i915_debugfs.c 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/sort.h>
  30. #include <linux/sched/mm.h>
  31. #include "intel_drv.h"
  32. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  33. {
  34. return to_i915(node->minor->dev);
  35. }
  36. static __always_inline void seq_print_param(struct seq_file *m,
  37. const char *name,
  38. const char *type,
  39. const void *x)
  40. {
  41. if (!__builtin_strcmp(type, "bool"))
  42. seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
  43. else if (!__builtin_strcmp(type, "int"))
  44. seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
  45. else if (!__builtin_strcmp(type, "unsigned int"))
  46. seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
  47. else if (!__builtin_strcmp(type, "char *"))
  48. seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
  49. else
  50. BUILD_BUG();
  51. }
  52. static int i915_capabilities(struct seq_file *m, void *data)
  53. {
  54. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  55. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  56. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  57. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  58. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  59. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  60. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  61. #undef PRINT_FLAG
  62. kernel_param_lock(THIS_MODULE);
  63. #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
  64. I915_PARAMS_FOR_EACH(PRINT_PARAM);
  65. #undef PRINT_PARAM
  66. kernel_param_unlock(THIS_MODULE);
  67. return 0;
  68. }
  69. static char get_active_flag(struct drm_i915_gem_object *obj)
  70. {
  71. return i915_gem_object_is_active(obj) ? '*' : ' ';
  72. }
  73. static char get_pin_flag(struct drm_i915_gem_object *obj)
  74. {
  75. return obj->pin_display ? 'p' : ' ';
  76. }
  77. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  78. {
  79. switch (i915_gem_object_get_tiling(obj)) {
  80. default:
  81. case I915_TILING_NONE: return ' ';
  82. case I915_TILING_X: return 'X';
  83. case I915_TILING_Y: return 'Y';
  84. }
  85. }
  86. static char get_global_flag(struct drm_i915_gem_object *obj)
  87. {
  88. return !list_empty(&obj->userfault_link) ? 'g' : ' ';
  89. }
  90. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  91. {
  92. return obj->mm.mapping ? 'M' : ' ';
  93. }
  94. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  95. {
  96. u64 size = 0;
  97. struct i915_vma *vma;
  98. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  99. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  100. size += vma->node.size;
  101. }
  102. return size;
  103. }
  104. static void
  105. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  106. {
  107. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  108. struct intel_engine_cs *engine;
  109. struct i915_vma *vma;
  110. unsigned int frontbuffer_bits;
  111. int pin_count = 0;
  112. lockdep_assert_held(&obj->base.dev->struct_mutex);
  113. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  114. &obj->base,
  115. get_active_flag(obj),
  116. get_pin_flag(obj),
  117. get_tiling_flag(obj),
  118. get_global_flag(obj),
  119. get_pin_mapped_flag(obj),
  120. obj->base.size / 1024,
  121. obj->base.read_domains,
  122. obj->base.write_domain,
  123. i915_cache_level_str(dev_priv, obj->cache_level),
  124. obj->mm.dirty ? " dirty" : "",
  125. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  126. if (obj->base.name)
  127. seq_printf(m, " (name: %d)", obj->base.name);
  128. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  129. if (i915_vma_is_pinned(vma))
  130. pin_count++;
  131. }
  132. seq_printf(m, " (pinned x %d)", pin_count);
  133. if (obj->pin_display)
  134. seq_printf(m, " (display)");
  135. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  136. if (!drm_mm_node_allocated(&vma->node))
  137. continue;
  138. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  139. i915_vma_is_ggtt(vma) ? "g" : "pp",
  140. vma->node.start, vma->node.size);
  141. if (i915_vma_is_ggtt(vma)) {
  142. switch (vma->ggtt_view.type) {
  143. case I915_GGTT_VIEW_NORMAL:
  144. seq_puts(m, ", normal");
  145. break;
  146. case I915_GGTT_VIEW_PARTIAL:
  147. seq_printf(m, ", partial [%08llx+%x]",
  148. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  149. vma->ggtt_view.partial.size << PAGE_SHIFT);
  150. break;
  151. case I915_GGTT_VIEW_ROTATED:
  152. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  153. vma->ggtt_view.rotated.plane[0].width,
  154. vma->ggtt_view.rotated.plane[0].height,
  155. vma->ggtt_view.rotated.plane[0].stride,
  156. vma->ggtt_view.rotated.plane[0].offset,
  157. vma->ggtt_view.rotated.plane[1].width,
  158. vma->ggtt_view.rotated.plane[1].height,
  159. vma->ggtt_view.rotated.plane[1].stride,
  160. vma->ggtt_view.rotated.plane[1].offset);
  161. break;
  162. default:
  163. MISSING_CASE(vma->ggtt_view.type);
  164. break;
  165. }
  166. }
  167. if (vma->fence)
  168. seq_printf(m, " , fence: %d%s",
  169. vma->fence->id,
  170. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  171. seq_puts(m, ")");
  172. }
  173. if (obj->stolen)
  174. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  175. engine = i915_gem_object_last_write_engine(obj);
  176. if (engine)
  177. seq_printf(m, " (%s)", engine->name);
  178. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  179. if (frontbuffer_bits)
  180. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  181. }
  182. static int obj_rank_by_stolen(const void *A, const void *B)
  183. {
  184. const struct drm_i915_gem_object *a =
  185. *(const struct drm_i915_gem_object **)A;
  186. const struct drm_i915_gem_object *b =
  187. *(const struct drm_i915_gem_object **)B;
  188. if (a->stolen->start < b->stolen->start)
  189. return -1;
  190. if (a->stolen->start > b->stolen->start)
  191. return 1;
  192. return 0;
  193. }
  194. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  195. {
  196. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  197. struct drm_device *dev = &dev_priv->drm;
  198. struct drm_i915_gem_object **objects;
  199. struct drm_i915_gem_object *obj;
  200. u64 total_obj_size, total_gtt_size;
  201. unsigned long total, count, n;
  202. int ret;
  203. total = READ_ONCE(dev_priv->mm.object_count);
  204. objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
  205. if (!objects)
  206. return -ENOMEM;
  207. ret = mutex_lock_interruptible(&dev->struct_mutex);
  208. if (ret)
  209. goto out;
  210. total_obj_size = total_gtt_size = count = 0;
  211. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  212. if (count == total)
  213. break;
  214. if (obj->stolen == NULL)
  215. continue;
  216. objects[count++] = obj;
  217. total_obj_size += obj->base.size;
  218. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  219. }
  220. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  221. if (count == total)
  222. break;
  223. if (obj->stolen == NULL)
  224. continue;
  225. objects[count++] = obj;
  226. total_obj_size += obj->base.size;
  227. }
  228. sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
  229. seq_puts(m, "Stolen:\n");
  230. for (n = 0; n < count; n++) {
  231. seq_puts(m, " ");
  232. describe_obj(m, objects[n]);
  233. seq_putc(m, '\n');
  234. }
  235. seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
  236. count, total_obj_size, total_gtt_size);
  237. mutex_unlock(&dev->struct_mutex);
  238. out:
  239. kvfree(objects);
  240. return ret;
  241. }
  242. struct file_stats {
  243. struct drm_i915_file_private *file_priv;
  244. unsigned long count;
  245. u64 total, unbound;
  246. u64 global, shared;
  247. u64 active, inactive;
  248. };
  249. static int per_file_stats(int id, void *ptr, void *data)
  250. {
  251. struct drm_i915_gem_object *obj = ptr;
  252. struct file_stats *stats = data;
  253. struct i915_vma *vma;
  254. lockdep_assert_held(&obj->base.dev->struct_mutex);
  255. stats->count++;
  256. stats->total += obj->base.size;
  257. if (!obj->bind_count)
  258. stats->unbound += obj->base.size;
  259. if (obj->base.name || obj->base.dma_buf)
  260. stats->shared += obj->base.size;
  261. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  262. if (!drm_mm_node_allocated(&vma->node))
  263. continue;
  264. if (i915_vma_is_ggtt(vma)) {
  265. stats->global += vma->node.size;
  266. } else {
  267. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  268. if (ppgtt->base.file != stats->file_priv)
  269. continue;
  270. }
  271. if (i915_vma_is_active(vma))
  272. stats->active += vma->node.size;
  273. else
  274. stats->inactive += vma->node.size;
  275. }
  276. return 0;
  277. }
  278. #define print_file_stats(m, name, stats) do { \
  279. if (stats.count) \
  280. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  281. name, \
  282. stats.count, \
  283. stats.total, \
  284. stats.active, \
  285. stats.inactive, \
  286. stats.global, \
  287. stats.shared, \
  288. stats.unbound); \
  289. } while (0)
  290. static void print_batch_pool_stats(struct seq_file *m,
  291. struct drm_i915_private *dev_priv)
  292. {
  293. struct drm_i915_gem_object *obj;
  294. struct file_stats stats;
  295. struct intel_engine_cs *engine;
  296. enum intel_engine_id id;
  297. int j;
  298. memset(&stats, 0, sizeof(stats));
  299. for_each_engine(engine, dev_priv, id) {
  300. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  301. list_for_each_entry(obj,
  302. &engine->batch_pool.cache_list[j],
  303. batch_pool_link)
  304. per_file_stats(0, obj, &stats);
  305. }
  306. }
  307. print_file_stats(m, "[k]batch pool", stats);
  308. }
  309. static int per_file_ctx_stats(int id, void *ptr, void *data)
  310. {
  311. struct i915_gem_context *ctx = ptr;
  312. int n;
  313. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  314. if (ctx->engine[n].state)
  315. per_file_stats(0, ctx->engine[n].state->obj, data);
  316. if (ctx->engine[n].ring)
  317. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  318. }
  319. return 0;
  320. }
  321. static void print_context_stats(struct seq_file *m,
  322. struct drm_i915_private *dev_priv)
  323. {
  324. struct drm_device *dev = &dev_priv->drm;
  325. struct file_stats stats;
  326. struct drm_file *file;
  327. memset(&stats, 0, sizeof(stats));
  328. mutex_lock(&dev->struct_mutex);
  329. if (dev_priv->kernel_context)
  330. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  331. list_for_each_entry(file, &dev->filelist, lhead) {
  332. struct drm_i915_file_private *fpriv = file->driver_priv;
  333. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  334. }
  335. mutex_unlock(&dev->struct_mutex);
  336. print_file_stats(m, "[k]contexts", stats);
  337. }
  338. static int i915_gem_object_info(struct seq_file *m, void *data)
  339. {
  340. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  341. struct drm_device *dev = &dev_priv->drm;
  342. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  343. u32 count, mapped_count, purgeable_count, dpy_count;
  344. u64 size, mapped_size, purgeable_size, dpy_size;
  345. struct drm_i915_gem_object *obj;
  346. struct drm_file *file;
  347. int ret;
  348. ret = mutex_lock_interruptible(&dev->struct_mutex);
  349. if (ret)
  350. return ret;
  351. seq_printf(m, "%u objects, %llu bytes\n",
  352. dev_priv->mm.object_count,
  353. dev_priv->mm.object_memory);
  354. size = count = 0;
  355. mapped_size = mapped_count = 0;
  356. purgeable_size = purgeable_count = 0;
  357. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  358. size += obj->base.size;
  359. ++count;
  360. if (obj->mm.madv == I915_MADV_DONTNEED) {
  361. purgeable_size += obj->base.size;
  362. ++purgeable_count;
  363. }
  364. if (obj->mm.mapping) {
  365. mapped_count++;
  366. mapped_size += obj->base.size;
  367. }
  368. }
  369. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  370. size = count = dpy_size = dpy_count = 0;
  371. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  372. size += obj->base.size;
  373. ++count;
  374. if (obj->pin_display) {
  375. dpy_size += obj->base.size;
  376. ++dpy_count;
  377. }
  378. if (obj->mm.madv == I915_MADV_DONTNEED) {
  379. purgeable_size += obj->base.size;
  380. ++purgeable_count;
  381. }
  382. if (obj->mm.mapping) {
  383. mapped_count++;
  384. mapped_size += obj->base.size;
  385. }
  386. }
  387. seq_printf(m, "%u bound objects, %llu bytes\n",
  388. count, size);
  389. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  390. purgeable_count, purgeable_size);
  391. seq_printf(m, "%u mapped objects, %llu bytes\n",
  392. mapped_count, mapped_size);
  393. seq_printf(m, "%u display objects (pinned), %llu bytes\n",
  394. dpy_count, dpy_size);
  395. seq_printf(m, "%llu [%llu] gtt total\n",
  396. ggtt->base.total, ggtt->mappable_end);
  397. seq_putc(m, '\n');
  398. print_batch_pool_stats(m, dev_priv);
  399. mutex_unlock(&dev->struct_mutex);
  400. mutex_lock(&dev->filelist_mutex);
  401. print_context_stats(m, dev_priv);
  402. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  403. struct file_stats stats;
  404. struct drm_i915_file_private *file_priv = file->driver_priv;
  405. struct drm_i915_gem_request *request;
  406. struct task_struct *task;
  407. mutex_lock(&dev->struct_mutex);
  408. memset(&stats, 0, sizeof(stats));
  409. stats.file_priv = file->driver_priv;
  410. spin_lock(&file->table_lock);
  411. idr_for_each(&file->object_idr, per_file_stats, &stats);
  412. spin_unlock(&file->table_lock);
  413. /*
  414. * Although we have a valid reference on file->pid, that does
  415. * not guarantee that the task_struct who called get_pid() is
  416. * still alive (e.g. get_pid(current) => fork() => exit()).
  417. * Therefore, we need to protect this ->comm access using RCU.
  418. */
  419. request = list_first_entry_or_null(&file_priv->mm.request_list,
  420. struct drm_i915_gem_request,
  421. client_link);
  422. rcu_read_lock();
  423. task = pid_task(request && request->ctx->pid ?
