. drm_rect_width(&pstate->base.dst),
  2084. cpp, mem_value);
  2085. return min(method1, method2);
  2086. }
  2087. /*
  2088. * For both WM_PIPE and WM_LP.
  2089. * mem_value must be in 0.1us units.
  2090. */
  2091. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  2092. const struct intel_plane_state *pstate,
  2093. uint32_t mem_value)
  2094. {
  2095. uint32_t method1, method2;
  2096. int cpp;
  2097. if (!intel_wm_plane_visible(cstate, pstate))
  2098. return 0;
  2099. cpp = pstate->base.fb->format->cpp[0];
  2100. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  2101. method2 = ilk_wm_method2(cstate->pixel_rate,
  2102. cstate->base.adjusted_mode.crtc_htotal,
  2103. drm_rect_width(&pstate->base.dst),
  2104. cpp, mem_value);
  2105. return min(method1, method2);
  2106. }
  2107. /*
  2108. * For both WM_PIPE and WM_LP.
  2109. * mem_value must be in 0.1us units.
  2110. */
  2111. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  2112. const struct intel_plane_state *pstate,
  2113. uint32_t mem_value)
  2114. {
  2115. int cpp;
  2116. if (!intel_wm_plane_visible(cstate, pstate))
  2117. return 0;
  2118. cpp = pstate->base.fb->format->cpp[0];
  2119. return ilk_wm_method2(cstate->pixel_rate,
  2120. cstate->base.adjusted_mode.crtc_htotal,
  2121. pstate->base.crtc_w, cpp, mem_value);
  2122. }
  2123. /* Only for WM_LP. */
  2124. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  2125. const struct intel_plane_state *pstate,
  2126. uint32_t pri_val)
  2127. {
  2128. int cpp;
  2129. if (!intel_wm_plane_visible(cstate, pstate))
  2130. return 0;
  2131. cpp = pstate->base.fb->format->cpp[0];
  2132. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
  2133. }
  2134. static unsigned int
  2135. ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
  2136. {
  2137. if (INTEL_GEN(dev_priv) >= 8)
  2138. return 3072;
  2139. else if (INTEL_GEN(dev_priv) >= 7)
  2140. return 768;
  2141. else
  2142. return 512;
  2143. }
  2144. static unsigned int
  2145. ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
  2146. int level, bool is_sprite)
  2147. {
  2148. if (INTEL_GEN(dev_priv) >= 8)
  2149. /* BDW primary/sprite plane watermarks */
  2150. return level == 0 ? 255 : 2047;
  2151. else if (INTEL_GEN(dev_priv) >= 7)
  2152. /* IVB/HSW primary/sprite plane watermarks */
  2153. return level == 0 ? 127 : 1023;
  2154. else if (!is_sprite)
  2155. /* ILK/SNB primary plane watermarks */
  2156. return level == 0 ? 127 : 511;
  2157. else
  2158. /* ILK/SNB sprite plane watermarks */
  2159. return level == 0 ? 63 : 255;
  2160. }
  2161. static unsigned int
  2162. ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
  2163. {
  2164. if (INTEL_GEN(dev_priv) >= 7)
  2165. return level == 0 ? 63 : 255;
  2166. else
  2167. return level == 0 ? 31 : 63;
  2168. }
  2169. static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
  2170. {
  2171. if (INTEL_GEN(dev_priv) >= 8)
  2172. return 31;
  2173. else
  2174. return 15;
  2175. }
  2176. /* Calculate the maximum primary/sprite plane watermark */
  2177. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  2178. int level,
  2179. const struct intel_wm_config *config,
  2180. enum intel_ddb_partitioning ddb_partitioning,
  2181. bool is_sprite)
  2182. {
  2183. struct drm_i915_private *dev_priv = to_i915(dev);
  2184. unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
  2185. /* if sprites aren't enabled, sprites get nothing */
  2186. if (is_sprite && !config->sprites_enabled)
  2187. return 0;
  2188. /* HSW allows LP1+ watermarks even with multiple pipes */
  2189. if (level == 0 || config->num_pipes_active > 1) {
  2190. fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
  2191. /*
  2192. * For some reason the non self refresh
  2193. * FIFO size is only half of the self
  2194. * refresh FIFO size on ILK/SNB.
  2195. */
  2196. if (INTEL_GEN(dev_priv) <= 6)
  2197. fifo_size /= 2;
  2198. }
  2199. if (config->sprites_enabled) {
  2200. /* level 0 is always calculated with 1:1 split */
  2201. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2202. if (is_sprite)
  2203. fifo_size *= 5;
  2204. fifo_size /= 6;
  2205. } else {
  2206. fifo_size /= 2;
  2207. }
  2208. }
  2209. /* clamp to max that the registers can hold */
  2210. return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
  2211. }
  2212. /* Calculate the maximum cursor plane watermark */
  2213. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2214. int level,
  2215. const struct intel_wm_config *config)
  2216. {
  2217. /* HSW LP1+ watermarks w/ multiple pipes */
  2218. if (level > 0 && config->num_pipes_active > 1)
  2219. return 64;
  2220. /* otherwise just report max that registers can hold */
  2221. return ilk_cursor_wm_reg_max(to_i915(dev), level);
  2222. }
  2223. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  2224. int level,
  2225. const struct intel_wm_config *config,
  2226. enum intel_ddb_partitioning ddb_partitioning,
  2227. struct ilk_wm_maximums *max)
  2228. {
  2229. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2230. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2231. max->cur = ilk_cursor_wm_max(dev, level, config);
  2232. max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
  2233. }
  2234. static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
  2235. int level,
  2236. struct ilk_wm_maximums *max)
  2237. {
  2238. max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
  2239. max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
  2240. max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
  2241. max->fbc = ilk_fbc_wm_reg_max(dev_priv);
  2242. }
  2243. static bool ilk_validate_wm_level(int level,
  2244. const struct ilk_wm_maximums *max,
  2245. struct intel_wm_level *result)
  2246. {
  2247. bool ret;
  2248. /* already determined to be invalid? */
  2249. if (!result->enable)
  2250. return false;
  2251. result->enable = result->pri_val <= max->pri &&
  2252. result->spr_val <= max->spr &&
  2253. result->cur_val <= max->cur;
  2254. ret = result->enable;
  2255. /*
  2256. * HACK until we can pre-compute everything,
  2257. * and thus fail gracefully if LP0 watermarks
  2258. * are exceeded...
  2259. */
  2260. if (level == 0 && !result->enable) {
  2261. if (result->pri_val > max->pri)
  2262. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2263. level, result->pri_val, max->pri);
  2264. if (result->spr_val > max->spr)
  2265. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2266. level, result->spr_val, max->spr);
  2267. if (result->cur_val > max->cur)
  2268. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2269. level, result->cur_val, max->cur);
  2270. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2271. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2272. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2273. result->enable = true;
  2274. }
  2275. return ret;
  2276. }
  2277. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  2278. const struct intel_crtc *intel_crtc,
  2279. int level,
  2280. struct intel_crtc_state *cstate,
  2281. struct intel_plane_state *pristate,
  2282. struct intel_plane_state *sprstate,
  2283. struct intel_plane_state *curstate,
  2284. struct intel_wm_level *result)
  2285. {
  2286. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2287. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2288. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2289. /* WM1+ latency values stored in 0.5us units */
  2290. if (level > 0) {
  2291. pri_latency *= 5;
  2292. spr_latency *= 5;
  2293. cur_latency *= 5;
  2294. }
  2295. if (pristate) {
  2296. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  2297. pri_latency, level);
  2298. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  2299. }
  2300. if (sprstate)
  2301. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  2302. if (curstate)
  2303. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  2304. result->enable = true;
  2305. }
  2306. static uint32_t
  2307. hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
  2308. {
  2309. const struct intel_atomic_state *intel_state =
  2310. to_intel_atomic_state(cstate->base.state);
  2311. const struct drm_display_mode *adjusted_mode =
  2312. &cstate->base.adjusted_mode;
  2313. u32 linetime, ips_linetime;
  2314. if (!cstate->base.active)
  2315. return 0;
  2316. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  2317. return 0;
  2318. if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
  2319. return 0;
  2320. /* The WM are computed with base on how long it takes to fill a single
  2321. * row at the given clock rate, multiplied by 8.
  2322. * */
  2323. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2324. adjusted_mode->crtc_clock);
  2325. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2326. intel_state->cdclk.logical.cdclk);
  2327. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2328. PIPE_WM_LINETIME_TIME(linetime);
  2329. }
  2330. static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
  2331. uint16_t wm[8])
  2332. {
  2333. if (INTEL_GEN(dev_priv) >= 9) {
  2334. uint32_t val;
  2335. int ret, i;
  2336. int level, max_level = ilk_wm_max_level(dev_priv);
  2337. /* read the first set of memory latencies[0:3] */
  2338. val = 0; /* data0 to be programmed to 0 for first set */
  2339. mutex_lock(&dev_priv->rps.hw_lock);
  2340. ret = sandybridge_pcode_read(dev_priv,
  2341. GEN9_PCODE_READ_MEM_LATENCY,
  2342. &val);
  2343. mutex_unlock(&dev_priv->rps.hw_lock);
  2344. if (ret) {
  2345. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2346. return;
  2347. }
  2348. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2349. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2350. GEN9_MEM_LATENCY_LEVEL_MASK;
  2351. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2352. GEN9_MEM_LATENCY_LEVEL_MASK;
  2353. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2354. GEN9_MEM_LATENCY_LEVEL_MASK;
  2355. /* read the second set of memory latencies[4:7] */
  2356. val = 1; /* data0 to be programmed to 1 for second set */
  2357. mutex_lock(&dev_priv->rps.hw_lock);
  2358. ret = sandybridge_pcode_read(dev_priv,
  2359. GEN9_PCODE_READ_MEM_LATENCY,
  2360. &val);
  2361. mutex_unlock(&dev_priv->rps.hw_lock);
  2362. if (ret) {
  2363. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2364. return;
  2365. }
  2366. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2367. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2368. GEN9_MEM_LATENCY_LEVEL_MASK;
  2369. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2370. GEN9_MEM_LATENCY_LEVEL_MASK;
  2371. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2372. GEN9_MEM_LATENCY_LEVEL_MASK;
  2373. /*
  2374. * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
  2375. * need to be disabled. We make sure to sanitize the values out
  2376. * of the punit to satisfy this requirement.
  2377. */
  2378. for (level = 1; level <= max_level; level++) {
  2379. if (wm[level] == 0) {
  2380. for (i = level + 1; i <= max_level; i++)
  2381. wm[i] = 0;
  2382. break;
  2383. }
  2384. }
  2385. /*
  2386. * WaWmMemoryReadLatency:skl+,glk
  2387. *
  2388. * punit doesn't take into account the read latency so we need
  2389. * to add 2us to the various latency levels we retrieve from the
  2390. * punit when level 0 response data us 0us.
  2391. */
  2392. if (wm[0] == 0) {
  2393. wm[0] += 2;
  2394. for (level = 1; level <= max_level; level++) {
  2395. if (wm[level] == 0)
  2396. break;
  2397. wm[level] += 2;
  2398. }
  2399. }
  2400. } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2401. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2402. wm[0] = (sskpd >> 56) & 0xFF;
  2403. if (wm[0] == 0)
  2404. wm[0] = sskpd & 0xF;
  2405. wm[1] = (sskpd >> 4) & 0xFF;
  2406. wm[2] = (sskpd >> 12) & 0xFF;
  2407. wm[3] = (sskpd >> 20) & 0x1FF;
  2408. wm[4] = (sskpd >> 32) & 0x1FF;
  2409. } else if (INTEL_GEN(dev_priv) >= 6) {
  2410. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2411. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2412. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2413. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2414. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2415. } else if (INTEL_GEN(dev_priv) >= 5) {
  2416. uint32_t mltr = I915_READ(MLTR_ILK);
  2417. /* ILK primary LP0 latency is 700 ns */
  2418. wm[0] = 7;
  2419. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2420. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2421. } else {
  2422. MISSING_CASE(INTEL_DEVID(dev_priv));
  2423. }
  2424. }
  2425. static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
  2426. uint16_t wm[5])
  2427. {
  2428. /* ILK sprite LP0 latency is 1300 ns */
  2429. if (IS_GEN5(dev_priv))
  2430. wm[0] = 13;
  2431. }
  2432. static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
  2433. uint16_t wm[5])
  2434. {
  2435. /* ILK cursor LP0 latency is 1300 ns */
  2436. if (IS_GEN5(dev_priv))
  2437. wm[0] = 13;
  2438. /* WaDoubleCursorLP3Latency:ivb */
  2439. if (IS_IVYBRIDGE(dev_priv))
  2440. wm[3] *= 2;
  2441. }
  2442. int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
  2443. {
  2444. /* how many WM levels are we expecting */
  2445. if (INTEL_GEN(dev_priv) >= 9)
  2446. return 7;
  2447. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2448. return 4;
  2449. else if (INTEL_GEN(dev_priv) >= 6)
  2450. return 3;
  2451. else
  2452. return 2;
  2453. }
  2454. static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
  2455. const char *name,
  2456. const uint16_t wm[8])
  2457. {
  2458. int level, max_level = ilk_wm_max_level(dev_priv);
  2459. for (level = 0; level <= max_level; level++) {
  2460. unsigned int latency = wm[level];
  2461. if (latency == 0) {
  2462. DRM_ERROR("%s WM%d latency not provided\n",
  2463. name, level);
  2464. continue;
  2465. }
  2466. /*
  2467. * - latencies are in us on gen9.
  2468. * - before then, WM1+ latency values are in 0.5us units
  2469. */
  2470. if (INTEL_GEN(dev_priv) >= 9)
  2471. latency *= 10;
  2472. else if (level > 0)
  2473. latency *= 5;
  2474. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2475. name, level, wm[level],
  2476. latency / 10, latency % 10);
  2477. }
  2478. }
  2479. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  2480. uint16_t wm[5], uint16_t min)
  2481. {
  2482. int level, max_level = ilk_wm_max_level(dev_priv);
  2483. if (wm[0] >= min)
  2484. return false;
  2485. wm[0] = max(wm[0], min);
  2486. for (level = 1; level <= max_level; level++)
  2487. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  2488. return true;
  2489. }
  2490. static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
  2491. {
  2492. bool changed;
  2493. /*
  2494. * The BIOS provided WM memory latency values are often
  2495. * inadequate for high resolution displays. Adjust them.
  2496. */
  2497. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  2498. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  2499. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  2500. if (!changed)
  2501. return;
  2502. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  2503. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  2504. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  2505. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  2506. }
  2507. static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
  2508. {
  2509. intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
  2510. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2511. sizeof(dev_priv->wm.pri_latency));
  2512. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2513. sizeof(dev_priv->wm.pri_latency));
  2514. intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
  2515. intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
  2516. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  2517. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  2518. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  2519. if (IS_GEN6(dev_priv))
  2520. snb_wm_latency_quirk(dev_priv);
  2521. }
  2522. static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
  2523. {
  2524. intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
  2525. intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
  2526. }
  2527. static bool ilk_validate_pipe_wm(struct drm_device *dev,
  2528. struct intel_pipe_wm *pipe_wm)
  2529. {
  2530. /* LP0 watermark maximums depend on this pipe alone */
  2531. const struct intel_wm_config config = {
  2532. .num_pipes_active = 1,
  2533. .sprites_enabled = pipe_wm->sprites_enabled,
  2534. .sprites_scaled = pipe_wm->sprites_scaled,
  2535. };
  2536. struct ilk_wm_maximums max;
  2537. /* LP0 watermarks always use 1/2 DDB partitioning */
  2538. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2539. /* At least LP0 must be valid */
  2540. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
  2541. DRM_DEBUG_KMS("LP0 watermark invalid\n");
  2542. return false;
  2543. }
  2544. return true;
  2545. }
  2546. /* Compute new watermarks for the pipe */
  2547. static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
  2548. {
  2549. struct drm_atomic_state *state = cstate->base.state;
  2550. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2551. struct intel_pipe_wm *pipe_wm;
  2552. struct drm_device *dev = state->dev;
  2553. const struct drm_i915_private *dev_priv = to_i915(dev);
  2554. struct intel_plane *intel_plane;
  2555. struct intel_plane_state *pristate = NULL;
  2556. struct intel_plane_state *sprstate = NULL;
  2557. struct intel_plane_state *curstate = NULL;
  2558. int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
  2559. struct ilk_wm_maximums max;
  2560. pipe_wm = &cstate->wm.ilk.optimal;
  2561. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2562. struct intel_plane_state *ps;
  2563. ps = intel_atomic_get_existing_plane_state(state,
  2564. intel_plane);
  2565. if (!ps)
  2566. continue;
  2567. if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  2568. pristate = ps;
  2569. else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  2570. sprstate = ps;
  2571. else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2572. curstate = ps;
  2573. }
  2574. pipe_wm->pipe_enabled = cstate->base.active;
  2575. if (sprstate) {
  2576. pipe_wm->sprites_enabled = sprstate->base.visible;
  2577. pipe_wm->sprites_scaled = sprstate->base.visible &&
  2578. (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
  2579. drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
  2580. }
  2581. usable_level = max_level;
  2582. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2583. if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
  2584. usable_level = 1;
  2585. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2586. if (pipe_wm->sprites_scaled)
  2587. usable_level = 0;
  2588. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  2589. pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
  2590. memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
  2591. pipe_wm->wm[0] = pipe_wm->raw_wm[0];
  2592. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2593. pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
  2594. if (!ilk_validate_pipe_wm(dev, pipe_wm))
  2595. return -EINVAL;
  2596. ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
  2597. for (level = 1; level <= max_level; level++) {
  2598. struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
  2599. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  2600. pristate, sprstate, curstate, wm);
  2601. /*
  2602. * Disable any watermark level that exceeds the
  2603. * register maximums since such watermarks are
  2604. * always invalid.
  2605. */
  2606. if (level > usable_level)
  2607. continue;
  2608. if (ilk_validate_wm_level(level, &max, wm))
  2609. pipe_wm->wm[level] = *wm;
  2610. else
  2611. usable_level = level;
  2612. }
  2613. return 0;
  2614. }
  2615. /*
  2616. * Build a set of 'intermediate' watermark values that satisfy both the old
  2617. * state and the new state. These can be programmed to the hardware
  2618. * immediately.
  2619. */
  2620. static int ilk_compute_intermediate_wm(struct drm_device *dev,
  2621. struct intel_crtc *intel_crtc,
  2622. struct intel_crtc_state *newstate)
  2623. {
  2624. struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
  2625. struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
  2626. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2627. /*
  2628. * Start with the final, target watermarks, then combine with the
  2629. * currently active watermarks to get values that are safe both before
  2630. * and after the vblank.
  2631. */
  2632. *a = newstate->wm.ilk.optimal;
  2633. a->pipe_enabled |= b->pipe_enabled;
  2634. a->sprites_enabled |= b->sprites_enabled;
  2635. a->sprites_scaled |= b->sprites_scaled;
  2636. for (level = 0; level <= max_level; level++) {
  2637. struct intel_wm_level *a_wm = &a->wm[level];
  2638. const struct intel_wm_level *b_wm = &b->wm[level];
  2639. a_wm->enable &= b_wm->enable;
  2640. a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
  2641. a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
  2642. a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
  2643. a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
  2644. }
  2645. /*
  2646. * We need to make sure that these merged watermark values are
  2647. * actually a valid configuration themselves. If they're not,
  2648. * there's no safe way to transition from the old state to
  2649. * the new state, so we need to fail the atomic transaction.
  2650. */
  2651. if (!ilk_validate_pipe_wm(dev, a))
  2652. return -EINVAL;
  2653. /*
  2654. * If our intermediate WM are identical to the final WM, then we can
  2655. * omit the post-vblank programming; only update if it's different.
  2656. */
  2657. if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
  2658. newstate->wm.need_postvbl_update = true;
  2659. return 0;
  2660. }
  2661. /*
  2662. * Merge the watermarks from all active pipes for a specific level.
  2663. */
  2664. static void ilk_merge_wm_level(struct drm_device *dev,
  2665. int level,
  2666. struct intel_wm_level *ret_wm)
  2667. {
  2668. const struct intel_crtc *intel_crtc;
  2669. ret_wm->enable = true;
  2670. for_each_intel_crtc(dev, intel_crtc) {
  2671. const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
  2672. const struct intel_wm_level *wm = &active->wm[level];
  2673. if (!active->pipe_enabled)
  2674. continue;
  2675. /*
  2676. * The watermark values may have been used in the past,
  2677. * so we must maintain them in the registers for some
  2678. * time even if the level is now disabled.
  2679. */
  2680. if (!wm->enable)
  2681. ret_wm->enable = false;
  2682. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2683. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2684. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2685. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2686. }
  2687. }
  2688. /*
  2689. * Merge all low power watermarks for all active pipes.
  2690. */
  2691. static void ilk_wm_merge(struct drm_device *dev,
  2692. const struct intel_wm_config *config,
  2693. const struct ilk_wm_maximums *max,
  2694. struct intel_pipe_wm *merged)
  2695. {
  2696. struct drm_i915_private *dev_priv = to_i915(dev);
  2697. int level, max_level = ilk_wm_max_level(dev_priv);
  2698. int last_enabled_level = max_level;
  2699. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2700. if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
  2701. config->num_pipes_active > 1)
  2702. last_enabled_level = 0;
  2703. /* ILK: FBC WM must be disabled always */
  2704. merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
  2705. /* merge each WM1+ level */
  2706. for (level = 1; level <= max_level; level++) {
  2707. struct intel_wm_level *wm = &merged->wm[level];
  2708. ilk_merge_wm_level(dev, level, wm);
  2709. if (level > last_enabled_level)
  2710. wm->enable = false;
  2711. else if (!ilk_validate_wm_level(level, max, wm))
  2712. /* make sure all following levels get disabled */
  2713. last_enabled_level = level - 1;
  2714. /*
  2715. * The spec says it is preferred to disable
  2716. * FBC WMs instead of disabling a WM level.
  2717. */
  2718. if (wm->fbc_val > max->fbc) {
  2719. if (wm->enable)
  2720. merged->fbc_wm_enabled = false;
  2721. wm->fbc_val = 0;
  2722. }
  2723. }
  2724. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2725. /*
  2726. * FIXME this is racy. FBC might get enabled later.
  2727. * What we should check here is whether FBC can be
  2728. * enabled sometime later.
  2729. */
  2730. if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
  2731. intel_fbc_is_active(dev_priv)) {
  2732. for (level = 2; level <= max_level; level++) {
  2733. struct intel_wm_level *wm = &merged->wm[level];
  2734. wm->enable = false;
  2735. }
  2736. }
  2737. }
  2738. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2739. {
  2740. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2741. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2742. }
  2743. /* The value we need to program into the WM_LPx latency field */
  2744. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2745. {
  2746. struct drm_i915_private *dev_priv = to_i915(dev);
  2747. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2748. return 2 * level;
  2749. else
  2750. return dev_priv->wm.pri_latency[level];
  2751. }
  2752. static void ilk_compute_wm_results(struct drm_device *dev,
  2753. const struct intel_pipe_wm *merged,
  2754. enum intel_ddb_partitioning partitioning,
  2755. struct ilk_wm_values *results)
  2756. {
  2757. struct drm_i915_private *dev_priv = to_i915(dev);
  2758. struct intel_crtc *intel_crtc;
  2759. int level, wm_lp;
  2760. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2761. results->partitioning = partitioning;
  2762. /* LP1+ register values */
  2763. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2764. const struct intel_wm_level *r;
  2765. level = ilk_wm_lp_to_level(wm_lp, merged);
  2766. r = &merged->wm[level];
  2767. /*
  2768. * Maintain the watermark values even if the level is
  2769. * disabled. Doing otherwise could cause underruns.
  2770. */
  2771. results->wm_lp[wm_lp - 1] =
  2772. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2773. (r->pri_val << WM1_LP_SR_SHIFT) |
  2774. r->cur_val;
  2775. if (r->enable)
  2776. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2777. if (INTEL_GEN(dev_priv) >= 8)
  2778. results->wm_lp[wm_lp - 1] |=
  2779. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2780. else
  2781. results->wm_lp[wm_lp - 1] |=
  2782. r->fbc_val << WM1_LP_FBC_SHIFT;
  2783. /*
  2784. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2785. * level is disabled. Doing otherwise could cause underruns.
