sdma_v4_0.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "vega10/soc15ip.h"
  29. #include "vega10/SDMA0/sdma0_4_0_offset.h"
  30. #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
  31. #include "vega10/SDMA1/sdma1_4_0_offset.h"
  32. #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
  33. #include "vega10/MMHUB/mmhub_1_0_offset.h"
  34. #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
  35. #include "vega10/HDP/hdp_4_0_offset.h"
  36. #include "raven1/SDMA0/sdma0_4_1_default.h"
  37. #include "soc15_common.h"
  38. #include "soc15.h"
  39. #include "vega10_sdma_pkt_open.h"
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  41. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  42. MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
  43. #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK 0x000000F8L
  44. #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
  45. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  46. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  47. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  48. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  49. static const u32 golden_settings_sdma_4[] = {
  50. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  51. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
  52. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  53. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  54. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  55. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  56. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
  57. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  58. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  59. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  60. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  61. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
  62. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  63. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
  64. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  65. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  66. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  67. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  68. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
  69. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  70. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  71. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  72. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  73. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
  74. };
  75. static const u32 golden_settings_sdma_vg10[] = {
  76. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  77. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
  78. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  79. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
  80. };
  81. static const u32 golden_settings_sdma_4_1[] =
  82. {
  83. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  84. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xffffffff, 0x3f000100,
  85. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0111, 0x00000100,
  86. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  87. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0xfc3fffff, 0x40000051,
  88. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0111, 0x00000100,
  89. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  90. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0111, 0x00000100,
  91. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  92. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0
  93. };
  94. static const u32 golden_settings_sdma_rv1[] =
  95. {
  96. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00000002,
  97. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00000002
  98. };
  99. static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
  100. {
  101. u32 base = 0;
  102. switch (instance) {
  103. case 0:
  104. base = SDMA0_BASE.instance[0].segment[0];
  105. break;
  106. case 1:
  107. base = SDMA1_BASE.instance[0].segment[0];
  108. break;
  109. default:
  110. BUG();
  111. break;
  112. }
  113. return base + internal_offset;
  114. }
  115. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  116. {
  117. switch (adev->asic_type) {
  118. case CHIP_VEGA10:
  119. amdgpu_program_register_sequence(adev,
  120. golden_settings_sdma_4,
  121. (const u32)ARRAY_SIZE(golden_settings_sdma_4));
  122. amdgpu_program_register_sequence(adev,
  123. golden_settings_sdma_vg10,
  124. (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
  125. break;
  126. case CHIP_RAVEN:
  127. amdgpu_program_register_sequence(adev,
  128. golden_settings_sdma_4_1,
  129. (const u32)ARRAY_SIZE(golden_settings_sdma_4_1));
  130. amdgpu_program_register_sequence(adev,
  131. golden_settings_sdma_rv1,
  132. (const u32)ARRAY_SIZE(golden_settings_sdma_rv1));
  133. break;
  134. default:
  135. break;
  136. }
  137. }
  138. /**
  139. * sdma_v4_0_init_microcode - load ucode images from disk
  140. *
  141. * @adev: amdgpu_device pointer
  142. *
  143. * Use the firmware interface to load the ucode images into
  144. * the driver (not loaded into hw).
  145. * Returns 0 on success, error on failure.