  424. request->ctx->pid : file->pid,
  425. PIDTYPE_PID);
  426. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  427. rcu_read_unlock();
  428. mutex_unlock(&dev->struct_mutex);
  429. }
  430. mutex_unlock(&dev->filelist_mutex);
  431. return 0;
  432. }
  433. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  434. {
  435. struct drm_info_node *node = m->private;
  436. struct drm_i915_private *dev_priv = node_to_i915(node);
  437. struct drm_device *dev = &dev_priv->drm;
  438. bool show_pin_display_only = !!node->info_ent->data;
  439. struct drm_i915_gem_object *obj;
  440. u64 total_obj_size, total_gtt_size;
  441. int count, ret;
  442. ret = mutex_lock_interruptible(&dev->struct_mutex);
  443. if (ret)
  444. return ret;
  445. total_obj_size = total_gtt_size = count = 0;
  446. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  447. if (show_pin_display_only && !obj->pin_display)
  448. continue;
  449. seq_puts(m, " ");
  450. describe_obj(m, obj);
  451. seq_putc(m, '\n');
  452. total_obj_size += obj->base.size;
  453. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  454. count++;
  455. }
  456. mutex_unlock(&dev->struct_mutex);
  457. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  458. count, total_obj_size, total_gtt_size);
  459. return 0;
  460. }
  461. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  462. {
  463. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  464. struct drm_device *dev = &dev_priv->drm;
  465. struct drm_i915_gem_object *obj;
  466. struct intel_engine_cs *engine;
  467. enum intel_engine_id id;
  468. int total = 0;
  469. int ret, j;
  470. ret = mutex_lock_interruptible(&dev->struct_mutex);
  471. if (ret)
  472. return ret;
  473. for_each_engine(engine, dev_priv, id) {
  474. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  475. int count;
  476. count = 0;
  477. list_for_each_entry(obj,
  478. &engine->batch_pool.cache_list[j],
  479. batch_pool_link)
  480. count++;
  481. seq_printf(m, "%s cache[%d]: %d objects\n",
  482. engine->name, j, count);
  483. list_for_each_entry(obj,
  484. &engine->batch_pool.cache_list[j],
  485. batch_pool_link) {
  486. seq_puts(m, " ");
  487. describe_obj(m, obj);
  488. seq_putc(m, '\n');
  489. }
  490. total += count;
  491. }
  492. }
  493. seq_printf(m, "total: %d\n", total);
  494. mutex_unlock(&dev->struct_mutex);
  495. return 0;
  496. }
  497. static void print_request(struct seq_file *m,
  498. struct drm_i915_gem_request *rq,
  499. const char *prefix)
  500. {
  501. seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
  502. rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
  503. rq->priotree.priority,
  504. jiffies_to_msecs(jiffies - rq->emitted_jiffies),
  505. rq->timeline->common->name);
  506. }
  507. static int i915_gem_request_info(struct seq_file *m, void *data)
  508. {
  509. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  510. struct drm_device *dev = &dev_priv->drm;
  511. struct drm_i915_gem_request *req;
  512. struct intel_engine_cs *engine;
  513. enum intel_engine_id id;
  514. int ret, any;
  515. ret = mutex_lock_interruptible(&dev->struct_mutex);
  516. if (ret)
  517. return ret;
  518. any = 0;
  519. for_each_engine(engine, dev_priv, id) {
  520. int count;
  521. count = 0;
  522. list_for_each_entry(req, &engine->timeline->requests, link)
  523. count++;
  524. if (count == 0)
  525. continue;
  526. seq_printf(m, "%s requests: %d\n", engine->name, count);
  527. list_for_each_entry(req, &engine->timeline->requests, link)
  528. print_request(m, req, " ");
  529. any++;
  530. }
  531. mutex_unlock(&dev->struct_mutex);
  532. if (any == 0)
  533. seq_puts(m, "No requests\n");
  534. return 0;
  535. }
  536. static void i915_ring_seqno_info(struct seq_file *m,
  537. struct intel_engine_cs *engine)
  538. {
  539. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  540. struct rb_node *rb;
  541. seq_printf(m, "Current sequence (%s): %x\n",
  542. engine->name, intel_engine_get_seqno(engine));
  543. spin_lock_irq(&b->rb_lock);
  544. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  545. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  546. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  547. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  548. }
  549. spin_unlock_irq(&b->rb_lock);
  550. }
  551. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  552. {
  553. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  554. struct intel_engine_cs *engine;
  555. enum intel_engine_id id;
  556. for_each_engine(engine, dev_priv, id)
  557. i915_ring_seqno_info(m, engine);
  558. return 0;
  559. }
  560. static int i915_interrupt_info(struct seq_file *m, void *data)
  561. {
  562. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  563. struct intel_engine_cs *engine;
  564. enum intel_engine_id id;
  565. int i, pipe;
  566. intel_runtime_pm_get(dev_priv);
  567. if (IS_CHERRYVIEW(dev_priv)) {
  568. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  569. I915_READ(GEN8_MASTER_IRQ));
  570. seq_printf(m, "Display IER:\t%08x\n",
  571. I915_READ(VLV_IER));
  572. seq_printf(m, "Display IIR:\t%08x\n",
  573. I915_READ(VLV_IIR));
  574. seq_printf(m, "Display IIR_RW:\t%08x\n",
  575. I915_READ(VLV_IIR_RW));
  576. seq_printf(m, "Display IMR:\t%08x\n",
  577. I915_READ(VLV_IMR));
  578. for_each_pipe(dev_priv, pipe) {
  579. enum intel_display_power_domain power_domain;
  580. power_domain = POWER_DOMAIN_PIPE(pipe);
  581. if (!intel_display_power_get_if_enabled(dev_priv,
  582. power_domain)) {
  583. seq_printf(m, "Pipe %c power disabled\n",
  584. pipe_name(pipe));
  585. continue;
  586. }
  587. seq_printf(m, "Pipe %c stat:\t%08x\n",
  588. pipe_name(pipe),
  589. I915_READ(PIPESTAT(pipe)));
  590. intel_display_power_put(dev_priv, power_domain);
  591. }
  592. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  593. seq_printf(m, "Port hotplug:\t%08x\n",
  594. I915_READ(PORT_HOTPLUG_EN));
  595. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  596. I915_READ(VLV_DPFLIPSTAT));
  597. seq_printf(m, "DPINVGTT:\t%08x\n",
  598. I915_READ(DPINVGTT));
  599. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  600. for (i = 0; i < 4; i++) {
  601. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  602. i, I915_READ(GEN8_GT_IMR(i)));
  603. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  604. i, I915_READ(GEN8_GT_IIR(i)));
  605. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  606. i, I915_READ(GEN8_GT_IER(i)));
  607. }
  608. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  609. I915_READ(GEN8_PCU_IMR));
  610. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  611. I915_READ(GEN8_PCU_IIR));
  612. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  613. I915_READ(GEN8_PCU_IER));
  614. } else if (INTEL_GEN(dev_priv) >= 8) {
  615. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  616. I915_READ(GEN8_MASTER_IRQ));
  617. for (i = 0; i < 4; i++) {
  618. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  619. i, I915_READ(GEN8_GT_IMR(i)));
  620. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  621. i, I915_READ(GEN8_GT_IIR(i)));
  622. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  623. i, I915_READ(GEN8_GT_IER(i)));
  624. }
  625. for_each_pipe(dev_priv, pipe) {
  626. enum intel_display_power_domain power_domain;
  627. power_domain = POWER_DOMAIN_PIPE(pipe);
  628. if (!intel_display_power_get_if_enabled(dev_priv,
  629. power_domain)) {
  630. seq_printf(m, "Pipe %c power disabled\n",
  631. pipe_name(pipe));
  632. continue;
  633. }
  634. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  635. pipe_name(pipe),
  636. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  637. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  638. pipe_name(pipe),
  639. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  640. seq_printf(m, "Pipe %c IER:\t%08x\n",
  641. pipe_name(pipe),
  642. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  643. intel_display_power_put(dev_priv, power_domain);
  644. }
  645. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  646. I915_READ(GEN8_DE_PORT_IMR));
  647. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  648. I915_READ(GEN8_DE_PORT_IIR));
  649. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  650. I915_READ(GEN8_DE_PORT_IER));
  651. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  652. I915_READ(GEN8_DE_MISC_IMR));
  653. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  654. I915_READ(GEN8_DE_MISC_IIR));
  655. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  656. I915_READ(GEN8_DE_MISC_IER));
  657. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  658. I915_READ(GEN8_PCU_IMR));
  659. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  660. I915_READ(GEN8_PCU_IIR));
  661. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  662. I915_READ(GEN8_PCU_IER));
  663. } else if (IS_VALLEYVIEW(dev_priv)) {
  664. seq_printf(m, "Display IER:\t%08x\n",
  665. I915_READ(VLV_IER));
  666. seq_printf(m, "Display IIR:\t%08x\n",
  667. I915_READ(VLV_IIR));
  668. seq_printf(m, "Display IIR_RW:\t%08x\n",
  669. I915_READ(VLV_IIR_RW));
  670. seq_printf(m, "Display IMR:\t%08x\n",
  671. I915_READ(VLV_IMR));
  672. for_each_pipe(dev_priv, pipe) {
  673. enum intel_display_power_domain power_domain;
  674. power_domain = POWER_DOMAIN_PIPE(pipe);
  675. if (!intel_display_power_get_if_enabled(dev_priv,
  676. power_domain)) {
  677. seq_printf(m, "Pipe %c power disabled\n",
  678. pipe_name(pipe));
  679. continue;
  680. }
  681. seq_printf(m, "Pipe %c stat:\t%08x\n",
  682. pipe_name(pipe),
  683. I915_READ(PIPESTAT(pipe)));
  684. intel_display_power_put(dev_priv, power_domain);
  685. }
  686. seq_printf(m, "Master IER:\t%08x\n",
  687. I915_READ(VLV_MASTER_IER));
  688. seq_printf(m, "Render IER:\t%08x\n",
  689. I915_READ(GTIER));
  690. seq_printf(m, "Render IIR:\t%08x\n",
  691. I915_READ(GTIIR));
  692. seq_printf(m, "Render IMR:\t%08x\n",
  693. I915_READ(GTIMR));
  694. seq_printf(m, "PM IER:\t\t%08x\n",
  695. I915_READ(GEN6_PMIER));
  696. seq_printf(m, "PM IIR:\t\t%08x\n",
  697. I915_READ(GEN6_PMIIR));
  698. seq_printf(m, "PM IMR:\t\t%08x\n",
  699. I915_READ(GEN6_PMIMR));
  700. seq_printf(m, "Port hotplug:\t%08x\n",
  701. I915_READ(PORT_HOTPLUG_EN));
  702. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  703. I915_READ(VLV_DPFLIPSTAT));
  704. seq_printf(m, "DPINVGTT:\t%08x\n",
  705. I915_READ(DPINVGTT));
  706. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  707. seq_printf(m, "Interrupt enable: %08x\n",
  708. I915_READ(IER));
  709. seq_printf(m, "Interrupt identity: %08x\n",
  710. I915_READ(IIR));
  711. seq_printf(m, "Interrupt mask: %08x\n",
  712. I915_READ(IMR));
  713. for_each_pipe(dev_priv, pipe)
  714. seq_printf(m, "Pipe %c stat: %08x\n",
  715. pipe_name(pipe),
  716. I915_READ(PIPESTAT(pipe)));
  717. } else {
  718. seq_printf(m, "North Display Interrupt enable: %08x\n",
  719. I915_READ(DEIER));
  720. seq_printf(m, "North Display Interrupt identity: %08x\n",
  721. I915_READ(DEIIR));
  722. seq_printf(m, "North Display Interrupt mask: %08x\n",
  723. I915_READ(DEIMR));
  724. seq_printf(m, "South Display Interrupt enable: %08x\n",
  725. I915_READ(SDEIER));
  726. seq_printf(m, "South Display Interrupt identity: %08x\n",
  727. I915_READ(SDEIIR));
  728. seq_printf(m, "South Display Interrupt mask: %08x\n",
  729. I915_READ(SDEIMR));
  730. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  731. I915_READ(GTIER));
  732. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  733. I915_READ(GTIIR));
  734. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  735. I915_READ(GTIMR));
  736. }
  737. for_each_engine(engine, dev_priv, id) {
  738. if (INTEL_GEN(dev_priv) >= 6) {
  739. seq_printf(m,
  740. "Graphics Interrupt mask (%s): %08x\n",
  741. engine->name, I915_READ_IMR(engine));
  742. }
  743. i915_ring_seqno_info(m, engine);
  744. }
  745. intel_runtime_pm_put(dev_priv);
  746. return 0;
  747. }
  748. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  749. {
  750. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  751. struct drm_device *dev = &dev_priv->drm;
  752. int i, ret;
  753. ret = mutex_lock_interruptible(&dev->struct_mutex);
  754. if (ret)
  755. return ret;
  756. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  757. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  758. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  759. seq_printf(m, "Fence %d, pin count = %d, object = ",
  760. i, dev_priv->fence_regs[i].pin_count);
  761. if (!vma)
  762. seq_puts(m, "unused");
  763. else
  764. describe_obj(m, vma->obj);
  765. seq_putc(m, '\n');
  766. }
  767. mutex_unlock(&dev->struct_mutex);
  768. return 0;
  769. }
  770. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  771. static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
  772. size_t count, loff_t *pos)
  773. {
  774. struct i915_gpu_state *error = file->private_data;
  775. struct drm_i915_error_state_buf str;
  776. ssize_t ret;
  777. loff_t tmp;
  778. if (!error)
  779. return 0;
  780. ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
  781. if (ret)
  782. return ret;
  783. ret = i915_error_state_to_str(&str, error);
  784. if (ret)
  785. goto out;
  786. tmp = 0;
  787. ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
  788. if (ret < 0)
  789. goto out;
  790. *pos = str.start + ret;
  791. out:
  792. i915_error_state_buf_release(&str);
  793. return ret;
  794. }
  795. static int gpu_state_release(struct inode *inode, struct file *file)
  796. {
  797. i915_gpu_state_put(file->private_data);
  798. return 0;
  799. }
  800. static int i915_gpu_info_open(struct inode *inode, struct file *file)
  801. {
  802. struct drm_i915_private *i915 = inode->i_private;
  803. struct i915_gpu_state *gpu;
  804. intel_runtime_pm_get(i915);
  805. gpu = i915_capture_gpu_state(i915);
  806. intel_runtime_pm_put(i915);
  807. if (!gpu)
  808. return -ENOMEM;
  809. file->private_data = gpu;
  810. return 0;
  811. }
  812. static const struct file_operations i915_gpu_info_fops = {
  813. .owner = THIS_MODULE,
  814. .open = i915_gpu_info_open,
  815. .read = gpu_state_read,
  816. .llseek = default_llseek,
  817. .release = gpu_state_release,
  818. };
  819. static ssize_t
  820. i915_error_state_write(struct file *filp,
  821. const char __user *ubuf,
  822. size_t cnt,
  823. loff_t *ppos)
  824. {
  825. struct i915_gpu_state *error = filp->private_data;
  826. if (!error)
  827. return 0;
  828. DRM_DEBUG_DRIVER("Resetting error state\n");
  829. i915_reset_error_state(error->i915);
  830. return cnt;
  831. }
  832. static int i915_error_state_open(struct inode *inode, struct file *file)
  833. {
  834. file->private_data = i915_first_error_state(inode->i_private);
  835. return 0;
  836. }
  837. static const struct file_operations i915_error_state_fops = {
  838. .owner = THIS_MODULE,
  839. .open = i915_error_state_open,
  840. .read = gpu_state_read,
  841. .write = i915_error_state_write,
  842. .llseek = default_llseek,
  843. .release = gpu_state_release,
  844. };
  845. #endif
  846. static int
  847. i915_next_seqno_set(void *data, u64 val)
  848. {
  849. struct drm_i915_private *dev_priv = data;
  850. struct drm_device *dev = &dev_priv->drm;
  851. int ret;
  852. ret = mutex_lock_interruptible(&dev->struct_mutex);
  853. if (ret)
  854. return ret;
  855. ret = i915_gem_set_global_seqno(dev, val);
  856. mutex_unlock(&dev->struct_mutex);
  857. return ret;
  858. }
  859. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  860. NULL, i915_next_seqno_set,
  861. "0x%llx\n");
  862. static int i915_frequency_info(struct seq_file *m, void *unused)
  863. {
  864. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  865. int ret = 0;
  866. intel_runtime_pm_get(dev_priv);
  867. if (IS_GEN5(dev_priv)) {
  868. u16 rgvswctl = I915_READ16(MEMSWCTL);
  869. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  870. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  871. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  872. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  873. MEMSTAT_VID_SHIFT);
  874. seq_printf(m, "Current P-state: %d\n",
  875. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  876. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  877. u32 freq_sts;
  878. mutex_lock(&dev_priv->rps.hw_lock);
  879. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  880. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  881. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  882. seq_printf(m, "actual GPU freq: %d MHz\n",
  883. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  884. seq_printf(m, "current GPU freq: %d MHz\n",
  885. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  886. seq_printf(m, "max GPU freq: %d MHz\n",
  887. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  888. seq_printf(m, "min GPU freq: %d MHz\n",
  889. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  890. seq_printf(m, "idle GPU freq: %d MHz\n",
  891. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  892. seq_printf(m,
  893. "efficient (RPe) frequency: %d MHz\n",
  894. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  895. mutex_unlock(&dev_priv->rps.hw_lock);
  896. } else if (INTEL_GEN(dev_priv) >= 6) {
  897. u32 rp_state_limits;
  898. u32 gt_perf_status;
  899. u32 rp_state_cap;
  900. u32 rpmodectl, rpinclimit, rpdeclimit;
  901. u32 rpstat, cagf, reqf;
  902. u32 rpupei, rpcurup, rpprevup;
  903. u32 rpdownei, rpcurdown, rpprevdown;
  904. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  905. int max_freq;
  906. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  907. if (IS_GEN9_LP(dev_priv)) {
  908. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  909. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  910. } else {
  911. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  912. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  913. }
  914. /* RPSTAT1 is in the GT power well */
  915. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  916. reqf = I915_READ(GEN6_RPNSWREQ);
  917. if (INTEL_GEN(dev_priv) >= 9)
  918. reqf >>= 23;
  919. else {
  920. reqf &= ~GEN6_TURBO_DISABLE;
  921. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  922. reqf >>= 24;
  923. else
  924. reqf >>= 25;
  925. }
  926. reqf = intel_gpu_freq(dev_priv, reqf);
  927. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  928. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  929. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  930. rpstat = I915_READ(GEN6_RPSTAT1);
  931. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  932. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  933. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  934. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  935. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  936. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  937. if (INTEL_GEN(dev_priv) >= 9)
  938. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  939. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  940. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  941. else
  942. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  943. cagf = intel_gpu_freq(dev_priv, cagf);
  944. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  945. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  946. pm_ier = I915_READ(GEN6_PMIER);
  947. pm_imr = I915_READ(GEN6_PMIMR);
  948. pm_isr = I915_READ(GEN6_PMISR);
  949. pm_iir = I915_READ(GEN6_PMIIR);
  950. pm_mask = I915_READ(GEN6_PMINTRMSK);
  951. } else {
  952. pm_ier = I915_READ(GEN8_GT_IER(2));
  953. pm_imr = I915_READ(GEN8_GT_IMR(2));
  954. pm_isr = I915_READ(GEN8_GT_ISR(2));
  955. pm_iir = I915_READ(GEN8_GT_IIR(2));
  956. pm_mask = I915_READ(GEN6_PMINTRMSK);
  957. }
  958. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  959. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  960. seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
  961. dev_priv->rps.pm_intrmsk_mbz);
  962. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  963. seq_printf(m, "Render p-state ratio: %d\n",
  964. (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
  965. seq_printf(m, "Render p-state VID: %d\n",
  966. gt_perf_status & 0xff);
  967. seq_printf(m, "Render p-state limit: %d\n",
  968. rp_state_limits & 0xff);
  969. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  970. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  971. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  972. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  973. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  974. seq_printf(m, "CAGF: %dMHz\n", cagf);
  975. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  976. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  977. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  978. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  979. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  980. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  981. seq_printf(m, "Up threshold: %d%%\n",
  982. dev_priv->rps.up_threshold);
  983. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  984. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  985. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  986. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  987. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  988. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  989. seq_printf(m, "Down threshold: %d%%\n",
  990. dev_priv->rps.down_threshold);