  2786. */
  2787. if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
  2788. WARN_ON(wm_lp != 1);
  2789. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2790. } else
  2791. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2792. }
  2793. /* LP0 register values */
  2794. for_each_intel_crtc(dev, intel_crtc) {
  2795. enum pipe pipe = intel_crtc->pipe;
  2796. const struct intel_wm_level *r =
  2797. &intel_crtc->wm.active.ilk.wm[0];
  2798. if (WARN_ON(!r->enable))
  2799. continue;
  2800. results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
  2801. results->wm_pipe[pipe] =
  2802. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2803. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2804. r->cur_val;
  2805. }
  2806. }
  2807. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2808. * case both are at the same level. Prefer r1 in case they're the same. */
  2809. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2810. struct intel_pipe_wm *r1,
  2811. struct intel_pipe_wm *r2)
  2812. {
  2813. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2814. int level1 = 0, level2 = 0;
  2815. for (level = 1; level <= max_level; level++) {
  2816. if (r1->wm[level].enable)
  2817. level1 = level;
  2818. if (r2->wm[level].enable)
  2819. level2 = level;
  2820. }
  2821. if (level1 == level2) {
  2822. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2823. return r2;
  2824. else
  2825. return r1;
  2826. } else if (level1 > level2) {
  2827. return r1;
  2828. } else {
  2829. return r2;
  2830. }
  2831. }
  2832. /* dirty bits used to track which watermarks need changes */
  2833. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2834. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2835. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2836. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2837. #define WM_DIRTY_FBC (1 << 24)
  2838. #define WM_DIRTY_DDB (1 << 25)
  2839. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2840. const struct ilk_wm_values *old,
  2841. const struct ilk_wm_values *new)
  2842. {
  2843. unsigned int dirty = 0;
  2844. enum pipe pipe;
  2845. int wm_lp;
  2846. for_each_pipe(dev_priv, pipe) {
  2847. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2848. dirty |= WM_DIRTY_LINETIME(pipe);
  2849. /* Must disable LP1+ watermarks too */
  2850. dirty |= WM_DIRTY_LP_ALL;
  2851. }
  2852. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2853. dirty |= WM_DIRTY_PIPE(pipe);
  2854. /* Must disable LP1+ watermarks too */
  2855. dirty |= WM_DIRTY_LP_ALL;
  2856. }
  2857. }
  2858. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2859. dirty |= WM_DIRTY_FBC;
  2860. /* Must disable LP1+ watermarks too */
  2861. dirty |= WM_DIRTY_LP_ALL;
  2862. }
  2863. if (old->partitioning != new->partitioning) {
  2864. dirty |= WM_DIRTY_DDB;
  2865. /* Must disable LP1+ watermarks too */
  2866. dirty |= WM_DIRTY_LP_ALL;
  2867. }
  2868. /* LP1+ watermarks already deemed dirty, no need to continue */
  2869. if (dirty & WM_DIRTY_LP_ALL)
  2870. return dirty;
  2871. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2872. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2873. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2874. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2875. break;
  2876. }
  2877. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2878. for (; wm_lp <= 3; wm_lp++)
  2879. dirty |= WM_DIRTY_LP(wm_lp);
  2880. return dirty;
  2881. }
  2882. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2883. unsigned int dirty)
  2884. {
  2885. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2886. bool changed = false;
  2887. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2888. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2889. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2890. changed = true;
  2891. }
  2892. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2893. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2894. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2895. changed = true;
  2896. }
  2897. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2898. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2899. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2900. changed = true;
  2901. }
  2902. /*
  2903. * Don't touch WM1S_LP_EN here.
  2904. * Doing so could cause underruns.
  2905. */
  2906. return changed;
  2907. }
  2908. /*
  2909. * The spec says we shouldn't write when we don't need, because every write
  2910. * causes WMs to be re-evaluated, expending some power.
  2911. */
  2912. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2913. struct ilk_wm_values *results)
  2914. {
  2915. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2916. unsigned int dirty;
  2917. uint32_t val;
  2918. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2919. if (!dirty)
  2920. return;
  2921. _ilk_disable_lp_wm(dev_priv, dirty);
  2922. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2923. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2924. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2925. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2926. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2927. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2928. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2929. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2930. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2931. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2932. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2933. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2934. if (dirty & WM_DIRTY_DDB) {
  2935. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2936. val = I915_READ(WM_MISC);
  2937. if (results->partitioning == INTEL_DDB_PART_1_2)
  2938. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2939. else
  2940. val |= WM_MISC_DATA_PARTITION_5_6;
  2941. I915_WRITE(WM_MISC, val);
  2942. } else {
  2943. val = I915_READ(DISP_ARB_CTL2);
  2944. if (results->partitioning == INTEL_DDB_PART_1_2)
  2945. val &= ~DISP_DATA_PARTITION_5_6;
  2946. else
  2947. val |= DISP_DATA_PARTITION_5_6;
  2948. I915_WRITE(DISP_ARB_CTL2, val);
  2949. }
  2950. }
  2951. if (dirty & WM_DIRTY_FBC) {
  2952. val = I915_READ(DISP_ARB_CTL);
  2953. if (results->enable_fbc_wm)
  2954. val &= ~DISP_FBC_WM_DIS;
  2955. else
  2956. val |= DISP_FBC_WM_DIS;
  2957. I915_WRITE(DISP_ARB_CTL, val);
  2958. }
  2959. if (dirty & WM_DIRTY_LP(1) &&
  2960. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2961. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2962. if (INTEL_GEN(dev_priv) >= 7) {
  2963. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2964. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2965. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2966. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2967. }
  2968. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2969. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2970. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2971. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2972. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2973. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2974. dev_priv->wm.hw = *results;
  2975. }
  2976. bool ilk_disable_lp_wm(struct drm_device *dev)
  2977. {
  2978. struct drm_i915_private *dev_priv = to_i915(dev);
  2979. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2980. }
  2981. /*
  2982. * FIXME: We still don't have the proper code detect if we need to apply the WA,
  2983. * so assume we'll always need it in order to avoid underruns.
  2984. */
  2985. static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
  2986. {
  2987. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  2988. if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
  2989. return true;
  2990. return false;
  2991. }
  2992. static bool
  2993. intel_has_sagv(struct drm_i915_private *dev_priv)
  2994. {
  2995. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
  2996. IS_CANNONLAKE(dev_priv))
  2997. return true;
  2998. if (IS_SKYLAKE(dev_priv) &&
  2999. dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
  3000. return true;
  3001. return false;
  3002. }
  3003. /*
  3004. * SAGV dynamically adjusts the system agent voltage and clock frequencies
  3005. * depending on power and performance requirements. The display engine access
  3006. * to system memory is blocked during the adjustment time. Because of the
  3007. * blocking time, having this enabled can cause full system hangs and/or pipe
  3008. * underruns if we don't meet all of the following requirements:
  3009. *
  3010. * - <= 1 pipe enabled
  3011. * - All planes can enable watermarks for latencies >= SAGV engine block time
  3012. * - We're not using an interlaced display configuration
  3013. */
  3014. int
  3015. intel_enable_sagv(struct drm_i915_private *dev_priv)
  3016. {
  3017. int ret;
  3018. if (!intel_has_sagv(dev_priv))
  3019. return 0;
  3020. if (dev_priv->sagv_status == I915_SAGV_ENABLED)
  3021. return 0;
  3022. DRM_DEBUG_KMS("Enabling the SAGV\n");
  3023. mutex_lock(&dev_priv->rps.hw_lock);
  3024. ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  3025. GEN9_SAGV_ENABLE);
  3026. /* We don't need to wait for the SAGV when enabling */
  3027. mutex_unlock(&dev_priv->rps.hw_lock);
  3028. /*
  3029. * Some skl systems, pre-release machines in particular,
  3030. * don't actually have an SAGV.
  3031. */
  3032. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  3033. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  3034. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  3035. return 0;
  3036. } else if (ret < 0) {
  3037. DRM_ERROR("Failed to enable the SAGV\n");
  3038. return ret;
  3039. }
  3040. dev_priv->sagv_status = I915_SAGV_ENABLED;
  3041. return 0;
  3042. }
  3043. int
  3044. intel_disable_sagv(struct drm_i915_private *dev_priv)
  3045. {
  3046. int ret;
  3047. if (!intel_has_sagv(dev_priv))
  3048. return 0;
  3049. if (dev_priv->sagv_status == I915_SAGV_DISABLED)
  3050. return 0;
  3051. DRM_DEBUG_KMS("Disabling the SAGV\n");
  3052. mutex_lock(&dev_priv->rps.hw_lock);
  3053. /* bspec says to keep retrying for at least 1 ms */
  3054. ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  3055. GEN9_SAGV_DISABLE,
  3056. GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
  3057. 1);
  3058. mutex_unlock(&dev_priv->rps.hw_lock);
  3059. /*
  3060. * Some skl systems, pre-release machines in particular,
  3061. * don't actually have an SAGV.
  3062. */
  3063. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  3064. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  3065. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  3066. return 0;
  3067. } else if (ret < 0) {
  3068. DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
  3069. return ret;
  3070. }
  3071. dev_priv->sagv_status = I915_SAGV_DISABLED;
  3072. return 0;
  3073. }
  3074. bool intel_can_enable_sagv(struct drm_atomic_state *state)
  3075. {
  3076. struct drm_device *dev = state->dev;
  3077. struct drm_i915_private *dev_priv = to_i915(dev);
  3078. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3079. struct intel_crtc *crtc;
  3080. struct intel_plane *plane;
  3081. struct intel_crtc_state *cstate;
  3082. enum pipe pipe;
  3083. int level, latency;
  3084. int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
  3085. if (!intel_has_sagv(dev_priv))
  3086. return false;
  3087. /*
  3088. * SKL+ workaround: bspec recommends we disable the SAGV when we have
  3089. * more then one pipe enabled
  3090. *
  3091. * If there are no active CRTCs, no additional checks need be performed
  3092. */
  3093. if (hweight32(intel_state->active_crtcs) == 0)
  3094. return true;
  3095. else if (hweight32(intel_state->active_crtcs) > 1)
  3096. return false;
  3097. /* Since we're now guaranteed to only have one active CRTC... */
  3098. pipe = ffs(intel_state->active_crtcs) - 1;
  3099. crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  3100. cstate = to_intel_crtc_state(crtc->base.state);
  3101. if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  3102. return false;
  3103. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  3104. struct skl_plane_wm *wm =
  3105. &cstate->wm.skl.optimal.planes[plane->id];
  3106. /* Skip this plane if it's not enabled */
  3107. if (!wm->wm[0].plane_en)
  3108. continue;
  3109. /* Find the highest enabled wm level for this plane */
  3110. for (level = ilk_wm_max_level(dev_priv);
  3111. !wm->wm[level].plane_en; --level)
  3112. { }
  3113. latency = dev_priv->wm.skl_latency[level];
  3114. if (skl_needs_memory_bw_wa(intel_state) &&
  3115. plane->base.state->fb->modifier ==
  3116. I915_FORMAT_MOD_X_TILED)
  3117. latency += 15;
  3118. /*
  3119. * If any of the planes on this pipe don't enable wm levels that
  3120. * incur memory latencies higher than sagv_block_time_us we
  3121. * can't enable the SAGV.
  3122. */
  3123. if (latency < sagv_block_time_us)
  3124. return false;
  3125. }
  3126. return true;
  3127. }
  3128. static void
  3129. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  3130. const struct intel_crtc_state *cstate,
  3131. struct skl_ddb_entry *alloc, /* out */
  3132. int *num_active /* out */)
  3133. {
  3134. struct drm_atomic_state *state = cstate->base.state;
  3135. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3136. struct drm_i915_private *dev_priv = to_i915(dev);
  3137. struct drm_crtc *for_crtc = cstate->base.crtc;
  3138. unsigned int pipe_size, ddb_size;
  3139. int nth_active_pipe;
  3140. if (WARN_ON(!state) || !cstate->base.active) {
  3141. alloc->start = 0;
  3142. alloc->end = 0;
  3143. *num_active = hweight32(dev_priv->active_crtcs);
  3144. return;
  3145. }
  3146. if (intel_state->active_pipe_changes)
  3147. *num_active = hweight32(intel_state->active_crtcs);
  3148. else
  3149. *num_active = hweight32(dev_priv->active_crtcs);
  3150. ddb_size = INTEL_INFO(dev_priv)->ddb_size;
  3151. WARN_ON(ddb_size == 0);
  3152. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  3153. /*
  3154. * If the state doesn't change the active CRTC's, then there's
  3155. * no need to recalculate; the existing pipe allocation limits
  3156. * should remain unchanged. Note that we're safe from racing
  3157. * commits since any racing commit that changes the active CRTC
  3158. * list would need to grab _all_ crtc locks, including the one
  3159. * we currently hold.
  3160. */
  3161. if (!intel_state->active_pipe_changes) {
  3162. /*
  3163. * alloc may be cleared by clear_intel_crtc_state,
  3164. * copy from old state to be sure
  3165. */
  3166. *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
  3167. return;
  3168. }
  3169. nth_active_pipe = hweight32(intel_state->active_crtcs &
  3170. (drm_crtc_mask(for_crtc) - 1));
  3171. pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
  3172. alloc->start = nth_active_pipe * ddb_size / *num_active;
  3173. alloc->end = alloc->start + pipe_size;
  3174. }
  3175. static unsigned int skl_cursor_allocation(int num_active)
  3176. {
  3177. if (num_active == 1)
  3178. return 32;
  3179. return 8;
  3180. }
  3181. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  3182. {
  3183. entry->start = reg & 0x3ff;
  3184. entry->end = (reg >> 16) & 0x3ff;
  3185. if (entry->end)
  3186. entry->end += 1;
  3187. }
  3188. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  3189. struct skl_ddb_allocation *ddb /* out */)
  3190. {
  3191. struct intel_crtc *crtc;
  3192. memset(ddb, 0, sizeof(*ddb));
  3193. for_each_intel_crtc(&dev_priv->drm, crtc) {
  3194. enum intel_display_power_domain power_domain;
  3195. enum plane_id plane_id;
  3196. enum pipe pipe = crtc->pipe;
  3197. power_domain = POWER_DOMAIN_PIPE(pipe);
  3198. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  3199. continue;
  3200. for_each_plane_id_on_crtc(crtc, plane_id) {
  3201. u32 val;
  3202. if (plane_id != PLANE_CURSOR)
  3203. val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
  3204. else
  3205. val = I915_READ(CUR_BUF_CFG(pipe));
  3206. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
  3207. }
  3208. intel_display_power_put(dev_priv, power_domain);
  3209. }
  3210. }
  3211. /*
  3212. * Determines the downscale amount of a plane for the purposes of watermark calculations.
  3213. * The bspec defines downscale amount as:
  3214. *
  3215. * """
  3216. * Horizontal down scale amount = maximum[1, Horizontal source size /
  3217. * Horizontal destination size]
  3218. * Vertical down scale amount = maximum[1, Vertical source size /
  3219. * Vertical destination size]
  3220. * Total down scale amount = Horizontal down scale amount *
  3221. * Vertical down scale amount
  3222. * """
  3223. *
  3224. * Return value is provided in 16.16 fixed point form to retain fractional part.
  3225. * Caller should take care of dividing & rounding off the value.
  3226. */
  3227. static uint_fixed_16_16_t
  3228. skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
  3229. const struct intel_plane_state *pstate)
  3230. {
  3231. struct intel_plane *plane = to_intel_plane(pstate->base.plane);
  3232. uint32_t src_w, src_h, dst_w, dst_h;
  3233. uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
  3234. uint_fixed_16_16_t downscale_h, downscale_w;
  3235. if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
  3236. return u32_to_fixed16(0);
  3237. /* n.b., src is 16.16 fixed point, dst is whole integer */
  3238. if (plane->id == PLANE_CURSOR) {
  3239. /*
  3240. * Cursors only support 0/180 degree rotation,
  3241. * hence no need to account for rotation here.
  3242. */
  3243. src_w = pstate->base.src_w >> 16;
  3244. src_h = pstate->base.src_h >> 16;
  3245. dst_w = pstate->base.crtc_w;
  3246. dst_h = pstate->base.crtc_h;
  3247. } else {
  3248. /*
  3249. * Src coordinates are already rotated by 270 degrees for
  3250. * the 90/270 degree plane rotation cases (to match the
  3251. * GTT mapping), hence no need to account for rotation here.
  3252. */
  3253. src_w = drm_rect_width(&pstate->base.src) >> 16;
  3254. src_h = drm_rect_height(&pstate->base.src) >> 16;
  3255. dst_w = drm_rect_width(&pstate->base.dst);
  3256. dst_h = drm_rect_height(&pstate->base.dst);
  3257. }
  3258. fp_w_ratio = div_fixed16(src_w, dst_w);
  3259. fp_h_ratio = div_fixed16(src_h, dst_h);
  3260. downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
  3261. downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
  3262. return mul_fixed16(downscale_w, downscale_h);
  3263. }
  3264. static uint_fixed_16_16_t
  3265. skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
  3266. {
  3267. uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
  3268. if (!crtc_state->base.enable)
  3269. return pipe_downscale;
  3270. if (crtc_state->pch_pfit.enabled) {
  3271. uint32_t src_w, src_h, dst_w, dst_h;
  3272. uint32_t pfit_size = crtc_state->pch_pfit.size;
  3273. uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
  3274. uint_fixed_16_16_t downscale_h, downscale_w;
  3275. src_w = crtc_state->pipe_src_w;
  3276. src_h = crtc_state->pipe_src_h;
  3277. dst_w = pfit_size >> 16;
  3278. dst_h = pfit_size & 0xffff;
  3279. if (!dst_w || !dst_h)
  3280. return pipe_downscale;
  3281. fp_w_ratio = div_fixed16(src_w, dst_w);
  3282. fp_h_ratio = div_fixed16(src_h, dst_h);
  3283. downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
  3284. downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
  3285. pipe_downscale = mul_fixed16(downscale_w, downscale_h);
  3286. }
  3287. return pipe_downscale;
  3288. }
  3289. int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
  3290. struct intel_crtc_state *cstate)
  3291. {
  3292. struct drm_crtc_state *crtc_state = &cstate->base;
  3293. struct drm_atomic_state *state = crtc_state->state;
  3294. struct drm_plane *plane;
  3295. const struct drm_plane_state *pstate;
  3296. struct intel_plane_state *intel_pstate;
  3297. int crtc_clock, dotclk;
  3298. uint32_t pipe_max_pixel_rate;
  3299. uint_fixed_16_16_t pipe_downscale;
  3300. uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
  3301. if (!cstate->base.enable)
  3302. return 0;
  3303. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
  3304. uint_fixed_16_16_t plane_downscale;
  3305. uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
  3306. int bpp;
  3307. if (!intel_wm_plane_visible(cstate,
  3308. to_intel_plane_state(pstate)))
  3309. continue;
  3310. if (WARN_ON(!pstate->fb))
  3311. return -EINVAL;
  3312. intel_pstate = to_intel_plane_state(pstate);
  3313. plane_downscale = skl_plane_downscale_amount(cstate,
  3314. intel_pstate);
  3315. bpp = pstate->fb->format->cpp[0] * 8;
  3316. if (bpp == 64)
  3317. plane_downscale = mul_fixed16(plane_downscale,
  3318. fp_9_div_8);
  3319. max_downscale = max_fixed16(plane_downscale, max_downscale);
  3320. }
  3321. pipe_downscale = skl_pipe_downscale_amount(cstate);
  3322. pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
  3323. crtc_clock = crtc_state->adjusted_mode.crtc_clock;
  3324. dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
  3325. if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
  3326. dotclk *= 2;
  3327. pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
  3328. if (pipe_max_pixel_rate < crtc_clock) {
  3329. DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
  3330. return -EINVAL;
  3331. }
  3332. return 0;
  3333. }
  3334. static unsigned int
  3335. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  3336. const struct drm_plane_state *pstate,
  3337. int y)
  3338. {
  3339. struct intel_plane *plane = to_intel_plane(pstate->plane);
  3340. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  3341. uint32_t data_rate;
  3342. uint32_t width = 0, height = 0;
  3343. struct drm_framebuffer *fb;
  3344. u32 format;
  3345. uint_fixed_16_16_t down_scale_amount;
  3346. if (!intel_pstate->base.visible)
  3347. return 0;
  3348. fb = pstate->fb;
  3349. format = fb->format->format;
  3350. if (plane->id == PLANE_CURSOR)
  3351. return 0;
  3352. if (y && format != DRM_FORMAT_NV12)
  3353. return 0;
  3354. /*
  3355. * Src coordinates are already rotated by 270 degrees for
  3356. * the 90/270 degree plane rotation cases (to match the
  3357. * GTT mapping), hence no need to account for rotation here.
  3358. */
  3359. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3360. height = drm_rect_height(&intel_pstate->base.src) >> 16;
  3361. /* for planar format */
  3362. if (format == DRM_FORMAT_NV12) {
  3363. if (y) /* y-plane data rate */
  3364. data_rate = width * height *
  3365. fb->format->cpp[0];
  3366. else /* uv-plane data rate */
  3367. data_rate = (width / 2) * (height / 2) *
  3368. fb->format->cpp[1];
  3369. } else {
  3370. /* for packed formats */
  3371. data_rate = width * height * fb->format->cpp[0];
  3372. }
  3373. down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
  3374. return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
  3375. }
  3376. /*
  3377. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  3378. * a 8192x4096@32bpp framebuffer:
  3379. * 3 * 4096 * 8192 * 4 < 2^32
  3380. */
  3381. static unsigned int
  3382. skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
  3383. unsigned *plane_data_rate,
  3384. unsigned *plane_y_data_rate)
  3385. {
  3386. struct drm_crtc_state *cstate = &intel_cstate->base;
  3387. struct drm_atomic_state *state = cstate->state;
  3388. struct drm_plane *plane;
  3389. const struct drm_plane_state *pstate;
  3390. unsigned int total_data_rate = 0;
  3391. if (WARN_ON(!state))
  3392. return 0;
  3393. /* Calculate and cache data rate for each plane */
  3394. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
  3395. enum plane_id plane_id = to_intel_plane(plane)->id;
  3396. unsigned int rate;
  3397. /* packed/uv */
  3398. rate = skl_plane_relative_data_rate(intel_cstate,
  3399. pstate, 0);
  3400. plane_data_rate[plane_id] = rate;
  3401. total_data_rate += rate;
  3402. /* y-plane */
  3403. rate = skl_plane_relative_data_rate(intel_cstate,
  3404. pstate, 1);
  3405. plane_y_data_rate[plane_id] = rate;
  3406. total_data_rate += rate;
  3407. }
  3408. return total_data_rate;
  3409. }
  3410. static uint16_t
  3411. skl_ddb_min_alloc(const struct drm_plane_state *pstate,
  3412. const int y)
  3413. {
  3414. struct drm_framebuffer *fb = pstate->fb;
  3415. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  3416. uint32_t src_w, src_h;
  3417. uint32_t min_scanlines = 8;
  3418. uint8_t plane_bpp;
  3419. if (WARN_ON(!fb))
  3420. return 0;
  3421. /* For packed formats, no y-plane, return 0 */
  3422. if (y && fb->format->format != DRM_FORMAT_NV12)
  3423. return 0;
  3424. /* For Non Y-tile return 8-blocks */
  3425. if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
  3426. fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
  3427. fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
  3428. fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
  3429. return 8;
  3430. /*
  3431. * Src coordinates are already rotated by 270 degrees for
  3432. * the 90/270 degree plane rotation cases (to match the
  3433. * GTT mapping), hence no need to account for rotation here.
  3434. */
  3435. src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
  3436. src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
  3437. /* Halve UV plane width and height for NV12 */
  3438. if (fb->format->format == DRM_FORMAT_NV12 && !y) {
  3439. src_w /= 2;
  3440. src_h /= 2;
  3441. }
  3442. if (fb->format->format == DRM_FORMAT_NV12 && !y)
  3443. plane_bpp = fb->format->cpp[1];
  3444. else
  3445. plane_bpp = fb->format->cpp[0];
  3446. if (drm_rotation_90_or_270(pstate->rotation)) {
  3447. switch (plane_bpp) {
  3448. case 1:
  3449. min_scanlines = 32;
  3450. break;
  3451. case 2:
  3452. min_scanlines = 16;
  3453. break;
  3454. case 4:
  3455. min_scanlines = 8;
  3456. break;
  3457. case 8:
  3458. min_scanlines = 4;
  3459. break;
  3460. default:
  3461. WARN(1, "Unsupported pixel depth %u for rotation",
  3462. plane_bpp);
  3463. min_scanlines = 32;
  3464. }
  3465. }
  3466. return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
  3467. }
  3468. static void
  3469. skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
  3470. uint16_t *minimum, uint16_t *y_minimum)
  3471. {
  3472. const struct drm_plane_state *pstate;
  3473. struct drm_plane *plane;
  3474. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
  3475. enum plane_id plane_id = to_intel_plane(plane)->id;
  3476. if (plane_id == PLANE_CURSOR)
  3477. continue;
  3478. if (!pstate->visible)
  3479. continue;
  3480. minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
  3481. y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
  3482. }
  3483. minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
  3484. }
  3485. static int
  3486. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  3487. struct skl_ddb_allocation *ddb /* out */)
  3488. {
  3489. struct drm_atomic_state *state = cstate->base.state;
  3490. struct drm_crtc *crtc = cstate->base.crtc;
  3491. struct drm_device *dev = crtc->dev;
  3492. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3493. enum pipe pipe = intel_crtc->pipe;
  3494. struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
  3495. uint16_t alloc_size, start;
  3496. uint16_t minimum[I915_MAX_PLANES] = {};
  3497. uint16_t y_minimum[I915_MAX_PLANES] = {};
  3498. unsigned int total_data_rate;
  3499. enum plane_id plane_id;
  3500. int num_active;
  3501. unsigned plane_data_rate[I915_MAX_PLANES] = {};
  3502. unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
  3503. uint16_t total_min_blocks = 0;
  3504. /* Clear the partitioning for disabled planes. */
  3505. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  3506. memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
  3507. if (WARN_ON(!state))
  3508. return 0;
  3509. if (!cstate->base.active) {
  3510. alloc->start = alloc->end = 0;
  3511. return 0;
  3512. }
  3513. skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
  3514. alloc_size = skl_ddb_entry_size(alloc);
  3515. if (alloc_size == 0)
  3516. return 0;
  3517. skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
  3518. /*
  3519. * 1. Allocate the mininum required blocks for each active plane
  3520. * and allocate the cursor, it doesn't require extra allocation
  3521. * proportional to the data rate.