  146. */
  147. // emulation only, won't work on real chip
  148. // vega10 real chip need to use PSP to load firmware
  149. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  150. {
  151. const char *chip_name;
  152. char fw_name[30];
  153. int err = 0, i;
  154. struct amdgpu_firmware_info *info = NULL;
  155. const struct common_firmware_header *header = NULL;
  156. const struct sdma_firmware_header_v1_0 *hdr;
  157. DRM_DEBUG("\n");
  158. switch (adev->asic_type) {
  159. case CHIP_VEGA10:
  160. chip_name = "vega10";
  161. break;
  162. case CHIP_RAVEN:
  163. chip_name = "raven";
  164. break;
  165. default:
  166. BUG();
  167. }
  168. for (i = 0; i < adev->sdma.num_instances; i++) {
  169. if (i == 0)
  170. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  171. else
  172. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  173. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  174. if (err)
  175. goto out;
  176. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  177. if (err)
  178. goto out;
  179. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  180. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  181. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  182. if (adev->sdma.instance[i].feature_version >= 20)
  183. adev->sdma.instance[i].burst_nop = true;
  184. DRM_DEBUG("psp_load == '%s'\n",
  185. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
  186. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  187. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  188. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  189. info->fw = adev->sdma.instance[i].fw;
  190. header = (const struct common_firmware_header *)info->fw->data;
  191. adev->firmware.fw_size +=
  192. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  193. }
  194. }
  195. out:
  196. if (err) {
  197. DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
  198. for (i = 0; i < adev->sdma.num_instances; i++) {
  199. release_firmware(adev->sdma.instance[i].fw);
  200. adev->sdma.instance[i].fw = NULL;
  201. }
  202. }
  203. return err;
  204. }
  205. /**
  206. * sdma_v4_0_ring_get_rptr - get the current read pointer
  207. *
  208. * @ring: amdgpu ring pointer
  209. *
  210. * Get the current rptr from the hardware (VEGA10+).
  211. */
  212. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  213. {
  214. u64 *rptr;
  215. /* XXX check if swapping is necessary on BE */
  216. rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
  217. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  218. return ((*rptr) >> 2);
  219. }
  220. /**
  221. * sdma_v4_0_ring_get_wptr - get the current write pointer
  222. *
  223. * @ring: amdgpu ring pointer
  224. *
  225. * Get the current wptr from the hardware (VEGA10+).
  226. */
  227. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  228. {
  229. struct amdgpu_device *adev = ring->adev;
  230. u64 *wptr = NULL;
  231. uint64_t local_wptr = 0;
  232. if (ring->use_doorbell) {
  233. /* XXX check if swapping is necessary on BE */
  234. wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
  235. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  236. *wptr = (*wptr) >> 2;
  237. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  238. } else {
  239. u32 lowbit, highbit;
  240. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  241. wptr = &local_wptr;
  242. lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  243. highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  244. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  245. me, highbit, lowbit);
  246. *wptr = highbit;
  247. *wptr = (*wptr) << 32;
  248. *wptr |= lowbit;
  249. }
  250. return *wptr;
  251. }
  252. /**
  253. * sdma_v4_0_ring_set_wptr - commit the write pointer
  254. *
  255. * @ring: amdgpu ring pointer
  256. *
  257. * Write the wptr back to the hardware (VEGA10+).
  258. */
  259. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  260. {
  261. struct amdgpu_device *adev = ring->adev;
  262. DRM_DEBUG("Setting write pointer\n");
  263. if (ring->use_doorbell) {
  264. u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
  265. DRM_DEBUG("Using doorbell -- "
  266. "wptr_offs == 0x%08x "
  267. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  268. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  269. ring->wptr_offs,
  270. lower_32_bits(ring->wptr << 2),
  271. upper_32_bits(ring->wptr << 2));
  272. /* XXX check if swapping is necessary on BE */
  273. WRITE_ONCE(*wb, (ring->wptr << 2));
  274. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  275. ring->doorbell_index, ring->wptr << 2);
  276. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  277. } else {
  278. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  279. DRM_DEBUG("Not using doorbell -- "
  280. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  281. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
  282. me,
  283. lower_32_bits(ring->wptr << 2),
  284. me,
  285. upper_32_bits(ring->wptr << 2));
  286. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  287. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  288. }
  289. }
  290. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  291. {
  292. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  293. int i;
  294. for (i = 0; i < count; i++)
  295. if (sdma && sdma->burst_nop && (i == 0))
  296. amdgpu_ring_write(ring, ring->funcs->nop |
  297. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  298. else
  299. amdgpu_ring_write(ring, ring->funcs->nop);
  300. }
  301. /**
  302. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  303. *
  304. * @ring: amdgpu ring pointer
  305. * @ib: IB object to schedule
  306. *
  307. * Schedule an IB in the DMA ring (VEGA10).