  991. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  992. rp_state_cap >> 16) & 0xff;
  993. max_freq *= (IS_GEN9_BC(dev_priv) ||
  994. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  995. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  996. intel_gpu_freq(dev_priv, max_freq));
  997. max_freq = (rp_state_cap & 0xff00) >> 8;
  998. max_freq *= (IS_GEN9_BC(dev_priv) ||
  999. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1000. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1001. intel_gpu_freq(dev_priv, max_freq));
  1002. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1003. rp_state_cap >> 0) & 0xff;
  1004. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1005. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1006. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1007. intel_gpu_freq(dev_priv, max_freq));
  1008. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1009. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1010. seq_printf(m, "Current freq: %d MHz\n",
  1011. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1012. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1013. seq_printf(m, "Idle freq: %d MHz\n",
  1014. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1015. seq_printf(m, "Min freq: %d MHz\n",
  1016. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1017. seq_printf(m, "Boost freq: %d MHz\n",
  1018. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1019. seq_printf(m, "Max freq: %d MHz\n",
  1020. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1021. seq_printf(m,
  1022. "efficient (RPe) frequency: %d MHz\n",
  1023. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1024. } else {
  1025. seq_puts(m, "no P-state info available\n");
  1026. }
  1027. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1028. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1029. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1030. intel_runtime_pm_put(dev_priv);
  1031. return ret;
  1032. }
  1033. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1034. struct seq_file *m,
  1035. struct intel_instdone *instdone)
  1036. {
  1037. int slice;
  1038. int subslice;
  1039. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1040. instdone->instdone);
  1041. if (INTEL_GEN(dev_priv) <= 3)
  1042. return;
  1043. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1044. instdone->slice_common);
  1045. if (INTEL_GEN(dev_priv) <= 6)
  1046. return;
  1047. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1048. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1049. slice, subslice, instdone->sampler[slice][subslice]);
  1050. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1051. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1052. slice, subslice, instdone->row[slice][subslice]);
  1053. }
  1054. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1055. {
  1056. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1057. struct intel_engine_cs *engine;
  1058. u64 acthd[I915_NUM_ENGINES];
  1059. u32 seqno[I915_NUM_ENGINES];
  1060. struct intel_instdone instdone;
  1061. enum intel_engine_id id;
  1062. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1063. seq_puts(m, "Wedged\n");
  1064. if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
  1065. seq_puts(m, "Reset in progress: struct_mutex backoff\n");
  1066. if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
  1067. seq_puts(m, "Reset in progress: reset handoff to waiter\n");
  1068. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1069. seq_puts(m, "Waiter holding struct mutex\n");
  1070. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1071. seq_puts(m, "struct_mutex blocked for reset\n");
  1072. if (!i915.enable_hangcheck) {
  1073. seq_puts(m, "Hangcheck disabled\n");
  1074. return 0;
  1075. }
  1076. intel_runtime_pm_get(dev_priv);
  1077. for_each_engine(engine, dev_priv, id) {
  1078. acthd[id] = intel_engine_get_active_head(engine);
  1079. seqno[id] = intel_engine_get_seqno(engine);
  1080. }
  1081. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1082. intel_runtime_pm_put(dev_priv);
  1083. if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
  1084. seq_printf(m, "Hangcheck active, timer fires in %dms\n",
  1085. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1086. jiffies));
  1087. else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
  1088. seq_puts(m, "Hangcheck active, work pending\n");
  1089. else
  1090. seq_puts(m, "Hangcheck inactive\n");
  1091. seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
  1092. for_each_engine(engine, dev_priv, id) {
  1093. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1094. struct rb_node *rb;
  1095. seq_printf(m, "%s:\n", engine->name);
  1096. seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
  1097. engine->hangcheck.seqno, seqno[id],
  1098. intel_engine_last_submit(engine),
  1099. engine->timeline->inflight_seqnos);
  1100. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1101. yesno(intel_engine_has_waiter(engine)),
  1102. yesno(test_bit(engine->id,
  1103. &dev_priv->gpu_error.missed_irq_rings)),
  1104. yesno(engine->hangcheck.stalled));
  1105. spin_lock_irq(&b->rb_lock);
  1106. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1107. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1108. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1109. w->tsk->comm, w->tsk->pid, w->seqno);
  1110. }
  1111. spin_unlock_irq(&b->rb_lock);
  1112. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1113. (long long)engine->hangcheck.acthd,
  1114. (long long)acthd[id]);
  1115. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1116. hangcheck_action_to_str(engine->hangcheck.action),
  1117. engine->hangcheck.action,
  1118. jiffies_to_msecs(jiffies -
  1119. engine->hangcheck.action_timestamp));
  1120. if (engine->id == RCS) {
  1121. seq_puts(m, "\tinstdone read =\n");
  1122. i915_instdone_info(dev_priv, m, &instdone);
  1123. seq_puts(m, "\tinstdone accu =\n");
  1124. i915_instdone_info(dev_priv, m,
  1125. &engine->hangcheck.instdone);
  1126. }
  1127. }
  1128. return 0;
  1129. }
  1130. static int i915_reset_info(struct seq_file *m, void *unused)
  1131. {
  1132. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1133. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1134. struct intel_engine_cs *engine;
  1135. enum intel_engine_id id;
  1136. seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
  1137. for_each_engine(engine, dev_priv, id) {
  1138. seq_printf(m, "%s = %u\n", engine->name,
  1139. i915_reset_engine_count(error, engine));
  1140. }
  1141. return 0;
  1142. }
  1143. static int ironlake_drpc_info(struct seq_file *m)
  1144. {
  1145. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1146. u32 rgvmodectl, rstdbyctl;
  1147. u16 crstandvid;
  1148. rgvmodectl = I915_READ(MEMMODECTL);
  1149. rstdbyctl = I915_READ(RSTDBYCTL);
  1150. crstandvid = I915_READ16(CRSTANDVID);
  1151. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1152. seq_printf(m, "Boost freq: %d\n",
  1153. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1154. MEMMODE_BOOST_FREQ_SHIFT);
  1155. seq_printf(m, "HW control enabled: %s\n",
  1156. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1157. seq_printf(m, "SW control enabled: %s\n",
  1158. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1159. seq_printf(m, "Gated voltage change: %s\n",
  1160. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1161. seq_printf(m, "Starting frequency: P%d\n",
  1162. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1163. seq_printf(m, "Max P-state: P%d\n",
  1164. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1165. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1166. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1167. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1168. seq_printf(m, "Render standby enabled: %s\n",
  1169. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1170. seq_puts(m, "Current RS state: ");
  1171. switch (rstdbyctl & RSX_STATUS_MASK) {
  1172. case RSX_STATUS_ON:
  1173. seq_puts(m, "on\n");
  1174. break;
  1175. case RSX_STATUS_RC1:
  1176. seq_puts(m, "RC1\n");
  1177. break;
  1178. case RSX_STATUS_RC1E:
  1179. seq_puts(m, "RC1E\n");
  1180. break;
  1181. case RSX_STATUS_RS1:
  1182. seq_puts(m, "RS1\n");
  1183. break;
  1184. case RSX_STATUS_RS2:
  1185. seq_puts(m, "RS2 (RC6)\n");
  1186. break;
  1187. case RSX_STATUS_RS3:
  1188. seq_puts(m, "RC3 (RC6+)\n");
  1189. break;
  1190. default:
  1191. seq_puts(m, "unknown\n");
  1192. break;
  1193. }
  1194. return 0;
  1195. }
  1196. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1197. {
  1198. struct drm_i915_private *i915 = node_to_i915(m->private);
  1199. struct intel_uncore_forcewake_domain *fw_domain;
  1200. unsigned int tmp;
  1201. for_each_fw_domain(fw_domain, i915, tmp)
  1202. seq_printf(m, "%s.wake_count = %u\n",
  1203. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1204. READ_ONCE(fw_domain->wake_count));
  1205. return 0;
  1206. }
  1207. static void print_rc6_res(struct seq_file *m,
  1208. const char *title,
  1209. const i915_reg_t reg)
  1210. {
  1211. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1212. seq_printf(m, "%s %u (%llu us)\n",
  1213. title, I915_READ(reg),
  1214. intel_rc6_residency_us(dev_priv, reg));
  1215. }
  1216. static int vlv_drpc_info(struct seq_file *m)
  1217. {
  1218. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1219. u32 rpmodectl1, rcctl1, pw_status;
  1220. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1221. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1222. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1223. seq_printf(m, "Video Turbo Mode: %s\n",
  1224. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1225. seq_printf(m, "Turbo enabled: %s\n",
  1226. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1227. seq_printf(m, "HW control enabled: %s\n",
  1228. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1229. seq_printf(m, "SW control enabled: %s\n",
  1230. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1231. GEN6_RP_MEDIA_SW_MODE));
  1232. seq_printf(m, "RC6 Enabled: %s\n",
  1233. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1234. GEN6_RC_CTL_EI_MODE(1))));
  1235. seq_printf(m, "Render Power Well: %s\n",
  1236. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1237. seq_printf(m, "Media Power Well: %s\n",
  1238. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1239. print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
  1240. print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
  1241. return i915_forcewake_domains(m, NULL);
  1242. }
  1243. static int gen6_drpc_info(struct seq_file *m)
  1244. {
  1245. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1246. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1247. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1248. unsigned forcewake_count;
  1249. int count = 0;
  1250. forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
  1251. if (forcewake_count) {
  1252. seq_puts(m, "RC information inaccurate because somebody "
  1253. "holds a forcewake reference \n");
  1254. } else {
  1255. /* NB: we cannot use forcewake, else we read the wrong values */
  1256. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1257. udelay(10);
  1258. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1259. }
  1260. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1261. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1262. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1263. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1264. if (INTEL_GEN(dev_priv) >= 9) {
  1265. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1266. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1267. }
  1268. mutex_lock(&dev_priv->rps.hw_lock);
  1269. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1270. mutex_unlock(&dev_priv->rps.hw_lock);
  1271. seq_printf(m, "Video Turbo Mode: %s\n",
  1272. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1273. seq_printf(m, "HW control enabled: %s\n",
  1274. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1275. seq_printf(m, "SW control enabled: %s\n",
  1276. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1277. GEN6_RP_MEDIA_SW_MODE));
  1278. seq_printf(m, "RC1e Enabled: %s\n",
  1279. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1280. seq_printf(m, "RC6 Enabled: %s\n",
  1281. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1282. if (INTEL_GEN(dev_priv) >= 9) {
  1283. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1284. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1285. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1286. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1287. }
  1288. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1289. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1290. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1291. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1292. seq_puts(m, "Current RC state: ");
  1293. switch (gt_core_status & GEN6_RCn_MASK) {
  1294. case GEN6_RC0:
  1295. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1296. seq_puts(m, "Core Power Down\n");
  1297. else
  1298. seq_puts(m, "on\n");
  1299. break;
  1300. case GEN6_RC3:
  1301. seq_puts(m, "RC3\n");
  1302. break;
  1303. case GEN6_RC6:
  1304. seq_puts(m, "RC6\n");
  1305. break;
  1306. case GEN6_RC7:
  1307. seq_puts(m, "RC7\n");
  1308. break;
  1309. default:
  1310. seq_puts(m, "Unknown\n");
  1311. break;
  1312. }
  1313. seq_printf(m, "Core Power Down: %s\n",
  1314. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1315. if (INTEL_GEN(dev_priv) >= 9) {
  1316. seq_printf(m, "Render Power Well: %s\n",
  1317. (gen9_powergate_status &
  1318. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1319. seq_printf(m, "Media Power Well: %s\n",
  1320. (gen9_powergate_status &
  1321. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1322. }
  1323. /* Not exactly sure what this is */
  1324. print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
  1325. GEN6_GT_GFX_RC6_LOCKED);
  1326. print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
  1327. print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
  1328. print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
  1329. seq_printf(m, "RC6 voltage: %dmV\n",
  1330. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1331. seq_printf(m, "RC6+ voltage: %dmV\n",
  1332. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1333. seq_printf(m, "RC6++ voltage: %dmV\n",
  1334. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1335. return i915_forcewake_domains(m, NULL);
  1336. }
  1337. static int i915_drpc_info(struct seq_file *m, void *unused)
  1338. {
  1339. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1340. int err;
  1341. intel_runtime_pm_get(dev_priv);
  1342. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1343. err = vlv_drpc_info(m);
  1344. else if (INTEL_GEN(dev_priv) >= 6)
  1345. err = gen6_drpc_info(m);
  1346. else
  1347. err = ironlake_drpc_info(m);
  1348. intel_runtime_pm_put(dev_priv);
  1349. return err;
  1350. }
  1351. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1352. {
  1353. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1354. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1355. dev_priv->fb_tracking.busy_bits);
  1356. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1357. dev_priv->fb_tracking.flip_bits);
  1358. return 0;
  1359. }
  1360. static int i915_fbc_status(struct seq_file *m, void *unused)
  1361. {
  1362. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1363. if (!HAS_FBC(dev_priv)) {
  1364. seq_puts(m, "FBC unsupported on this chipset\n");
  1365. return 0;
  1366. }
  1367. intel_runtime_pm_get(dev_priv);
  1368. mutex_lock(&dev_priv->fbc.lock);
  1369. if (intel_fbc_is_active(dev_priv))
  1370. seq_puts(m, "FBC enabled\n");
  1371. else
  1372. seq_printf(m, "FBC disabled: %s\n",
  1373. dev_priv->fbc.no_fbc_reason);
  1374. if (intel_fbc_is_active(dev_priv)) {
  1375. u32 mask;
  1376. if (INTEL_GEN(dev_priv) >= 8)
  1377. mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
  1378. else if (INTEL_GEN(dev_priv) >= 7)
  1379. mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
  1380. else if (INTEL_GEN(dev_priv) >= 5)
  1381. mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
  1382. else if (IS_G4X(dev_priv))
  1383. mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
  1384. else
  1385. mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
  1386. FBC_STAT_COMPRESSED);
  1387. seq_printf(m, "Compressing: %s\n", yesno(mask));
  1388. }
  1389. mutex_unlock(&dev_priv->fbc.lock);
  1390. intel_runtime_pm_put(dev_priv);
  1391. return 0;
  1392. }
  1393. static int i915_fbc_false_color_get(void *data, u64 *val)
  1394. {
  1395. struct drm_i915_private *dev_priv = data;
  1396. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1397. return -ENODEV;
  1398. *val = dev_priv->fbc.false_color;
  1399. return 0;
  1400. }
  1401. static int i915_fbc_false_color_set(void *data, u64 val)
  1402. {
  1403. struct drm_i915_private *dev_priv = data;
  1404. u32 reg;
  1405. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1406. return -ENODEV;
  1407. mutex_lock(&dev_priv->fbc.lock);
  1408. reg = I915_READ(ILK_DPFC_CONTROL);
  1409. dev_priv->fbc.false_color = val;
  1410. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1411. (reg | FBC_CTL_FALSE_COLOR) :
  1412. (reg & ~FBC_CTL_FALSE_COLOR));
  1413. mutex_unlock(&dev_priv->fbc.lock);
  1414. return 0;
  1415. }
  1416. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
  1417. i915_fbc_false_color_get, i915_fbc_false_color_set,
  1418. "%llu\n");
  1419. static int i915_ips_status(struct seq_file *m, void *unused)
  1420. {
  1421. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1422. if (!HAS_IPS(dev_priv)) {
  1423. seq_puts(m, "not supported\n");
  1424. return 0;
  1425. }
  1426. intel_runtime_pm_get(dev_priv);
  1427. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1428. yesno(i915.enable_ips));
  1429. if (INTEL_GEN(dev_priv) >= 8) {
  1430. seq_puts(m, "Currently: unknown\n");
  1431. } else {
  1432. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1433. seq_puts(m, "Currently: enabled\n");
  1434. else
  1435. seq_puts(m, "Currently: disabled\n");
  1436. }
  1437. intel_runtime_pm_put(dev_priv);
  1438. return 0;
  1439. }
  1440. static int i915_sr_status(struct seq_file *m, void *unused)
  1441. {
  1442. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1443. bool sr_enabled = false;
  1444. intel_runtime_pm_get(dev_priv);
  1445. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1446. if (INTEL_GEN(dev_priv) >= 9)
  1447. /* no global SR status; inspect per-plane WM */;
  1448. else if (HAS_PCH_SPLIT(dev_priv))
  1449. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1450. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1451. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1452. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1453. else if (IS_I915GM(dev_priv))
  1454. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1455. else if (IS_PINEVIEW(dev_priv))
  1456. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1457. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1458. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1459. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1460. intel_runtime_pm_put(dev_priv);
  1461. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1462. return 0;
  1463. }
  1464. static int i915_emon_status(struct seq_file *m, void *unused)
  1465. {
  1466. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1467. struct drm_device *dev = &dev_priv->drm;
  1468. unsigned long temp, chipset, gfx;
  1469. int ret;
  1470. if (!IS_GEN5(dev_priv))
  1471. return -ENODEV;
  1472. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1473. if (ret)
  1474. return ret;
  1475. temp = i915_mch_val(dev_priv);
  1476. chipset = i915_chipset_val(dev_priv);
  1477. gfx = i915_gfx_val(dev_priv);
  1478. mutex_unlock(&dev->struct_mutex);
  1479. seq_printf(m, "GMCH temp: %ld\n", temp);
  1480. seq_printf(m, "Chipset power: %ld\n", chipset);
  1481. seq_printf(m, "GFX power: %ld\n", gfx);
  1482. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1483. return 0;
  1484. }
  1485. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1486. {
  1487. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1488. int ret = 0;
  1489. int gpu_freq, ia_freq;
  1490. unsigned int max_gpu_freq, min_gpu_freq;
  1491. if (!HAS_LLC(dev_priv)) {
  1492. seq_puts(m, "unsupported on this chipset\n");
  1493. return 0;
  1494. }
  1495. intel_runtime_pm_get(dev_priv);
  1496. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1497. if (ret)
  1498. goto out;
  1499. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  1500. /* Convert GT frequency to 50 HZ units */
  1501. min_gpu_freq =
  1502. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1503. max_gpu_freq =
  1504. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1505. } else {
  1506. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1507. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1508. }
  1509. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1510. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1511. ia_freq = gpu_freq;
  1512. sandybridge_pcode_read(dev_priv,
  1513. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1514. &ia_freq);
  1515. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1516. intel_gpu_freq(dev_priv, (gpu_freq *