  3522. */
  3523. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3524. total_min_blocks += minimum[plane_id];
  3525. total_min_blocks += y_minimum[plane_id];
  3526. }
  3527. if (total_min_blocks > alloc_size) {
  3528. DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
  3529. DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
  3530. alloc_size);
  3531. return -EINVAL;
  3532. }
  3533. alloc_size -= total_min_blocks;
  3534. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
  3535. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  3536. /*
  3537. * 2. Distribute the remaining space in proportion to the amount of
  3538. * data each plane needs to fetch from memory.
  3539. *
  3540. * FIXME: we may not allocate every single block here.
  3541. */
  3542. total_data_rate = skl_get_total_relative_data_rate(cstate,
  3543. plane_data_rate,
  3544. plane_y_data_rate);
  3545. if (total_data_rate == 0)
  3546. return 0;
  3547. start = alloc->start;
  3548. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3549. unsigned int data_rate, y_data_rate;
  3550. uint16_t plane_blocks, y_plane_blocks = 0;
  3551. if (plane_id == PLANE_CURSOR)
  3552. continue;
  3553. data_rate = plane_data_rate[plane_id];
  3554. /*
  3555. * allocation for (packed formats) or (uv-plane part of planar format):
  3556. * promote the expression to 64 bits to avoid overflowing, the
  3557. * result is < available as data_rate / total_data_rate < 1
  3558. */
  3559. plane_blocks = minimum[plane_id];
  3560. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  3561. total_data_rate);
  3562. /* Leave disabled planes at (0,0) */
  3563. if (data_rate) {
  3564. ddb->plane[pipe][plane_id].start = start;
  3565. ddb->plane[pipe][plane_id].end = start + plane_blocks;
  3566. }
  3567. start += plane_blocks;
  3568. /*
  3569. * allocation for y_plane part of planar format:
  3570. */
  3571. y_data_rate = plane_y_data_rate[plane_id];
  3572. y_plane_blocks = y_minimum[plane_id];
  3573. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  3574. total_data_rate);
  3575. if (y_data_rate) {
  3576. ddb->y_plane[pipe][plane_id].start = start;
  3577. ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
  3578. }
  3579. start += y_plane_blocks;
  3580. }
  3581. return 0;
  3582. }
  3583. /*
  3584. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  3585. * for the read latency) and cpp should always be <= 8, so that
  3586. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  3587. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  3588. */
  3589. static uint_fixed_16_16_t
  3590. skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
  3591. uint8_t cpp, uint32_t latency)
  3592. {
  3593. uint32_t wm_intermediate_val;
  3594. uint_fixed_16_16_t ret;
  3595. if (latency == 0)
  3596. return FP_16_16_MAX;
  3597. wm_intermediate_val = latency * pixel_rate * cpp;
  3598. ret = div_fixed16(wm_intermediate_val, 1000 * 512);
  3599. if (INTEL_GEN(dev_priv) >= 10)
  3600. ret = add_fixed16_u32(ret, 1);
  3601. return ret;
  3602. }
  3603. static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
  3604. uint32_t pipe_htotal,
  3605. uint32_t latency,
  3606. uint_fixed_16_16_t plane_blocks_per_line)
  3607. {
  3608. uint32_t wm_intermediate_val;
  3609. uint_fixed_16_16_t ret;
  3610. if (latency == 0)
  3611. return FP_16_16_MAX;
  3612. wm_intermediate_val = latency * pixel_rate;
  3613. wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
  3614. pipe_htotal * 1000);
  3615. ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
  3616. return ret;
  3617. }
  3618. static uint_fixed_16_16_t
  3619. intel_get_linetime_us(struct intel_crtc_state *cstate)
  3620. {
  3621. uint32_t pixel_rate;
  3622. uint32_t crtc_htotal;
  3623. uint_fixed_16_16_t linetime_us;
  3624. if (!cstate->base.active)
  3625. return u32_to_fixed16(0);
  3626. pixel_rate = cstate->pixel_rate;
  3627. if (WARN_ON(pixel_rate == 0))
  3628. return u32_to_fixed16(0);
  3629. crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
  3630. linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
  3631. return linetime_us;
  3632. }
  3633. static uint32_t
  3634. skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
  3635. const struct intel_plane_state *pstate)
  3636. {
  3637. uint64_t adjusted_pixel_rate;
  3638. uint_fixed_16_16_t downscale_amount;
  3639. /* Shouldn't reach here on disabled planes... */
  3640. if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
  3641. return 0;
  3642. /*
  3643. * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
  3644. * with additional adjustments for plane-specific scaling.
  3645. */
  3646. adjusted_pixel_rate = cstate->pixel_rate;
  3647. downscale_amount = skl_plane_downscale_amount(cstate, pstate);
  3648. return mul_round_up_u32_fixed16(adjusted_pixel_rate,
  3649. downscale_amount);
  3650. }
  3651. static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  3652. struct intel_crtc_state *cstate,
  3653. const struct intel_plane_state *intel_pstate,
  3654. uint16_t ddb_allocation,
  3655. int level,
  3656. uint16_t *out_blocks, /* out */
  3657. uint8_t *out_lines, /* out */
  3658. bool *enabled /* out */)
  3659. {
  3660. struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
  3661. const struct drm_plane_state *pstate = &intel_pstate->base;
  3662. const struct drm_framebuffer *fb = pstate->fb;
  3663. uint32_t latency = dev_priv->wm.skl_latency[level];
  3664. uint_fixed_16_16_t method1, method2;
  3665. uint_fixed_16_16_t plane_blocks_per_line;
  3666. uint_fixed_16_16_t selected_result;
  3667. uint32_t interm_pbpl;
  3668. uint32_t plane_bytes_per_line;
  3669. uint32_t res_blocks, res_lines;
  3670. uint8_t cpp;
  3671. uint32_t width = 0;
  3672. uint32_t plane_pixel_rate;
  3673. uint_fixed_16_16_t y_tile_minimum;
  3674. uint32_t y_min_scanlines;
  3675. struct intel_atomic_state *state =
  3676. to_intel_atomic_state(cstate->base.state);
  3677. bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
  3678. bool y_tiled, x_tiled;
  3679. if (latency == 0 ||
  3680. !intel_wm_plane_visible(cstate, intel_pstate)) {
  3681. *enabled = false;
  3682. return 0;
  3683. }
  3684. y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
  3685. fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
  3686. fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
  3687. fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
  3688. x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
  3689. /* Display WA #1141: kbl,cfl */
  3690. if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
  3691. dev_priv->ipc_enabled)
  3692. latency += 4;
  3693. if (apply_memory_bw_wa && x_tiled)
  3694. latency += 15;
  3695. if (plane->id == PLANE_CURSOR) {
  3696. width = intel_pstate->base.crtc_w;
  3697. } else {
  3698. /*
  3699. * Src coordinates are already rotated by 270 degrees for
  3700. * the 90/270 degree plane rotation cases (to match the
  3701. * GTT mapping), hence no need to account for rotation here.
  3702. */
  3703. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3704. }
  3705. cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
  3706. fb->format->cpp[0];
  3707. plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
  3708. if (drm_rotation_90_or_270(pstate->rotation)) {
  3709. switch (cpp) {
  3710. case 1:
  3711. y_min_scanlines = 16;
  3712. break;
  3713. case 2:
  3714. y_min_scanlines = 8;
  3715. break;
  3716. case 4:
  3717. y_min_scanlines = 4;
  3718. break;
  3719. default:
  3720. MISSING_CASE(cpp);
  3721. return -EINVAL;
  3722. }
  3723. } else {
  3724. y_min_scanlines = 4;
  3725. }
  3726. if (apply_memory_bw_wa)
  3727. y_min_scanlines *= 2;
  3728. plane_bytes_per_line = width * cpp;
  3729. if (y_tiled) {
  3730. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
  3731. y_min_scanlines, 512);
  3732. if (INTEL_GEN(dev_priv) >= 10)
  3733. interm_pbpl++;
  3734. plane_blocks_per_line = div_fixed16(interm_pbpl,
  3735. y_min_scanlines);
  3736. } else if (x_tiled && INTEL_GEN(dev_priv) == 9) {
  3737. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
  3738. plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
  3739. } else {
  3740. interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
  3741. plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
  3742. }
  3743. method1 = skl_wm_method1(dev_priv, plane_pixel_rate, cpp, latency);
  3744. method2 = skl_wm_method2(plane_pixel_rate,
  3745. cstate->base.adjusted_mode.crtc_htotal,
  3746. latency,
  3747. plane_blocks_per_line);
  3748. y_tile_minimum = mul_u32_fixed16(y_min_scanlines,
  3749. plane_blocks_per_line);
  3750. if (y_tiled) {
  3751. selected_result = max_fixed16(method2, y_tile_minimum);
  3752. } else {
  3753. uint32_t linetime_us;
  3754. linetime_us = fixed16_to_u32_round_up(
  3755. intel_get_linetime_us(cstate));
  3756. if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
  3757. (plane_bytes_per_line / 512 < 1))
  3758. selected_result = method2;
  3759. else if (ddb_allocation >=
  3760. fixed16_to_u32_round_up(plane_blocks_per_line))
  3761. selected_result = min_fixed16(method1, method2);
  3762. else if (latency >= linetime_us)
  3763. selected_result = min_fixed16(method1, method2);
  3764. else
  3765. selected_result = method1;
  3766. }
  3767. res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
  3768. res_lines = div_round_up_fixed16(selected_result,
  3769. plane_blocks_per_line);
  3770. /* Display WA #1125: skl,bxt,kbl,glk */
  3771. if (level == 0 &&
  3772. (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
  3773. fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
  3774. res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
  3775. /* Display WA #1126: skl,bxt,kbl,glk */
  3776. if (level >= 1 && level <= 7) {
  3777. if (y_tiled) {
  3778. res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
  3779. res_lines += y_min_scanlines;
  3780. } else {
  3781. res_blocks++;
  3782. }
  3783. }
  3784. if (res_blocks >= ddb_allocation || res_lines > 31) {
  3785. *enabled = false;
  3786. /*
  3787. * If there are no valid level 0 watermarks, then we can't
  3788. * support this display configuration.
  3789. */
  3790. if (level) {
  3791. return 0;
  3792. } else {
  3793. struct drm_plane *plane = pstate->plane;
  3794. DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
  3795. DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
  3796. plane->base.id, plane->name,
  3797. res_blocks, ddb_allocation, res_lines);
  3798. return -EINVAL;
  3799. }
  3800. }
  3801. *out_blocks = res_blocks;
  3802. *out_lines = res_lines;
  3803. *enabled = true;
  3804. return 0;
  3805. }
  3806. static int
  3807. skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
  3808. struct skl_ddb_allocation *ddb,
  3809. struct intel_crtc_state *cstate,
  3810. const struct intel_plane_state *intel_pstate,
  3811. struct skl_plane_wm *wm)
  3812. {
  3813. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3814. struct drm_plane *plane = intel_pstate->base.plane;
  3815. struct intel_plane *intel_plane = to_intel_plane(plane);
  3816. uint16_t ddb_blocks;
  3817. enum pipe pipe = intel_crtc->pipe;
  3818. int level, max_level = ilk_wm_max_level(dev_priv);
  3819. int ret;
  3820. if (WARN_ON(!intel_pstate->base.fb))
  3821. return -EINVAL;
  3822. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
  3823. for (level = 0; level <= max_level; level++) {
  3824. struct skl_wm_level *result = &wm->wm[level];
  3825. ret = skl_compute_plane_wm(dev_priv,
  3826. cstate,
  3827. intel_pstate,
  3828. ddb_blocks,
  3829. level,
  3830. &result->plane_res_b,
  3831. &result->plane_res_l,
  3832. &result->plane_en);
  3833. if (ret)
  3834. return ret;
  3835. }
  3836. return 0;
  3837. }
  3838. static uint32_t
  3839. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  3840. {
  3841. struct drm_atomic_state *state = cstate->base.state;
  3842. struct drm_i915_private *dev_priv = to_i915(state->dev);
  3843. uint_fixed_16_16_t linetime_us;
  3844. uint32_t linetime_wm;
  3845. linetime_us = intel_get_linetime_us(cstate);
  3846. if (is_fixed16_zero(linetime_us))
  3847. return 0;
  3848. linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
  3849. /* Display WA #1135: bxt. */
  3850. if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
  3851. linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
  3852. return linetime_wm;
  3853. }
  3854. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  3855. struct skl_wm_level *trans_wm /* out */)
  3856. {
  3857. if (!cstate->base.active)
  3858. return;
  3859. /* Until we know more, just disable transition WMs */
  3860. trans_wm->plane_en = false;
  3861. }
  3862. static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
  3863. struct skl_ddb_allocation *ddb,
  3864. struct skl_pipe_wm *pipe_wm)
  3865. {
  3866. struct drm_device *dev = cstate->base.crtc->dev;
  3867. struct drm_crtc_state *crtc_state = &cstate->base;
  3868. const struct drm_i915_private *dev_priv = to_i915(dev);
  3869. struct drm_plane *plane;
  3870. const struct drm_plane_state *pstate;
  3871. struct skl_plane_wm *wm;
  3872. int ret;
  3873. /*
  3874. * We'll only calculate watermarks for planes that are actually
  3875. * enabled, so make sure all other planes are set as disabled.
  3876. */
  3877. memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
  3878. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
  3879. const struct intel_plane_state *intel_pstate =
  3880. to_intel_plane_state(pstate);
  3881. enum plane_id plane_id = to_intel_plane(plane)->id;
  3882. wm = &pipe_wm->planes[plane_id];
  3883. ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
  3884. intel_pstate, wm);
  3885. if (ret)
  3886. return ret;
  3887. skl_compute_transition_wm(cstate, &wm->trans_wm);
  3888. }
  3889. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  3890. return 0;
  3891. }
  3892. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  3893. i915_reg_t reg,
  3894. const struct skl_ddb_entry *entry)
  3895. {
  3896. if (entry->end)
  3897. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  3898. else
  3899. I915_WRITE(reg, 0);
  3900. }
  3901. static void skl_write_wm_level(struct drm_i915_private *dev_priv,
  3902. i915_reg_t reg,
  3903. const struct skl_wm_level *level)
  3904. {
  3905. uint32_t val = 0;
  3906. if (level->plane_en) {
  3907. val |= PLANE_WM_EN;
  3908. val |= level->plane_res_b;
  3909. val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
  3910. }
  3911. I915_WRITE(reg, val);
  3912. }
  3913. static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
  3914. const struct skl_plane_wm *wm,
  3915. const struct skl_ddb_allocation *ddb,
  3916. enum plane_id plane_id)
  3917. {
  3918. struct drm_crtc *crtc = &intel_crtc->base;
  3919. struct drm_device *dev = crtc->dev;
  3920. struct drm_i915_private *dev_priv = to_i915(dev);
  3921. int level, max_level = ilk_wm_max_level(dev_priv);
  3922. enum pipe pipe = intel_crtc->pipe;
  3923. for (level = 0; level <= max_level; level++) {
  3924. skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
  3925. &wm->wm[level]);
  3926. }
  3927. skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
  3928. &wm->trans_wm);
  3929. skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
  3930. &ddb->plane[pipe][plane_id]);
  3931. skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
  3932. &ddb->y_plane[pipe][plane_id]);
  3933. }
  3934. static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
  3935. const struct skl_plane_wm *wm,
  3936. const struct skl_ddb_allocation *ddb)
  3937. {
  3938. struct drm_crtc *crtc = &intel_crtc->base;
  3939. struct drm_device *dev = crtc->dev;
  3940. struct drm_i915_private *dev_priv = to_i915(dev);
  3941. int level, max_level = ilk_wm_max_level(dev_priv);
  3942. enum pipe pipe = intel_crtc->pipe;
  3943. for (level = 0; level <= max_level; level++) {
  3944. skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
  3945. &wm->wm[level]);
  3946. }
  3947. skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
  3948. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  3949. &ddb->plane[pipe][PLANE_CURSOR]);
  3950. }
  3951. bool skl_wm_level_equals(const struct skl_wm_level *l1,
  3952. const struct skl_wm_level *l2)
  3953. {
  3954. if (l1->plane_en != l2->plane_en)
  3955. return false;
  3956. /* If both planes aren't enabled, the rest shouldn't matter */
  3957. if (!l1->plane_en)
  3958. return true;
  3959. return (l1->plane_res_l == l2->plane_res_l &&
  3960. l1->plane_res_b == l2->plane_res_b);
  3961. }
  3962. static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
  3963. const struct skl_ddb_entry *b)
  3964. {
  3965. return a->start < b->end && b->start < a->end;
  3966. }
  3967. bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
  3968. const struct skl_ddb_entry *ddb,
  3969. int ignore)
  3970. {
  3971. int i;
  3972. for (i = 0; i < I915_MAX_PIPES; i++)
  3973. if (i != ignore && entries[i] &&
  3974. skl_ddb_entries_overlap(ddb, entries[i]))
  3975. return true;
  3976. return false;
  3977. }
  3978. static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
  3979. const struct skl_pipe_wm *old_pipe_wm,
  3980. struct skl_pipe_wm *pipe_wm, /* out */
  3981. struct skl_ddb_allocation *ddb, /* out */
  3982. bool *changed /* out */)
  3983. {
  3984. struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
  3985. int ret;
  3986. ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
  3987. if (ret)
  3988. return ret;
  3989. if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
  3990. *changed = false;
  3991. else
  3992. *changed = true;
  3993. return 0;
  3994. }
  3995. static uint32_t
  3996. pipes_modified(struct drm_atomic_state *state)
  3997. {
  3998. struct drm_crtc *crtc;
  3999. struct drm_crtc_state *cstate;
  4000. uint32_t i, ret = 0;
  4001. for_each_new_crtc_in_state(state, crtc, cstate, i)
  4002. ret |= drm_crtc_mask(crtc);
  4003. return ret;
  4004. }
  4005. static int
  4006. skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
  4007. {
  4008. struct drm_atomic_state *state = cstate->base.state;
  4009. struct drm_device *dev = state->dev;
  4010. struct drm_crtc *crtc = cstate->base.crtc;
  4011. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4012. struct drm_i915_private *dev_priv = to_i915(dev);
  4013. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4014. struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  4015. struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  4016. struct drm_plane_state *plane_state;
  4017. struct drm_plane *plane;
  4018. enum pipe pipe = intel_crtc->pipe;
  4019. WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
  4020. drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
  4021. enum plane_id plane_id = to_intel_plane(plane)->id;
  4022. if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
  4023. &new_ddb->plane[pipe][plane_id]) &&
  4024. skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
  4025. &new_ddb->y_plane[pipe][plane_id]))
  4026. continue;
  4027. plane_state = drm_atomic_get_plane_state(state, plane);
  4028. if (IS_ERR(plane_state))
  4029. return PTR_ERR(plane_state);
  4030. }
  4031. return 0;
  4032. }
  4033. static int
  4034. skl_compute_ddb(struct drm_atomic_state *state)
  4035. {
  4036. struct drm_device *dev = state->dev;
  4037. struct drm_i915_private *dev_priv = to_i915(dev);
  4038. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4039. struct intel_crtc *intel_crtc;
  4040. struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
  4041. uint32_t realloc_pipes = pipes_modified(state);
  4042. int ret;
  4043. /*
  4044. * If this is our first atomic update following hardware readout,
  4045. * we can't trust the DDB that the BIOS programmed for us. Let's
  4046. * pretend that all pipes switched active status so that we'll
  4047. * ensure a full DDB recompute.
  4048. */
  4049. if (dev_priv->wm.distrust_bios_wm) {
  4050. ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
  4051. state->acquire_ctx);
  4052. if (ret)
  4053. return ret;
  4054. intel_state->active_pipe_changes = ~0;
  4055. /*
  4056. * We usually only initialize intel_state->active_crtcs if we
  4057. * we're doing a modeset; make sure this field is always
  4058. * initialized during the sanitization process that happens
  4059. * on the first commit too.
  4060. */
  4061. if (!intel_state->modeset)
  4062. intel_state->active_crtcs = dev_priv->active_crtcs;
  4063. }
  4064. /*
  4065. * If the modeset changes which CRTC's are active, we need to
  4066. * recompute the DDB allocation for *all* active pipes, even
  4067. * those that weren't otherwise being modified in any way by this
  4068. * atomic commit. Due to the shrinking of the per-pipe allocations
  4069. * when new active CRTC's are added, it's possible for a pipe that
  4070. * we were already using and aren't changing at all here to suddenly
  4071. * become invalid if its DDB needs exceeds its new allocation.
  4072. *
  4073. * Note that if we wind up doing a full DDB recompute, we can't let
  4074. * any other display updates race with this transaction, so we need
  4075. * to grab the lock on *all* CRTC's.
  4076. */
  4077. if (intel_state->active_pipe_changes) {
  4078. realloc_pipes = ~0;
  4079. intel_state->wm_results.dirty_pipes = ~0;
  4080. }
  4081. /*
  4082. * We're not recomputing for the pipes not included in the commit, so
  4083. * make sure we start with the current state.
  4084. */
  4085. memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
  4086. for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
  4087. struct intel_crtc_state *cstate;
  4088. cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  4089. if (IS_ERR(cstate))
  4090. return PTR_ERR(cstate);
  4091. ret = skl_allocate_pipe_ddb(cstate, ddb);
  4092. if (ret)
  4093. return ret;
  4094. ret = skl_ddb_add_affected_planes(cstate);
  4095. if (ret)
  4096. return ret;
  4097. }
  4098. return 0;
  4099. }
  4100. static void
  4101. skl_copy_wm_for_pipe(struct skl_wm_values *dst,
  4102. struct skl_wm_values *src,
  4103. enum pipe pipe)
  4104. {
  4105. memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
  4106. sizeof(dst->ddb.y_plane[pipe]));
  4107. memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
  4108. sizeof(dst->ddb.plane[pipe]));
  4109. }
  4110. static void
  4111. skl_print_wm_changes(const struct drm_atomic_state *state)
  4112. {
  4113. const struct drm_device *dev = state->dev;
  4114. const struct drm_i915_private *dev_priv = to_i915(dev);
  4115. const struct intel_atomic_state *intel_state =
  4116. to_intel_atomic_state(state);
  4117. const struct drm_crtc *crtc;
  4118. const struct drm_crtc_state *cstate;
  4119. const struct intel_plane *intel_plane;
  4120. const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
  4121. const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  4122. int i;
  4123. for_each_new_crtc_in_state(state, crtc, cstate, i) {
  4124. const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4125. enum pipe pipe = intel_crtc->pipe;
  4126. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  4127. enum plane_id plane_id = intel_plane->id;
  4128. const struct skl_ddb_entry *old, *new;
  4129. old = &old_ddb->plane[pipe][plane_id];
  4130. new = &new_ddb->plane[pipe][plane_id];
  4131. if (skl_ddb_entry_equal(old, new))
  4132. continue;
  4133. DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
  4134. intel_plane->base.base.id,
  4135. intel_plane->base.name,
  4136. old->start, old->end,
  4137. new->start, new->end);
  4138. }
  4139. }
  4140. }
  4141. static int
  4142. skl_compute_wm(struct drm_atomic_state *state)
  4143. {
  4144. struct drm_crtc *crtc;
  4145. struct drm_crtc_state *cstate;
  4146. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4147. struct skl_wm_values *results = &intel_state->wm_results;
  4148. struct drm_device *dev = state->dev;
  4149. struct skl_pipe_wm *pipe_wm;
  4150. bool changed = false;
  4151. int ret, i;
  4152. /*
  4153. * When we distrust bios wm we always need to recompute to set the
  4154. * expected DDB allocations for each CRTC.
  4155. */
  4156. if (to_i915(dev)->wm.distrust_bios_wm)
  4157. changed = true;
  4158. /*
  4159. * If this transaction isn't actually touching any CRTC's, don't
  4160. * bother with watermark calculation. Note that if we pass this
  4161. * test, we're guaranteed to hold at least one CRTC state mutex,
  4162. * which means we can safely use values like dev_priv->active_crtcs
  4163. * since any racing commits that want to update them would need to
  4164. * hold _all_ CRTC state mutexes.
  4165. */
  4166. for_each_new_crtc_in_state(state, crtc, cstate, i)
  4167. changed = true;
  4168. if (!changed)
  4169. return 0;
  4170. /* Clear all dirty flags */
  4171. results->dirty_pipes = 0;
  4172. ret = skl_compute_ddb(state);
  4173. if (ret)
  4174. return ret;
  4175. /*
  4176. * Calculate WM's for all pipes that are part of this transaction.