  308. */
  309. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  310. struct amdgpu_ib *ib,
  311. unsigned vm_id, bool ctx_switch)
  312. {
  313. u32 vmid = vm_id & 0xf;
  314. /* IB packet must end on a 8 DW boundary */
  315. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  316. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  317. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  318. /* base must be 32 byte aligned */
  319. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  320. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  321. amdgpu_ring_write(ring, ib->length_dw);
  322. amdgpu_ring_write(ring, 0);
  323. amdgpu_ring_write(ring, 0);
  324. }
  325. /**
  326. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  327. *
  328. * @ring: amdgpu ring pointer
  329. *
  330. * Emit an hdp flush packet on the requested DMA ring.
  331. */
  332. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  333. {
  334. u32 ref_and_mask = 0;
  335. struct nbio_hdp_flush_reg *nbio_hf_reg;
  336. if (ring->adev->flags & AMD_IS_APU)
  337. nbio_hf_reg = &nbio_v7_0_hdp_flush_reg;
  338. else
  339. nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
  340. if (ring == &ring->adev->sdma.instance[0].ring)
  341. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  342. else
  343. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  344. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  345. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  346. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  347. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
  348. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
  349. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  350. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  351. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  352. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  353. }
  354. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  355. {
  356. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  357. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  358. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
  359. amdgpu_ring_write(ring, 1);
  360. }
  361. /**
  362. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  363. *
  364. * @ring: amdgpu ring pointer
  365. * @fence: amdgpu fence object
  366. *
  367. * Add a DMA fence packet to the ring to write
  368. * the fence seq number and DMA trap packet to generate
  369. * an interrupt if needed (VEGA10).
  370. */
  371. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  372. unsigned flags)
  373. {
  374. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  375. /* write the fence */
  376. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  377. /* zero in first two bits */
  378. BUG_ON(addr & 0x3);
  379. amdgpu_ring_write(ring, lower_32_bits(addr));
  380. amdgpu_ring_write(ring, upper_32_bits(addr));
  381. amdgpu_ring_write(ring, lower_32_bits(seq));
  382. /* optionally write high bits as well */
  383. if (write64bit) {
  384. addr += 4;
  385. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  386. /* zero in first two bits */
  387. BUG_ON(addr & 0x3);
  388. amdgpu_ring_write(ring, lower_32_bits(addr));
  389. amdgpu_ring_write(ring, upper_32_bits(addr));
  390. amdgpu_ring_write(ring, upper_32_bits(seq));
  391. }
  392. /* generate an interrupt */
  393. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  394. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  395. }
  396. /**
  397. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  398. *
  399. * @adev: amdgpu_device pointer
  400. *
  401. * Stop the gfx async dma ring buffers (VEGA10).
  402. */
  403. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  404. {
  405. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  406. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  407. u32 rb_cntl, ib_cntl;
  408. int i;
  409. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  410. (adev->mman.buffer_funcs_ring == sdma1))
  411. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  412. for (i = 0; i < adev->sdma.num_instances; i++) {
  413. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  414. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  415. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  416. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  417. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  418. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  419. }
  420. sdma0->ready = false;
  421. sdma1->ready = false;
  422. }
  423. /**
  424. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  425. *
  426. * @adev: amdgpu_device pointer
  427. *
  428. * Stop the compute async dma queues (VEGA10).
  429. */
  430. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  431. {
  432. /* XXX todo */
  433. }
  434. /**
  435. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  436. *
  437. * @adev: amdgpu_device pointer
  438. * @enable: enable/disable the DMA MEs context switch.