  1517. (IS_GEN9_BC(dev_priv) ||
  1518. IS_CANNONLAKE(dev_priv) ?
  1519. GEN9_FREQ_SCALER : 1))),
  1520. ((ia_freq >> 0) & 0xff) * 100,
  1521. ((ia_freq >> 8) & 0xff) * 100);
  1522. }
  1523. mutex_unlock(&dev_priv->rps.hw_lock);
  1524. out:
  1525. intel_runtime_pm_put(dev_priv);
  1526. return ret;
  1527. }
  1528. static int i915_opregion(struct seq_file *m, void *unused)
  1529. {
  1530. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1531. struct drm_device *dev = &dev_priv->drm;
  1532. struct intel_opregion *opregion = &dev_priv->opregion;
  1533. int ret;
  1534. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1535. if (ret)
  1536. goto out;
  1537. if (opregion->header)
  1538. seq_write(m, opregion->header, OPREGION_SIZE);
  1539. mutex_unlock(&dev->struct_mutex);
  1540. out:
  1541. return 0;
  1542. }
  1543. static int i915_vbt(struct seq_file *m, void *unused)
  1544. {
  1545. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1546. if (opregion->vbt)
  1547. seq_write(m, opregion->vbt, opregion->vbt_size);
  1548. return 0;
  1549. }
  1550. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1551. {
  1552. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1553. struct drm_device *dev = &dev_priv->drm;
  1554. struct intel_framebuffer *fbdev_fb = NULL;
  1555. struct drm_framebuffer *drm_fb;
  1556. int ret;
  1557. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1558. if (ret)
  1559. return ret;
  1560. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1561. if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
  1562. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1563. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1564. fbdev_fb->base.width,
  1565. fbdev_fb->base.height,
  1566. fbdev_fb->base.format->depth,
  1567. fbdev_fb->base.format->cpp[0] * 8,
  1568. fbdev_fb->base.modifier,
  1569. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1570. describe_obj(m, fbdev_fb->obj);
  1571. seq_putc(m, '\n');
  1572. }
  1573. #endif
  1574. mutex_lock(&dev->mode_config.fb_lock);
  1575. drm_for_each_fb(drm_fb, dev) {
  1576. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1577. if (fb == fbdev_fb)
  1578. continue;
  1579. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1580. fb->base.width,
  1581. fb->base.height,
  1582. fb->base.format->depth,
  1583. fb->base.format->cpp[0] * 8,
  1584. fb->base.modifier,
  1585. drm_framebuffer_read_refcount(&fb->base));
  1586. describe_obj(m, fb->obj);
  1587. seq_putc(m, '\n');
  1588. }
  1589. mutex_unlock(&dev->mode_config.fb_lock);
  1590. mutex_unlock(&dev->struct_mutex);
  1591. return 0;
  1592. }
  1593. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1594. {
  1595. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
  1596. ring->space, ring->head, ring->tail);
  1597. }
  1598. static int i915_context_status(struct seq_file *m, void *unused)
  1599. {
  1600. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1601. struct drm_device *dev = &dev_priv->drm;
  1602. struct intel_engine_cs *engine;
  1603. struct i915_gem_context *ctx;
  1604. enum intel_engine_id id;
  1605. int ret;
  1606. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1607. if (ret)
  1608. return ret;
  1609. list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
  1610. seq_printf(m, "HW context %u ", ctx->hw_id);
  1611. if (ctx->pid) {
  1612. struct task_struct *task;
  1613. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1614. if (task) {
  1615. seq_printf(m, "(%s [%d]) ",
  1616. task->comm, task->pid);
  1617. put_task_struct(task);
  1618. }
  1619. } else if (IS_ERR(ctx->file_priv)) {
  1620. seq_puts(m, "(deleted) ");
  1621. } else {
  1622. seq_puts(m, "(kernel) ");
  1623. }
  1624. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1625. seq_putc(m, '\n');
  1626. for_each_engine(engine, dev_priv, id) {
  1627. struct intel_context *ce = &ctx->engine[engine->id];
  1628. seq_printf(m, "%s: ", engine->name);
  1629. seq_putc(m, ce->initialised ? 'I' : 'i');
  1630. if (ce->state)
  1631. describe_obj(m, ce->state->obj);
  1632. if (ce->ring)
  1633. describe_ctx_ring(m, ce->ring);
  1634. seq_putc(m, '\n');
  1635. }
  1636. seq_putc(m, '\n');
  1637. }
  1638. mutex_unlock(&dev->struct_mutex);
  1639. return 0;
  1640. }
  1641. static void i915_dump_lrc_obj(struct seq_file *m,
  1642. struct i915_gem_context *ctx,
  1643. struct intel_engine_cs *engine)
  1644. {
  1645. struct i915_vma *vma = ctx->engine[engine->id].state;
  1646. struct page *page;
  1647. int j;
  1648. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1649. if (!vma) {
  1650. seq_puts(m, "\tFake context\n");
  1651. return;
  1652. }
  1653. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1654. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1655. i915_ggtt_offset(vma));
  1656. if (i915_gem_object_pin_pages(vma->obj)) {
  1657. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1658. return;
  1659. }
  1660. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1661. if (page) {
  1662. u32 *reg_state = kmap_atomic(page);
  1663. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1664. seq_printf(m,
  1665. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1666. j * 4,
  1667. reg_state[j], reg_state[j + 1],
  1668. reg_state[j + 2], reg_state[j + 3]);
  1669. }
  1670. kunmap_atomic(reg_state);
  1671. }
  1672. i915_gem_object_unpin_pages(vma->obj);
  1673. seq_putc(m, '\n');
  1674. }
  1675. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1676. {
  1677. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1678. struct drm_device *dev = &dev_priv->drm;
  1679. struct intel_engine_cs *engine;
  1680. struct i915_gem_context *ctx;
  1681. enum intel_engine_id id;
  1682. int ret;
  1683. if (!i915.enable_execlists) {
  1684. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1685. return 0;
  1686. }
  1687. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1688. if (ret)
  1689. return ret;
  1690. list_for_each_entry(ctx, &dev_priv->contexts.list, link)
  1691. for_each_engine(engine, dev_priv, id)
  1692. i915_dump_lrc_obj(m, ctx, engine);
  1693. mutex_unlock(&dev->struct_mutex);
  1694. return 0;
  1695. }
  1696. static const char *swizzle_string(unsigned swizzle)
  1697. {
  1698. switch (swizzle) {
  1699. case I915_BIT_6_SWIZZLE_NONE:
  1700. return "none";
  1701. case I915_BIT_6_SWIZZLE_9:
  1702. return "bit9";
  1703. case I915_BIT_6_SWIZZLE_9_10:
  1704. return "bit9/bit10";
  1705. case I915_BIT_6_SWIZZLE_9_11:
  1706. return "bit9/bit11";
  1707. case I915_BIT_6_SWIZZLE_9_10_11:
  1708. return "bit9/bit10/bit11";
  1709. case I915_BIT_6_SWIZZLE_9_17:
  1710. return "bit9/bit17";
  1711. case I915_BIT_6_SWIZZLE_9_10_17:
  1712. return "bit9/bit10/bit17";
  1713. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1714. return "unknown";
  1715. }
  1716. return "bug";
  1717. }
  1718. static int i915_swizzle_info(struct seq_file *m, void *data)
  1719. {
  1720. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1721. intel_runtime_pm_get(dev_priv);
  1722. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1723. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1724. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1725. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1726. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1727. seq_printf(m, "DDC = 0x%08x\n",
  1728. I915_READ(DCC));
  1729. seq_printf(m, "DDC2 = 0x%08x\n",
  1730. I915_READ(DCC2));
  1731. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1732. I915_READ16(C0DRB3));
  1733. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1734. I915_READ16(C1DRB3));
  1735. } else if (INTEL_GEN(dev_priv) >= 6) {
  1736. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1737. I915_READ(MAD_DIMM_C0));
  1738. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1739. I915_READ(MAD_DIMM_C1));
  1740. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1741. I915_READ(MAD_DIMM_C2));
  1742. seq_printf(m, "TILECTL = 0x%08x\n",
  1743. I915_READ(TILECTL));
  1744. if (INTEL_GEN(dev_priv) >= 8)
  1745. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1746. I915_READ(GAMTARBMODE));
  1747. else
  1748. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1749. I915_READ(ARB_MODE));
  1750. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1751. I915_READ(DISP_ARB_CTL));
  1752. }
  1753. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1754. seq_puts(m, "L-shaped memory detected\n");
  1755. intel_runtime_pm_put(dev_priv);
  1756. return 0;
  1757. }
  1758. static int per_file_ctx(int id, void *ptr, void *data)
  1759. {
  1760. struct i915_gem_context *ctx = ptr;
  1761. struct seq_file *m = data;
  1762. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1763. if (!ppgtt) {
  1764. seq_printf(m, " no ppgtt for context %d\n",
  1765. ctx->user_handle);
  1766. return 0;
  1767. }
  1768. if (i915_gem_context_is_default(ctx))
  1769. seq_puts(m, " default context:\n");
  1770. else
  1771. seq_printf(m, " context %d:\n", ctx->user_handle);
  1772. ppgtt->debug_dump(ppgtt, m);
  1773. return 0;
  1774. }
  1775. static void gen8_ppgtt_info(struct seq_file *m,
  1776. struct drm_i915_private *dev_priv)
  1777. {
  1778. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1779. struct intel_engine_cs *engine;
  1780. enum intel_engine_id id;
  1781. int i;
  1782. if (!ppgtt)
  1783. return;
  1784. for_each_engine(engine, dev_priv, id) {
  1785. seq_printf(m, "%s\n", engine->name);
  1786. for (i = 0; i < 4; i++) {
  1787. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1788. pdp <<= 32;
  1789. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1790. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1791. }
  1792. }
  1793. }
  1794. static void gen6_ppgtt_info(struct seq_file *m,
  1795. struct drm_i915_private *dev_priv)
  1796. {
  1797. struct intel_engine_cs *engine;
  1798. enum intel_engine_id id;
  1799. if (IS_GEN6(dev_priv))
  1800. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1801. for_each_engine(engine, dev_priv, id) {
  1802. seq_printf(m, "%s\n", engine->name);
  1803. if (IS_GEN7(dev_priv))
  1804. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1805. I915_READ(RING_MODE_GEN7(engine)));
  1806. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1807. I915_READ(RING_PP_DIR_BASE(engine)));
  1808. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1809. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1810. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1811. I915_READ(RING_PP_DIR_DCLV(engine)));
  1812. }
  1813. if (dev_priv->mm.aliasing_ppgtt) {
  1814. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1815. seq_puts(m, "aliasing PPGTT:\n");
  1816. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1817. ppgtt->debug_dump(ppgtt, m);
  1818. }
  1819. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1820. }
  1821. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1822. {
  1823. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1824. struct drm_device *dev = &dev_priv->drm;
  1825. struct drm_file *file;
  1826. int ret;
  1827. mutex_lock(&dev->filelist_mutex);
  1828. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1829. if (ret)
  1830. goto out_unlock;
  1831. intel_runtime_pm_get(dev_priv);
  1832. if (INTEL_GEN(dev_priv) >= 8)
  1833. gen8_ppgtt_info(m, dev_priv);
  1834. else if (INTEL_GEN(dev_priv) >= 6)
  1835. gen6_ppgtt_info(m, dev_priv);
  1836. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1837. struct drm_i915_file_private *file_priv = file->driver_priv;
  1838. struct task_struct *task;
  1839. task = get_pid_task(file->pid, PIDTYPE_PID);
  1840. if (!task) {
  1841. ret = -ESRCH;
  1842. goto out_rpm;
  1843. }
  1844. seq_printf(m, "\nproc: %s\n", task->comm);
  1845. put_task_struct(task);
  1846. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1847. (void *)(unsigned long)m);
  1848. }
  1849. out_rpm:
  1850. intel_runtime_pm_put(dev_priv);
  1851. mutex_unlock(&dev->struct_mutex);
  1852. out_unlock:
  1853. mutex_unlock(&dev->filelist_mutex);
  1854. return ret;
  1855. }
  1856. static int count_irq_waiters(struct drm_i915_private *i915)
  1857. {
  1858. struct intel_engine_cs *engine;
  1859. enum intel_engine_id id;
  1860. int count = 0;
  1861. for_each_engine(engine, i915, id)
  1862. count += intel_engine_has_waiter(engine);
  1863. return count;
  1864. }
  1865. static const char *rps_power_to_str(unsigned int power)
  1866. {
  1867. static const char * const strings[] = {
  1868. [LOW_POWER] = "low power",
  1869. [BETWEEN] = "mixed",
  1870. [HIGH_POWER] = "high power",
  1871. };
  1872. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1873. return "unknown";
  1874. return strings[power];
  1875. }
  1876. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1877. {
  1878. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1879. struct drm_device *dev = &dev_priv->drm;
  1880. struct drm_file *file;
  1881. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1882. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1883. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1884. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1885. seq_printf(m, "Boosts outstanding? %d\n",
  1886. atomic_read(&dev_priv->rps.num_waiters));
  1887. seq_printf(m, "Frequency requested %d\n",
  1888. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1889. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1890. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1891. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1892. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1893. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1894. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1895. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  1896. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  1897. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1898. mutex_lock(&dev->filelist_mutex);
  1899. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1900. struct drm_i915_file_private *file_priv = file->driver_priv;
  1901. struct task_struct *task;
  1902. rcu_read_lock();
  1903. task = pid_task(file->pid, PIDTYPE_PID);
  1904. seq_printf(m, "%s [%d]: %d boosts\n",
  1905. task ? task->comm : "<unknown>",
  1906. task ? task->pid : -1,
  1907. atomic_read(&file_priv->rps.boosts));
  1908. rcu_read_unlock();
  1909. }
  1910. seq_printf(m, "Kernel (anonymous) boosts: %d\n",
  1911. atomic_read(&dev_priv->rps.boosts));
  1912. mutex_unlock(&dev->filelist_mutex);
  1913. if (INTEL_GEN(dev_priv) >= 6 &&
  1914. dev_priv->rps.enabled &&
  1915. dev_priv->gt.active_requests) {
  1916. u32 rpup, rpupei;
  1917. u32 rpdown, rpdownei;
  1918. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1919. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1920. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1921. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1922. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1923. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1924. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1925. rps_power_to_str(dev_priv->rps.power));
  1926. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1927. rpup && rpupei ? 100 * rpup / rpupei : 0,
  1928. dev_priv->rps.up_threshold);
  1929. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1930. rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
  1931. dev_priv->rps.down_threshold);
  1932. } else {
  1933. seq_puts(m, "\nRPS Autotuning inactive\n");
  1934. }
  1935. return 0;
  1936. }
  1937. static int i915_llc(struct seq_file *m, void *data)
  1938. {
  1939. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1940. const bool edram = INTEL_GEN(dev_priv) > 8;
  1941. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1942. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1943. intel_uncore_edram_size(dev_priv)/1024/1024);
  1944. return 0;
  1945. }
  1946. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1947. {
  1948. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1949. struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
  1950. if (!HAS_HUC_UCODE(dev_priv))
  1951. return 0;
  1952. seq_puts(m, "HuC firmware status:\n");
  1953. seq_printf(m, "\tpath: %s\n", huc_fw->path);
  1954. seq_printf(m, "\tfetch: %s\n",
  1955. intel_uc_fw_status_repr(huc_fw->fetch_status));
  1956. seq_printf(m, "\tload: %s\n",
  1957. intel_uc_fw_status_repr(huc_fw->load_status));
  1958. seq_printf(m, "\tversion wanted: %d.%d\n",
  1959. huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
  1960. seq_printf(m, "\tversion found: %d.%d\n",
  1961. huc_fw->major_ver_found, huc_fw->minor_ver_found);
  1962. seq_printf(m, "\theader: offset is %d; size = %d\n",
  1963. huc_fw->header_offset, huc_fw->header_size);
  1964. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  1965. huc_fw->ucode_offset, huc_fw->ucode_size);
  1966. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  1967. huc_fw->rsa_offset, huc_fw->rsa_size);
  1968. intel_runtime_pm_get(dev_priv);
  1969. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  1970. intel_runtime_pm_put(dev_priv);
  1971. return 0;
  1972. }
  1973. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1974. {
  1975. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1976. struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
  1977. u32 tmp, i;
  1978. if (!HAS_GUC_UCODE(dev_priv))
  1979. return 0;
  1980. seq_printf(m, "GuC firmware status:\n");
  1981. seq_printf(m, "\tpath: %s\n",
  1982. guc_fw->path);
  1983. seq_printf(m, "\tfetch: %s\n",
  1984. intel_uc_fw_status_repr(guc_fw->fetch_status));
  1985. seq_printf(m, "\tload: %s\n",
  1986. intel_uc_fw_status_repr(guc_fw->load_status));
  1987. seq_printf(m, "\tversion wanted: %d.%d\n",
  1988. guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
  1989. seq_printf(m, "\tversion found: %d.%d\n",
  1990. guc_fw->major_ver_found, guc_fw->minor_ver_found);
  1991. seq_printf(m, "\theader: offset is %d; size = %d\n",
  1992. guc_fw->header_offset, guc_fw->header_size);
  1993. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  1994. guc_fw->ucode_offset, guc_fw->ucode_size);
  1995. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  1996. guc_fw->rsa_offset, guc_fw->rsa_size);
  1997. intel_runtime_pm_get(dev_priv);
  1998. tmp = I915_READ(GUC_STATUS);
  1999. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2000. seq_printf(m, "\tBootrom status = 0x%x\n",
  2001. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2002. seq_printf(m, "\tuKernel status = 0x%x\n",
  2003. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2004. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2005. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2006. seq_puts(m, "\nScratch registers:\n");
  2007. for (i = 0; i < 16; i++)
  2008. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2009. intel_runtime_pm_put(dev_priv);
  2010. return 0;
  2011. }
  2012. static void i915_guc_log_info(struct seq_file *m,
  2013. struct drm_i915_private *dev_priv)
  2014. {
  2015. struct intel_guc *guc = &dev_priv->guc;
  2016. seq_puts(m, "\nGuC logging stats:\n");
  2017. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  2018. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  2019. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  2020. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  2021. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  2022. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  2023. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  2024. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  2025. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  2026. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  2027. guc->log.flush_interrupt_count);
  2028. seq_printf(m, "\tCapture miss count: %u\n",
  2029. guc->log.capture_miss_count);
  2030. }
  2031. static void i915_guc_client_info(struct seq_file *m,
  2032. struct drm_i915_private *dev_priv,
  2033. struct i915_guc_client *client)
  2034. {
  2035. struct intel_engine_cs *engine;
  2036. enum intel_engine_id id;
  2037. uint64_t tot = 0;
  2038. seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
  2039. client->priority, client->stage_id, client->proc_desc_offset);
  2040. seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
  2041. client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
  2042. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2043. client->wq_size, client->wq_offset, client->wq_tail);
  2044. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2045. for_each_engine(engine, dev_priv, id) {
  2046. u64 submissions = client->submissions[id];
  2047. tot += submissions;
  2048. seq_printf(m, "\tSubmissions: %llu %s\n",
  2049. submissions, engine->name);
  2050. }
  2051. seq_printf(m, "\tTotal: %llu\n", tot);
  2052. }
  2053. static bool check_guc_submission(struct seq_file *m)
  2054. {
  2055. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2056. const struct intel_guc *guc = &dev_priv->guc;