  4177. * Note that the DDB allocation above may have added more CRTC's that
  4178. * weren't otherwise being modified (and set bits in dirty_pipes) if
  4179. * pipe allocations had to change.
  4180. *
  4181. * FIXME: Now that we're doing this in the atomic check phase, we
  4182. * should allow skl_update_pipe_wm() to return failure in cases where
  4183. * no suitable watermark values can be found.
  4184. */
  4185. for_each_new_crtc_in_state(state, crtc, cstate, i) {
  4186. struct intel_crtc_state *intel_cstate =
  4187. to_intel_crtc_state(cstate);
  4188. const struct skl_pipe_wm *old_pipe_wm =
  4189. &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
  4190. pipe_wm = &intel_cstate->wm.skl.optimal;
  4191. ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
  4192. &results->ddb, &changed);
  4193. if (ret)
  4194. return ret;
  4195. if (changed)
  4196. results->dirty_pipes |= drm_crtc_mask(crtc);
  4197. if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
  4198. /* This pipe's WM's did not change */
  4199. continue;
  4200. intel_cstate->update_wm_pre = true;
  4201. }
  4202. skl_print_wm_changes(state);
  4203. return 0;
  4204. }
  4205. static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
  4206. struct intel_crtc_state *cstate)
  4207. {
  4208. struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
  4209. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  4210. struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
  4211. const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
  4212. enum pipe pipe = crtc->pipe;
  4213. enum plane_id plane_id;
  4214. if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
  4215. return;
  4216. I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
  4217. for_each_plane_id_on_crtc(crtc, plane_id) {
  4218. if (plane_id != PLANE_CURSOR)
  4219. skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
  4220. ddb, plane_id);
  4221. else
  4222. skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
  4223. ddb);
  4224. }
  4225. }
  4226. static void skl_initial_wm(struct intel_atomic_state *state,
  4227. struct intel_crtc_state *cstate)
  4228. {
  4229. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4230. struct drm_device *dev = intel_crtc->base.dev;
  4231. struct drm_i915_private *dev_priv = to_i915(dev);
  4232. struct skl_wm_values *results = &state->wm_results;
  4233. struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
  4234. enum pipe pipe = intel_crtc->pipe;
  4235. if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
  4236. return;
  4237. mutex_lock(&dev_priv->wm.wm_mutex);
  4238. if (cstate->base.active_changed)
  4239. skl_atomic_update_crtc_wm(state, cstate);
  4240. skl_copy_wm_for_pipe(hw_vals, results, pipe);
  4241. mutex_unlock(&dev_priv->wm.wm_mutex);
  4242. }
  4243. static void ilk_compute_wm_config(struct drm_device *dev,
  4244. struct intel_wm_config *config)
  4245. {
  4246. struct intel_crtc *crtc;
  4247. /* Compute the currently _active_ config */
  4248. for_each_intel_crtc(dev, crtc) {
  4249. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  4250. if (!wm->pipe_enabled)
  4251. continue;
  4252. config->sprites_enabled |= wm->sprites_enabled;
  4253. config->sprites_scaled |= wm->sprites_scaled;
  4254. config->num_pipes_active++;
  4255. }
  4256. }
  4257. static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
  4258. {
  4259. struct drm_device *dev = &dev_priv->drm;
  4260. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  4261. struct ilk_wm_maximums max;
  4262. struct intel_wm_config config = {};
  4263. struct ilk_wm_values results = {};
  4264. enum intel_ddb_partitioning partitioning;
  4265. ilk_compute_wm_config(dev, &config);
  4266. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  4267. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  4268. /* 5/6 split only in single pipe config on IVB+ */
  4269. if (INTEL_GEN(dev_priv) >= 7 &&
  4270. config.num_pipes_active == 1 && config.sprites_enabled) {
  4271. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  4272. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  4273. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  4274. } else {
  4275. best_lp_wm = &lp_wm_1_2;
  4276. }
  4277. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  4278. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  4279. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  4280. ilk_write_wm_values(dev_priv, &results);
  4281. }
  4282. static void ilk_initial_watermarks(struct intel_atomic_state *state,
  4283. struct intel_crtc_state *cstate)
  4284. {
  4285. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  4286. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4287. mutex_lock(&dev_priv->wm.wm_mutex);
  4288. intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
  4289. ilk_program_watermarks(dev_priv);
  4290. mutex_unlock(&dev_priv->wm.wm_mutex);
  4291. }
  4292. static void ilk_optimize_watermarks(struct intel_atomic_state *state,
  4293. struct intel_crtc_state *cstate)
  4294. {
  4295. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  4296. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4297. mutex_lock(&dev_priv->wm.wm_mutex);
  4298. if (cstate->wm.need_postvbl_update) {
  4299. intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
  4300. ilk_program_watermarks(dev_priv);
  4301. }
  4302. mutex_unlock(&dev_priv->wm.wm_mutex);
  4303. }
  4304. static inline void skl_wm_level_from_reg_val(uint32_t val,
  4305. struct skl_wm_level *level)
  4306. {
  4307. level->plane_en = val & PLANE_WM_EN;
  4308. level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
  4309. level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
  4310. PLANE_WM_LINES_MASK;
  4311. }
  4312. void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
  4313. struct skl_pipe_wm *out)
  4314. {
  4315. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  4316. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4317. enum pipe pipe = intel_crtc->pipe;
  4318. int level, max_level;
  4319. enum plane_id plane_id;
  4320. uint32_t val;
  4321. max_level = ilk_wm_max_level(dev_priv);
  4322. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  4323. struct skl_plane_wm *wm = &out->planes[plane_id];
  4324. for (level = 0; level <= max_level; level++) {
  4325. if (plane_id != PLANE_CURSOR)
  4326. val = I915_READ(PLANE_WM(pipe, plane_id, level));
  4327. else
  4328. val = I915_READ(CUR_WM(pipe, level));
  4329. skl_wm_level_from_reg_val(val, &wm->wm[level]);
  4330. }
  4331. if (plane_id != PLANE_CURSOR)
  4332. val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
  4333. else
  4334. val = I915_READ(CUR_WM_TRANS(pipe));
  4335. skl_wm_level_from_reg_val(val, &wm->trans_wm);
  4336. }
  4337. if (!intel_crtc->active)
  4338. return;
  4339. out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
  4340. }
  4341. void skl_wm_get_hw_state(struct drm_device *dev)
  4342. {
  4343. struct drm_i915_private *dev_priv = to_i915(dev);
  4344. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  4345. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  4346. struct drm_crtc *crtc;
  4347. struct intel_crtc *intel_crtc;
  4348. struct intel_crtc_state *cstate;
  4349. skl_ddb_get_hw_state(dev_priv, ddb);
  4350. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4351. intel_crtc = to_intel_crtc(crtc);
  4352. cstate = to_intel_crtc_state(crtc->state);
  4353. skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
  4354. if (intel_crtc->active)
  4355. hw->dirty_pipes |= drm_crtc_mask(crtc);
  4356. }
  4357. if (dev_priv->active_crtcs) {
  4358. /* Fully recompute DDB on first atomic commit */
  4359. dev_priv->wm.distrust_bios_wm = true;
  4360. } else {
  4361. /* Easy/common case; just sanitize DDB now if everything off */
  4362. memset(ddb, 0, sizeof(*ddb));
  4363. }
  4364. }
  4365. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  4366. {
  4367. struct drm_device *dev = crtc->dev;
  4368. struct drm_i915_private *dev_priv = to_i915(dev);
  4369. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  4370. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4371. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  4372. struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
  4373. enum pipe pipe = intel_crtc->pipe;
  4374. static const i915_reg_t wm0_pipe_reg[] = {
  4375. [PIPE_A] = WM0_PIPEA_ILK,
  4376. [PIPE_B] = WM0_PIPEB_ILK,
  4377. [PIPE_C] = WM0_PIPEC_IVB,
  4378. };
  4379. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  4380. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4381. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  4382. memset(active, 0, sizeof(*active));
  4383. active->pipe_enabled = intel_crtc->active;
  4384. if (active->pipe_enabled) {
  4385. u32 tmp = hw->wm_pipe[pipe];
  4386. /*
  4387. * For active pipes LP0 watermark is marked as
  4388. * enabled, and LP1+ watermaks as disabled since
  4389. * we can't really reverse compute them in case
  4390. * multiple pipes are active.
  4391. */
  4392. active->wm[0].enable = true;
  4393. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  4394. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  4395. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  4396. active->linetime = hw->wm_linetime[pipe];
  4397. } else {
  4398. int level, max_level = ilk_wm_max_level(dev_priv);
  4399. /*
  4400. * For inactive pipes, all watermark levels
  4401. * should be marked as enabled but zeroed,
  4402. * which is what we'd compute them to.
  4403. */
  4404. for (level = 0; level <= max_level; level++)
  4405. active->wm[level].enable = true;
  4406. }
  4407. intel_crtc->wm.active.ilk = *active;
  4408. }
  4409. #define _FW_WM(value, plane) \
  4410. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  4411. #define _FW_WM_VLV(value, plane) \
  4412. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  4413. static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
  4414. struct g4x_wm_values *wm)
  4415. {
  4416. uint32_t tmp;
  4417. tmp = I915_READ(DSPFW1);
  4418. wm->sr.plane = _FW_WM(tmp, SR);
  4419. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  4420. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
  4421. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
  4422. tmp = I915_READ(DSPFW2);
  4423. wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
  4424. wm->sr.fbc = _FW_WM(tmp, FBC_SR);
  4425. wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
  4426. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
  4427. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  4428. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
  4429. tmp = I915_READ(DSPFW3);
  4430. wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
  4431. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  4432. wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
  4433. wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
  4434. }
  4435. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  4436. struct vlv_wm_values *wm)
  4437. {
  4438. enum pipe pipe;
  4439. uint32_t tmp;
  4440. for_each_pipe(dev_priv, pipe) {
  4441. tmp = I915_READ(VLV_DDL(pipe));
  4442. wm->ddl[pipe].plane[PLANE_PRIMARY] =
  4443. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4444. wm->ddl[pipe].plane[PLANE_CURSOR] =
  4445. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4446. wm->ddl[pipe].plane[PLANE_SPRITE0] =
  4447. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4448. wm->ddl[pipe].plane[PLANE_SPRITE1] =
  4449. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4450. }
  4451. tmp = I915_READ(DSPFW1);
  4452. wm->sr.plane = _FW_WM(tmp, SR);
  4453. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  4454. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
  4455. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
  4456. tmp = I915_READ(DSPFW2);
  4457. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
  4458. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  4459. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
  4460. tmp = I915_READ(DSPFW3);
  4461. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  4462. if (IS_CHERRYVIEW(dev_priv)) {
  4463. tmp = I915_READ(DSPFW7_CHV);
  4464. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  4465. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  4466. tmp = I915_READ(DSPFW8_CHV);
  4467. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
  4468. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
  4469. tmp = I915_READ(DSPFW9_CHV);
  4470. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
  4471. wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
  4472. tmp = I915_READ(DSPHOWM);
  4473. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  4474. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  4475. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  4476. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
  4477. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  4478. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  4479. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  4480. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  4481. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  4482. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  4483. } else {
  4484. tmp = I915_READ(DSPFW7);
  4485. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  4486. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  4487. tmp = I915_READ(DSPHOWM);
  4488. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  4489. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  4490. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  4491. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  4492. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  4493. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  4494. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  4495. }
  4496. }
  4497. #undef _FW_WM
  4498. #undef _FW_WM_VLV
  4499. void g4x_wm_get_hw_state(struct drm_device *dev)
  4500. {
  4501. struct drm_i915_private *dev_priv = to_i915(dev);
  4502. struct g4x_wm_values *wm = &dev_priv->wm.g4x;
  4503. struct intel_crtc *crtc;
  4504. g4x_read_wm_values(dev_priv, wm);
  4505. wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  4506. for_each_intel_crtc(dev, crtc) {
  4507. struct intel_crtc_state *crtc_state =
  4508. to_intel_crtc_state(crtc->base.state);
  4509. struct g4x_wm_state *active = &crtc->wm.active.g4x;
  4510. struct g4x_pipe_wm *raw;
  4511. enum pipe pipe = crtc->pipe;
  4512. enum plane_id plane_id;
  4513. int level, max_level;
  4514. active->cxsr = wm->cxsr;
  4515. active->hpll_en = wm->hpll_en;
  4516. active->fbc_en = wm->fbc_en;
  4517. active->sr = wm->sr;
  4518. active->hpll = wm->hpll;
  4519. for_each_plane_id_on_crtc(crtc, plane_id) {
  4520. active->wm.plane[plane_id] =
  4521. wm->pipe[pipe].plane[plane_id];
  4522. }
  4523. if (wm->cxsr && wm->hpll_en)
  4524. max_level = G4X_WM_LEVEL_HPLL;
  4525. else if (wm->cxsr)
  4526. max_level = G4X_WM_LEVEL_SR;
  4527. else
  4528. max_level = G4X_WM_LEVEL_NORMAL;
  4529. level = G4X_WM_LEVEL_NORMAL;
  4530. raw = &crtc_state->wm.g4x.raw[level];
  4531. for_each_plane_id_on_crtc(crtc, plane_id)
  4532. raw->plane[plane_id] = active->wm.plane[plane_id];
  4533. if (++level > max_level)
  4534. goto out;
  4535. raw = &crtc_state->wm.g4x.raw[level];
  4536. raw->plane[PLANE_PRIMARY] = active->sr.plane;
  4537. raw->plane[PLANE_CURSOR] = active->sr.cursor;
  4538. raw->plane[PLANE_SPRITE0] = 0;
  4539. raw->fbc = active->sr.fbc;
  4540. if (++level > max_level)
  4541. goto out;
  4542. raw = &crtc_state->wm.g4x.raw[level];
  4543. raw->plane[PLANE_PRIMARY] = active->hpll.plane;
  4544. raw->plane[PLANE_CURSOR] = active->hpll.cursor;
  4545. raw->plane[PLANE_SPRITE0] = 0;
  4546. raw->fbc = active->hpll.fbc;
  4547. out:
  4548. for_each_plane_id_on_crtc(crtc, plane_id)
  4549. g4x_raw_plane_wm_set(crtc_state, level,
  4550. plane_id, USHRT_MAX);
  4551. g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
  4552. crtc_state->wm.g4x.optimal = *active;
  4553. crtc_state->wm.g4x.intermediate = *active;
  4554. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
  4555. pipe_name(pipe),
  4556. wm->pipe[pipe].plane[PLANE_PRIMARY],
  4557. wm->pipe[pipe].plane[PLANE_CURSOR],
  4558. wm->pipe[pipe].plane[PLANE_SPRITE0]);
  4559. }
  4560. DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
  4561. wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
  4562. DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
  4563. wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
  4564. DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
  4565. yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
  4566. }
  4567. void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
  4568. {
  4569. struct intel_plane *plane;
  4570. struct intel_crtc *crtc;
  4571. mutex_lock(&dev_priv->wm.wm_mutex);
  4572. for_each_intel_plane(&dev_priv->drm, plane) {
  4573. struct intel_crtc *crtc =
  4574. intel_get_crtc_for_pipe(dev_priv, plane->pipe);
  4575. struct intel_crtc_state *crtc_state =
  4576. to_intel_crtc_state(crtc->base.state);
  4577. struct intel_plane_state *plane_state =
  4578. to_intel_plane_state(plane->base.state);
  4579. struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
  4580. enum plane_id plane_id = plane->id;
  4581. int level;
  4582. if (plane_state->base.visible)
  4583. continue;
  4584. for (level = 0; level < 3; level++) {
  4585. struct g4x_pipe_wm *raw =
  4586. &crtc_state->wm.g4x.raw[level];
  4587. raw->plane[plane_id] = 0;
  4588. wm_state->wm.plane[plane_id] = 0;
  4589. }
  4590. if (plane_id == PLANE_PRIMARY) {
  4591. for (level = 0; level < 3; level++) {
  4592. struct g4x_pipe_wm *raw =
  4593. &crtc_state->wm.g4x.raw[level];
  4594. raw->fbc = 0;
  4595. }
  4596. wm_state->sr.fbc = 0;
  4597. wm_state->hpll.fbc = 0;
  4598. wm_state->fbc_en = false;
  4599. }
  4600. }
  4601. for_each_intel_crtc(&dev_priv->drm, crtc) {
  4602. struct intel_crtc_state *crtc_state =
  4603. to_intel_crtc_state(crtc->base.state);
  4604. crtc_state->wm.g4x.intermediate =
  4605. crtc_state->wm.g4x.optimal;
  4606. crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
  4607. }
  4608. g4x_program_watermarks(dev_priv);
  4609. mutex_unlock(&dev_priv->wm.wm_mutex);
  4610. }
  4611. void vlv_wm_get_hw_state(struct drm_device *dev)
  4612. {
  4613. struct drm_i915_private *dev_priv = to_i915(dev);
  4614. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  4615. struct intel_crtc *crtc;
  4616. u32 val;
  4617. vlv_read_wm_values(dev_priv, wm);
  4618. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  4619. wm->level = VLV_WM_LEVEL_PM2;
  4620. if (IS_CHERRYVIEW(dev_priv)) {
  4621. mutex_lock(&dev_priv->rps.hw_lock);
  4622. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  4623. if (val & DSP_MAXFIFO_PM5_ENABLE)
  4624. wm->level = VLV_WM_LEVEL_PM5;
  4625. /*
  4626. * If DDR DVFS is disabled in the BIOS, Punit
  4627. * will never ack the request. So if that happens
  4628. * assume we don't have to enable/disable DDR DVFS
  4629. * dynamically. To test that just set the REQ_ACK
  4630. * bit to poke the Punit, but don't change the
  4631. * HIGH/LOW bits so that we don't actually change
  4632. * the current state.
  4633. */
  4634. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4635. val |= FORCE_DDR_FREQ_REQ_ACK;
  4636. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  4637. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  4638. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  4639. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  4640. "assuming DDR DVFS is disabled\n");
  4641. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  4642. } else {
  4643. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4644. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  4645. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  4646. }
  4647. mutex_unlock(&dev_priv->rps.hw_lock);
  4648. }
  4649. for_each_intel_crtc(dev, crtc) {
  4650. struct intel_crtc_state *crtc_state =
  4651. to_intel_crtc_state(crtc->base.state);
  4652. struct vlv_wm_state *active = &crtc->wm.active.vlv;
  4653. const struct vlv_fifo_state *fifo_state =
  4654. &crtc_state->wm.vlv.fifo_state;
  4655. enum pipe pipe = crtc->pipe;
  4656. enum plane_id plane_id;
  4657. int level;
  4658. vlv_get_fifo_size(crtc_state);
  4659. active->num_levels = wm->level + 1;
  4660. active->cxsr = wm->cxsr;
  4661. for (level = 0; level < active->num_levels; level++) {
  4662. struct g4x_pipe_wm *raw =
  4663. &crtc_state->wm.vlv.raw[level];
  4664. active->sr[level].plane = wm->sr.plane;
  4665. active->sr[level].cursor = wm->sr.cursor;
  4666. for_each_plane_id_on_crtc(crtc, plane_id) {
  4667. active->wm[level].plane[plane_id] =
  4668. wm->pipe[pipe].plane[plane_id];
  4669. raw->plane[plane_id] =
  4670. vlv_invert_wm_value(active->wm[level].plane[plane_id],
  4671. fifo_state->plane[plane_id]);
  4672. }
  4673. }
  4674. for_each_plane_id_on_crtc(crtc, plane_id)
  4675. vlv_raw_plane_wm_set(crtc_state, level,
  4676. plane_id, USHRT_MAX);
  4677. vlv_invalidate_wms(crtc, active, level);
  4678. crtc_state->wm.vlv.optimal = *active;
  4679. crtc_state->wm.vlv.intermediate = *active;
  4680. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  4681. pipe_name(pipe),
  4682. wm->pipe[pipe].plane[PLANE_PRIMARY],
  4683. wm->pipe[pipe].plane[PLANE_CURSOR],
  4684. wm->pipe[pipe].plane[PLANE_SPRITE0],
  4685. wm->pipe[pipe].plane[PLANE_SPRITE1]);
  4686. }
  4687. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  4688. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  4689. }
  4690. void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
  4691. {
  4692. struct intel_plane *plane;
  4693. struct intel_crtc *crtc;
  4694. mutex_lock(&dev_priv->wm.wm_mutex);
  4695. for_each_intel_plane(&dev_priv->drm, plane) {
  4696. struct intel_crtc *crtc =
  4697. intel_get_crtc_for_pipe(dev_priv, plane->pipe);
  4698. struct intel_crtc_state *crtc_state =
  4699. to_intel_crtc_state(crtc->base.state);
  4700. struct intel_plane_state *plane_state =
  4701. to_intel_plane_state(plane->base.state);
  4702. struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
  4703. const struct vlv_fifo_state *fifo_state =
  4704. &crtc_state->wm.vlv.fifo_state;
  4705. enum plane_id plane_id = plane->id;
  4706. int level;
  4707. if (plane_state->base.visible)
  4708. continue;
  4709. for (level = 0; level < wm_state->num_levels; level++) {
  4710. struct g4x_pipe_wm *raw =
  4711. &crtc_state->wm.vlv.raw[level];
  4712. raw->plane[plane_id] = 0;
  4713. wm_state->wm[level].plane[plane_id] =
  4714. vlv_invert_wm_value(raw->plane[plane_id],
  4715. fifo_state->plane[plane_id]);
  4716. }
  4717. }
  4718. for_each_intel_crtc(&dev_priv->drm, crtc) {
  4719. struct intel_crtc_state *crtc_state =
  4720. to_intel_crtc_state(crtc->base.state);
  4721. crtc_state->wm.vlv.intermediate =
  4722. crtc_state->wm.vlv.optimal;
  4723. crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
  4724. }
  4725. vlv_program_watermarks(dev_priv);
  4726. mutex_unlock(&dev_priv->wm.wm_mutex);
  4727. }
  4728. void ilk_wm_get_hw_state(struct drm_device *dev)
  4729. {
  4730. struct drm_i915_private *dev_priv = to_i915(dev);
  4731. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  4732. struct drm_crtc *crtc;
  4733. for_each_crtc(dev, crtc)
  4734. ilk_pipe_wm_get_hw_state(crtc);
  4735. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  4736. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  4737. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  4738. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  4739. if (INTEL_GEN(dev_priv) >= 7) {
  4740. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  4741. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  4742. }
  4743. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4744. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  4745. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4746. else if (IS_IVYBRIDGE(dev_priv))
  4747. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  4748. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4749. hw->enable_fbc_wm =
  4750. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  4751. }
  4752. /**
  4753. * intel_update_watermarks - update FIFO watermark values based on current modes
  4754. *
  4755. * Calculate watermark values for the various WM regs based on current mode
  4756. * and plane configuration.
  4757. *
  4758. * There are several cases to deal with here:
  4759. * - normal (i.e. non-self-refresh)
  4760. * - self-refresh (SR) mode
  4761. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4762. * - lines are small relative to FIFO size (buffer can hold more than 2
  4763. * lines), so need to account for TLB latency
  4764. *
  4765. * The normal calculation is:
  4766. * watermark = dotclock * bytes per pixel * latency
  4767. * where latency is platform & configuration dependent (we assume pessimal
  4768. * values here).
  4769. *
  4770. * The SR calculation is:
  4771. * watermark = (trunc(latency/line time)+1) * surface width *
  4772. * bytes per pixel
  4773. * where
  4774. * line time = htotal / dotclock
  4775. * surface width = hdisplay for normal plane and 64 for cursor
  4776. * and latency is assumed to be high, as above.
  4777. *
  4778. * The final value programmed to the register should always be rounded up,
  4779. * and include an extra 2 entries to account for clock crossings.
  4780. *
  4781. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4782. * to set the non-SR watermarks to 8.