  439. *
  440. * Halt or unhalt the async dma engines context switch (VEGA10).
  441. */
  442. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  443. {
  444. u32 f32_cntl, phase_quantum = 0;
  445. int i;
  446. if (amdgpu_sdma_phase_quantum) {
  447. unsigned value = amdgpu_sdma_phase_quantum;
  448. unsigned unit = 0;
  449. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  450. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  451. value = (value + 1) >> 1;
  452. unit++;
  453. }
  454. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  455. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  456. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  457. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  458. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  459. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  460. WARN_ONCE(1,
  461. "clamping sdma_phase_quantum to %uK clock cycles\n",
  462. value << unit);
  463. }
  464. phase_quantum =
  465. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  466. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  467. }
  468. for (i = 0; i < adev->sdma.num_instances; i++) {
  469. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  470. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  471. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  472. if (enable && amdgpu_sdma_phase_quantum) {
  473. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_PHASE0_QUANTUM),
  474. phase_quantum);
  475. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_PHASE1_QUANTUM),
  476. phase_quantum);
  477. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_PHASE2_QUANTUM),
  478. phase_quantum);
  479. }
  480. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
  481. }
  482. }
  483. /**
  484. * sdma_v4_0_enable - stop the async dma engines
  485. *
  486. * @adev: amdgpu_device pointer
  487. * @enable: enable/disable the DMA MEs.
  488. *
  489. * Halt or unhalt the async dma engines (VEGA10).
  490. */
  491. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  492. {
  493. u32 f32_cntl;
  494. int i;
  495. if (enable == false) {
  496. sdma_v4_0_gfx_stop(adev);
  497. sdma_v4_0_rlc_stop(adev);
  498. }
  499. for (i = 0; i < adev->sdma.num_instances; i++) {
  500. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  501. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  502. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
  503. }
  504. }
  505. /**
  506. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  507. *
  508. * @adev: amdgpu_device pointer
  509. *
  510. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  511. * Returns 0 for success, error for failure.
  512. */
  513. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  514. {
  515. struct amdgpu_ring *ring;
  516. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  517. u32 rb_bufsz;
  518. u32 wb_offset;
  519. u32 doorbell;
  520. u32 doorbell_offset;
  521. u32 temp;
  522. u64 wptr_gpu_addr;
  523. int i, r;
  524. for (i = 0; i < adev->sdma.num_instances; i++) {
  525. ring = &adev->sdma.instance[i].ring;
  526. wb_offset = (ring->rptr_offs * 4);
  527. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  528. /* Set ring buffer size in dwords */
  529. rb_bufsz = order_base_2(ring->ring_size / 4);
  530. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  531. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  532. #ifdef __BIG_ENDIAN
  533. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  534. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  535. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  536. #endif
  537. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  538. /* Initialize the ring buffer's read and write pointers */
  539. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
  540. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  541. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
  542. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  543. /* set the wb address whether it's enabled or not */
  544. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  545. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  546. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  547. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  548. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  549. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  550. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  551. ring->wptr = 0;
  552. /* before programing wptr to a less value, need set minor_ptr_update first */
  553. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  554. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  555. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  556. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  557. }
  558. doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
  559. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
  560. if (ring->use_doorbell) {
  561. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  562. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  563. OFFSET, ring->doorbell_index);
  564. } else {
  565. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  566. }
  567. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
  568. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  569. if (adev->flags & AMD_IS_APU)
  570. nbio_v7_0_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  571. else
  572. nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  573. if (amdgpu_sriov_vf(adev))
  574. sdma_v4_0_ring_set_wptr(ring);
  575. /* set minor_ptr_update to 0 after wptr programed */
  576. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  577. /* set utc l1 enable flag always to 1 */