  2057. if (!guc->execbuf_client) {
  2058. seq_printf(m, "GuC submission %s\n",
  2059. HAS_GUC_SCHED(dev_priv) ?
  2060. "disabled" :
  2061. "not supported");
  2062. return false;
  2063. }
  2064. return true;
  2065. }
  2066. static int i915_guc_info(struct seq_file *m, void *data)
  2067. {
  2068. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2069. const struct intel_guc *guc = &dev_priv->guc;
  2070. if (!check_guc_submission(m))
  2071. return 0;
  2072. seq_printf(m, "Doorbell map:\n");
  2073. seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
  2074. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  2075. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  2076. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  2077. i915_guc_log_info(m, dev_priv);
  2078. /* Add more as required ... */
  2079. return 0;
  2080. }
  2081. static int i915_guc_stage_pool(struct seq_file *m, void *data)
  2082. {
  2083. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2084. const struct intel_guc *guc = &dev_priv->guc;
  2085. struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
  2086. struct i915_guc_client *client = guc->execbuf_client;
  2087. unsigned int tmp;
  2088. int index;
  2089. if (!check_guc_submission(m))
  2090. return 0;
  2091. for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
  2092. struct intel_engine_cs *engine;
  2093. if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
  2094. continue;
  2095. seq_printf(m, "GuC stage descriptor %u:\n", index);
  2096. seq_printf(m, "\tIndex: %u\n", desc->stage_id);
  2097. seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
  2098. seq_printf(m, "\tPriority: %d\n", desc->priority);
  2099. seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
  2100. seq_printf(m, "\tEngines used: 0x%x\n",
  2101. desc->engines_used);
  2102. seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
  2103. desc->db_trigger_phy,
  2104. desc->db_trigger_cpu,
  2105. desc->db_trigger_uk);
  2106. seq_printf(m, "\tProcess descriptor: 0x%x\n",
  2107. desc->process_desc);
  2108. seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
  2109. desc->wq_addr, desc->wq_size);
  2110. seq_putc(m, '\n');
  2111. for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
  2112. u32 guc_engine_id = engine->guc_id;
  2113. struct guc_execlist_context *lrc =
  2114. &desc->lrc[guc_engine_id];
  2115. seq_printf(m, "\t%s LRC:\n", engine->name);
  2116. seq_printf(m, "\t\tContext desc: 0x%x\n",
  2117. lrc->context_desc);
  2118. seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
  2119. seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
  2120. seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
  2121. seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
  2122. seq_putc(m, '\n');
  2123. }
  2124. }
  2125. return 0;
  2126. }
  2127. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2128. {
  2129. struct drm_info_node *node = m->private;
  2130. struct drm_i915_private *dev_priv = node_to_i915(node);
  2131. bool dump_load_err = !!node->info_ent->data;
  2132. struct drm_i915_gem_object *obj = NULL;
  2133. u32 *log;
  2134. int i = 0;
  2135. if (dump_load_err)
  2136. obj = dev_priv->guc.load_err_log;
  2137. else if (dev_priv->guc.log.vma)
  2138. obj = dev_priv->guc.log.vma->obj;
  2139. if (!obj)
  2140. return 0;
  2141. log = i915_gem_object_pin_map(obj, I915_MAP_WC);
  2142. if (IS_ERR(log)) {
  2143. DRM_DEBUG("Failed to pin object\n");
  2144. seq_puts(m, "(log data unaccessible)\n");
  2145. return PTR_ERR(log);
  2146. }
  2147. for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
  2148. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2149. *(log + i), *(log + i + 1),
  2150. *(log + i + 2), *(log + i + 3));
  2151. seq_putc(m, '\n');
  2152. i915_gem_object_unpin_map(obj);
  2153. return 0;
  2154. }
  2155. static int i915_guc_log_control_get(void *data, u64 *val)
  2156. {
  2157. struct drm_i915_private *dev_priv = data;
  2158. if (!dev_priv->guc.log.vma)
  2159. return -EINVAL;
  2160. *val = i915.guc_log_level;
  2161. return 0;
  2162. }
  2163. static int i915_guc_log_control_set(void *data, u64 val)
  2164. {
  2165. struct drm_i915_private *dev_priv = data;
  2166. int ret;
  2167. if (!dev_priv->guc.log.vma)
  2168. return -EINVAL;
  2169. ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
  2170. if (ret)
  2171. return ret;
  2172. intel_runtime_pm_get(dev_priv);
  2173. ret = i915_guc_log_control(dev_priv, val);
  2174. intel_runtime_pm_put(dev_priv);
  2175. mutex_unlock(&dev_priv->drm.struct_mutex);
  2176. return ret;
  2177. }
  2178. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2179. i915_guc_log_control_get, i915_guc_log_control_set,
  2180. "%lld\n");
  2181. static const char *psr2_live_status(u32 val)
  2182. {
  2183. static const char * const live_status[] = {
  2184. "IDLE",
  2185. "CAPTURE",
  2186. "CAPTURE_FS",
  2187. "SLEEP",
  2188. "BUFON_FW",
  2189. "ML_UP",
  2190. "SU_STANDBY",
  2191. "FAST_SLEEP",
  2192. "DEEP_SLEEP",
  2193. "BUF_ON",
  2194. "TG_ON"
  2195. };
  2196. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2197. if (val < ARRAY_SIZE(live_status))
  2198. return live_status[val];
  2199. return "unknown";
  2200. }
  2201. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2202. {
  2203. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2204. u32 psrperf = 0;
  2205. u32 stat[3];
  2206. enum pipe pipe;
  2207. bool enabled = false;
  2208. if (!HAS_PSR(dev_priv)) {
  2209. seq_puts(m, "PSR not supported\n");
  2210. return 0;
  2211. }
  2212. intel_runtime_pm_get(dev_priv);
  2213. mutex_lock(&dev_priv->psr.lock);
  2214. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2215. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2216. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2217. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2218. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2219. dev_priv->psr.busy_frontbuffer_bits);
  2220. seq_printf(m, "Re-enable work scheduled: %s\n",
  2221. yesno(work_busy(&dev_priv->psr.work.work)));
  2222. if (HAS_DDI(dev_priv)) {
  2223. if (dev_priv->psr.psr2_support)
  2224. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2225. else
  2226. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2227. } else {
  2228. for_each_pipe(dev_priv, pipe) {
  2229. enum transcoder cpu_transcoder =
  2230. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2231. enum intel_display_power_domain power_domain;
  2232. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2233. if (!intel_display_power_get_if_enabled(dev_priv,
  2234. power_domain))
  2235. continue;
  2236. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2237. VLV_EDP_PSR_CURR_STATE_MASK;
  2238. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2239. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2240. enabled = true;
  2241. intel_display_power_put(dev_priv, power_domain);
  2242. }
  2243. }
  2244. seq_printf(m, "Main link in standby mode: %s\n",
  2245. yesno(dev_priv->psr.link_standby));
  2246. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2247. if (!HAS_DDI(dev_priv))
  2248. for_each_pipe(dev_priv, pipe) {
  2249. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2250. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2251. seq_printf(m, " pipe %c", pipe_name(pipe));
  2252. }
  2253. seq_puts(m, "\n");
  2254. /*
  2255. * VLV/CHV PSR has no kind of performance counter
  2256. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2257. */
  2258. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2259. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2260. EDP_PSR_PERF_CNT_MASK;
  2261. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2262. }
  2263. if (dev_priv->psr.psr2_support) {
  2264. u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
  2265. seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
  2266. psr2, psr2_live_status(psr2));
  2267. }
  2268. mutex_unlock(&dev_priv->psr.lock);
  2269. intel_runtime_pm_put(dev_priv);
  2270. return 0;
  2271. }
  2272. static int i915_sink_crc(struct seq_file *m, void *data)
  2273. {
  2274. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2275. struct drm_device *dev = &dev_priv->drm;
  2276. struct intel_connector *connector;
  2277. struct drm_connector_list_iter conn_iter;
  2278. struct intel_dp *intel_dp = NULL;
  2279. int ret;
  2280. u8 crc[6];
  2281. drm_modeset_lock_all(dev);
  2282. drm_connector_list_iter_begin(dev, &conn_iter);
  2283. for_each_intel_connector_iter(connector, &conn_iter) {
  2284. struct drm_crtc *crtc;
  2285. if (!connector->base.state->best_encoder)
  2286. continue;
  2287. crtc = connector->base.state->crtc;
  2288. if (!crtc->state->active)
  2289. continue;
  2290. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2291. continue;
  2292. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2293. ret = intel_dp_sink_crc(intel_dp, crc);
  2294. if (ret)
  2295. goto out;
  2296. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2297. crc[0], crc[1], crc[2],
  2298. crc[3], crc[4], crc[5]);
  2299. goto out;
  2300. }
  2301. ret = -ENODEV;
  2302. out:
  2303. drm_connector_list_iter_end(&conn_iter);
  2304. drm_modeset_unlock_all(dev);
  2305. return ret;
  2306. }
  2307. static int i915_energy_uJ(struct seq_file *m, void *data)
  2308. {
  2309. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2310. unsigned long long power;
  2311. u32 units;
  2312. if (INTEL_GEN(dev_priv) < 6)
  2313. return -ENODEV;
  2314. intel_runtime_pm_get(dev_priv);
  2315. if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
  2316. intel_runtime_pm_put(dev_priv);
  2317. return -ENODEV;
  2318. }
  2319. units = (power & 0x1f00) >> 8;
  2320. power = I915_READ(MCH_SECP_NRG_STTS);
  2321. power = (1000000 * power) >> units; /* convert to uJ */
  2322. intel_runtime_pm_put(dev_priv);
  2323. seq_printf(m, "%llu", power);
  2324. return 0;
  2325. }
  2326. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2327. {
  2328. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2329. struct pci_dev *pdev = dev_priv->drm.pdev;
  2330. if (!HAS_RUNTIME_PM(dev_priv))
  2331. seq_puts(m, "Runtime power management not supported\n");
  2332. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2333. seq_printf(m, "IRQs disabled: %s\n",
  2334. yesno(!intel_irqs_enabled(dev_priv)));
  2335. #ifdef CONFIG_PM
  2336. seq_printf(m, "Usage count: %d\n",
  2337. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2338. #else
  2339. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2340. #endif
  2341. seq_printf(m, "PCI device power state: %s [%d]\n",
  2342. pci_power_name(pdev->current_state),
  2343. pdev->current_state);
  2344. return 0;
  2345. }
  2346. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2347. {
  2348. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2349. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2350. int i;
  2351. mutex_lock(&power_domains->lock);
  2352. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2353. for (i = 0; i < power_domains->power_well_count; i++) {
  2354. struct i915_power_well *power_well;
  2355. enum intel_display_power_domain power_domain;
  2356. power_well = &power_domains->power_wells[i];
  2357. seq_printf(m, "%-25s %d\n", power_well->name,
  2358. power_well->count);
  2359. for_each_power_domain(power_domain, power_well->domains)
  2360. seq_printf(m, " %-23s %d\n",
  2361. intel_display_power_domain_str(power_domain),
  2362. power_domains->domain_use_count[power_domain]);
  2363. }
  2364. mutex_unlock(&power_domains->lock);
  2365. return 0;
  2366. }
  2367. static int i915_dmc_info(struct seq_file *m, void *unused)
  2368. {
  2369. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2370. struct intel_csr *csr;
  2371. if (!HAS_CSR(dev_priv)) {
  2372. seq_puts(m, "not supported\n");
  2373. return 0;
  2374. }
  2375. csr = &dev_priv->csr;
  2376. intel_runtime_pm_get(dev_priv);
  2377. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2378. seq_printf(m, "path: %s\n", csr->fw_path);
  2379. if (!csr->dmc_payload)
  2380. goto out;
  2381. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2382. CSR_VERSION_MINOR(csr->version));
  2383. if (IS_KABYLAKE(dev_priv) ||
  2384. (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
  2385. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2386. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2387. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2388. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2389. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2390. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2391. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2392. }
  2393. out:
  2394. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2395. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2396. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2397. intel_runtime_pm_put(dev_priv);
  2398. return 0;
  2399. }
  2400. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2401. struct drm_display_mode *mode)
  2402. {
  2403. int i;
  2404. for (i = 0; i < tabs; i++)
  2405. seq_putc(m, '\t');
  2406. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2407. mode->base.id, mode->name,
  2408. mode->vrefresh, mode->clock,
  2409. mode->hdisplay, mode->hsync_start,
  2410. mode->hsync_end, mode->htotal,
  2411. mode->vdisplay, mode->vsync_start,
  2412. mode->vsync_end, mode->vtotal,
  2413. mode->type, mode->flags);
  2414. }
  2415. static void intel_encoder_info(struct seq_file *m,
  2416. struct intel_crtc *intel_crtc,
  2417. struct intel_encoder *intel_encoder)
  2418. {
  2419. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2420. struct drm_device *dev = &dev_priv->drm;
  2421. struct drm_crtc *crtc = &intel_crtc->base;
  2422. struct intel_connector *intel_connector;
  2423. struct drm_encoder *encoder;
  2424. encoder = &intel_encoder->base;
  2425. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2426. encoder->base.id, encoder->name);
  2427. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2428. struct drm_connector *connector = &intel_connector->base;
  2429. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2430. connector->base.id,
  2431. connector->name,
  2432. drm_get_connector_status_name(connector->status));
  2433. if (connector->status == connector_status_connected) {
  2434. struct drm_display_mode *mode = &crtc->mode;
  2435. seq_printf(m, ", mode:\n");
  2436. intel_seq_print_mode(m, 2, mode);
  2437. } else {
  2438. seq_putc(m, '\n');
  2439. }
  2440. }
  2441. }
  2442. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2443. {
  2444. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2445. struct drm_device *dev = &dev_priv->drm;
  2446. struct drm_crtc *crtc = &intel_crtc->base;
  2447. struct intel_encoder *intel_encoder;
  2448. struct drm_plane_state *plane_state = crtc->primary->state;
  2449. struct drm_framebuffer *fb = plane_state->fb;
  2450. if (fb)
  2451. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2452. fb->base.id, plane_state->src_x >> 16,
  2453. plane_state->src_y >> 16, fb->width, fb->height);
  2454. else
  2455. seq_puts(m, "\tprimary plane disabled\n");
  2456. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2457. intel_encoder_info(m, intel_crtc, intel_encoder);
  2458. }
  2459. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2460. {
  2461. struct drm_display_mode *mode = panel->fixed_mode;
  2462. seq_printf(m, "\tfixed mode:\n");
  2463. intel_seq_print_mode(m, 2, mode);
  2464. }
  2465. static void intel_dp_info(struct seq_file *m,
  2466. struct intel_connector *intel_connector)
  2467. {
  2468. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2469. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2470. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2471. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2472. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2473. intel_panel_info(m, &intel_connector->panel);
  2474. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2475. &intel_dp->aux);
  2476. }
  2477. static void intel_dp_mst_info(struct seq_file *m,
  2478. struct intel_connector *intel_connector)
  2479. {
  2480. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2481. struct intel_dp_mst_encoder *intel_mst =
  2482. enc_to_mst(&intel_encoder->base);
  2483. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2484. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2485. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2486. intel_connector->port);
  2487. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2488. }
  2489. static void intel_hdmi_info(struct seq_file *m,
  2490. struct intel_connector *intel_connector)
  2491. {
  2492. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2493. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2494. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2495. }
  2496. static void intel_lvds_info(struct seq_file *m,
  2497. struct intel_connector *intel_connector)
  2498. {
  2499. intel_panel_info(m, &intel_connector->panel);
  2500. }
  2501. static void intel_connector_info(struct seq_file *m,
  2502. struct drm_connector *connector)
  2503. {
  2504. struct intel_connector *intel_connector = to_intel_connector(connector);
  2505. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2506. struct drm_display_mode *mode;
  2507. seq_printf(m, "connector %d: type %s, status: %s\n",
  2508. connector->base.id, connector->name,
  2509. drm_get_connector_status_name(connector->status));
  2510. if (connector->status == connector_status_connected) {
  2511. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2512. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2513. connector->display_info.width_mm,
  2514. connector->display_info.height_mm);
  2515. seq_printf(m, "\tsubpixel order: %s\n",
  2516. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2517. seq_printf(m, "\tCEA rev: %d\n",
  2518. connector->display_info.cea_rev);
  2519. }
  2520. if (!intel_encoder)
  2521. return;
  2522. switch (connector->connector_type) {
  2523. case DRM_MODE_CONNECTOR_DisplayPort:
  2524. case DRM_MODE_CONNECTOR_eDP:
  2525. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2526. intel_dp_mst_info(m, intel_connector);
  2527. else
  2528. intel_dp_info(m, intel_connector);
  2529. break;
  2530. case DRM_MODE_CONNECTOR_LVDS:
  2531. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2532. intel_lvds_info(m, intel_connector);
  2533. break;
  2534. case DRM_MODE_CONNECTOR_HDMIA:
  2535. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2536. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2537. intel_hdmi_info(m, intel_connector);
  2538. break;
  2539. default:
  2540. break;
  2541. }
  2542. seq_printf(m, "\tmodes:\n");
  2543. list_for_each_entry(mode, &connector->modes, head)
  2544. intel_seq_print_mode(m, 2, mode);
  2545. }
  2546. static const char *plane_type(enum drm_plane_type type)
  2547. {
  2548. switch (type) {
  2549. case DRM_PLANE_TYPE_OVERLAY:
  2550. return "OVL";
  2551. case DRM_PLANE_TYPE_PRIMARY:
  2552. return "PRI";
  2553. case DRM_PLANE_TYPE_CURSOR:
  2554. return "CUR";
  2555. /*
  2556. * Deliberately omitting default: to generate compiler warnings
  2557. * when a new drm_plane_type gets added.