  4783. */
  4784. void intel_update_watermarks(struct intel_crtc *crtc)
  4785. {
  4786. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  4787. if (dev_priv->display.update_wm)
  4788. dev_priv->display.update_wm(crtc);
  4789. }
  4790. /*
  4791. * Lock protecting IPS related data structures
  4792. */
  4793. DEFINE_SPINLOCK(mchdev_lock);
  4794. /* Global for IPS driver to get at the current i915 device. Protected by
  4795. * mchdev_lock. */
  4796. static struct drm_i915_private *i915_mch_dev;
  4797. bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
  4798. {
  4799. u16 rgvswctl;
  4800. lockdep_assert_held(&mchdev_lock);
  4801. rgvswctl = I915_READ16(MEMSWCTL);
  4802. if (rgvswctl & MEMCTL_CMD_STS) {
  4803. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4804. return false; /* still busy with another command */
  4805. }
  4806. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4807. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4808. I915_WRITE16(MEMSWCTL, rgvswctl);
  4809. POSTING_READ16(MEMSWCTL);
  4810. rgvswctl |= MEMCTL_CMD_STS;
  4811. I915_WRITE16(MEMSWCTL, rgvswctl);
  4812. return true;
  4813. }
  4814. static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
  4815. {
  4816. u32 rgvmodectl;
  4817. u8 fmax, fmin, fstart, vstart;
  4818. spin_lock_irq(&mchdev_lock);
  4819. rgvmodectl = I915_READ(MEMMODECTL);
  4820. /* Enable temp reporting */
  4821. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  4822. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  4823. /* 100ms RC evaluation intervals */
  4824. I915_WRITE(RCUPEI, 100000);
  4825. I915_WRITE(RCDNEI, 100000);
  4826. /* Set max/min thresholds to 90ms and 80ms respectively */
  4827. I915_WRITE(RCBMAXAVG, 90000);
  4828. I915_WRITE(RCBMINAVG, 80000);
  4829. I915_WRITE(MEMIHYST, 1);
  4830. /* Set up min, max, and cur for interrupt handling */
  4831. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4832. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4833. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4834. MEMMODE_FSTART_SHIFT;
  4835. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  4836. PXVFREQ_PX_SHIFT;
  4837. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  4838. dev_priv->ips.fstart = fstart;
  4839. dev_priv->ips.max_delay = fstart;
  4840. dev_priv->ips.min_delay = fmin;
  4841. dev_priv->ips.cur_delay = fstart;
  4842. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  4843. fmax, fmin, fstart);
  4844. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4845. /*
  4846. * Interrupts will be enabled in ironlake_irq_postinstall
  4847. */
  4848. I915_WRITE(VIDSTART, vstart);
  4849. POSTING_READ(VIDSTART);
  4850. rgvmodectl |= MEMMODE_SWMODE_EN;
  4851. I915_WRITE(MEMMODECTL, rgvmodectl);
  4852. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  4853. DRM_ERROR("stuck trying to change perf mode\n");
  4854. mdelay(1);
  4855. ironlake_set_drps(dev_priv, fstart);
  4856. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  4857. I915_READ(DDREC) + I915_READ(CSIEC);
  4858. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  4859. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  4860. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  4861. spin_unlock_irq(&mchdev_lock);
  4862. }
  4863. static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
  4864. {
  4865. u16 rgvswctl;
  4866. spin_lock_irq(&mchdev_lock);
  4867. rgvswctl = I915_READ16(MEMSWCTL);
  4868. /* Ack interrupts, disable EFC interrupt */
  4869. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4870. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4871. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4872. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4873. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4874. /* Go back to the starting frequency */
  4875. ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
  4876. mdelay(1);
  4877. rgvswctl |= MEMCTL_CMD_STS;
  4878. I915_WRITE(MEMSWCTL, rgvswctl);
  4879. mdelay(1);
  4880. spin_unlock_irq(&mchdev_lock);
  4881. }
  4882. /* There's a funny hw issue where the hw returns all 0 when reading from
  4883. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  4884. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  4885. * all limits and the gpu stuck at whatever frequency it is at atm).
  4886. */
  4887. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  4888. {
  4889. u32 limits;
  4890. /* Only set the down limit when we've reached the lowest level to avoid
  4891. * getting more interrupts, otherwise leave this clear. This prevents a
  4892. * race in the hw when coming out of rc6: There's a tiny window where
  4893. * the hw runs at the minimal clock before selecting the desired
  4894. * frequency, if the down threshold expires in that window we will not
  4895. * receive a down interrupt. */
  4896. if (INTEL_GEN(dev_priv) >= 9) {
  4897. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  4898. if (val <= dev_priv->rps.min_freq_softlimit)
  4899. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  4900. } else {
  4901. limits = dev_priv->rps.max_freq_softlimit << 24;
  4902. if (val <= dev_priv->rps.min_freq_softlimit)
  4903. limits |= dev_priv->rps.min_freq_softlimit << 16;
  4904. }
  4905. return limits;
  4906. }
  4907. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  4908. {
  4909. int new_power;
  4910. u32 threshold_up = 0, threshold_down = 0; /* in % */
  4911. u32 ei_up = 0, ei_down = 0;
  4912. new_power = dev_priv->rps.power;
  4913. switch (dev_priv->rps.power) {
  4914. case LOW_POWER:
  4915. if (val > dev_priv->rps.efficient_freq + 1 &&
  4916. val > dev_priv->rps.cur_freq)
  4917. new_power = BETWEEN;
  4918. break;
  4919. case BETWEEN:
  4920. if (val <= dev_priv->rps.efficient_freq &&
  4921. val < dev_priv->rps.cur_freq)
  4922. new_power = LOW_POWER;
  4923. else if (val >= dev_priv->rps.rp0_freq &&
  4924. val > dev_priv->rps.cur_freq)
  4925. new_power = HIGH_POWER;
  4926. break;
  4927. case HIGH_POWER:
  4928. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
  4929. val < dev_priv->rps.cur_freq)
  4930. new_power = BETWEEN;
  4931. break;
  4932. }
  4933. /* Max/min bins are special */
  4934. if (val <= dev_priv->rps.min_freq_softlimit)
  4935. new_power = LOW_POWER;
  4936. if (val >= dev_priv->rps.max_freq_softlimit)
  4937. new_power = HIGH_POWER;
  4938. if (new_power == dev_priv->rps.power)
  4939. return;
  4940. /* Note the units here are not exactly 1us, but 1280ns. */
  4941. switch (new_power) {
  4942. case LOW_POWER:
  4943. /* Upclock if more than 95% busy over 16ms */
  4944. ei_up = 16000;
  4945. threshold_up = 95;
  4946. /* Downclock if less than 85% busy over 32ms */
  4947. ei_down = 32000;
  4948. threshold_down = 85;
  4949. break;
  4950. case BETWEEN:
  4951. /* Upclock if more than 90% busy over 13ms */
  4952. ei_up = 13000;
  4953. threshold_up = 90;
  4954. /* Downclock if less than 75% busy over 32ms */
  4955. ei_down = 32000;
  4956. threshold_down = 75;
  4957. break;
  4958. case HIGH_POWER:
  4959. /* Upclock if more than 85% busy over 10ms */
  4960. ei_up = 10000;
  4961. threshold_up = 85;
  4962. /* Downclock if less than 60% busy over 32ms */
  4963. ei_down = 32000;
  4964. threshold_down = 60;
  4965. break;
  4966. }
  4967. /* When byt can survive without system hang with dynamic
  4968. * sw freq adjustments, this restriction can be lifted.
  4969. */
  4970. if (IS_VALLEYVIEW(dev_priv))
  4971. goto skip_hw_write;
  4972. I915_WRITE(GEN6_RP_UP_EI,
  4973. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  4974. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  4975. GT_INTERVAL_FROM_US(dev_priv,
  4976. ei_up * threshold_up / 100));
  4977. I915_WRITE(GEN6_RP_DOWN_EI,
  4978. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  4979. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  4980. GT_INTERVAL_FROM_US(dev_priv,
  4981. ei_down * threshold_down / 100));
  4982. I915_WRITE(GEN6_RP_CONTROL,
  4983. GEN6_RP_MEDIA_TURBO |
  4984. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4985. GEN6_RP_MEDIA_IS_GFX |
  4986. GEN6_RP_ENABLE |
  4987. GEN6_RP_UP_BUSY_AVG |
  4988. GEN6_RP_DOWN_IDLE_AVG);
  4989. skip_hw_write:
  4990. dev_priv->rps.power = new_power;
  4991. dev_priv->rps.up_threshold = threshold_up;
  4992. dev_priv->rps.down_threshold = threshold_down;
  4993. dev_priv->rps.last_adj = 0;
  4994. }
  4995. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  4996. {
  4997. u32 mask = 0;
  4998. /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
  4999. if (val > dev_priv->rps.min_freq_softlimit)
  5000. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  5001. if (val < dev_priv->rps.max_freq_softlimit)
  5002. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  5003. mask &= dev_priv->pm_rps_events;
  5004. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  5005. }
  5006. /* gen6_set_rps is called to update the frequency request, but should also be
  5007. * called when the range (min_delay and max_delay) is modified so that we can
  5008. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  5009. static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5010. {
  5011. /* min/max delay may still have been modified so be sure to
  5012. * write the limits value.
  5013. */
  5014. if (val != dev_priv->rps.cur_freq) {
  5015. gen6_set_rps_thresholds(dev_priv, val);
  5016. if (INTEL_GEN(dev_priv) >= 9)
  5017. I915_WRITE(GEN6_RPNSWREQ,
  5018. GEN9_FREQUENCY(val));
  5019. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5020. I915_WRITE(GEN6_RPNSWREQ,
  5021. HSW_FREQUENCY(val));
  5022. else
  5023. I915_WRITE(GEN6_RPNSWREQ,
  5024. GEN6_FREQUENCY(val) |
  5025. GEN6_OFFSET(0) |
  5026. GEN6_AGGRESSIVE_TURBO);
  5027. }
  5028. /* Make sure we continue to get interrupts
  5029. * until we hit the minimum or maximum frequencies.
  5030. */
  5031. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  5032. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  5033. dev_priv->rps.cur_freq = val;
  5034. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  5035. return 0;
  5036. }
  5037. static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5038. {
  5039. int err;
  5040. if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
  5041. "Odd GPU freq value\n"))
  5042. val &= ~1;
  5043. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  5044. if (val != dev_priv->rps.cur_freq) {
  5045. err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  5046. if (err)
  5047. return err;
  5048. gen6_set_rps_thresholds(dev_priv, val);
  5049. }
  5050. dev_priv->rps.cur_freq = val;
  5051. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  5052. return 0;
  5053. }
  5054. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  5055. *
  5056. * * If Gfx is Idle, then
  5057. * 1. Forcewake Media well.
  5058. * 2. Request idle freq.
  5059. * 3. Release Forcewake of Media well.
  5060. */
  5061. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  5062. {
  5063. u32 val = dev_priv->rps.idle_freq;
  5064. int err;
  5065. if (dev_priv->rps.cur_freq <= val)
  5066. return;
  5067. /* The punit delays the write of the frequency and voltage until it
  5068. * determines the GPU is awake. During normal usage we don't want to
  5069. * waste power changing the frequency if the GPU is sleeping (rc6).
  5070. * However, the GPU and driver is now idle and we do not want to delay
  5071. * switching to minimum voltage (reducing power whilst idle) as we do
  5072. * not expect to be woken in the near future and so must flush the
  5073. * change by waking the device.
  5074. *
  5075. * We choose to take the media powerwell (either would do to trick the
  5076. * punit into committing the voltage change) as that takes a lot less
  5077. * power than the render powerwell.
  5078. */
  5079. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  5080. err = valleyview_set_rps(dev_priv, val);
  5081. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  5082. if (err)
  5083. DRM_ERROR("Failed to set RPS for idle\n");
  5084. }
  5085. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  5086. {
  5087. mutex_lock(&dev_priv->rps.hw_lock);
  5088. if (dev_priv->rps.enabled) {
  5089. u8 freq;
  5090. if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
  5091. gen6_rps_reset_ei(dev_priv);
  5092. I915_WRITE(GEN6_PMINTRMSK,
  5093. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  5094. gen6_enable_rps_interrupts(dev_priv);
  5095. /* Use the user's desired frequency as a guide, but for better
  5096. * performance, jump directly to RPe as our starting frequency.
  5097. */
  5098. freq = max(dev_priv->rps.cur_freq,
  5099. dev_priv->rps.efficient_freq);
  5100. if (intel_set_rps(dev_priv,
  5101. clamp(freq,
  5102. dev_priv->rps.min_freq_softlimit,
  5103. dev_priv->rps.max_freq_softlimit)))
  5104. DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
  5105. }
  5106. mutex_unlock(&dev_priv->rps.hw_lock);
  5107. }
  5108. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  5109. {
  5110. /* Flush our bottom-half so that it does not race with us
  5111. * setting the idle frequency and so that it is bounded by
  5112. * our rpm wakeref. And then disable the interrupts to stop any
  5113. * futher RPS reclocking whilst we are asleep.
  5114. */
  5115. gen6_disable_rps_interrupts(dev_priv);
  5116. mutex_lock(&dev_priv->rps.hw_lock);
  5117. if (dev_priv->rps.enabled) {
  5118. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  5119. vlv_set_rps_idle(dev_priv);
  5120. else
  5121. gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
  5122. dev_priv->rps.last_adj = 0;
  5123. I915_WRITE(GEN6_PMINTRMSK,
  5124. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  5125. }
  5126. mutex_unlock(&dev_priv->rps.hw_lock);
  5127. }
  5128. void gen6_rps_boost(struct drm_i915_gem_request *rq,
  5129. struct intel_rps_client *rps)
  5130. {
  5131. struct drm_i915_private *i915 = rq->i915;
  5132. bool boost;
  5133. /* This is intentionally racy! We peek at the state here, then
  5134. * validate inside the RPS worker.
  5135. */
  5136. if (!i915->rps.enabled)
  5137. return;
  5138. boost = false;
  5139. spin_lock_irq(&rq->lock);
  5140. if (!rq->waitboost && !i915_gem_request_completed(rq)) {
  5141. atomic_inc(&i915->rps.num_waiters);
  5142. rq->waitboost = true;
  5143. boost = true;
  5144. }
  5145. spin_unlock_irq(&rq->lock);
  5146. if (!boost)
  5147. return;
  5148. if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq)
  5149. schedule_work(&i915->rps.work);
  5150. atomic_inc(rps ? &rps->boosts : &i915->rps.boosts);
  5151. }
  5152. int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5153. {
  5154. int err;
  5155. lockdep_assert_held(&dev_priv->rps.hw_lock);
  5156. GEM_BUG_ON(val > dev_priv->rps.max_freq);
  5157. GEM_BUG_ON(val < dev_priv->rps.min_freq);
  5158. if (!dev_priv->rps.enabled) {
  5159. dev_priv->rps.cur_freq = val;
  5160. return 0;
  5161. }
  5162. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  5163. err = valleyview_set_rps(dev_priv, val);
  5164. else
  5165. err = gen6_set_rps(dev_priv, val);
  5166. return err;
  5167. }
  5168. static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
  5169. {
  5170. I915_WRITE(GEN6_RC_CONTROL, 0);
  5171. I915_WRITE(GEN9_PG_ENABLE, 0);
  5172. }
  5173. static void gen9_disable_rps(struct drm_i915_private *dev_priv)
  5174. {
  5175. I915_WRITE(GEN6_RP_CONTROL, 0);
  5176. }
  5177. static void gen6_disable_rps(struct drm_i915_private *dev_priv)
  5178. {
  5179. I915_WRITE(GEN6_RC_CONTROL, 0);
  5180. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  5181. I915_WRITE(GEN6_RP_CONTROL, 0);
  5182. }
  5183. static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
  5184. {
  5185. I915_WRITE(GEN6_RC_CONTROL, 0);
  5186. }
  5187. static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
  5188. {
  5189. /* we're doing forcewake before Disabling RC6,
  5190. * This what the BIOS expects when going into suspend */
  5191. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5192. I915_WRITE(GEN6_RC_CONTROL, 0);
  5193. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5194. }
  5195. static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
  5196. {
  5197. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  5198. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  5199. mode = GEN6_RC_CTL_RC6_ENABLE;
  5200. else
  5201. mode = 0;
  5202. }
  5203. if (HAS_RC6p(dev_priv))
  5204. DRM_DEBUG_DRIVER("Enabling RC6 states: "
  5205. "RC6 %s RC6p %s RC6pp %s\n",
  5206. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  5207. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  5208. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  5209. else
  5210. DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
  5211. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  5212. }
  5213. static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
  5214. {
  5215. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  5216. bool enable_rc6 = true;
  5217. unsigned long rc6_ctx_base;
  5218. u32 rc_ctl;
  5219. int rc_sw_target;
  5220. rc_ctl = I915_READ(GEN6_RC_CONTROL);
  5221. rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
  5222. RC_SW_TARGET_STATE_SHIFT;
  5223. DRM_DEBUG_DRIVER("BIOS enabled RC states: "
  5224. "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
  5225. onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
  5226. onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
  5227. rc_sw_target);
  5228. if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  5229. DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
  5230. enable_rc6 = false;
  5231. }
  5232. /*
  5233. * The exact context size is not known for BXT, so assume a page size
  5234. * for this check.
  5235. */
  5236. rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  5237. if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
  5238. (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
  5239. ggtt->stolen_reserved_size))) {
  5240. DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
  5241. enable_rc6 = false;
  5242. }
  5243. if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  5244. ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  5245. ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  5246. ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  5247. DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
  5248. enable_rc6 = false;
  5249. }
  5250. if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
  5251. !I915_READ(GEN8_PUSHBUS_ENABLE) ||
  5252. !I915_READ(GEN8_PUSHBUS_SHIFT)) {
  5253. DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
  5254. enable_rc6 = false;
  5255. }
  5256. if (!I915_READ(GEN6_GFXPAUSE)) {
  5257. DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
  5258. enable_rc6 = false;
  5259. }
  5260. if (!I915_READ(GEN8_MISC_CTRL0)) {
  5261. DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
  5262. enable_rc6 = false;
  5263. }
  5264. return enable_rc6;
  5265. }
  5266. int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
  5267. {
  5268. /* No RC6 before Ironlake and code is gone for ilk. */
  5269. if (INTEL_INFO(dev_priv)->gen < 6)
  5270. return 0;
  5271. if (!enable_rc6)
  5272. return 0;
  5273. if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
  5274. DRM_INFO("RC6 disabled by BIOS\n");
  5275. return 0;
  5276. }
  5277. /* Respect the kernel parameter if it is set */
  5278. if (enable_rc6 >= 0) {
  5279. int mask;
  5280. if (HAS_RC6p(dev_priv))
  5281. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  5282. INTEL_RC6pp_ENABLE;
  5283. else
  5284. mask = INTEL_RC6_ENABLE;
  5285. if ((enable_rc6 & mask) != enable_rc6)
  5286. DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
  5287. "(requested %d, valid %d)\n",
  5288. enable_rc6 & mask, enable_rc6, mask);
  5289. return enable_rc6 & mask;
  5290. }
  5291. if (IS_IVYBRIDGE(dev_priv))
  5292. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  5293. return INTEL_RC6_ENABLE;
  5294. }
  5295. static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
  5296. {
  5297. /* All of these values are in units of 50MHz */
  5298. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  5299. if (IS_GEN9_LP(dev_priv)) {
  5300. u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  5301. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  5302. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  5303. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  5304. } else {
  5305. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  5306. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  5307. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  5308. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  5309. }
  5310. /* hw_max = RP0 until we check for overclocking */
  5311. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  5312. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  5313. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
  5314. IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5315. u32 ddcc_status = 0;
  5316. if (sandybridge_pcode_read(dev_priv,
  5317. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  5318. &ddcc_status) == 0)
  5319. dev_priv->rps.efficient_freq =
  5320. clamp_t(u8,
  5321. ((ddcc_status >> 8) & 0xff),
  5322. dev_priv->rps.min_freq,
  5323. dev_priv->rps.max_freq);
  5324. }
  5325. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5326. /* Store the frequency values in 16.66 MHZ units, which is
  5327. * the natural hardware unit for SKL
  5328. */
  5329. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  5330. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  5331. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  5332. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  5333. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  5334. }
  5335. }
  5336. static void reset_rps(struct drm_i915_private *dev_priv,
  5337. int (*set)(struct drm_i915_private *, u8))
  5338. {
  5339. u8 freq = dev_priv->rps.cur_freq;
  5340. /* force a reset */
  5341. dev_priv->rps.power = -1;
  5342. dev_priv->rps.cur_freq = -1;
  5343. if (set(dev_priv, freq))
  5344. DRM_ERROR("Failed to reset RPS to initial values\n");
  5345. }
  5346. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  5347. static void gen9_enable_rps(struct drm_i915_private *dev_priv)
  5348. {
  5349. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5350. /* Program defaults and thresholds for RPS*/
  5351. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  5352. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  5353. /* 1 second timeout*/
  5354. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  5355. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  5356. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  5357. /* Leaning on the below call to gen6_set_rps to program/setup the
  5358. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  5359. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  5360. reset_rps(dev_priv, gen6_set_rps);
  5361. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5362. }
  5363. static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
  5364. {
  5365. struct intel_engine_cs *engine;
  5366. enum intel_engine_id id;
  5367. uint32_t rc6_mask = 0;
  5368. /* 1a: Software RC state - RC0 */
  5369. I915_WRITE(GEN6_RC_STATE, 0);
  5370. /* 1b: Get forcewake during program sequence. Although the driver
  5371. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5372. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5373. /* 2a: Disable RC states. */
  5374. I915_WRITE(GEN6_RC_CONTROL, 0);
  5375. /* 2b: Program RC6 thresholds.*/
  5376. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  5377. if (IS_SKYLAKE(dev_priv))
  5378. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  5379. else
  5380. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  5381. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5382. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5383. for_each_engine(engine, dev_priv, id)
  5384. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5385. if (HAS_GUC(dev_priv))
  5386. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  5387. I915_WRITE(GEN6_RC_SLEEP, 0);
  5388. /* 2c: Program Coarse Power Gating Policies. */
  5389. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  5390. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  5391. /* 3a: Enable RC6 */
  5392. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5393. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  5394. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  5395. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  5396. I915_WRITE(GEN6_RC_CONTROL,
  5397. GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
  5398. /*
  5399. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  5400. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  5401. */
  5402. if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
  5403. I915_WRITE(GEN9_PG_ENABLE, 0);
  5404. else
  5405. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  5406. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  5407. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5408. }
  5409. static void gen8_enable_rps(struct drm_i915_private *dev_priv)
  5410. {
  5411. struct intel_engine_cs *engine;
  5412. enum intel_engine_id id;
  5413. uint32_t rc6_mask = 0;
  5414. /* 1a: Software RC state - RC0 */
  5415. I915_WRITE(GEN6_RC_STATE, 0);
  5416. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  5417. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5418. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5419. /* 2a: Disable RC states. */
  5420. I915_WRITE(GEN6_RC_CONTROL, 0);
  5421. /* 2b: Program RC6 thresholds.*/
  5422. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  5423. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5424. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5425. for_each_engine(engine, dev_priv, id)
  5426. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5427. I915_WRITE(GEN6_RC_SLEEP, 0);
  5428. if (IS_BROADWELL(dev_priv))
  5429. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  5430. else
  5431. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  5432. /* 3: Enable RC6 */
  5433. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5434. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  5435. intel_print_rc6_info(dev_priv, rc6_mask);
  5436. if (IS_BROADWELL(dev_priv))
  5437. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  5438. GEN7_RC_CTL_TO_MODE |
  5439. rc6_mask);
  5440. else
  5441. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  5442. GEN6_RC_CTL_EI_MODE(1) |
  5443. rc6_mask);
  5444. /* 4 Program defaults and thresholds for RPS*/
  5445. I915_WRITE(GEN6_RPNSWREQ,
  5446. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  5447. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  5448. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  5449. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  5450. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  5451. /* Docs recommend 900MHz, and 300 MHz respectively */
  5452. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  5453. dev_priv->rps.max_freq_softlimit << 24 |
  5454. dev_priv->rps.min_freq_softlimit << 16);
  5455. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  5456. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  5457. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  5458. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  5459. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5460. /* 5: Enable RPS */
  5461. I915_WRITE(GEN6_RP_CONTROL,
  5462. GEN6_RP_MEDIA_TURBO |
  5463. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5464. GEN6_RP_MEDIA_IS_GFX |
  5465. GEN6_RP_ENABLE |
  5466. GEN6_RP_UP_BUSY_AVG |
  5467. GEN6_RP_DOWN_IDLE_AVG);
  5468. /* 6: Ring frequency + overclocking (our driver does this later */
  5469. reset_rps(dev_priv, gen6_set_rps);
  5470. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5471. }
  5472. static void gen6_enable_rps(struct drm_i915_private *dev_priv)
  5473. {
  5474. struct intel_engine_cs *engine;
  5475. enum intel_engine_id id;
  5476. u32 rc6vids, rc6_mask = 0;
  5477. u32 gtfifodbg;
  5478. int rc6_mode;
  5479. int ret;
  5480. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5481. /* Here begins a magic sequence of register writes to enable
  5482. * auto-downclocking.
  5483. *
  5484. * Perhaps there might be some value in exposing these to
  5485. * userspace...