  578. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  579. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  580. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
  581. if (!amdgpu_sriov_vf(adev)) {
  582. /* unhalt engine */
  583. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  584. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  585. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
  586. }
  587. /* setup the wptr shadow polling */
  588. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  589. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
  590. lower_32_bits(wptr_gpu_addr));
  591. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
  592. upper_32_bits(wptr_gpu_addr));
  593. wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
  594. if (amdgpu_sriov_vf(adev))
  595. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  596. else
  597. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  598. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
  599. /* enable DMA RB */
  600. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  601. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  602. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  603. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  604. #ifdef __BIG_ENDIAN
  605. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  606. #endif
  607. /* enable DMA IBs */
  608. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  609. ring->ready = true;
  610. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  611. sdma_v4_0_ctx_switch_enable(adev, true);
  612. sdma_v4_0_enable(adev, true);
  613. }
  614. r = amdgpu_ring_test_ring(ring);
  615. if (r) {
  616. ring->ready = false;
  617. return r;
  618. }
  619. if (adev->mman.buffer_funcs_ring == ring)
  620. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  621. }
  622. return 0;
  623. }
  624. static void
  625. sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
  626. {
  627. uint32_t def, data;
  628. if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
  629. /* disable idle interrupt */
  630. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  631. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  632. if (data != def)
  633. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  634. } else {
  635. /* disable idle interrupt */
  636. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  637. data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  638. if (data != def)
  639. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  640. }
  641. }
  642. static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
  643. {
  644. uint32_t def, data;
  645. /* Enable HW based PG. */
  646. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  647. data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
  648. if (data != def)
  649. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  650. /* enable interrupt */
  651. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
  652. data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
  653. if (data != def)
  654. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
  655. /* Configure hold time to filter in-valid power on/off request. Use default right now */
  656. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  657. data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
  658. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
  659. /* Configure switch time for hysteresis purpose. Use default right now */
  660. data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
  661. data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
  662. if(data != def)
  663. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  664. }
  665. static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
  666. {
  667. if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
  668. return;
  669. switch (adev->asic_type) {
  670. case CHIP_RAVEN:
  671. sdma_v4_1_init_power_gating(adev);
  672. sdma_v4_1_update_power_gating(adev, true);
  673. break;
  674. default:
  675. break;
  676. }
  677. }
  678. /**
  679. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  680. *
  681. * @adev: amdgpu_device pointer
  682. *
  683. * Set up the compute DMA queues and enable them (VEGA10).
  684. * Returns 0 for success, error for failure.
  685. */
  686. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  687. {
  688. sdma_v4_0_init_pg(adev);
  689. return 0;
  690. }
  691. /**
  692. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  693. *
  694. * @adev: amdgpu_device pointer
  695. *
  696. * Loads the sDMA0/1 ucode.
  697. * Returns 0 for success, -EINVAL if the ucode is not available.
  698. */
  699. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  700. {
  701. const struct sdma_firmware_header_v1_0 *hdr;
  702. const __le32 *fw_data;
  703. u32 fw_size;
  704. int i, j;
  705. /* halt the MEs */
  706. sdma_v4_0_enable(adev, false);
  707. for (i = 0; i < adev->sdma.num_instances; i++) {
  708. if (!adev->sdma.instance[i].fw)
  709. return -EINVAL;
  710. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  711. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  712. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  713. fw_data = (const __le32 *)
  714. (adev->sdma.instance[i].fw->data +
  715. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  716. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
  717. for (j = 0; j < fw_size; j++)
  718. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  719. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  720. }
  721. return 0;
  722. }
  723. /**
  724. * sdma_v4_0_start - setup and start the async dma engines
  725. *
  726. * @adev: amdgpu_device pointer
  727. *
  728. * Set up the DMA engines and enable them (VEGA10).
  729. * Returns 0 for success, error for failure.