  2558. */
  2559. }
  2560. return "unknown";
  2561. }
  2562. static const char *plane_rotation(unsigned int rotation)
  2563. {
  2564. static char buf[48];
  2565. /*
  2566. * According to doc only one DRM_MODE_ROTATE_ is allowed but this
  2567. * will print them all to visualize if the values are misused
  2568. */
  2569. snprintf(buf, sizeof(buf),
  2570. "%s%s%s%s%s%s(0x%08x)",
  2571. (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
  2572. (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
  2573. (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
  2574. (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
  2575. (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
  2576. (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
  2577. rotation);
  2578. return buf;
  2579. }
  2580. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2581. {
  2582. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2583. struct drm_device *dev = &dev_priv->drm;
  2584. struct intel_plane *intel_plane;
  2585. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2586. struct drm_plane_state *state;
  2587. struct drm_plane *plane = &intel_plane->base;
  2588. struct drm_format_name_buf format_name;
  2589. if (!plane->state) {
  2590. seq_puts(m, "plane->state is NULL!\n");
  2591. continue;
  2592. }
  2593. state = plane->state;
  2594. if (state->fb) {
  2595. drm_get_format_name(state->fb->format->format,
  2596. &format_name);
  2597. } else {
  2598. sprintf(format_name.str, "N/A");
  2599. }
  2600. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2601. plane->base.id,
  2602. plane_type(intel_plane->base.type),
  2603. state->crtc_x, state->crtc_y,
  2604. state->crtc_w, state->crtc_h,
  2605. (state->src_x >> 16),
  2606. ((state->src_x & 0xffff) * 15625) >> 10,
  2607. (state->src_y >> 16),
  2608. ((state->src_y & 0xffff) * 15625) >> 10,
  2609. (state->src_w >> 16),
  2610. ((state->src_w & 0xffff) * 15625) >> 10,
  2611. (state->src_h >> 16),
  2612. ((state->src_h & 0xffff) * 15625) >> 10,
  2613. format_name.str,
  2614. plane_rotation(state->rotation));
  2615. }
  2616. }
  2617. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2618. {
  2619. struct intel_crtc_state *pipe_config;
  2620. int num_scalers = intel_crtc->num_scalers;
  2621. int i;
  2622. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2623. /* Not all platformas have a scaler */
  2624. if (num_scalers) {
  2625. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2626. num_scalers,
  2627. pipe_config->scaler_state.scaler_users,
  2628. pipe_config->scaler_state.scaler_id);
  2629. for (i = 0; i < num_scalers; i++) {
  2630. struct intel_scaler *sc =
  2631. &pipe_config->scaler_state.scalers[i];
  2632. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2633. i, yesno(sc->in_use), sc->mode);
  2634. }
  2635. seq_puts(m, "\n");
  2636. } else {
  2637. seq_puts(m, "\tNo scalers available on this platform\n");
  2638. }
  2639. }
  2640. static int i915_display_info(struct seq_file *m, void *unused)
  2641. {
  2642. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2643. struct drm_device *dev = &dev_priv->drm;
  2644. struct intel_crtc *crtc;
  2645. struct drm_connector *connector;
  2646. struct drm_connector_list_iter conn_iter;
  2647. intel_runtime_pm_get(dev_priv);
  2648. seq_printf(m, "CRTC info\n");
  2649. seq_printf(m, "---------\n");
  2650. for_each_intel_crtc(dev, crtc) {
  2651. struct intel_crtc_state *pipe_config;
  2652. drm_modeset_lock(&crtc->base.mutex, NULL);
  2653. pipe_config = to_intel_crtc_state(crtc->base.state);
  2654. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2655. crtc->base.base.id, pipe_name(crtc->pipe),
  2656. yesno(pipe_config->base.active),
  2657. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2658. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2659. if (pipe_config->base.active) {
  2660. struct intel_plane *cursor =
  2661. to_intel_plane(crtc->base.cursor);
  2662. intel_crtc_info(m, crtc);
  2663. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
  2664. yesno(cursor->base.state->visible),
  2665. cursor->base.state->crtc_x,
  2666. cursor->base.state->crtc_y,
  2667. cursor->base.state->crtc_w,
  2668. cursor->base.state->crtc_h,
  2669. cursor->cursor.base);
  2670. intel_scaler_info(m, crtc);
  2671. intel_plane_info(m, crtc);
  2672. }
  2673. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2674. yesno(!crtc->cpu_fifo_underrun_disabled),
  2675. yesno(!crtc->pch_fifo_underrun_disabled));
  2676. drm_modeset_unlock(&crtc->base.mutex);
  2677. }
  2678. seq_printf(m, "\n");
  2679. seq_printf(m, "Connector info\n");
  2680. seq_printf(m, "--------------\n");
  2681. mutex_lock(&dev->mode_config.mutex);
  2682. drm_connector_list_iter_begin(dev, &conn_iter);
  2683. drm_for_each_connector_iter(connector, &conn_iter)
  2684. intel_connector_info(m, connector);
  2685. drm_connector_list_iter_end(&conn_iter);
  2686. mutex_unlock(&dev->mode_config.mutex);
  2687. intel_runtime_pm_put(dev_priv);
  2688. return 0;
  2689. }
  2690. static int i915_engine_info(struct seq_file *m, void *unused)
  2691. {
  2692. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2693. struct i915_gpu_error *error = &dev_priv->gpu_error;
  2694. struct intel_engine_cs *engine;
  2695. enum intel_engine_id id;
  2696. intel_runtime_pm_get(dev_priv);
  2697. seq_printf(m, "GT awake? %s\n",
  2698. yesno(dev_priv->gt.awake));
  2699. seq_printf(m, "Global active requests: %d\n",
  2700. dev_priv->gt.active_requests);
  2701. for_each_engine(engine, dev_priv, id) {
  2702. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  2703. struct drm_i915_gem_request *rq;
  2704. struct rb_node *rb;
  2705. u64 addr;
  2706. seq_printf(m, "%s\n", engine->name);
  2707. seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
  2708. intel_engine_get_seqno(engine),
  2709. intel_engine_last_submit(engine),
  2710. engine->hangcheck.seqno,
  2711. jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
  2712. engine->timeline->inflight_seqnos);
  2713. seq_printf(m, "\tReset count: %d\n",
  2714. i915_reset_engine_count(error, engine));
  2715. rcu_read_lock();
  2716. seq_printf(m, "\tRequests:\n");
  2717. rq = list_first_entry(&engine->timeline->requests,
  2718. struct drm_i915_gem_request, link);
  2719. if (&rq->link != &engine->timeline->requests)
  2720. print_request(m, rq, "\t\tfirst ");
  2721. rq = list_last_entry(&engine->timeline->requests,
  2722. struct drm_i915_gem_request, link);
  2723. if (&rq->link != &engine->timeline->requests)
  2724. print_request(m, rq, "\t\tlast ");
  2725. rq = i915_gem_find_active_request(engine);
  2726. if (rq) {
  2727. print_request(m, rq, "\t\tactive ");
  2728. seq_printf(m,
  2729. "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
  2730. rq->head, rq->postfix, rq->tail,
  2731. rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
  2732. rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
  2733. }
  2734. seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
  2735. I915_READ(RING_START(engine->mmio_base)),
  2736. rq ? i915_ggtt_offset(rq->ring->vma) : 0);
  2737. seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
  2738. I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
  2739. rq ? rq->ring->head : 0);
  2740. seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
  2741. I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
  2742. rq ? rq->ring->tail : 0);
  2743. seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
  2744. I915_READ(RING_CTL(engine->mmio_base)),
  2745. I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
  2746. rcu_read_unlock();
  2747. addr = intel_engine_get_active_head(engine);
  2748. seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
  2749. upper_32_bits(addr), lower_32_bits(addr));
  2750. addr = intel_engine_get_last_batch_head(engine);
  2751. seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
  2752. upper_32_bits(addr), lower_32_bits(addr));
  2753. if (i915.enable_execlists) {
  2754. u32 ptr, read, write;
  2755. unsigned int idx;
  2756. seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
  2757. I915_READ(RING_EXECLIST_STATUS_LO(engine)),
  2758. I915_READ(RING_EXECLIST_STATUS_HI(engine)));
  2759. ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  2760. read = GEN8_CSB_READ_PTR(ptr);
  2761. write = GEN8_CSB_WRITE_PTR(ptr);
  2762. seq_printf(m, "\tExeclist CSB read %d, write %d, interrupt posted? %s\n",
  2763. read, write,
  2764. yesno(test_bit(ENGINE_IRQ_EXECLIST,
  2765. &engine->irq_posted)));
  2766. if (read >= GEN8_CSB_ENTRIES)
  2767. read = 0;
  2768. if (write >= GEN8_CSB_ENTRIES)
  2769. write = 0;
  2770. if (read > write)
  2771. write += GEN8_CSB_ENTRIES;
  2772. while (read < write) {
  2773. idx = ++read % GEN8_CSB_ENTRIES;
  2774. seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
  2775. idx,
  2776. I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
  2777. I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
  2778. }
  2779. rcu_read_lock();
  2780. for (idx = 0; idx < ARRAY_SIZE(engine->execlist_port); idx++) {
  2781. unsigned int count;
  2782. rq = port_unpack(&engine->execlist_port[idx],
  2783. &count);
  2784. if (rq) {
  2785. seq_printf(m, "\t\tELSP[%d] count=%d, ",
  2786. idx, count);
  2787. print_request(m, rq, "rq: ");
  2788. } else {
  2789. seq_printf(m, "\t\tELSP[%d] idle\n",
  2790. idx);
  2791. }
  2792. }
  2793. rcu_read_unlock();
  2794. spin_lock_irq(&engine->timeline->lock);
  2795. for (rb = engine->execlist_first; rb; rb = rb_next(rb)){
  2796. struct i915_priolist *p =
  2797. rb_entry(rb, typeof(*p), node);
  2798. list_for_each_entry(rq, &p->requests,
  2799. priotree.link)
  2800. print_request(m, rq, "\t\tQ ");
  2801. }
  2802. spin_unlock_irq(&engine->timeline->lock);
  2803. } else if (INTEL_GEN(dev_priv) > 6) {
  2804. seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
  2805. I915_READ(RING_PP_DIR_BASE(engine)));
  2806. seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
  2807. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  2808. seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
  2809. I915_READ(RING_PP_DIR_DCLV(engine)));
  2810. }
  2811. spin_lock_irq(&b->rb_lock);
  2812. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  2813. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  2814. seq_printf(m, "\t%s [%d] waiting for %x\n",
  2815. w->tsk->comm, w->tsk->pid, w->seqno);
  2816. }
  2817. spin_unlock_irq(&b->rb_lock);
  2818. seq_puts(m, "\n");
  2819. }
  2820. intel_runtime_pm_put(dev_priv);
  2821. return 0;
  2822. }
  2823. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2824. {
  2825. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2826. struct drm_device *dev = &dev_priv->drm;
  2827. struct intel_engine_cs *engine;
  2828. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2829. enum intel_engine_id id;
  2830. int j, ret;
  2831. if (!i915.semaphores) {
  2832. seq_puts(m, "Semaphores are disabled\n");
  2833. return 0;
  2834. }
  2835. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2836. if (ret)
  2837. return ret;
  2838. intel_runtime_pm_get(dev_priv);
  2839. if (IS_BROADWELL(dev_priv)) {
  2840. struct page *page;
  2841. uint64_t *seqno;
  2842. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2843. seqno = (uint64_t *)kmap_atomic(page);
  2844. for_each_engine(engine, dev_priv, id) {
  2845. uint64_t offset;
  2846. seq_printf(m, "%s\n", engine->name);
  2847. seq_puts(m, " Last signal:");
  2848. for (j = 0; j < num_rings; j++) {
  2849. offset = id * I915_NUM_ENGINES + j;
  2850. seq_printf(m, "0x%08llx (0x%02llx) ",
  2851. seqno[offset], offset * 8);
  2852. }
  2853. seq_putc(m, '\n');
  2854. seq_puts(m, " Last wait: ");
  2855. for (j = 0; j < num_rings; j++) {
  2856. offset = id + (j * I915_NUM_ENGINES);
  2857. seq_printf(m, "0x%08llx (0x%02llx) ",
  2858. seqno[offset], offset * 8);
  2859. }
  2860. seq_putc(m, '\n');
  2861. }
  2862. kunmap_atomic(seqno);
  2863. } else {
  2864. seq_puts(m, " Last signal:");
  2865. for_each_engine(engine, dev_priv, id)
  2866. for (j = 0; j < num_rings; j++)
  2867. seq_printf(m, "0x%08x\n",
  2868. I915_READ(engine->semaphore.mbox.signal[j]));
  2869. seq_putc(m, '\n');
  2870. }
  2871. intel_runtime_pm_put(dev_priv);
  2872. mutex_unlock(&dev->struct_mutex);
  2873. return 0;
  2874. }
  2875. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2876. {
  2877. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2878. struct drm_device *dev = &dev_priv->drm;
  2879. int i;
  2880. drm_modeset_lock_all(dev);
  2881. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2882. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2883. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2884. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2885. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2886. seq_printf(m, " tracked hardware state:\n");
  2887. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2888. seq_printf(m, " dpll_md: 0x%08x\n",
  2889. pll->state.hw_state.dpll_md);
  2890. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2891. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2892. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2893. }
  2894. drm_modeset_unlock_all(dev);
  2895. return 0;
  2896. }
  2897. static int i915_wa_registers(struct seq_file *m, void *unused)
  2898. {
  2899. int i;
  2900. int ret;
  2901. struct intel_engine_cs *engine;
  2902. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2903. struct drm_device *dev = &dev_priv->drm;
  2904. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2905. enum intel_engine_id id;
  2906. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2907. if (ret)
  2908. return ret;
  2909. intel_runtime_pm_get(dev_priv);
  2910. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2911. for_each_engine(engine, dev_priv, id)
  2912. seq_printf(m, "HW whitelist count for %s: %d\n",
  2913. engine->name, workarounds->hw_whitelist_count[id]);
  2914. for (i = 0; i < workarounds->count; ++i) {
  2915. i915_reg_t addr;
  2916. u32 mask, value, read;
  2917. bool ok;
  2918. addr = workarounds->reg[i].addr;
  2919. mask = workarounds->reg[i].mask;
  2920. value = workarounds->reg[i].value;
  2921. read = I915_READ(addr);
  2922. ok = (value & mask) == (read & mask);
  2923. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2924. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2925. }
  2926. intel_runtime_pm_put(dev_priv);
  2927. mutex_unlock(&dev->struct_mutex);
  2928. return 0;
  2929. }
  2930. static int i915_ddb_info(struct seq_file *m, void *unused)
  2931. {
  2932. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2933. struct drm_device *dev = &dev_priv->drm;
  2934. struct skl_ddb_allocation *ddb;
  2935. struct skl_ddb_entry *entry;
  2936. enum pipe pipe;
  2937. int plane;
  2938. if (INTEL_GEN(dev_priv) < 9)
  2939. return 0;
  2940. drm_modeset_lock_all(dev);
  2941. ddb = &dev_priv->wm.skl_hw.ddb;
  2942. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2943. for_each_pipe(dev_priv, pipe) {
  2944. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2945. for_each_universal_plane(dev_priv, pipe, plane) {
  2946. entry = &ddb->plane[pipe][plane];
  2947. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2948. entry->start, entry->end,
  2949. skl_ddb_entry_size(entry));
  2950. }
  2951. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2952. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2953. entry->end, skl_ddb_entry_size(entry));
  2954. }
  2955. drm_modeset_unlock_all(dev);
  2956. return 0;
  2957. }
  2958. static void drrs_status_per_crtc(struct seq_file *m,
  2959. struct drm_device *dev,
  2960. struct intel_crtc *intel_crtc)
  2961. {
  2962. struct drm_i915_private *dev_priv = to_i915(dev);
  2963. struct i915_drrs *drrs = &dev_priv->drrs;
  2964. int vrefresh = 0;
  2965. struct drm_connector *connector;
  2966. struct drm_connector_list_iter conn_iter;
  2967. drm_connector_list_iter_begin(dev, &conn_iter);
  2968. drm_for_each_connector_iter(connector, &conn_iter) {
  2969. if (connector->state->crtc != &intel_crtc->base)
  2970. continue;
  2971. seq_printf(m, "%s:\n", connector->name);
  2972. }
  2973. drm_connector_list_iter_end(&conn_iter);
  2974. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2975. seq_puts(m, "\tVBT: DRRS_type: Static");
  2976. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2977. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2978. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2979. seq_puts(m, "\tVBT: DRRS_type: None");
  2980. else
  2981. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2982. seq_puts(m, "\n\n");
  2983. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2984. struct intel_panel *panel;
  2985. mutex_lock(&drrs->mutex);
  2986. /* DRRS Supported */
  2987. seq_puts(m, "\tDRRS Supported: Yes\n");
  2988. /* disable_drrs() will make drrs->dp NULL */
  2989. if (!drrs->dp) {
  2990. seq_puts(m, "Idleness DRRS: Disabled");
  2991. mutex_unlock(&drrs->mutex);
  2992. return;
  2993. }
  2994. panel = &drrs->dp->attached_connector->panel;
  2995. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2996. drrs->busy_frontbuffer_bits);
  2997. seq_puts(m, "\n\t\t");
  2998. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2999. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  3000. vrefresh = panel->fixed_mode->vrefresh;
  3001. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  3002. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  3003. vrefresh = panel->downclock_mode->vrefresh;
  3004. } else {
  3005. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  3006. drrs->refresh_rate_type);
  3007. mutex_unlock(&drrs->mutex);
  3008. return;
  3009. }
  3010. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  3011. seq_puts(m, "\n\t\t");
  3012. mutex_unlock(&drrs->mutex);
  3013. } else {
  3014. /* DRRS not supported. Print the VBT parameter*/
  3015. seq_puts(m, "\tDRRS Supported : No");
  3016. }
  3017. seq_puts(m, "\n");
  3018. }
  3019. static int i915_drrs_status(struct seq_file *m, void *unused)
  3020. {
  3021. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3022. struct drm_device *dev = &dev_priv->drm;
  3023. struct intel_crtc *intel_crtc;
  3024. int active_crtc_cnt = 0;
  3025. drm_modeset_lock_all(dev);
  3026. for_each_intel_crtc(dev, intel_crtc) {
  3027. if (intel_crtc->base.state->active) {
  3028. active_crtc_cnt++;
  3029. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  3030. drrs_status_per_crtc(m, dev, intel_crtc);
  3031. }
  3032. }
  3033. drm_modeset_unlock_all(dev);
  3034. if (!active_crtc_cnt)
  3035. seq_puts(m, "No active crtc found\n");
  3036. return 0;
  3037. }
  3038. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  3039. {
  3040. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3041. struct drm_device *dev = &dev_priv->drm;
  3042. struct intel_encoder *intel_encoder;
  3043. struct intel_digital_port *intel_dig_port;
  3044. struct drm_connector *connector;
  3045. struct drm_connector_list_iter conn_iter;
  3046. drm_connector_list_iter_begin(dev, &conn_iter);
  3047. drm_for_each_connector_iter(connector, &conn_iter) {
  3048. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  3049. continue;