  5486. */
  5487. I915_WRITE(GEN6_RC_STATE, 0);
  5488. /* Clear the DBG now so we don't confuse earlier errors */
  5489. gtfifodbg = I915_READ(GTFIFODBG);
  5490. if (gtfifodbg) {
  5491. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  5492. I915_WRITE(GTFIFODBG, gtfifodbg);
  5493. }
  5494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5495. /* disable the counters and set deterministic thresholds */
  5496. I915_WRITE(GEN6_RC_CONTROL, 0);
  5497. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  5498. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  5499. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  5500. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5501. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5502. for_each_engine(engine, dev_priv, id)
  5503. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5504. I915_WRITE(GEN6_RC_SLEEP, 0);
  5505. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  5506. if (IS_IVYBRIDGE(dev_priv))
  5507. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  5508. else
  5509. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  5510. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  5511. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  5512. /* Check if we are enabling RC6 */
  5513. rc6_mode = intel_enable_rc6();
  5514. if (rc6_mode & INTEL_RC6_ENABLE)
  5515. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  5516. /* We don't use those on Haswell */
  5517. if (!IS_HASWELL(dev_priv)) {
  5518. if (rc6_mode & INTEL_RC6p_ENABLE)
  5519. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  5520. if (rc6_mode & INTEL_RC6pp_ENABLE)
  5521. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  5522. }
  5523. intel_print_rc6_info(dev_priv, rc6_mask);
  5524. I915_WRITE(GEN6_RC_CONTROL,
  5525. rc6_mask |
  5526. GEN6_RC_CTL_EI_MODE(1) |
  5527. GEN6_RC_CTL_HW_ENABLE);
  5528. /* Power down if completely idle for over 50ms */
  5529. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  5530. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5531. reset_rps(dev_priv, gen6_set_rps);
  5532. rc6vids = 0;
  5533. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  5534. if (IS_GEN6(dev_priv) && ret) {
  5535. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  5536. } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  5537. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  5538. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  5539. rc6vids &= 0xffff00;
  5540. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  5541. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  5542. if (ret)
  5543. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  5544. }
  5545. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5546. }
  5547. static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  5548. {
  5549. int min_freq = 15;
  5550. unsigned int gpu_freq;
  5551. unsigned int max_ia_freq, min_ring_freq;
  5552. unsigned int max_gpu_freq, min_gpu_freq;
  5553. int scaling_factor = 180;
  5554. struct cpufreq_policy *policy;
  5555. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5556. policy = cpufreq_cpu_get(0);
  5557. if (policy) {
  5558. max_ia_freq = policy->cpuinfo.max_freq;
  5559. cpufreq_cpu_put(policy);
  5560. } else {
  5561. /*
  5562. * Default to measured freq if none found, PCU will ensure we
  5563. * don't go over
  5564. */
  5565. max_ia_freq = tsc_khz;
  5566. }
  5567. /* Convert from kHz to MHz */
  5568. max_ia_freq /= 1000;
  5569. min_ring_freq = I915_READ(DCLK) & 0xf;
  5570. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  5571. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  5572. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5573. /* Convert GT frequency to 50 HZ units */
  5574. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  5575. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  5576. } else {
  5577. min_gpu_freq = dev_priv->rps.min_freq;
  5578. max_gpu_freq = dev_priv->rps.max_freq;
  5579. }
  5580. /*
  5581. * For each potential GPU frequency, load a ring frequency we'd like
  5582. * to use for memory access. We do this by specifying the IA frequency
  5583. * the PCU should use as a reference to determine the ring frequency.
  5584. */
  5585. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  5586. int diff = max_gpu_freq - gpu_freq;
  5587. unsigned int ia_freq = 0, ring_freq = 0;
  5588. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5589. /*
  5590. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  5591. * No floor required for ring frequency on SKL.
  5592. */
  5593. ring_freq = gpu_freq;
  5594. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  5595. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  5596. ring_freq = max(min_ring_freq, gpu_freq);
  5597. } else if (IS_HASWELL(dev_priv)) {
  5598. ring_freq = mult_frac(gpu_freq, 5, 4);
  5599. ring_freq = max(min_ring_freq, ring_freq);
  5600. /* leave ia_freq as the default, chosen by cpufreq */
  5601. } else {
  5602. /* On older processors, there is no separate ring
  5603. * clock domain, so in order to boost the bandwidth
  5604. * of the ring, we need to upclock the CPU (ia_freq).
  5605. *
  5606. * For GPU frequencies less than 750MHz,
  5607. * just use the lowest ring freq.
  5608. */
  5609. if (gpu_freq < min_freq)
  5610. ia_freq = 800;
  5611. else
  5612. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  5613. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  5614. }
  5615. sandybridge_pcode_write(dev_priv,
  5616. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  5617. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  5618. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  5619. gpu_freq);
  5620. }
  5621. }
  5622. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  5623. {
  5624. u32 val, rp0;
  5625. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5626. switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
  5627. case 8:
  5628. /* (2 * 4) config */
  5629. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  5630. break;
  5631. case 12:
  5632. /* (2 * 6) config */
  5633. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  5634. break;
  5635. case 16:
  5636. /* (2 * 8) config */
  5637. default:
  5638. /* Setting (2 * 8) Min RP0 for any other combination */
  5639. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  5640. break;
  5641. }
  5642. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  5643. return rp0;
  5644. }
  5645. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5646. {
  5647. u32 val, rpe;
  5648. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  5649. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  5650. return rpe;
  5651. }
  5652. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5653. {
  5654. u32 val, rp1;
  5655. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5656. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  5657. return rp1;
  5658. }
  5659. static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  5660. {
  5661. u32 val, rpn;
  5662. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  5663. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  5664. FB_GFX_FREQ_FUSE_MASK);
  5665. return rpn;
  5666. }
  5667. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5668. {
  5669. u32 val, rp1;
  5670. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5671. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  5672. return rp1;
  5673. }
  5674. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  5675. {
  5676. u32 val, rp0;
  5677. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5678. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  5679. /* Clamp to max */
  5680. rp0 = min_t(u32, rp0, 0xea);
  5681. return rp0;
  5682. }
  5683. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5684. {
  5685. u32 val, rpe;
  5686. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  5687. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  5688. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  5689. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  5690. return rpe;
  5691. }
  5692. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  5693. {
  5694. u32 val;
  5695. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  5696. /*
  5697. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  5698. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  5699. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  5700. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  5701. * to make sure it matches what Punit accepts.
  5702. */
  5703. return max_t(u32, val, 0xc0);
  5704. }
  5705. /* Check that the pctx buffer wasn't move under us. */
  5706. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  5707. {
  5708. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5709. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  5710. dev_priv->vlv_pctx->stolen->start);
  5711. }
  5712. /* Check that the pcbr address is not empty. */
  5713. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  5714. {
  5715. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5716. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  5717. }
  5718. static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
  5719. {
  5720. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  5721. unsigned long pctx_paddr, paddr;
  5722. u32 pcbr;
  5723. int pctx_size = 32*1024;
  5724. pcbr = I915_READ(VLV_PCBR);
  5725. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  5726. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5727. paddr = (dev_priv->mm.stolen_base +
  5728. (ggtt->stolen_size - pctx_size));
  5729. pctx_paddr = (paddr & (~4095));
  5730. I915_WRITE(VLV_PCBR, pctx_paddr);
  5731. }
  5732. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5733. }
  5734. static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
  5735. {
  5736. struct drm_i915_gem_object *pctx;
  5737. unsigned long pctx_paddr;
  5738. u32 pcbr;
  5739. int pctx_size = 24*1024;
  5740. pcbr = I915_READ(VLV_PCBR);
  5741. if (pcbr) {
  5742. /* BIOS set it up already, grab the pre-alloc'd space */
  5743. int pcbr_offset;
  5744. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  5745. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
  5746. pcbr_offset,
  5747. I915_GTT_OFFSET_NONE,
  5748. pctx_size);
  5749. goto out;
  5750. }
  5751. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5752. /*
  5753. * From the Gunit register HAS:
  5754. * The Gfx driver is expected to program this register and ensure
  5755. * proper allocation within Gfx stolen memory. For example, this
  5756. * register should be programmed such than the PCBR range does not
  5757. * overlap with other ranges, such as the frame buffer, protected
  5758. * memory, or any other relevant ranges.
  5759. */
  5760. pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
  5761. if (!pctx) {
  5762. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  5763. goto out;
  5764. }
  5765. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  5766. I915_WRITE(VLV_PCBR, pctx_paddr);
  5767. out:
  5768. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5769. dev_priv->vlv_pctx = pctx;
  5770. }
  5771. static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
  5772. {
  5773. if (WARN_ON(!dev_priv->vlv_pctx))
  5774. return;
  5775. i915_gem_object_put(dev_priv->vlv_pctx);
  5776. dev_priv->vlv_pctx = NULL;
  5777. }
  5778. static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
  5779. {
  5780. dev_priv->rps.gpll_ref_freq =
  5781. vlv_get_cck_clock(dev_priv, "GPLL ref",
  5782. CCK_GPLL_CLOCK_CONTROL,
  5783. dev_priv->czclk_freq);
  5784. DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
  5785. dev_priv->rps.gpll_ref_freq);
  5786. }
  5787. static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
  5788. {
  5789. u32 val;
  5790. valleyview_setup_pctx(dev_priv);
  5791. vlv_init_gpll_ref_freq(dev_priv);
  5792. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5793. switch ((val >> 6) & 3) {
  5794. case 0:
  5795. case 1:
  5796. dev_priv->mem_freq = 800;
  5797. break;
  5798. case 2:
  5799. dev_priv->mem_freq = 1066;
  5800. break;
  5801. case 3:
  5802. dev_priv->mem_freq = 1333;
  5803. break;
  5804. }
  5805. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5806. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  5807. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  5808. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5809. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  5810. dev_priv->rps.max_freq);
  5811. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  5812. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5813. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5814. dev_priv->rps.efficient_freq);
  5815. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  5816. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  5817. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  5818. dev_priv->rps.rp1_freq);
  5819. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  5820. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5821. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  5822. dev_priv->rps.min_freq);
  5823. }
  5824. static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
  5825. {
  5826. u32 val;
  5827. cherryview_setup_pctx(dev_priv);
  5828. vlv_init_gpll_ref_freq(dev_priv);
  5829. mutex_lock(&dev_priv->sb_lock);
  5830. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  5831. mutex_unlock(&dev_priv->sb_lock);
  5832. switch ((val >> 2) & 0x7) {
  5833. case 3:
  5834. dev_priv->mem_freq = 2000;
  5835. break;
  5836. default:
  5837. dev_priv->mem_freq = 1600;
  5838. break;
  5839. }
  5840. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5841. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  5842. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  5843. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5844. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  5845. dev_priv->rps.max_freq);
  5846. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  5847. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5848. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  5849. dev_priv->rps.efficient_freq);
  5850. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  5851. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  5852. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  5853. dev_priv->rps.rp1_freq);
  5854. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  5855. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5856. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  5857. dev_priv->rps.min_freq);
  5858. WARN_ONCE((dev_priv->rps.max_freq |
  5859. dev_priv->rps.efficient_freq |
  5860. dev_priv->rps.rp1_freq |
  5861. dev_priv->rps.min_freq) & 1,
  5862. "Odd GPU freq values\n");
  5863. }
  5864. static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  5865. {
  5866. valleyview_cleanup_pctx(dev_priv);
  5867. }
  5868. static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
  5869. {
  5870. struct intel_engine_cs *engine;
  5871. enum intel_engine_id id;
  5872. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  5873. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5874. gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
  5875. GT_FIFO_FREE_ENTRIES_CHV);
  5876. if (gtfifodbg) {
  5877. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5878. gtfifodbg);
  5879. I915_WRITE(GTFIFODBG, gtfifodbg);
  5880. }
  5881. cherryview_check_pctx(dev_priv);
  5882. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  5883. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5884. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5885. /* Disable RC states. */
  5886. I915_WRITE(GEN6_RC_CONTROL, 0);
  5887. /* 2a: Program RC6 thresholds.*/
  5888. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  5889. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5890. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5891. for_each_engine(engine, dev_priv, id)
  5892. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5893. I915_WRITE(GEN6_RC_SLEEP, 0);
  5894. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  5895. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  5896. /* allows RC6 residency counter to work */
  5897. I915_WRITE(VLV_COUNTER_CONTROL,
  5898. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  5899. VLV_MEDIA_RC6_COUNT_EN |
  5900. VLV_RENDER_RC6_COUNT_EN));
  5901. /* For now we assume BIOS is allocating and populating the PCBR */
  5902. pcbr = I915_READ(VLV_PCBR);
  5903. /* 3: Enable RC6 */
  5904. if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
  5905. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  5906. rc6_mode = GEN7_RC_CTL_TO_MODE;
  5907. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5908. /* 4 Program defaults and thresholds for RPS*/
  5909. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5910. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5911. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5912. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5913. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5914. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5915. /* 5: Enable RPS */
  5916. I915_WRITE(GEN6_RP_CONTROL,
  5917. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5918. GEN6_RP_MEDIA_IS_GFX |
  5919. GEN6_RP_ENABLE |
  5920. GEN6_RP_UP_BUSY_AVG |
  5921. GEN6_RP_DOWN_IDLE_AVG);
  5922. /* Setting Fixed Bias */
  5923. val = VLV_OVERRIDE_EN |
  5924. VLV_SOC_TDP_EN |
  5925. CHV_BIAS_CPU_50_SOC_50;
  5926. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5927. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5928. /* RPS code assumes GPLL is used */
  5929. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5930. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5931. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5932. reset_rps(dev_priv, valleyview_set_rps);
  5933. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5934. }
  5935. static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
  5936. {
  5937. struct intel_engine_cs *engine;
  5938. enum intel_engine_id id;
  5939. u32 gtfifodbg, val, rc6_mode = 0;
  5940. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5941. valleyview_check_pctx(dev_priv);
  5942. gtfifodbg = I915_READ(GTFIFODBG);
  5943. if (gtfifodbg) {
  5944. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  5945. gtfifodbg);
  5946. I915_WRITE(GTFIFODBG, gtfifodbg);
  5947. }
  5948. /* If VLV, Forcewake all wells, else re-direct to regular path */
  5949. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5950. /* Disable RC states. */
  5951. I915_WRITE(GEN6_RC_CONTROL, 0);
  5952. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5953. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  5954. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  5955. I915_WRITE(GEN6_RP_UP_EI, 66000);
  5956. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  5957. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5958. I915_WRITE(GEN6_RP_CONTROL,
  5959. GEN6_RP_MEDIA_TURBO |
  5960. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5961. GEN6_RP_MEDIA_IS_GFX |
  5962. GEN6_RP_ENABLE |
  5963. GEN6_RP_UP_BUSY_AVG |
  5964. GEN6_RP_DOWN_IDLE_CONT);
  5965. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  5966. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5967. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5968. for_each_engine(engine, dev_priv, id)
  5969. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5970. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  5971. /* allows RC6 residency counter to work */
  5972. I915_WRITE(VLV_COUNTER_CONTROL,
  5973. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  5974. VLV_MEDIA_RC0_COUNT_EN |
  5975. VLV_RENDER_RC0_COUNT_EN |
  5976. VLV_MEDIA_RC6_COUNT_EN |
  5977. VLV_RENDER_RC6_COUNT_EN));
  5978. if (intel_enable_rc6() & INTEL_RC6_ENABLE)
  5979. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  5980. intel_print_rc6_info(dev_priv, rc6_mode);
  5981. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  5982. /* Setting Fixed Bias */
  5983. val = VLV_OVERRIDE_EN |
  5984. VLV_SOC_TDP_EN |
  5985. VLV_BIAS_CPU_125_SOC_875;
  5986. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  5987. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5988. /* RPS code assumes GPLL is used */
  5989. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  5990. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  5991. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  5992. reset_rps(dev_priv, valleyview_set_rps);
  5993. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5994. }
  5995. static unsigned long intel_pxfreq(u32 vidfreq)
  5996. {
  5997. unsigned long freq;
  5998. int div = (vidfreq & 0x3f0000) >> 16;
  5999. int post = (vidfreq & 0x3000) >> 12;
  6000. int pre = (vidfreq & 0x7);
  6001. if (!pre)
  6002. return 0;
  6003. freq = ((div * 133333) / ((1<<post) * pre));
  6004. return freq;
  6005. }
  6006. static const struct cparams {
  6007. u16 i;
  6008. u16 t;
  6009. u16 m;
  6010. u16 c;
  6011. } cparams[] = {
  6012. { 1, 1333, 301, 28664 },
  6013. { 1, 1066, 294, 24460 },
  6014. { 1, 800, 294, 25192 },
  6015. { 0, 1333, 276, 27605 },
  6016. { 0, 1066, 276, 27605 },
  6017. { 0, 800, 231, 23784 },
  6018. };
  6019. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  6020. {
  6021. u64 total_count, diff, ret;
  6022. u32 count1, count2, count3, m = 0, c = 0;
  6023. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  6024. int i;
  6025. lockdep_assert_held(&mchdev_lock);
  6026. diff1 = now - dev_priv->ips.last_time1;
  6027. /* Prevent division-by-zero if we are asking too fast.
  6028. * Also, we don't get interesting results if we are polling
  6029. * faster than once in 10ms, so just return the saved value
  6030. * in such cases.
  6031. */
  6032. if (diff1 <= 10)
  6033. return dev_priv->ips.chipset_power;
  6034. count1 = I915_READ(DMIEC);
  6035. count2 = I915_READ(DDREC);
  6036. count3 = I915_READ(CSIEC);
  6037. total_count = count1 + count2 + count3;
  6038. /* FIXME: handle per-counter overflow */
  6039. if (total_count < dev_priv->ips.last_count1) {
  6040. diff = ~0UL - dev_priv->ips.last_count1;
  6041. diff += total_count;
  6042. } else {
  6043. diff = total_count - dev_priv->ips.last_count1;
  6044. }
  6045. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  6046. if (cparams[i].i == dev_priv->ips.c_m &&
  6047. cparams[i].t == dev_priv->ips.r_t) {
  6048. m = cparams[i].m;
  6049. c = cparams[i].c;
  6050. break;
  6051. }
  6052. }
  6053. diff = div_u64(diff, diff1);
  6054. ret = ((m * diff) + c);
  6055. ret = div_u64(ret, 10);
  6056. dev_priv->ips.last_count1 = total_count;
  6057. dev_priv->ips.last_time1 = now;
  6058. dev_priv->ips.chipset_power = ret;
  6059. return ret;
  6060. }
  6061. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  6062. {
  6063. unsigned long val;
  6064. if (INTEL_INFO(dev_priv)->gen != 5)
  6065. return 0;
  6066. spin_lock_irq(&mchdev_lock);
  6067. val = __i915_chipset_val(dev_priv);
  6068. spin_unlock_irq(&mchdev_lock);
  6069. return val;
  6070. }
  6071. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  6072. {
  6073. unsigned long m, x, b;
  6074. u32 tsfs;
  6075. tsfs = I915_READ(TSFS);
  6076. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  6077. x = I915_READ8(TR1);
  6078. b = tsfs & TSFS_INTR_MASK;
  6079. return ((m * x) / 127) - b;
  6080. }
  6081. static int _pxvid_to_vd(u8 pxvid)
  6082. {
  6083. if (pxvid == 0)
  6084. return 0;
  6085. if (pxvid >= 8 && pxvid < 31)
  6086. pxvid = 31;
  6087. return (pxvid + 2) * 125;
  6088. }
  6089. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  6090. {
  6091. const int vd = _pxvid_to_vd(pxvid);
  6092. const int vm = vd - 1125;
  6093. if (INTEL_INFO(dev_priv)->is_mobile)
  6094. return vm > 0 ? vm : 0;
  6095. return vd;
  6096. }
  6097. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  6098. {
  6099. u64 now, diff, diffms;
  6100. u32 count;
  6101. lockdep_assert_held(&mchdev_lock);
  6102. now = ktime_get_raw_ns();
  6103. diffms = now - dev_priv->ips.last_time2;
  6104. do_div(diffms, NSEC_PER_MSEC);
  6105. /* Don't divide by 0 */
  6106. if (!diffms)
  6107. return;
  6108. count = I915_READ(GFXEC);
  6109. if (count < dev_priv->ips.last_count2) {
  6110. diff = ~0UL - dev_priv->ips.last_count2;
  6111. diff += count;
  6112. } else {
  6113. diff = count - dev_priv->ips.last_count2;
  6114. }
  6115. dev_priv->ips.last_count2 = count;
  6116. dev_priv->ips.last_time2 = now;
  6117. /* More magic constants... */
  6118. diff = diff * 1181;
  6119. diff = div_u64(diff, diffms * 10);
  6120. dev_priv->ips.gfx_power = diff;
  6121. }
  6122. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  6123. {
  6124. if (INTEL_INFO(dev_priv)->gen != 5)
  6125. return;
  6126. spin_lock_irq(&mchdev_lock);
  6127. __i915_update_gfx_val(dev_priv);
  6128. spin_unlock_irq(&mchdev_lock);
  6129. }
  6130. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  6131. {
  6132. unsigned long t, corr, state1, corr2, state2;
  6133. u32 pxvid, ext_v;
  6134. lockdep_assert_held(&mchdev_lock);
  6135. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  6136. pxvid = (pxvid >> 24) & 0x7f;
  6137. ext_v = pvid_to_extvid(dev_priv, pxvid);
  6138. state1 = ext_v;
  6139. t = i915_mch_val(dev_priv);
  6140. /* Revel in the empirically derived constants */
  6141. /* Correction factor in 1/100000 units */
  6142. if (t > 80)
  6143. corr = ((t * 2349) + 135940);
  6144. else if (t >= 50)
  6145. corr = ((t * 964) + 29317);
  6146. else /* < 50 */
  6147. corr = ((t * 301) + 1004);
  6148. corr = corr * ((150142 * state1) / 10000 - 78642);
  6149. corr /= 100000;
  6150. corr2 = (corr * dev_priv->ips.corr);
  6151. state2 = (corr2 * state1) / 10000;
  6152. state2 /= 100; /* convert to mW */
  6153. __i915_update_gfx_val(dev_priv);
  6154. return dev_priv->ips.gfx_power + state2;
  6155. }
  6156. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  6157. {
  6158. unsigned long val;
  6159. if (INTEL_INFO(dev_priv)->gen != 5)
  6160. return 0;
  6161. spin_lock_irq(&mchdev_lock);
  6162. val = __i915_gfx_val(dev_priv);
  6163. spin_unlock_irq(&mchdev_lock);
  6164. return val;
  6165. }
  6166. /**
  6167. * i915_read_mch_val - return value for IPS use
  6168. *
  6169. * Calculate and return a value for the IPS driver to use when deciding whether
  6170. * we have thermal and power headroom to increase CPU or GPU power budget.
  6171. */
  6172. unsigned long i915_read_mch_val(void)
  6173. {
  6174. struct drm_i915_private *dev_priv;
  6175. unsigned long chipset_val, graphics_val, ret = 0;
  6176. spin_lock_irq(&mchdev_lock);
  6177. if (!i915_mch_dev)
  6178. goto out_unlock;
  6179. dev_priv = i915_mch_dev;
  6180. chipset_val = __i915_chipset_val(dev_priv);
  6181. graphics_val = __i915_gfx_val(dev_priv);
  6182. ret = chipset_val + graphics_val;
  6183. out_unlock:
  6184. spin_unlock_irq(&mchdev_lock);
  6185. return ret;
  6186. }
  6187. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  6188. /**
  6189. * i915_gpu_raise - raise GPU frequency limit
  6190. *
  6191. * Raise the limit; IPS indicates we have thermal headroom.
  6192. */
  6193. bool i915_gpu_raise(void)
  6194. {
  6195. struct drm_i915_private *dev_priv;
  6196. bool ret = true;
  6197. spin_lock_irq(&mchdev_lock);
  6198. if (!i915_mch_dev) {
  6199. ret = false;
  6200. goto out_unlock;
  6201. }
  6202. dev_priv = i915_mch_dev;
  6203. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  6204. dev_priv->ips.max_delay--;
  6205. out_unlock:
  6206. spin_unlock_irq(&mchdev_lock);
  6207. return ret;
  6208. }
  6209. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  6210. /**
  6211. * i915_gpu_lower - lower GPU frequency limit
  6212. *
  6213. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  6214. * frequency maximum.
  6215. */
  6216. bool i915_gpu_lower(void)
  6217. {
  6218. struct drm_i915_private *dev_priv;
  6219. bool ret = true;
  6220. spin_lock_irq(&mchdev_lock);
  6221. if (!i915_mch_dev) {
  6222. ret = false;
  6223. goto out_unlock;
  6224. }
  6225. dev_priv = i915_mch_dev;
  6226. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  6227. dev_priv->ips.max_delay++;
  6228. out_unlock:
  6229. spin_unlock_irq(&mchdev_lock);
  6230. return ret;
  6231. }
  6232. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  6233. /**
  6234. * i915_gpu_busy - indicate GPU business to IPS
  6235. *
  6236. * Tell the IPS driver whether or not the GPU is busy.
  6237. */
  6238. bool i915_gpu_busy(void)
  6239. {
  6240. bool ret = false;
  6241. spin_lock_irq(&mchdev_lock);
  6242. if (i915_mch_dev)
  6243. ret = i915_mch_dev->gt.awake;
  6244. spin_unlock_irq(&mchdev_lock);
  6245. return ret;
  6246. }
  6247. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  6248. /**
  6249. * i915_gpu_turbo_disable - disable graphics turbo
  6250. *
  6251. * Disable graphics turbo by resetting the max frequency and setting the
  6252. * current frequency to the default.
  6253. */
  6254. bool i915_gpu_turbo_disable(void)
  6255. {
  6256. struct drm_i915_private *dev_priv;
  6257. bool ret = true;
  6258. spin_lock_irq(&mchdev_lock);
  6259. if (!i915_mch_dev) {
  6260. ret = false;
  6261. goto out_unlock;
  6262. }
  6263. dev_priv = i915_mch_dev;
  6264. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  6265. if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
  6266. ret = false;
  6267. out_unlock:
  6268. spin_unlock_irq(&mchdev_lock);
  6269. return ret;
  6270. }
  6271. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  6272. /**
  6273. * Tells the intel_ips driver that the i915 driver is now loaded, if
  6274. * IPS got loaded first.
  6275. *
  6276. * This awkward dance is so that neither module has to depend on the
  6277. * other in order for IPS to do the appropriate communication of
  6278. * GPU turbo limits to i915.
  6279. */
  6280. static void
  6281. ips_ping_for_i915_load(void)
  6282. {
  6283. void (*link)(void);
  6284. link = symbol_get(ips_link_to_i915_driver);
  6285. if (link) {
  6286. link();
  6287. symbol_put(ips_link_to_i915_driver);
  6288. }
  6289. }
  6290. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  6291. {
  6292. /* We only register the i915 ips part with intel-ips once everything is
  6293. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  6294. spin_lock_irq(&mchdev_lock);
  6295. i915_mch_dev = dev_priv;
  6296. spin_unlock_irq(&mchdev_lock);
  6297. ips_ping_for_i915_load();
  6298. }
  6299. void intel_gpu_ips_teardown(void)
  6300. {
  6301. spin_lock_irq(&mchdev_lock);
  6302. i915_mch_dev = NULL;
  6303. spin_unlock_irq(&mchdev_lock);
  6304. }
  6305. static void intel_init_emon(struct drm_i915_private *dev_priv)
  6306. {
  6307. u32 lcfuse;
  6308. u8 pxw[16];
  6309. int i;
  6310. /* Disable to program */
  6311. I915_WRITE(ECR, 0);
  6312. POSTING_READ(ECR);
  6313. /* Program energy weights for various events */
  6314. I915_WRITE(SDEW, 0x15040d00);
  6315. I915_WRITE(CSIEW0, 0x007f0000);
  6316. I915_WRITE(CSIEW1, 0x1e220004);
  6317. I915_WRITE(CSIEW2, 0x04000004);
  6318. for (i = 0; i < 5; i++)
  6319. I915_WRITE(PEW(i), 0);
  6320. for (i = 0; i < 3; i++)
  6321. I915_WRITE(DEW(i), 0);
  6322. /* Program P-state weights to account for frequency power adjustment */
  6323. for (i = 0; i < 16; i++) {
  6324. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  6325. unsigned long freq = intel_pxfreq(pxvidfreq);
  6326. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6327. PXVFREQ_PX_SHIFT;
  6328. unsigned long val;
  6329. val = vid * vid;
  6330. val *= (freq / 1000);
  6331. val *= 255;
  6332. val /= (127*127*900);
  6333. if (val > 0xff)
  6334. DRM_ERROR("bad pxval: %ld\n", val);
  6335. pxw[i] = val;
  6336. }
  6337. /* Render standby states get 0 weight */
  6338. pxw[14] = 0;
  6339. pxw[15] = 0;
  6340. for (i = 0; i < 4; i++) {
  6341. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6342. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6343. I915_WRITE(PXW(i), val);
  6344. }
  6345. /* Adjust magic regs to magic values (more experimental results) */
  6346. I915_WRITE(OGW0, 0);
  6347. I915_WRITE(OGW1, 0);
  6348. I915_WRITE(EG0, 0x00007f00);
  6349. I915_WRITE(EG1, 0x0000000e);
  6350. I915_WRITE(EG2, 0x000e0000);
  6351. I915_WRITE(EG3, 0x68000300);
  6352. I915_WRITE(EG4, 0x42000000);
  6353. I915_WRITE(EG5, 0x00140031);
  6354. I915_WRITE(EG6, 0);
  6355. I915_WRITE(EG7, 0);
  6356. for (i = 0; i < 8; i++)
  6357. I915_WRITE(PXWL(i), 0);
  6358. /* Enable PMON + select events */
  6359. I915_WRITE(ECR, 0x80000019);
  6360. lcfuse = I915_READ(LCFUSE02);
  6361. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  6362. }
  6363. void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
  6364. {
  6365. /*
  6366. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  6367. * requirement.
  6368. */
  6369. if (!i915.enable_rc6) {
  6370. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  6371. intel_runtime_pm_get(dev_priv);
  6372. }
  6373. mutex_lock(&dev_priv->drm.struct_mutex);
  6374. mutex_lock(&dev_priv->rps.hw_lock);
  6375. /* Initialize RPS limits (for userspace) */
  6376. if (IS_CHERRYVIEW(dev_priv))
  6377. cherryview_init_gt_powersave(dev_priv);
  6378. else if (IS_VALLEYVIEW(dev_priv))
  6379. valleyview_init_gt_powersave(dev_priv);
  6380. else if (INTEL_GEN(dev_priv) >= 6)
  6381. gen6_init_rps_frequencies(dev_priv);
  6382. /* Derive initial user preferences/limits from the hardware limits */
  6383. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  6384. dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
  6385. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  6386. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  6387. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  6388. dev_priv->rps.min_freq_softlimit =
  6389. max_t(int,
  6390. dev_priv->rps.efficient_freq,
  6391. intel_freq_opcode(dev_priv, 450));
  6392. /* After setting max-softlimit, find the overclock max freq */
  6393. if (IS_GEN6(dev_priv) ||
  6394. IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
  6395. u32 params = 0;
  6396. sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
  6397. if (params & BIT(31)) { /* OC supported */
  6398. DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
  6399. (dev_priv->rps.max_freq & 0xff) * 50,
  6400. (params & 0xff) * 50);
  6401. dev_priv->rps.max_freq = params & 0xff;
  6402. }
  6403. }
  6404. /* Finally allow us to boost to max by default */
  6405. dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
  6406. mutex_unlock(&dev_priv->rps.hw_lock);
  6407. mutex_unlock(&dev_priv->drm.struct_mutex);
  6408. intel_autoenable_gt_powersave(dev_priv);
  6409. }
  6410. void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  6411. {
  6412. if (IS_VALLEYVIEW(dev_priv))
  6413. valleyview_cleanup_gt_powersave(dev_priv);
  6414. if (!i915.enable_rc6)
  6415. intel_runtime_pm_put(dev_priv);
  6416. }
  6417. /**
  6418. * intel_suspend_gt_powersave - suspend PM work and helper threads
  6419. * @dev_priv: i915 device
  6420. *
  6421. * We don't want to disable RC6 or other features here, we just want
  6422. * to make sure any work we've queued has finished and won't bother
  6423. * us while we're suspended.
  6424. */
  6425. void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
  6426. {
  6427. if (INTEL_GEN(dev_priv) < 6)
  6428. return;
  6429. if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
  6430. intel_runtime_pm_put(dev_priv);
  6431. /* gen6_rps_idle() will be called later to disable interrupts */
  6432. }
  6433. void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
  6434. {
  6435. dev_priv->rps.enabled = true; /* force disabling */
  6436. intel_disable_gt_powersave(dev_priv);
  6437. gen6_reset_rps_interrupts(dev_priv);
  6438. }
  6439. void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
  6440. {
  6441. if (!READ_ONCE(dev_priv->rps.enabled))
  6442. return;
  6443. mutex_lock(&dev_priv->rps.hw_lock);
  6444. if (INTEL_GEN(dev_priv) >= 9) {
  6445. gen9_disable_rc6(dev_priv);
  6446. gen9_disable_rps(dev_priv);
  6447. } else if (IS_CHERRYVIEW(dev_priv)) {
  6448. cherryview_disable_rps(dev_priv);
  6449. } else if (IS_VALLEYVIEW(dev_priv)) {
  6450. valleyview_disable_rps(dev_priv);
  6451. } else if (INTEL_GEN(dev_priv) >= 6) {
  6452. gen6_disable_rps(dev_priv);
  6453. } else if (IS_IRONLAKE_M(dev_priv)) {
  6454. ironlake_disable_drps(dev_priv);
  6455. }
  6456. dev_priv->rps.enabled = false;
  6457. mutex_unlock(&dev_priv->rps.hw_lock);
  6458. }
  6459. void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
  6460. {
  6461. /* We shouldn't be disabling as we submit, so this should be less
  6462. * racy than it appears!
  6463. */
  6464. if (READ_ONCE(dev_priv->rps.enabled))
  6465. return;
  6466. /* Powersaving is controlled by the host when inside a VM */
  6467. if (intel_vgpu_active(dev_priv))
  6468. return;
  6469. mutex_lock(&dev_priv->rps.hw_lock);
  6470. if (IS_CHERRYVIEW(dev_priv)) {
  6471. cherryview_enable_rps(dev_priv);
  6472. } else if (IS_VALLEYVIEW(dev_priv)) {
  6473. valleyview_enable_rps(dev_priv);
  6474. } else if (INTEL_GEN(dev_priv) >= 9) {
  6475. gen9_enable_rc6(dev_priv);
  6476. gen9_enable_rps(dev_priv);
  6477. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
  6478. gen6_update_ring_freq(dev_priv);
  6479. } else if (IS_BROADWELL(dev_priv)) {
  6480. gen8_enable_rps(dev_priv);
  6481. gen6_update_ring_freq(dev_priv);
  6482. } else if (INTEL_GEN(dev_priv) >= 6) {
  6483. gen6_enable_rps(dev_priv);
  6484. gen6_update_ring_freq(dev_priv);
  6485. } else if (IS_IRONLAKE_M(dev_priv)) {
  6486. ironlake_enable_drps(dev_priv);
  6487. intel_init_emon(dev_priv);
  6488. }
  6489. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  6490. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  6491. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  6492. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  6493. dev_priv->rps.enabled = true;
  6494. mutex_unlock(&dev_priv->rps.hw_lock);
  6495. }
  6496. static void __intel_autoenable_gt_powersave(struct work_struct *work)
  6497. {
  6498. struct drm_i915_private *dev_priv =
  6499. container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
  6500. struct intel_engine_cs *rcs;
  6501. struct drm_i915_gem_request *req;
  6502. if (READ_ONCE(dev_priv->rps.enabled))
  6503. goto out;
  6504. rcs = dev_priv->engine[RCS];
  6505. if (rcs->last_retired_context)
  6506. goto out;
  6507. if (!rcs->init_context)
  6508. goto out;
  6509. mutex_lock(&dev_priv->drm.struct_mutex);
  6510. req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
  6511. if (IS_ERR(req))
  6512. goto unlock;
  6513. if (!i915.enable_execlists && i915_switch_context(req) == 0)
  6514. rcs->init_context(req);
  6515. /* Mark the device busy, calling intel_enable_gt_powersave() */
  6516. i915_add_request(req);
  6517. unlock:
  6518. mutex_unlock(&dev_priv->drm.struct_mutex);
  6519. out:
  6520. intel_runtime_pm_put(dev_priv);
  6521. }
  6522. void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
  6523. {
  6524. if (READ_ONCE(dev_priv->rps.enabled))
  6525. return;
  6526. if (IS_IRONLAKE_M(dev_priv)) {
  6527. ironlake_enable_drps(dev_priv);
  6528. intel_init_emon(dev_priv);
  6529. } else if (INTEL_INFO(dev_priv)->gen >= 6) {
  6530. /*
  6531. * PCU communication is slow and this doesn't need to be
  6532. * done at any specific time, so do this out of our fast path
  6533. * to make resume and init faster.
  6534. *
  6535. * We depend on the HW RC6 power context save/restore
  6536. * mechanism when entering D3 through runtime PM suspend. So
  6537. * disable RPM until RPS/RC6 is properly setup. We can only
  6538. * get here via the driver load/system resume/runtime resume
  6539. * paths, so the _noresume version is enough (and in case of
  6540. * runtime resume it's necessary).
  6541. */
  6542. if (queue_delayed_work(dev_priv->wq,
  6543. &dev_priv->rps.autoenable_work,
  6544. round_jiffies_up_relative(HZ)))
  6545. intel_runtime_pm_get_noresume(dev_priv);
  6546. }
  6547. }
  6548. static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
  6549. {
  6550. /*
  6551. * On Ibex Peak and Cougar Point, we need to disable clock
  6552. * gating for the panel power sequencer or it will fail to
  6553. * start up when no ports are active.
  6554. */
  6555. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  6556. }
  6557. static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
  6558. {
  6559. enum pipe pipe;
  6560. for_each_pipe(dev_priv, pipe) {
  6561. I915_WRITE(DSPCNTR(pipe),
  6562. I915_READ(DSPCNTR(pipe)) |
  6563. DISPPLANE_TRICKLE_FEED_DISABLE);
  6564. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  6565. POSTING_READ(DSPSURF(pipe));
  6566. }
  6567. }
  6568. static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
  6569. {
  6570. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  6571. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  6572. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  6573. /*
  6574. * Don't touch WM1S_LP_EN here.
  6575. * Doing so could cause underruns.
  6576. */
  6577. }
  6578. static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
  6579. {
  6580. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6581. /*
  6582. * Required for FBC
  6583. * WaFbcDisableDpfcClockGating:ilk
  6584. */
  6585. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  6586. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  6587. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  6588. I915_WRITE(PCH_3DCGDIS0,
  6589. MARIUNIT_CLOCK_GATE_DISABLE |
  6590. SVSMUNIT_CLOCK_GATE_DISABLE);
  6591. I915_WRITE(PCH_3DCGDIS1,
  6592. VFMUNIT_CLOCK_GATE_DISABLE);
  6593. /*
  6594. * According to the spec the following bits should be set in
  6595. * order to enable memory self-refresh
  6596. * The bit 22/21 of 0x42004
  6597. * The bit 5 of 0x42020
  6598. * The bit 15 of 0x45000
  6599. */
  6600. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6601. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6602. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6603. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  6604. I915_WRITE(DISP_ARB_CTL,
  6605. (I915_READ(DISP_ARB_CTL) |
  6606. DISP_FBC_WM_DIS));
  6607. ilk_init_lp_watermarks(dev_priv);
  6608. /*
  6609. * Based on the document from hardware guys the following bits
  6610. * should be set unconditionally in order to enable FBC.
  6611. * The bit 22 of 0x42000
  6612. * The bit 22 of 0x42004
  6613. * The bit 7,8,9 of 0x42020.
  6614. */
  6615. if (IS_IRONLAKE_M(dev_priv)) {
  6616. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  6617. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6618. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6619. ILK_FBCQ_DIS);
  6620. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6621. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6622. ILK_DPARB_GATE);
  6623. }
  6624. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6625. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6626. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6627. ILK_ELPIN_409_SELECT);
  6628. I915_WRITE(_3D_CHICKEN2,
  6629. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6630. _3D_CHICKEN2_WM_READ_PIPELINED);
  6631. /* WaDisableRenderCachePipelinedFlush:ilk */
  6632. I915_WRITE(CACHE_MODE_0,
  6633. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  6634. /* WaDisable_RenderCache_OperationalFlush:ilk */
  6635. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6636. g4x_disable_trickle_feed(dev_priv);
  6637. ibx_init_clock_gating(dev_priv);
  6638. }
  6639. static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
  6640. {
  6641. int pipe;
  6642. uint32_t val;
  6643. /*
  6644. * On Ibex Peak and Cougar Point, we need to disable clock
  6645. * gating for the panel power sequencer or it will fail to
  6646. * start up when no ports are active.
  6647. */
  6648. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  6649. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  6650. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  6651. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  6652. DPLS_EDP_PPS_FIX_DIS);
  6653. /* The below fixes the weird display corruption, a few pixels shifted
  6654. * downward, on (only) LVDS of some HP laptops with IVY.
  6655. */
  6656. for_each_pipe(dev_priv, pipe) {
  6657. val = I915_READ(TRANS_CHICKEN2(pipe));
  6658. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  6659. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6660. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  6661. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6662. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  6663. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  6664. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  6665. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  6666. }
  6667. /* WADP0ClockGatingDisable */
  6668. for_each_pipe(dev_priv, pipe) {
  6669. I915_WRITE(TRANS_CHICKEN1(pipe),
  6670. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6671. }
  6672. }
  6673. static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
  6674. {
  6675. uint32_t tmp;
  6676. tmp = I915_READ(MCH_SSKPD);
  6677. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  6678. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  6679. tmp);
  6680. }
  6681. static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
  6682. {
  6683. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6684. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6685. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6686. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6687. ILK_ELPIN_409_SELECT);
  6688. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  6689. I915_WRITE(_3D_CHICKEN,
  6690. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  6691. /* WaDisable_RenderCache_OperationalFlush:snb */
  6692. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6693. /*
  6694. * BSpec recoomends 8x4 when MSAA is used,
  6695. * however in practice 16x4 seems fastest.
  6696. *
  6697. * Note that PS/WM thread counts depend on the WIZ hashing
  6698. * disable bit, which we don't touch here, but it's good
  6699. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6700. */
  6701. I915_WRITE(GEN6_GT_MODE,
  6702. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6703. ilk_init_lp_watermarks(dev_priv);
  6704. I915_WRITE(CACHE_MODE_0,
  6705. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  6706. I915_WRITE(GEN6_UCGCTL1,
  6707. I915_READ(GEN6_UCGCTL1) |
  6708. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  6709. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  6710. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  6711. * gating disable must be set. Failure to set it results in
  6712. * flickering pixels due to Z write ordering failures after
  6713. * some amount of runtime in the Mesa "fire" demo, and Unigine
  6714. * Sanctuary and Tropics, and apparently anything else with
  6715. * alpha test or pixel discard.
  6716. *
  6717. * According to the spec, bit 11 (RCCUNIT) must also be set,
  6718. * but we didn't debug actual testcases to find it out.
  6719. *
  6720. * WaDisableRCCUnitClockGating:snb
  6721. * WaDisableRCPBUnitClockGating:snb
  6722. */
  6723. I915_WRITE(GEN6_UCGCTL2,
  6724. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  6725. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  6726. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  6727. I915_WRITE(_3D_CHICKEN3,
  6728. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  6729. /*
  6730. * Bspec says:
  6731. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  6732. * 3DSTATE_SF number of SF output attributes is more than 16."
  6733. */
  6734. I915_WRITE(_3D_CHICKEN3,
  6735. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  6736. /*
  6737. * According to the spec the following bits should be
  6738. * set in order to enable memory self-refresh and fbc:
  6739. * The bit21 and bit22 of 0x42000
  6740. * The bit21 and bit22 of 0x42004
  6741. * The bit5 and bit7 of 0x42020
  6742. * The bit14 of 0x70180
  6743. * The bit14 of 0x71180
  6744. *
  6745. * WaFbcAsynchFlipDisableFbcQueue:snb
  6746. */
  6747. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6748. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6749. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6750. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6751. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6752. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6753. I915_WRITE(ILK_DSPCLK_GATE_D,
  6754. I915_READ(ILK_DSPCLK_GATE_D) |
  6755. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  6756. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  6757. g4x_disable_trickle_feed(dev_priv);
  6758. cpt_init_clock_gating(dev_priv);
  6759. gen6_check_mch_setup(dev_priv);
  6760. }
  6761. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  6762. {
  6763. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  6764. /*
  6765. * WaVSThreadDispatchOverride:ivb,vlv
  6766. *
  6767. * This actually overrides the dispatch
  6768. * mode for all thread types.
  6769. */
  6770. reg &= ~GEN7_FF_SCHED_MASK;
  6771. reg |= GEN7_FF_TS_SCHED_HW;
  6772. reg |= GEN7_FF_VS_SCHED_HW;
  6773. reg |= GEN7_FF_DS_SCHED_HW;
  6774. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  6775. }
  6776. static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
  6777. {
  6778. /*
  6779. * TODO: this bit should only be enabled when really needed, then
  6780. * disabled when not needed anymore in order to save power.
  6781. */
  6782. if (HAS_PCH_LPT_LP(dev_priv))
  6783. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  6784. I915_READ(SOUTH_DSPCLK_GATE_D) |
  6785. PCH_LP_PARTITION_LEVEL_DISABLE);
  6786. /* WADPOClockGatingDisable:hsw */
  6787. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  6788. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  6789. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6790. }
  6791. static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
  6792. {
  6793. if (HAS_PCH_LPT_LP(dev_priv)) {
  6794. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  6795. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  6796. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  6797. }
  6798. }
  6799. static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
  6800. int general_prio_credits,
  6801. int high_prio_credits)
  6802. {
  6803. u32 misccpctl;
  6804. /* WaTempDisableDOPClkGating:bdw */
  6805. misccpctl = I915_READ(GEN7_MISCCPCTL);
  6806. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  6807. I915_WRITE(GEN8_L3SQCREG1,
  6808. L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
  6809. L3_HIGH_PRIO_CREDITS(high_prio_credits));
  6810. /*
  6811. * Wait at least 100 clocks before re-enabling clock gating.
  6812. * See the definition of L3SQCREG1 in BSpec.
  6813. */
  6814. POSTING_READ(GEN8_L3SQCREG1);
  6815. udelay(1);
  6816. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  6817. }
  6818. static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
  6819. {
  6820. gen9_init_clock_gating(dev_priv);
  6821. /* WaDisableSDEUnitClockGating:kbl */
  6822. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  6823. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6824. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6825. /* WaDisableGamClockGating:kbl */
  6826. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  6827. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  6828. GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
  6829. /* WaFbcNukeOnHostModify:kbl,cfl */
  6830. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  6831. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  6832. }
  6833. static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
  6834. {
  6835. gen9_init_clock_gating(dev_priv);
  6836. /* WAC6entrylatency:skl */
  6837. I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
  6838. FBC_LLC_FULLY_OPEN);
  6839. /* WaFbcNukeOnHostModify:skl */
  6840. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  6841. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  6842. }
  6843. static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
  6844. {
  6845. enum pipe pipe;
  6846. ilk_init_lp_watermarks(dev_priv);
  6847. /* WaSwitchSolVfFArbitrationPriority:bdw */
  6848. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6849. /* WaPsrDPAMaskVBlankInSRD:bdw */
  6850. I915_WRITE(CHICKEN_PAR1_1,
  6851. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  6852. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  6853. for_each_pipe(dev_priv, pipe) {
  6854. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  6855. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  6856. BDW_DPRS_MASK_VBLANK_SRD);
  6857. }
  6858. /* WaVSRefCountFullforceMissDisable:bdw */
  6859. /* WaDSRefCountFullforceMissDisable:bdw */
  6860. I915_WRITE(GEN7_FF_THREAD_MODE,
  6861. I915_READ(GEN7_FF_THREAD_MODE) &
  6862. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  6863. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  6864. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  6865. /* WaDisableSDEUnitClockGating:bdw */
  6866. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  6867. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  6868. /* WaProgramL3SqcReg1Default:bdw */
  6869. gen8_set_l3sqc_credits(dev_priv, 30, 2);
  6870. /*
  6871. * WaGttCachingOffByDefault:bdw
  6872. * GTT cache may not work with big pages, so if those
  6873. * are ever enabled GTT cache may need to be disabled.
  6874. */
  6875. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  6876. /* WaKVMNotificationOnConfigChange:bdw */
  6877. I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
  6878. | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
  6879. lpt_init_clock_gating(dev_priv);
  6880. /* WaDisableDopClockGating:bdw
  6881. *
  6882. * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
  6883. * clock gating.
  6884. */
  6885. I915_WRITE(GEN6_UCGCTL1,
  6886. I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  6887. }
  6888. static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
  6889. {
  6890. ilk_init_lp_watermarks(dev_priv);
  6891. /* L3 caching of data atomics doesn't work -- disable it. */
  6892. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  6893. I915_WRITE(HSW_ROW_CHICKEN3,
  6894. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  6895. /* This is required by WaCatErrorRejectionIssue:hsw */
  6896. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6897. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6898. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6899. /* WaVSRefCountFullforceMissDisable:hsw */
  6900. I915_WRITE(GEN7_FF_THREAD_MODE,
  6901. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  6902. /* WaDisable_RenderCache_OperationalFlush:hsw */
  6903. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6904. /* enable HiZ Raw Stall Optimization */
  6905. I915_WRITE(CACHE_MODE_0_GEN7,
  6906. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6907. /* WaDisable4x2SubspanOptimization:hsw */
  6908. I915_WRITE(CACHE_MODE_1,
  6909. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6910. /*
  6911. * BSpec recommends 8x4 when MSAA is used,
  6912. * however in practice 16x4 seems fastest.