  3050. intel_encoder = intel_attached_encoder(connector);
  3051. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  3052. continue;
  3053. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  3054. if (!intel_dig_port->dp.can_mst)
  3055. continue;
  3056. seq_printf(m, "MST Source Port %c\n",
  3057. port_name(intel_dig_port->port));
  3058. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  3059. }
  3060. drm_connector_list_iter_end(&conn_iter);
  3061. return 0;
  3062. }
  3063. static ssize_t i915_displayport_test_active_write(struct file *file,
  3064. const char __user *ubuf,
  3065. size_t len, loff_t *offp)
  3066. {
  3067. char *input_buffer;
  3068. int status = 0;
  3069. struct drm_device *dev;
  3070. struct drm_connector *connector;
  3071. struct drm_connector_list_iter conn_iter;
  3072. struct intel_dp *intel_dp;
  3073. int val = 0;
  3074. dev = ((struct seq_file *)file->private_data)->private;
  3075. if (len == 0)
  3076. return 0;
  3077. input_buffer = memdup_user_nul(ubuf, len);
  3078. if (IS_ERR(input_buffer))
  3079. return PTR_ERR(input_buffer);
  3080. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3081. drm_connector_list_iter_begin(dev, &conn_iter);
  3082. drm_for_each_connector_iter(connector, &conn_iter) {
  3083. struct intel_encoder *encoder;
  3084. if (connector->connector_type !=
  3085. DRM_MODE_CONNECTOR_DisplayPort)
  3086. continue;
  3087. encoder = to_intel_encoder(connector->encoder);
  3088. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3089. continue;
  3090. if (encoder && connector->status == connector_status_connected) {
  3091. intel_dp = enc_to_intel_dp(&encoder->base);
  3092. status = kstrtoint(input_buffer, 10, &val);
  3093. if (status < 0)
  3094. break;
  3095. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3096. /* To prevent erroneous activation of the compliance
  3097. * testing code, only accept an actual value of 1 here
  3098. */
  3099. if (val == 1)
  3100. intel_dp->compliance.test_active = 1;
  3101. else
  3102. intel_dp->compliance.test_active = 0;
  3103. }
  3104. }
  3105. drm_connector_list_iter_end(&conn_iter);
  3106. kfree(input_buffer);
  3107. if (status < 0)
  3108. return status;
  3109. *offp += len;
  3110. return len;
  3111. }
  3112. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3113. {
  3114. struct drm_device *dev = m->private;
  3115. struct drm_connector *connector;
  3116. struct drm_connector_list_iter conn_iter;
  3117. struct intel_dp *intel_dp;
  3118. drm_connector_list_iter_begin(dev, &conn_iter);
  3119. drm_for_each_connector_iter(connector, &conn_iter) {
  3120. struct intel_encoder *encoder;
  3121. if (connector->connector_type !=
  3122. DRM_MODE_CONNECTOR_DisplayPort)
  3123. continue;
  3124. encoder = to_intel_encoder(connector->encoder);
  3125. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3126. continue;
  3127. if (encoder && connector->status == connector_status_connected) {
  3128. intel_dp = enc_to_intel_dp(&encoder->base);
  3129. if (intel_dp->compliance.test_active)
  3130. seq_puts(m, "1");
  3131. else
  3132. seq_puts(m, "0");
  3133. } else
  3134. seq_puts(m, "0");
  3135. }
  3136. drm_connector_list_iter_end(&conn_iter);
  3137. return 0;
  3138. }
  3139. static int i915_displayport_test_active_open(struct inode *inode,
  3140. struct file *file)
  3141. {
  3142. struct drm_i915_private *dev_priv = inode->i_private;
  3143. return single_open(file, i915_displayport_test_active_show,
  3144. &dev_priv->drm);
  3145. }
  3146. static const struct file_operations i915_displayport_test_active_fops = {
  3147. .owner = THIS_MODULE,
  3148. .open = i915_displayport_test_active_open,
  3149. .read = seq_read,
  3150. .llseek = seq_lseek,
  3151. .release = single_release,
  3152. .write = i915_displayport_test_active_write
  3153. };
  3154. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3155. {
  3156. struct drm_device *dev = m->private;
  3157. struct drm_connector *connector;
  3158. struct drm_connector_list_iter conn_iter;
  3159. struct intel_dp *intel_dp;
  3160. drm_connector_list_iter_begin(dev, &conn_iter);
  3161. drm_for_each_connector_iter(connector, &conn_iter) {
  3162. struct intel_encoder *encoder;
  3163. if (connector->connector_type !=
  3164. DRM_MODE_CONNECTOR_DisplayPort)
  3165. continue;
  3166. encoder = to_intel_encoder(connector->encoder);
  3167. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3168. continue;
  3169. if (encoder && connector->status == connector_status_connected) {
  3170. intel_dp = enc_to_intel_dp(&encoder->base);
  3171. if (intel_dp->compliance.test_type ==
  3172. DP_TEST_LINK_EDID_READ)
  3173. seq_printf(m, "%lx",
  3174. intel_dp->compliance.test_data.edid);
  3175. else if (intel_dp->compliance.test_type ==
  3176. DP_TEST_LINK_VIDEO_PATTERN) {
  3177. seq_printf(m, "hdisplay: %d\n",
  3178. intel_dp->compliance.test_data.hdisplay);
  3179. seq_printf(m, "vdisplay: %d\n",
  3180. intel_dp->compliance.test_data.vdisplay);
  3181. seq_printf(m, "bpc: %u\n",
  3182. intel_dp->compliance.test_data.bpc);
  3183. }
  3184. } else
  3185. seq_puts(m, "0");
  3186. }
  3187. drm_connector_list_iter_end(&conn_iter);
  3188. return 0;
  3189. }
  3190. static int i915_displayport_test_data_open(struct inode *inode,
  3191. struct file *file)
  3192. {
  3193. struct drm_i915_private *dev_priv = inode->i_private;
  3194. return single_open(file, i915_displayport_test_data_show,
  3195. &dev_priv->drm);
  3196. }
  3197. static const struct file_operations i915_displayport_test_data_fops = {
  3198. .owner = THIS_MODULE,
  3199. .open = i915_displayport_test_data_open,
  3200. .read = seq_read,
  3201. .llseek = seq_lseek,
  3202. .release = single_release
  3203. };
  3204. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3205. {
  3206. struct drm_device *dev = m->private;
  3207. struct drm_connector *connector;
  3208. struct drm_connector_list_iter conn_iter;
  3209. struct intel_dp *intel_dp;
  3210. drm_connector_list_iter_begin(dev, &conn_iter);
  3211. drm_for_each_connector_iter(connector, &conn_iter) {
  3212. struct intel_encoder *encoder;
  3213. if (connector->connector_type !=
  3214. DRM_MODE_CONNECTOR_DisplayPort)
  3215. continue;
  3216. encoder = to_intel_encoder(connector->encoder);
  3217. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3218. continue;
  3219. if (encoder && connector->status == connector_status_connected) {
  3220. intel_dp = enc_to_intel_dp(&encoder->base);
  3221. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3222. } else
  3223. seq_puts(m, "0");
  3224. }
  3225. drm_connector_list_iter_end(&conn_iter);
  3226. return 0;
  3227. }
  3228. static int i915_displayport_test_type_open(struct inode *inode,
  3229. struct file *file)
  3230. {
  3231. struct drm_i915_private *dev_priv = inode->i_private;
  3232. return single_open(file, i915_displayport_test_type_show,
  3233. &dev_priv->drm);
  3234. }
  3235. static const struct file_operations i915_displayport_test_type_fops = {
  3236. .owner = THIS_MODULE,
  3237. .open = i915_displayport_test_type_open,
  3238. .read = seq_read,
  3239. .llseek = seq_lseek,
  3240. .release = single_release
  3241. };
  3242. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3243. {
  3244. struct drm_i915_private *dev_priv = m->private;
  3245. struct drm_device *dev = &dev_priv->drm;
  3246. int level;
  3247. int num_levels;
  3248. if (IS_CHERRYVIEW(dev_priv))
  3249. num_levels = 3;
  3250. else if (IS_VALLEYVIEW(dev_priv))
  3251. num_levels = 1;
  3252. else if (IS_G4X(dev_priv))
  3253. num_levels = 3;
  3254. else
  3255. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3256. drm_modeset_lock_all(dev);
  3257. for (level = 0; level < num_levels; level++) {
  3258. unsigned int latency = wm[level];
  3259. /*
  3260. * - WM1+ latency values in 0.5us units
  3261. * - latencies are in us on gen9/vlv/chv
  3262. */
  3263. if (INTEL_GEN(dev_priv) >= 9 ||
  3264. IS_VALLEYVIEW(dev_priv) ||
  3265. IS_CHERRYVIEW(dev_priv) ||
  3266. IS_G4X(dev_priv))
  3267. latency *= 10;
  3268. else if (level > 0)
  3269. latency *= 5;
  3270. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3271. level, wm[level], latency / 10, latency % 10);
  3272. }
  3273. drm_modeset_unlock_all(dev);
  3274. }
  3275. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3276. {
  3277. struct drm_i915_private *dev_priv = m->private;
  3278. const uint16_t *latencies;
  3279. if (INTEL_GEN(dev_priv) >= 9)
  3280. latencies = dev_priv->wm.skl_latency;
  3281. else
  3282. latencies = dev_priv->wm.pri_latency;
  3283. wm_latency_show(m, latencies);
  3284. return 0;
  3285. }
  3286. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3287. {
  3288. struct drm_i915_private *dev_priv = m->private;
  3289. const uint16_t *latencies;
  3290. if (INTEL_GEN(dev_priv) >= 9)
  3291. latencies = dev_priv->wm.skl_latency;
  3292. else
  3293. latencies = dev_priv->wm.spr_latency;
  3294. wm_latency_show(m, latencies);
  3295. return 0;
  3296. }
  3297. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3298. {
  3299. struct drm_i915_private *dev_priv = m->private;
  3300. const uint16_t *latencies;
  3301. if (INTEL_GEN(dev_priv) >= 9)
  3302. latencies = dev_priv->wm.skl_latency;
  3303. else
  3304. latencies = dev_priv->wm.cur_latency;
  3305. wm_latency_show(m, latencies);
  3306. return 0;
  3307. }
  3308. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3309. {
  3310. struct drm_i915_private *dev_priv = inode->i_private;
  3311. if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
  3312. return -ENODEV;
  3313. return single_open(file, pri_wm_latency_show, dev_priv);
  3314. }
  3315. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3316. {
  3317. struct drm_i915_private *dev_priv = inode->i_private;
  3318. if (HAS_GMCH_DISPLAY(dev_priv))
  3319. return -ENODEV;
  3320. return single_open(file, spr_wm_latency_show, dev_priv);
  3321. }
  3322. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3323. {
  3324. struct drm_i915_private *dev_priv = inode->i_private;
  3325. if (HAS_GMCH_DISPLAY(dev_priv))
  3326. return -ENODEV;
  3327. return single_open(file, cur_wm_latency_show, dev_priv);
  3328. }
  3329. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3330. size_t len, loff_t *offp, uint16_t wm[8])
  3331. {
  3332. struct seq_file *m = file->private_data;
  3333. struct drm_i915_private *dev_priv = m->private;
  3334. struct drm_device *dev = &dev_priv->drm;
  3335. uint16_t new[8] = { 0 };
  3336. int num_levels;
  3337. int level;
  3338. int ret;
  3339. char tmp[32];
  3340. if (IS_CHERRYVIEW(dev_priv))
  3341. num_levels = 3;
  3342. else if (IS_VALLEYVIEW(dev_priv))
  3343. num_levels = 1;
  3344. else if (IS_G4X(dev_priv))
  3345. num_levels = 3;
  3346. else
  3347. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3348. if (len >= sizeof(tmp))
  3349. return -EINVAL;
  3350. if (copy_from_user(tmp, ubuf, len))
  3351. return -EFAULT;
  3352. tmp[len] = '\0';
  3353. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3354. &new[0], &new[1], &new[2], &new[3],
  3355. &new[4], &new[5], &new[6], &new[7]);
  3356. if (ret != num_levels)
  3357. return -EINVAL;
  3358. drm_modeset_lock_all(dev);
  3359. for (level = 0; level < num_levels; level++)
  3360. wm[level] = new[level];
  3361. drm_modeset_unlock_all(dev);
  3362. return len;
  3363. }
  3364. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3365. size_t len, loff_t *offp)
  3366. {
  3367. struct seq_file *m = file->private_data;
  3368. struct drm_i915_private *dev_priv = m->private;
  3369. uint16_t *latencies;
  3370. if (INTEL_GEN(dev_priv) >= 9)
  3371. latencies = dev_priv->wm.skl_latency;
  3372. else
  3373. latencies = dev_priv->wm.pri_latency;
  3374. return wm_latency_write(file, ubuf, len, offp, latencies);
  3375. }
  3376. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3377. size_t len, loff_t *offp)
  3378. {
  3379. struct seq_file *m = file->private_data;
  3380. struct drm_i915_private *dev_priv = m->private;
  3381. uint16_t *latencies;
  3382. if (INTEL_GEN(dev_priv) >= 9)
  3383. latencies = dev_priv->wm.skl_latency;
  3384. else
  3385. latencies = dev_priv->wm.spr_latency;
  3386. return wm_latency_write(file, ubuf, len, offp, latencies);
  3387. }
  3388. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3389. size_t len, loff_t *offp)
  3390. {
  3391. struct seq_file *m = file->private_data;
  3392. struct drm_i915_private *dev_priv = m->private;
  3393. uint16_t *latencies;
  3394. if (INTEL_GEN(dev_priv) >= 9)
  3395. latencies = dev_priv->wm.skl_latency;
  3396. else
  3397. latencies = dev_priv->wm.cur_latency;
  3398. return wm_latency_write(file, ubuf, len, offp, latencies);
  3399. }
  3400. static const struct file_operations i915_pri_wm_latency_fops = {
  3401. .owner = THIS_MODULE,
  3402. .open = pri_wm_latency_open,
  3403. .read = seq_read,
  3404. .llseek = seq_lseek,
  3405. .release = single_release,
  3406. .write = pri_wm_latency_write
  3407. };
  3408. static const struct file_operations i915_spr_wm_latency_fops = {
  3409. .owner = THIS_MODULE,
  3410. .open = spr_wm_latency_open,
  3411. .read = seq_read,
  3412. .llseek = seq_lseek,
  3413. .release = single_release,
  3414. .write = spr_wm_latency_write
  3415. };
  3416. static const struct file_operations i915_cur_wm_latency_fops = {
  3417. .owner = THIS_MODULE,
  3418. .open = cur_wm_latency_open,
  3419. .read = seq_read,
  3420. .llseek = seq_lseek,
  3421. .release = single_release,
  3422. .write = cur_wm_latency_write
  3423. };
  3424. static int
  3425. i915_wedged_get(void *data, u64 *val)
  3426. {
  3427. struct drm_i915_private *dev_priv = data;
  3428. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3429. return 0;
  3430. }
  3431. static int
  3432. i915_wedged_set(void *data, u64 val)
  3433. {
  3434. struct drm_i915_private *i915 = data;
  3435. struct intel_engine_cs *engine;
  3436. unsigned int tmp;
  3437. /*
  3438. * There is no safeguard against this debugfs entry colliding
  3439. * with the hangcheck calling same i915_handle_error() in
  3440. * parallel, causing an explosion. For now we assume that the
  3441. * test harness is responsible enough not to inject gpu hangs
  3442. * while it is writing to 'i915_wedged'
  3443. */
  3444. if (i915_reset_backoff(&i915->gpu_error))
  3445. return -EAGAIN;
  3446. for_each_engine_masked(engine, i915, val, tmp) {
  3447. engine->hangcheck.seqno = intel_engine_get_seqno(engine);
  3448. engine->hangcheck.stalled = true;
  3449. }
  3450. i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
  3451. wait_on_bit(&i915->gpu_error.flags,
  3452. I915_RESET_HANDOFF,
  3453. TASK_UNINTERRUPTIBLE);
  3454. return 0;
  3455. }
  3456. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3457. i915_wedged_get, i915_wedged_set,
  3458. "%llu\n");
  3459. static int
  3460. fault_irq_set(struct drm_i915_private *i915,
  3461. unsigned long *irq,
  3462. unsigned long val)
  3463. {
  3464. int err;
  3465. err = mutex_lock_interruptible(&i915->drm.struct_mutex);
  3466. if (err)
  3467. return err;
  3468. err = i915_gem_wait_for_idle(i915,
  3469. I915_WAIT_LOCKED |
  3470. I915_WAIT_INTERRUPTIBLE);
  3471. if (err)
  3472. goto err_unlock;
  3473. *irq = val;
  3474. mutex_unlock(&i915->drm.struct_mutex);
  3475. /* Flush idle worker to disarm irq */
  3476. while (flush_delayed_work(&i915->gt.idle_work))
  3477. ;
  3478. return 0;
  3479. err_unlock:
  3480. mutex_unlock(&i915->drm.struct_mutex);
  3481. return err;
  3482. }
  3483. static int
  3484. i915_ring_missed_irq_get(void *data, u64 *val)
  3485. {
  3486. struct drm_i915_private *dev_priv = data;
  3487. *val = dev_priv->gpu_error.missed_irq_rings;
  3488. return 0;
  3489. }
  3490. static int
  3491. i915_ring_missed_irq_set(void *data, u64 val)
  3492. {
  3493. struct drm_i915_private *i915 = data;
  3494. return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
  3495. }
  3496. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3497. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3498. "0x%08llx\n");
  3499. static int
  3500. i915_ring_test_irq_get(void *data, u64 *val)
  3501. {
  3502. struct drm_i915_private *dev_priv = data;
  3503. *val = dev_priv->gpu_error.test_irq_rings;
  3504. return 0;
  3505. }
  3506. static int
  3507. i915_ring_test_irq_set(void *data, u64 val)
  3508. {
  3509. struct drm_i915_private *i915 = data;
  3510. val &= INTEL_INFO(i915)->ring_mask;
  3511. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3512. return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
  3513. }
  3514. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3515. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3516. "0x%08llx\n");
  3517. #define DROP_UNBOUND 0x1
  3518. #define DROP_BOUND 0x2
  3519. #define DROP_RETIRE 0x4
  3520. #define DROP_ACTIVE 0x8
  3521. #define DROP_FREED 0x10
  3522. #define DROP_SHRINK_ALL 0x20
  3523. #define DROP_ALL (DROP_UNBOUND | \
  3524. DROP_BOUND | \
  3525. DROP_RETIRE | \
  3526. DROP_ACTIVE | \
  3527. DROP_FREED | \
  3528. DROP_SHRINK_ALL)
  3529. static int
  3530. i915_drop_caches_get(void *data, u64 *val)
  3531. {
  3532. *val = DROP_ALL;
  3533. return 0;
  3534. }
  3535. static int
  3536. i915_drop_caches_set(void *data, u64 val)
  3537. {
  3538. struct drm_i915_private *dev_priv = data;
  3539. struct drm_device *dev = &dev_priv->drm;
  3540. int ret = 0;
  3541. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3542. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3543. * on ioctls on -EAGAIN. */
  3544. if (val & (DROP_ACTIVE | DROP_RETIRE)) {
  3545. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3546. if (ret)
  3547. return ret;
  3548. if (val & DROP_ACTIVE)
  3549. ret = i915_gem_wait_for_idle(dev_priv,
  3550. I915_WAIT_INTERRUPTIBLE |
  3551. I915_WAIT_LOCKED);
  3552. if (val & DROP_RETIRE)
  3553. i915_gem_retire_requests(dev_priv);
  3554. mutex_unlock(&dev->struct_mutex);
  3555. }
  3556. fs_reclaim_acquire(GFP_KERNEL);
  3557. if (val & DROP_BOUND)
  3558. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
  3559. if (val & DROP_UNBOUND)
  3560. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
  3561. if (val & DROP_SHRINK_ALL)
  3562. i915_gem_shrink_all(dev_priv);
  3563. fs_reclaim_release(GFP_KERNEL);
  3564. if (val & DROP_FREED) {
  3565. synchronize_rcu();
  3566. i915_gem_drain_freed_objects(dev_priv);
  3567. }
  3568. return ret;
  3569. }
  3570. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3571. i915_drop_caches_get, i915_drop_caches_set,
  3572. "0x%08llx\n");
  3573. static int
  3574. i915_max_freq_get(void *data, u64 *val)
  3575. {
  3576. struct drm_i915_private *dev_priv = data;
  3577. if (INTEL_GEN(dev_priv) < 6)
  3578. return -ENODEV;
  3579. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3580. return 0;
  3581. }
  3582. static int
  3583. i915_max_freq_set(void *data, u64 val)
  3584. {
  3585. struct drm_i915_private *dev_priv = data;
  3586. u32 hw_max, hw_min;
  3587. int ret;
  3588. if (INTEL_GEN(dev_priv) < 6)
  3589. return -ENODEV;
  3590. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3591. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3592. if (ret)
  3593. return ret;
  3594. /*
  3595. * Turbo will still be enabled, but won't go above the set value.