  6913. *
  6914. * Note that PS/WM thread counts depend on the WIZ hashing
  6915. * disable bit, which we don't touch here, but it's good
  6916. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6917. */
  6918. I915_WRITE(GEN7_GT_MODE,
  6919. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6920. /* WaSampleCChickenBitEnable:hsw */
  6921. I915_WRITE(HALF_SLICE_CHICKEN3,
  6922. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  6923. /* WaSwitchSolVfFArbitrationPriority:hsw */
  6924. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  6925. /* WaRsPkgCStateDisplayPMReq:hsw */
  6926. I915_WRITE(CHICKEN_PAR1_1,
  6927. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  6928. lpt_init_clock_gating(dev_priv);
  6929. }
  6930. static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
  6931. {
  6932. uint32_t snpcr;
  6933. ilk_init_lp_watermarks(dev_priv);
  6934. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  6935. /* WaDisableEarlyCull:ivb */
  6936. I915_WRITE(_3D_CHICKEN3,
  6937. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  6938. /* WaDisableBackToBackFlipFix:ivb */
  6939. I915_WRITE(IVB_CHICKEN3,
  6940. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  6941. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  6942. /* WaDisablePSDDualDispatchEnable:ivb */
  6943. if (IS_IVB_GT1(dev_priv))
  6944. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  6945. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  6946. /* WaDisable_RenderCache_OperationalFlush:ivb */
  6947. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6948. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  6949. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  6950. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  6951. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  6952. I915_WRITE(GEN7_L3CNTLREG1,
  6953. GEN7_WA_FOR_GEN7_L3_CONTROL);
  6954. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  6955. GEN7_WA_L3_CHICKEN_MODE);
  6956. if (IS_IVB_GT1(dev_priv))
  6957. I915_WRITE(GEN7_ROW_CHICKEN2,
  6958. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6959. else {
  6960. /* must write both registers */
  6961. I915_WRITE(GEN7_ROW_CHICKEN2,
  6962. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6963. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  6964. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  6965. }
  6966. /* WaForceL3Serialization:ivb */
  6967. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  6968. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  6969. /*
  6970. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  6971. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  6972. */
  6973. I915_WRITE(GEN6_UCGCTL2,
  6974. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  6975. /* This is required by WaCatErrorRejectionIssue:ivb */
  6976. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  6977. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  6978. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  6979. g4x_disable_trickle_feed(dev_priv);
  6980. gen7_setup_fixed_func_scheduler(dev_priv);
  6981. if (0) { /* causes HiZ corruption on ivb:gt1 */
  6982. /* enable HiZ Raw Stall Optimization */
  6983. I915_WRITE(CACHE_MODE_0_GEN7,
  6984. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  6985. }
  6986. /* WaDisable4x2SubspanOptimization:ivb */
  6987. I915_WRITE(CACHE_MODE_1,
  6988. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  6989. /*
  6990. * BSpec recommends 8x4 when MSAA is used,
  6991. * however in practice 16x4 seems fastest.
  6992. *
  6993. * Note that PS/WM thread counts depend on the WIZ hashing
  6994. * disable bit, which we don't touch here, but it's good
  6995. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6996. */
  6997. I915_WRITE(GEN7_GT_MODE,
  6998. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6999. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  7000. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  7001. snpcr |= GEN6_MBC_SNPCR_MED;
  7002. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  7003. if (!HAS_PCH_NOP(dev_priv))
  7004. cpt_init_clock_gating(dev_priv);
  7005. gen6_check_mch_setup(dev_priv);
  7006. }
  7007. static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
  7008. {
  7009. /* WaDisableEarlyCull:vlv */
  7010. I915_WRITE(_3D_CHICKEN3,
  7011. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  7012. /* WaDisableBackToBackFlipFix:vlv */
  7013. I915_WRITE(IVB_CHICKEN3,
  7014. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7015. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7016. /* WaPsdDispatchEnable:vlv */
  7017. /* WaDisablePSDDualDispatchEnable:vlv */
  7018. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  7019. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  7020. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  7021. /* WaDisable_RenderCache_OperationalFlush:vlv */
  7022. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7023. /* WaForceL3Serialization:vlv */
  7024. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  7025. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  7026. /* WaDisableDopClockGating:vlv */
  7027. I915_WRITE(GEN7_ROW_CHICKEN2,
  7028. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  7029. /* This is required by WaCatErrorRejectionIssue:vlv */
  7030. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7031. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7032. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7033. gen7_setup_fixed_func_scheduler(dev_priv);
  7034. /*
  7035. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7036. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  7037. */
  7038. I915_WRITE(GEN6_UCGCTL2,
  7039. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7040. /* WaDisableL3Bank2xClockGate:vlv
  7041. * Disabling L3 clock gating- MMIO 940c[25] = 1
  7042. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  7043. I915_WRITE(GEN7_UCGCTL4,
  7044. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  7045. /*
  7046. * BSpec says this must be set, even though
  7047. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  7048. */
  7049. I915_WRITE(CACHE_MODE_1,
  7050. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  7051. /*
  7052. * BSpec recommends 8x4 when MSAA is used,
  7053. * however in practice 16x4 seems fastest.
  7054. *
  7055. * Note that PS/WM thread counts depend on the WIZ hashing
  7056. * disable bit, which we don't touch here, but it's good
  7057. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  7058. */
  7059. I915_WRITE(GEN7_GT_MODE,
  7060. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  7061. /*
  7062. * WaIncreaseL3CreditsForVLVB0:vlv
  7063. * This is the hardware default actually.
  7064. */
  7065. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  7066. /*
  7067. * WaDisableVLVClockGating_VBIIssue:vlv
  7068. * Disable clock gating on th GCFG unit to prevent a delay
  7069. * in the reporting of vblank events.
  7070. */
  7071. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  7072. }
  7073. static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
  7074. {
  7075. /* WaVSRefCountFullforceMissDisable:chv */
  7076. /* WaDSRefCountFullforceMissDisable:chv */
  7077. I915_WRITE(GEN7_FF_THREAD_MODE,
  7078. I915_READ(GEN7_FF_THREAD_MODE) &
  7079. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  7080. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  7081. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  7082. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  7083. /* WaDisableCSUnitClockGating:chv */
  7084. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  7085. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  7086. /* WaDisableSDEUnitClockGating:chv */
  7087. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  7088. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  7089. /*
  7090. * WaProgramL3SqcReg1Default:chv
  7091. * See gfxspecs/Related Documents/Performance Guide/
  7092. * LSQC Setting Recommendations.
  7093. */
  7094. gen8_set_l3sqc_credits(dev_priv, 38, 2);
  7095. /*
  7096. * GTT cache may not work with big pages, so if those
  7097. * are ever enabled GTT cache may need to be disabled.
  7098. */
  7099. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  7100. }
  7101. static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
  7102. {
  7103. uint32_t dspclk_gate;
  7104. I915_WRITE(RENCLK_GATE_D1, 0);
  7105. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7106. GS_UNIT_CLOCK_GATE_DISABLE |
  7107. CL_UNIT_CLOCK_GATE_DISABLE);
  7108. I915_WRITE(RAMCLK_GATE_D, 0);
  7109. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7110. OVRUNIT_CLOCK_GATE_DISABLE |
  7111. OVCUNIT_CLOCK_GATE_DISABLE;
  7112. if (IS_GM45(dev_priv))
  7113. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7114. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7115. /* WaDisableRenderCachePipelinedFlush */
  7116. I915_WRITE(CACHE_MODE_0,
  7117. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  7118. /* WaDisable_RenderCache_OperationalFlush:g4x */
  7119. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7120. g4x_disable_trickle_feed(dev_priv);
  7121. }
  7122. static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
  7123. {
  7124. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7125. I915_WRITE(RENCLK_GATE_D2, 0);
  7126. I915_WRITE(DSPCLK_GATE_D, 0);
  7127. I915_WRITE(RAMCLK_GATE_D, 0);
  7128. I915_WRITE16(DEUC, 0);
  7129. I915_WRITE(MI_ARB_STATE,
  7130. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7131. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  7132. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7133. }
  7134. static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
  7135. {
  7136. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7137. I965_RCC_CLOCK_GATE_DISABLE |
  7138. I965_RCPB_CLOCK_GATE_DISABLE |
  7139. I965_ISC_CLOCK_GATE_DISABLE |
  7140. I965_FBC_CLOCK_GATE_DISABLE);
  7141. I915_WRITE(RENCLK_GATE_D2, 0);
  7142. I915_WRITE(MI_ARB_STATE,
  7143. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7144. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  7145. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7146. }
  7147. static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
  7148. {
  7149. u32 dstate = I915_READ(D_STATE);
  7150. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7151. DSTATE_DOT_CLOCK_GATING;
  7152. I915_WRITE(D_STATE, dstate);
  7153. if (IS_PINEVIEW(dev_priv))
  7154. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  7155. /* IIR "flip pending" means done if this bit is set */
  7156. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  7157. /* interrupts should cause a wake up from C3 */
  7158. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  7159. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  7160. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  7161. I915_WRITE(MI_ARB_STATE,
  7162. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7163. }
  7164. static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
  7165. {
  7166. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7167. /* interrupts should cause a wake up from C3 */
  7168. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  7169. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  7170. I915_WRITE(MEM_MODE,
  7171. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  7172. }
  7173. static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
  7174. {
  7175. I915_WRITE(MEM_MODE,
  7176. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  7177. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  7178. }
  7179. void intel_init_clock_gating(struct drm_i915_private *dev_priv)
  7180. {
  7181. dev_priv->display.init_clock_gating(dev_priv);
  7182. }
  7183. void intel_suspend_hw(struct drm_i915_private *dev_priv)
  7184. {
  7185. if (HAS_PCH_LPT(dev_priv))
  7186. lpt_suspend_hw(dev_priv);
  7187. }
  7188. static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
  7189. {
  7190. DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
  7191. }
  7192. /**
  7193. * intel_init_clock_gating_hooks - setup the clock gating hooks
  7194. * @dev_priv: device private
  7195. *
  7196. * Setup the hooks that configure which clocks of a given platform can be
  7197. * gated and also apply various GT and display specific workarounds for these
  7198. * platforms. Note that some GT specific workarounds are applied separately
  7199. * when GPU contexts or batchbuffers start their execution.
  7200. */
  7201. void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
  7202. {
  7203. if (IS_SKYLAKE(dev_priv))
  7204. dev_priv->display.init_clock_gating = skylake_init_clock_gating;
  7205. else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
  7206. dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
  7207. else if (IS_BROXTON(dev_priv))
  7208. dev_priv->display.init_clock_gating = bxt_init_clock_gating;
  7209. else if (IS_GEMINILAKE(dev_priv))
  7210. dev_priv->display.init_clock_gating = glk_init_clock_gating;
  7211. else if (IS_BROADWELL(dev_priv))
  7212. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  7213. else if (IS_CHERRYVIEW(dev_priv))
  7214. dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
  7215. else if (IS_HASWELL(dev_priv))
  7216. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  7217. else if (IS_IVYBRIDGE(dev_priv))
  7218. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7219. else if (IS_VALLEYVIEW(dev_priv))
  7220. dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
  7221. else if (IS_GEN6(dev_priv))
  7222. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7223. else if (IS_GEN5(dev_priv))
  7224. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7225. else if (IS_G4X(dev_priv))
  7226. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7227. else if (IS_I965GM(dev_priv))
  7228. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7229. else if (IS_I965G(dev_priv))
  7230. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7231. else if (IS_GEN3(dev_priv))
  7232. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7233. else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
  7234. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7235. else if (IS_GEN2(dev_priv))
  7236. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7237. else {
  7238. MISSING_CASE(INTEL_DEVID(dev_priv));
  7239. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  7240. }
  7241. }
  7242. /* Set up chip specific power management-related functions */
  7243. void intel_init_pm(struct drm_i915_private *dev_priv)
  7244. {
  7245. intel_fbc_init(dev_priv);
  7246. /* For cxsr */
  7247. if (IS_PINEVIEW(dev_priv))
  7248. i915_pineview_get_mem_freq(dev_priv);
  7249. else if (IS_GEN5(dev_priv))
  7250. i915_ironlake_get_mem_freq(dev_priv);
  7251. /* For FIFO watermark updates */
  7252. if (INTEL_GEN(dev_priv) >= 9) {
  7253. skl_setup_wm_latency(dev_priv);
  7254. dev_priv->display.initial_watermarks = skl_initial_wm;
  7255. dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
  7256. dev_priv->display.compute_global_watermarks = skl_compute_wm;
  7257. } else if (HAS_PCH_SPLIT(dev_priv)) {
  7258. ilk_setup_wm_latency(dev_priv);
  7259. if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
  7260. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  7261. (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
  7262. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  7263. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  7264. dev_priv->display.compute_intermediate_wm =
  7265. ilk_compute_intermediate_wm;
  7266. dev_priv->display.initial_watermarks =
  7267. ilk_initial_watermarks;
  7268. dev_priv->display.optimize_watermarks =
  7269. ilk_optimize_watermarks;
  7270. } else {
  7271. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7272. "Disable CxSR\n");
  7273. }
  7274. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  7275. vlv_setup_wm_latency(dev_priv);
  7276. dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
  7277. dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
  7278. dev_priv->display.initial_watermarks = vlv_initial_watermarks;
  7279. dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
  7280. dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
  7281. } else if (IS_G4X(dev_priv)) {
  7282. g4x_setup_wm_latency(dev_priv);
  7283. dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
  7284. dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
  7285. dev_priv->display.initial_watermarks = g4x_initial_watermarks;
  7286. dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
  7287. } else if (IS_PINEVIEW(dev_priv)) {
  7288. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  7289. dev_priv->is_ddr3,
  7290. dev_priv->fsb_freq,
  7291. dev_priv->mem_freq)) {
  7292. DRM_INFO("failed to find known CxSR latency "
  7293. "(found ddr%s fsb freq %d, mem freq %d), "
  7294. "disabling CxSR\n",
  7295. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7296. dev_priv->fsb_freq, dev_priv->mem_freq);
  7297. /* Disable CxSR and never update its watermark again */
  7298. intel_set_memory_cxsr(dev_priv, false);
  7299. dev_priv->display.update_wm = NULL;
  7300. } else
  7301. dev_priv->display.update_wm = pineview_update_wm;
  7302. } else if (IS_GEN4(dev_priv)) {
  7303. dev_priv->display.update_wm = i965_update_wm;
  7304. } else if (IS_GEN3(dev_priv)) {
  7305. dev_priv->display.update_wm = i9xx_update_wm;
  7306. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7307. } else if (IS_GEN2(dev_priv)) {
  7308. if (INTEL_INFO(dev_priv)->num_pipes == 1) {
  7309. dev_priv->display.update_wm = i845_update_wm;
  7310. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7311. } else {
  7312. dev_priv->display.update_wm = i9xx_update_wm;
  7313. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7314. }
  7315. } else {
  7316. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  7317. }
  7318. }
  7319. static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
  7320. {
  7321. uint32_t flags =
  7322. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  7323. switch (flags) {
  7324. case GEN6_PCODE_SUCCESS:
  7325. return 0;
  7326. case GEN6_PCODE_UNIMPLEMENTED_CMD:
  7327. return -ENODEV;
  7328. case GEN6_PCODE_ILLEGAL_CMD:
  7329. return -ENXIO;
  7330. case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7331. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7332. return -EOVERFLOW;
  7333. case GEN6_PCODE_TIMEOUT:
  7334. return -ETIMEDOUT;
  7335. default:
  7336. MISSING_CASE(flags);
  7337. return 0;
  7338. }
  7339. }
  7340. static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
  7341. {
  7342. uint32_t flags =
  7343. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  7344. switch (flags) {
  7345. case GEN6_PCODE_SUCCESS:
  7346. return 0;
  7347. case GEN6_PCODE_ILLEGAL_CMD:
  7348. return -ENXIO;
  7349. case GEN7_PCODE_TIMEOUT:
  7350. return -ETIMEDOUT;
  7351. case GEN7_PCODE_ILLEGAL_DATA:
  7352. return -EINVAL;
  7353. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7354. return -EOVERFLOW;
  7355. default:
  7356. MISSING_CASE(flags);
  7357. return 0;
  7358. }
  7359. }
  7360. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  7361. {
  7362. int status;
  7363. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7364. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  7365. * use te fw I915_READ variants to reduce the amount of work
  7366. * required when reading/writing.
  7367. */
  7368. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7369. DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
  7370. mbox, __builtin_return_address(0));
  7371. return -EAGAIN;
  7372. }
  7373. I915_WRITE_FW(GEN6_PCODE_DATA, *val);
  7374. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  7375. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7376. if (__intel_wait_for_register_fw(dev_priv,
  7377. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  7378. 500, 0, NULL)) {
  7379. DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
  7380. mbox, __builtin_return_address(0));
  7381. return -ETIMEDOUT;
  7382. }
  7383. *val = I915_READ_FW(GEN6_PCODE_DATA);
  7384. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  7385. if (INTEL_GEN(dev_priv) > 6)
  7386. status = gen7_check_mailbox_status(dev_priv);
  7387. else
  7388. status = gen6_check_mailbox_status(dev_priv);
  7389. if (status) {
  7390. DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
  7391. mbox, __builtin_return_address(0), status);
  7392. return status;
  7393. }
  7394. return 0;
  7395. }
  7396. int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
  7397. u32 mbox, u32 val)
  7398. {
  7399. int status;
  7400. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7401. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  7402. * use te fw I915_READ variants to reduce the amount of work
  7403. * required when reading/writing.
  7404. */
  7405. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7406. DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
  7407. val, mbox, __builtin_return_address(0));
  7408. return -EAGAIN;
  7409. }
  7410. I915_WRITE_FW(GEN6_PCODE_DATA, val);
  7411. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  7412. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7413. if (__intel_wait_for_register_fw(dev_priv,
  7414. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  7415. 500, 0, NULL)) {
  7416. DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
  7417. val, mbox, __builtin_return_address(0));
  7418. return -ETIMEDOUT;
  7419. }
  7420. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  7421. if (INTEL_GEN(dev_priv) > 6)
  7422. status = gen7_check_mailbox_status(dev_priv);
  7423. else
  7424. status = gen6_check_mailbox_status(dev_priv);
  7425. if (status) {
  7426. DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
  7427. val, mbox, __builtin_return_address(0), status);
  7428. return status;
  7429. }
  7430. return 0;
  7431. }
  7432. static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
  7433. u32 request, u32 reply_mask, u32 reply,
  7434. u32 *status)
  7435. {
  7436. u32 val = request;
  7437. *status = sandybridge_pcode_read(dev_priv, mbox, &val);
  7438. return *status || ((val & reply_mask) == reply);
  7439. }
  7440. /**
  7441. * skl_pcode_request - send PCODE request until acknowledgment
  7442. * @dev_priv: device private
  7443. * @mbox: PCODE mailbox ID the request is targeted for
  7444. * @request: request ID
  7445. * @reply_mask: mask used to check for request acknowledgment
  7446. * @reply: value used to check for request acknowledgment
  7447. * @timeout_base_ms: timeout for polling with preemption enabled
  7448. *
  7449. * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
  7450. * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
  7451. * The request is acknowledged once the PCODE reply dword equals @reply after
  7452. * applying @reply_mask. Polling is first attempted with preemption enabled
  7453. * for @timeout_base_ms and if this times out for another 50 ms with
  7454. * preemption disabled.
  7455. *
  7456. * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
  7457. * other error as reported by PCODE.
  7458. */
  7459. int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
  7460. u32 reply_mask, u32 reply, int timeout_base_ms)
  7461. {
  7462. u32 status;
  7463. int ret;
  7464. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  7465. #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
  7466. &status)
  7467. /*
  7468. * Prime the PCODE by doing a request first. Normally it guarantees
  7469. * that a subsequent request, at most @timeout_base_ms later, succeeds.
  7470. * _wait_for() doesn't guarantee when its passed condition is evaluated
  7471. * first, so send the first request explicitly.
  7472. */
  7473. if (COND) {
  7474. ret = 0;
  7475. goto out;
  7476. }
  7477. ret = _wait_for(COND, timeout_base_ms * 1000, 10);
  7478. if (!ret)
  7479. goto out;
  7480. /*
  7481. * The above can time out if the number of requests was low (2 in the
  7482. * worst case) _and_ PCODE was busy for some reason even after a
  7483. * (queued) request and @timeout_base_ms delay. As a workaround retry
  7484. * the poll with preemption disabled to maximize the number of
  7485. * requests. Increase the timeout from @timeout_base_ms to 50ms to
  7486. * account for interrupts that could reduce the number of these
  7487. * requests, and for any quirks of the PCODE firmware that delays
  7488. * the request completion.
  7489. */
  7490. DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
  7491. WARN_ON_ONCE(timeout_base_ms > 3);
  7492. preempt_disable();
  7493. ret = wait_for_atomic(COND, 50);
  7494. preempt_enable();
  7495. out:
  7496. return ret ? ret : status;
  7497. #undef COND
  7498. }
  7499. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7500. {
  7501. /*
  7502. * N = val - 0xb7
  7503. * Slow = Fast = GPLL ref * N
  7504. */
  7505. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
  7506. }
  7507. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7508. {
  7509. return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
  7510. }
  7511. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7512. {
  7513. /*
  7514. * N = val / 2
  7515. * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
  7516. */
  7517. return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
  7518. }
  7519. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7520. {
  7521. /* CHV needs even values */
  7522. return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
  7523. }
  7524. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7525. {
  7526. if (INTEL_GEN(dev_priv) >= 9)
  7527. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  7528. GEN9_FREQ_SCALER);
  7529. else if (IS_CHERRYVIEW(dev_priv))
  7530. return chv_gpu_freq(dev_priv, val);
  7531. else if (IS_VALLEYVIEW(dev_priv))
  7532. return byt_gpu_freq(dev_priv, val);
  7533. else
  7534. return val * GT_FREQUENCY_MULTIPLIER;
  7535. }
  7536. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7537. {
  7538. if (INTEL_GEN(dev_priv) >= 9)
  7539. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  7540. GT_FREQUENCY_MULTIPLIER);
  7541. else if (IS_CHERRYVIEW(dev_priv))
  7542. return chv_freq_opcode(dev_priv, val);
  7543. else if (IS_VALLEYVIEW(dev_priv))
  7544. return byt_freq_opcode(dev_priv, val);
  7545. else
  7546. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  7547. }
  7548. struct request_boost {
  7549. struct work_struct work;
  7550. struct drm_i915_gem_request *req;
  7551. };
  7552. static void __intel_rps_boost_work(struct work_struct *work)
  7553. {
  7554. struct request_boost *boost = container_of(work, struct request_boost, work);
  7555. struct drm_i915_gem_request *req = boost->req;
  7556. if (!i915_gem_request_completed(req))
  7557. gen6_rps_boost(req, NULL);
  7558. i915_gem_request_put(req);
  7559. kfree(boost);
  7560. }
  7561. void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
  7562. {
  7563. struct request_boost *boost;
  7564. if (req == NULL || INTEL_GEN(req->i915) < 6)
  7565. return;
  7566. if (i915_gem_request_completed(req))
  7567. return;
  7568. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  7569. if (boost == NULL)
  7570. return;
  7571. boost->req = i915_gem_request_get(req);
  7572. INIT_WORK(&boost->work, __intel_rps_boost_work);
  7573. queue_work(req->i915->wq, &boost->work);
  7574. }
  7575. void intel_pm_setup(struct drm_i915_private *dev_priv)
  7576. {
  7577. mutex_init(&dev_priv->rps.hw_lock);
  7578. INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
  7579. __intel_autoenable_gt_powersave);
  7580. atomic_set(&dev_priv->rps.num_waiters, 0);
  7581. dev_priv->pm.suspended = false;
  7582. atomic_set(&dev_priv->pm.wakeref_count, 0);
  7583. }
  7584. static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
  7585. const i915_reg_t reg)
  7586. {
  7587. u32 lower, upper, tmp;
  7588. int loop = 2;
  7589. /* The register accessed do not need forcewake. We borrow
  7590. * uncore lock to prevent concurrent access to range reg.
  7591. */
  7592. spin_lock_irq(&dev_priv->uncore.lock);
  7593. /* vlv and chv residency counters are 40 bits in width.
  7594. * With a control bit, we can choose between upper or lower
  7595. * 32bit window into this counter.
  7596. *
  7597. * Although we always use the counter in high-range mode elsewhere,
  7598. * userspace may attempt to read the value before rc6 is initialised,
  7599. * before we have set the default VLV_COUNTER_CONTROL value. So always
  7600. * set the high bit to be safe.
  7601. */
  7602. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7603. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
  7604. upper = I915_READ_FW(reg);
  7605. do {
  7606. tmp = upper;
  7607. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7608. _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
  7609. lower = I915_READ_FW(reg);
  7610. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7611. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
  7612. upper = I915_READ_FW(reg);
  7613. } while (upper != tmp && --loop);
  7614. /* Everywhere else we always use VLV_COUNTER_CONTROL with the
  7615. * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
  7616. * now.
  7617. */
  7618. spin_unlock_irq(&dev_priv->uncore.lock);
  7619. return lower | (u64)upper << 8;
  7620. }
  7621. u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
  7622. const i915_reg_t reg)
  7623. {
  7624. u64 time_hw, units, div;
  7625. if (!intel_enable_rc6())
  7626. return 0;
  7627. intel_runtime_pm_get(dev_priv);
  7628. /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
  7629. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  7630. units = 1000;
  7631. div = dev_priv->czclk_freq;
  7632. time_hw = vlv_residency_raw(dev_priv, reg);
  7633. } else if (IS_GEN9_LP(dev_priv)) {
  7634. units = 1000;
  7635. div = 1200; /* 833.33ns */
  7636. time_hw = I915_READ(reg);
  7637. } else {
  7638. units = 128000; /* 1.28us */
  7639. div = 100000;
  7640. time_hw = I915_READ(reg);
  7641. }
  7642. intel_runtime_pm_put(dev_priv);
  7643. return DIV_ROUND_UP_ULL(time_hw * units, div);
  7644. }