  3596. */
  3597. val = intel_freq_opcode(dev_priv, val);
  3598. hw_max = dev_priv->rps.max_freq;
  3599. hw_min = dev_priv->rps.min_freq;
  3600. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3601. mutex_unlock(&dev_priv->rps.hw_lock);
  3602. return -EINVAL;
  3603. }
  3604. dev_priv->rps.max_freq_softlimit = val;
  3605. if (intel_set_rps(dev_priv, val))
  3606. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3607. mutex_unlock(&dev_priv->rps.hw_lock);
  3608. return 0;
  3609. }
  3610. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3611. i915_max_freq_get, i915_max_freq_set,
  3612. "%llu\n");
  3613. static int
  3614. i915_min_freq_get(void *data, u64 *val)
  3615. {
  3616. struct drm_i915_private *dev_priv = data;
  3617. if (INTEL_GEN(dev_priv) < 6)
  3618. return -ENODEV;
  3619. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3620. return 0;
  3621. }
  3622. static int
  3623. i915_min_freq_set(void *data, u64 val)
  3624. {
  3625. struct drm_i915_private *dev_priv = data;
  3626. u32 hw_max, hw_min;
  3627. int ret;
  3628. if (INTEL_GEN(dev_priv) < 6)
  3629. return -ENODEV;
  3630. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3631. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3632. if (ret)
  3633. return ret;
  3634. /*
  3635. * Turbo will still be enabled, but won't go below the set value.
  3636. */
  3637. val = intel_freq_opcode(dev_priv, val);
  3638. hw_max = dev_priv->rps.max_freq;
  3639. hw_min = dev_priv->rps.min_freq;
  3640. if (val < hw_min ||
  3641. val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3642. mutex_unlock(&dev_priv->rps.hw_lock);
  3643. return -EINVAL;
  3644. }
  3645. dev_priv->rps.min_freq_softlimit = val;
  3646. if (intel_set_rps(dev_priv, val))
  3647. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3648. mutex_unlock(&dev_priv->rps.hw_lock);
  3649. return 0;
  3650. }
  3651. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3652. i915_min_freq_get, i915_min_freq_set,
  3653. "%llu\n");
  3654. static int
  3655. i915_cache_sharing_get(void *data, u64 *val)
  3656. {
  3657. struct drm_i915_private *dev_priv = data;
  3658. u32 snpcr;
  3659. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3660. return -ENODEV;
  3661. intel_runtime_pm_get(dev_priv);
  3662. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3663. intel_runtime_pm_put(dev_priv);
  3664. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3665. return 0;
  3666. }
  3667. static int
  3668. i915_cache_sharing_set(void *data, u64 val)
  3669. {
  3670. struct drm_i915_private *dev_priv = data;
  3671. u32 snpcr;
  3672. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3673. return -ENODEV;
  3674. if (val > 3)
  3675. return -EINVAL;
  3676. intel_runtime_pm_get(dev_priv);
  3677. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3678. /* Update the cache sharing policy here as well */
  3679. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3680. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3681. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3682. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3683. intel_runtime_pm_put(dev_priv);
  3684. return 0;
  3685. }
  3686. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3687. i915_cache_sharing_get, i915_cache_sharing_set,
  3688. "%llu\n");
  3689. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3690. struct sseu_dev_info *sseu)
  3691. {
  3692. int ss_max = 2;
  3693. int ss;
  3694. u32 sig1[ss_max], sig2[ss_max];
  3695. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3696. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3697. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3698. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3699. for (ss = 0; ss < ss_max; ss++) {
  3700. unsigned int eu_cnt;
  3701. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3702. /* skip disabled subslice */
  3703. continue;
  3704. sseu->slice_mask = BIT(0);
  3705. sseu->subslice_mask |= BIT(ss);
  3706. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3707. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3708. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3709. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3710. sseu->eu_total += eu_cnt;
  3711. sseu->eu_per_subslice = max_t(unsigned int,
  3712. sseu->eu_per_subslice, eu_cnt);
  3713. }
  3714. }
  3715. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3716. struct sseu_dev_info *sseu)
  3717. {
  3718. int s_max = 3, ss_max = 4;
  3719. int s, ss;
  3720. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3721. /* BXT has a single slice and at most 3 subslices. */
  3722. if (IS_GEN9_LP(dev_priv)) {
  3723. s_max = 1;
  3724. ss_max = 3;
  3725. }
  3726. for (s = 0; s < s_max; s++) {
  3727. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3728. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3729. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3730. }
  3731. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3732. GEN9_PGCTL_SSA_EU19_ACK |
  3733. GEN9_PGCTL_SSA_EU210_ACK |
  3734. GEN9_PGCTL_SSA_EU311_ACK;
  3735. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3736. GEN9_PGCTL_SSB_EU19_ACK |
  3737. GEN9_PGCTL_SSB_EU210_ACK |
  3738. GEN9_PGCTL_SSB_EU311_ACK;
  3739. for (s = 0; s < s_max; s++) {
  3740. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3741. /* skip disabled slice */
  3742. continue;
  3743. sseu->slice_mask |= BIT(s);
  3744. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
  3745. sseu->subslice_mask =
  3746. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3747. for (ss = 0; ss < ss_max; ss++) {
  3748. unsigned int eu_cnt;
  3749. if (IS_GEN9_LP(dev_priv)) {
  3750. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3751. /* skip disabled subslice */
  3752. continue;
  3753. sseu->subslice_mask |= BIT(ss);
  3754. }
  3755. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3756. eu_mask[ss%2]);
  3757. sseu->eu_total += eu_cnt;
  3758. sseu->eu_per_subslice = max_t(unsigned int,
  3759. sseu->eu_per_subslice,
  3760. eu_cnt);
  3761. }
  3762. }
  3763. }
  3764. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3765. struct sseu_dev_info *sseu)
  3766. {
  3767. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3768. int s;
  3769. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3770. if (sseu->slice_mask) {
  3771. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3772. sseu->eu_per_subslice =
  3773. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3774. sseu->eu_total = sseu->eu_per_subslice *
  3775. sseu_subslice_total(sseu);
  3776. /* subtract fused off EU(s) from enabled slice(s) */
  3777. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3778. u8 subslice_7eu =
  3779. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3780. sseu->eu_total -= hweight8(subslice_7eu);
  3781. }
  3782. }
  3783. }
  3784. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3785. const struct sseu_dev_info *sseu)
  3786. {
  3787. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3788. const char *type = is_available_info ? "Available" : "Enabled";
  3789. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3790. sseu->slice_mask);
  3791. seq_printf(m, " %s Slice Total: %u\n", type,
  3792. hweight8(sseu->slice_mask));
  3793. seq_printf(m, " %s Subslice Total: %u\n", type,
  3794. sseu_subslice_total(sseu));
  3795. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  3796. sseu->subslice_mask);
  3797. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  3798. hweight8(sseu->subslice_mask));
  3799. seq_printf(m, " %s EU Total: %u\n", type,
  3800. sseu->eu_total);
  3801. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3802. sseu->eu_per_subslice);
  3803. if (!is_available_info)
  3804. return;
  3805. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3806. if (HAS_POOLED_EU(dev_priv))
  3807. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3808. seq_printf(m, " Has Slice Power Gating: %s\n",
  3809. yesno(sseu->has_slice_pg));
  3810. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3811. yesno(sseu->has_subslice_pg));
  3812. seq_printf(m, " Has EU Power Gating: %s\n",
  3813. yesno(sseu->has_eu_pg));
  3814. }
  3815. static int i915_sseu_status(struct seq_file *m, void *unused)
  3816. {
  3817. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3818. struct sseu_dev_info sseu;
  3819. if (INTEL_GEN(dev_priv) < 8)
  3820. return -ENODEV;
  3821. seq_puts(m, "SSEU Device Info\n");
  3822. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3823. seq_puts(m, "SSEU Device Status\n");
  3824. memset(&sseu, 0, sizeof(sseu));
  3825. intel_runtime_pm_get(dev_priv);
  3826. if (IS_CHERRYVIEW(dev_priv)) {
  3827. cherryview_sseu_device_status(dev_priv, &sseu);
  3828. } else if (IS_BROADWELL(dev_priv)) {
  3829. broadwell_sseu_device_status(dev_priv, &sseu);
  3830. } else if (INTEL_GEN(dev_priv) >= 9) {
  3831. gen9_sseu_device_status(dev_priv, &sseu);
  3832. }
  3833. intel_runtime_pm_put(dev_priv);
  3834. i915_print_sseu_info(m, false, &sseu);
  3835. return 0;
  3836. }
  3837. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3838. {
  3839. struct drm_i915_private *dev_priv = inode->i_private;
  3840. if (INTEL_GEN(dev_priv) < 6)
  3841. return 0;
  3842. intel_runtime_pm_get(dev_priv);
  3843. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3844. return 0;
  3845. }
  3846. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3847. {
  3848. struct drm_i915_private *dev_priv = inode->i_private;
  3849. if (INTEL_GEN(dev_priv) < 6)
  3850. return 0;
  3851. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3852. intel_runtime_pm_put(dev_priv);
  3853. return 0;
  3854. }
  3855. static const struct file_operations i915_forcewake_fops = {
  3856. .owner = THIS_MODULE,
  3857. .open = i915_forcewake_open,
  3858. .release = i915_forcewake_release,
  3859. };
  3860. static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
  3861. {
  3862. struct drm_i915_private *dev_priv = m->private;
  3863. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3864. seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
  3865. seq_printf(m, "Detected: %s\n",
  3866. yesno(delayed_work_pending(&hotplug->reenable_work)));
  3867. return 0;
  3868. }
  3869. static ssize_t i915_hpd_storm_ctl_write(struct file *file,
  3870. const char __user *ubuf, size_t len,
  3871. loff_t *offp)
  3872. {
  3873. struct seq_file *m = file->private_data;
  3874. struct drm_i915_private *dev_priv = m->private;
  3875. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3876. unsigned int new_threshold;
  3877. int i;
  3878. char *newline;
  3879. char tmp[16];
  3880. if (len >= sizeof(tmp))
  3881. return -EINVAL;
  3882. if (copy_from_user(tmp, ubuf, len))
  3883. return -EFAULT;
  3884. tmp[len] = '\0';
  3885. /* Strip newline, if any */
  3886. newline = strchr(tmp, '\n');
  3887. if (newline)
  3888. *newline = '\0';
  3889. if (strcmp(tmp, "reset") == 0)
  3890. new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3891. else if (kstrtouint(tmp, 10, &new_threshold) != 0)
  3892. return -EINVAL;
  3893. if (new_threshold > 0)
  3894. DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
  3895. new_threshold);
  3896. else
  3897. DRM_DEBUG_KMS("Disabling HPD storm detection\n");
  3898. spin_lock_irq(&dev_priv->irq_lock);
  3899. hotplug->hpd_storm_threshold = new_threshold;
  3900. /* Reset the HPD storm stats so we don't accidentally trigger a storm */
  3901. for_each_hpd_pin(i)
  3902. hotplug->stats[i].count = 0;
  3903. spin_unlock_irq(&dev_priv->irq_lock);
  3904. /* Re-enable hpd immediately if we were in an irq storm */
  3905. flush_delayed_work(&dev_priv->hotplug.reenable_work);
  3906. return len;
  3907. }
  3908. static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
  3909. {
  3910. return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
  3911. }
  3912. static const struct file_operations i915_hpd_storm_ctl_fops = {
  3913. .owner = THIS_MODULE,
  3914. .open = i915_hpd_storm_ctl_open,
  3915. .read = seq_read,
  3916. .llseek = seq_lseek,
  3917. .release = single_release,
  3918. .write = i915_hpd_storm_ctl_write
  3919. };
  3920. static const struct drm_info_list i915_debugfs_list[] = {
  3921. {"i915_capabilities", i915_capabilities, 0},
  3922. {"i915_gem_objects", i915_gem_object_info, 0},
  3923. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3924. {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
  3925. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3926. {"i915_gem_request", i915_gem_request_info, 0},
  3927. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3928. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3929. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3930. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3931. {"i915_guc_info", i915_guc_info, 0},
  3932. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3933. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3934. {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
  3935. {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
  3936. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3937. {"i915_frequency_info", i915_frequency_info, 0},
  3938. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3939. {"i915_reset_info", i915_reset_info, 0},
  3940. {"i915_drpc_info", i915_drpc_info, 0},
  3941. {"i915_emon_status", i915_emon_status, 0},
  3942. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3943. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3944. {"i915_fbc_status", i915_fbc_status, 0},
  3945. {"i915_ips_status", i915_ips_status, 0},
  3946. {"i915_sr_status", i915_sr_status, 0},
  3947. {"i915_opregion", i915_opregion, 0},
  3948. {"i915_vbt", i915_vbt, 0},
  3949. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3950. {"i915_context_status", i915_context_status, 0},
  3951. {"i915_dump_lrc", i915_dump_lrc, 0},
  3952. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3953. {"i915_swizzle_info", i915_swizzle_info, 0},
  3954. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3955. {"i915_llc", i915_llc, 0},
  3956. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3957. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3958. {"i915_energy_uJ", i915_energy_uJ, 0},
  3959. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3960. {"i915_power_domain_info", i915_power_domain_info, 0},
  3961. {"i915_dmc_info", i915_dmc_info, 0},
  3962. {"i915_display_info", i915_display_info, 0},
  3963. {"i915_engine_info", i915_engine_info, 0},
  3964. {"i915_semaphore_status", i915_semaphore_status, 0},
  3965. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3966. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3967. {"i915_wa_registers", i915_wa_registers, 0},
  3968. {"i915_ddb_info", i915_ddb_info, 0},
  3969. {"i915_sseu_status", i915_sseu_status, 0},
  3970. {"i915_drrs_status", i915_drrs_status, 0},
  3971. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3972. };
  3973. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3974. static const struct i915_debugfs_files {
  3975. const char *name;
  3976. const struct file_operations *fops;
  3977. } i915_debugfs_files[] = {
  3978. {"i915_wedged", &i915_wedged_fops},
  3979. {"i915_max_freq", &i915_max_freq_fops},
  3980. {"i915_min_freq", &i915_min_freq_fops},
  3981. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3982. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3983. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3984. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3985. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3986. {"i915_error_state", &i915_error_state_fops},
  3987. {"i915_gpu_info", &i915_gpu_info_fops},
  3988. #endif
  3989. {"i915_next_seqno", &i915_next_seqno_fops},
  3990. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3991. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3992. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3993. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3994. {"i915_fbc_false_color", &i915_fbc_false_color_fops},
  3995. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  3996. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  3997. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  3998. {"i915_guc_log_control", &i915_guc_log_control_fops},
  3999. {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
  4000. };
  4001. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  4002. {
  4003. struct drm_minor *minor = dev_priv->drm.primary;
  4004. struct dentry *ent;
  4005. int ret, i;
  4006. ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
  4007. minor->debugfs_root, to_i915(minor->dev),
  4008. &i915_forcewake_fops);
  4009. if (!ent)
  4010. return -ENOMEM;
  4011. ret = intel_pipe_crc_create(minor);
  4012. if (ret)
  4013. return ret;
  4014. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4015. ent = debugfs_create_file(i915_debugfs_files[i].name,
  4016. S_IRUGO | S_IWUSR,
  4017. minor->debugfs_root,
  4018. to_i915(minor->dev),
  4019. i915_debugfs_files[i].fops);
  4020. if (!ent)
  4021. return -ENOMEM;
  4022. }
  4023. return drm_debugfs_create_files(i915_debugfs_list,
  4024. I915_DEBUGFS_ENTRIES,
  4025. minor->debugfs_root, minor);
  4026. }
  4027. struct dpcd_block {
  4028. /* DPCD dump start address. */
  4029. unsigned int offset;
  4030. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4031. unsigned int end;
  4032. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4033. size_t size;
  4034. /* Only valid for eDP. */
  4035. bool edp;
  4036. };
  4037. static const struct dpcd_block i915_dpcd_debug[] = {
  4038. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4039. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4040. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4041. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4042. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4043. { .offset = DP_SET_POWER },
  4044. { .offset = DP_EDP_DPCD_REV },
  4045. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4046. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4047. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4048. };
  4049. static int i915_dpcd_show(struct seq_file *m, void *data)
  4050. {
  4051. struct drm_connector *connector = m->private;
  4052. struct intel_dp *intel_dp =
  4053. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4054. uint8_t buf[16];
  4055. ssize_t err;
  4056. int i;
  4057. if (connector->status != connector_status_connected)
  4058. return -ENODEV;
  4059. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4060. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4061. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4062. if (b->edp &&
  4063. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4064. continue;
  4065. /* low tech for now */
  4066. if (WARN_ON(size > sizeof(buf)))
  4067. continue;
  4068. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4069. if (err <= 0) {
  4070. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4071. size, b->offset, err);
  4072. continue;
  4073. }
  4074. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4075. }
  4076. return 0;
  4077. }
  4078. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4079. {
  4080. return single_open(file, i915_dpcd_show, inode->i_private);
  4081. }
  4082. static const struct file_operations i915_dpcd_fops = {
  4083. .owner = THIS_MODULE,
  4084. .open = i915_dpcd_open,
  4085. .read = seq_read,
  4086. .llseek = seq_lseek,
  4087. .release = single_release,
  4088. };
  4089. static int i915_panel_show(struct seq_file *m, void *data)
  4090. {
  4091. struct drm_connector *connector = m->private;
  4092. struct intel_dp *intel_dp =
  4093. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4094. if (connector->status != connector_status_connected)
  4095. return -ENODEV;
  4096. seq_printf(m, "Panel power up delay: %d\n",
  4097. intel_dp->panel_power_up_delay);
  4098. seq_printf(m, "Panel power down delay: %d\n",
  4099. intel_dp->panel_power_down_delay);
  4100. seq_printf(m, "Backlight on delay: %d\n",
  4101. intel_dp->backlight_on_delay);
  4102. seq_printf(m, "Backlight off delay: %d\n",
  4103. intel_dp->backlight_off_delay);
  4104. return 0;
  4105. }
  4106. static int i915_panel_open(struct inode *inode, struct file *file)
  4107. {
  4108. return single_open(file, i915_panel_show, inode->i_private);
  4109. }
  4110. static const struct file_operations i915_panel_fops = {
  4111. .owner = THIS_MODULE,
  4112. .open = i915_panel_open,
  4113. .read = seq_read,
  4114. .llseek = seq_lseek,
  4115. .release = single_release,
  4116. };
  4117. /**
  4118. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4119. * @connector: pointer to a registered drm_connector
  4120. *
  4121. * Cleanup will be done by drm_connector_unregister() through a call to
  4122. * drm_debugfs_connector_remove().
  4123. *
  4124. * Returns 0 on success, negative error codes on error.
  4125. */
  4126. int i915_debugfs_connector_add(struct drm_connector *connector)
  4127. {
  4128. struct dentry *root = connector->debugfs_entry;
  4129. /* The connector must have been registered beforehands. */
  4130. if (!root)
  4131. return -ENODEV;
  4132. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4133. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4134. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4135. connector, &i915_dpcd_fops);
  4136. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4137. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4138. connector, &i915_panel_fops);
  4139. return 0;
  4140. }