  730. */
  731. static int sdma_v4_0_start(struct amdgpu_device *adev)
  732. {
  733. int r = 0;
  734. if (amdgpu_sriov_vf(adev)) {
  735. sdma_v4_0_ctx_switch_enable(adev, false);
  736. sdma_v4_0_enable(adev, false);
  737. /* set RB registers */
  738. r = sdma_v4_0_gfx_resume(adev);
  739. return r;
  740. }
  741. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  742. r = sdma_v4_0_load_microcode(adev);
  743. if (r)
  744. return r;
  745. }
  746. /* unhalt the MEs */
  747. sdma_v4_0_enable(adev, true);
  748. /* enable sdma ring preemption */
  749. sdma_v4_0_ctx_switch_enable(adev, true);
  750. /* start the gfx rings and rlc compute queues */
  751. r = sdma_v4_0_gfx_resume(adev);
  752. if (r)
  753. return r;
  754. r = sdma_v4_0_rlc_resume(adev);
  755. return r;
  756. }
  757. /**
  758. * sdma_v4_0_ring_test_ring - simple async dma engine test
  759. *
  760. * @ring: amdgpu_ring structure holding ring information
  761. *
  762. * Test the DMA engine by writing using it to write an
  763. * value to memory. (VEGA10).
  764. * Returns 0 for success, error for failure.
  765. */
  766. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  767. {
  768. struct amdgpu_device *adev = ring->adev;
  769. unsigned i;
  770. unsigned index;
  771. int r;
  772. u32 tmp;
  773. u64 gpu_addr;
  774. r = amdgpu_wb_get(adev, &index);
  775. if (r) {
  776. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  777. return r;
  778. }
  779. gpu_addr = adev->wb.gpu_addr + (index * 4);
  780. tmp = 0xCAFEDEAD;
  781. adev->wb.wb[index] = cpu_to_le32(tmp);
  782. r = amdgpu_ring_alloc(ring, 5);
  783. if (r) {
  784. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  785. amdgpu_wb_free(adev, index);
  786. return r;
  787. }
  788. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  789. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  790. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  791. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  792. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  793. amdgpu_ring_write(ring, 0xDEADBEEF);
  794. amdgpu_ring_commit(ring);
  795. for (i = 0; i < adev->usec_timeout; i++) {
  796. tmp = le32_to_cpu(adev->wb.wb[index]);
  797. if (tmp == 0xDEADBEEF)
  798. break;
  799. DRM_UDELAY(1);
  800. }
  801. if (i < adev->usec_timeout) {
  802. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  803. } else {
  804. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  805. ring->idx, tmp);
  806. r = -EINVAL;
  807. }
  808. amdgpu_wb_free(adev, index);
  809. return r;
  810. }
  811. /**
  812. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  813. *
  814. * @ring: amdgpu_ring structure holding ring information
  815. *
  816. * Test a simple IB in the DMA ring (VEGA10).
  817. * Returns 0 on success, error on failure.
  818. */
  819. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  820. {
  821. struct amdgpu_device *adev = ring->adev;
  822. struct amdgpu_ib ib;
  823. struct dma_fence *f = NULL;
  824. unsigned index;
  825. long r;
  826. u32 tmp = 0;
  827. u64 gpu_addr;
  828. r = amdgpu_wb_get(adev, &index);
  829. if (r) {
  830. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  831. return r;
  832. }
  833. gpu_addr = adev->wb.gpu_addr + (index * 4);
  834. tmp = 0xCAFEDEAD;
  835. adev->wb.wb[index] = cpu_to_le32(tmp);
  836. memset(&ib, 0, sizeof(ib));
  837. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  838. if (r) {
  839. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  840. goto err0;
  841. }
  842. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  843. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  844. ib.ptr[1] = lower_32_bits(gpu_addr);
  845. ib.ptr[2] = upper_32_bits(gpu_addr);
  846. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  847. ib.ptr[4] = 0xDEADBEEF;
  848. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  849. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  850. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  851. ib.length_dw = 8;
  852. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  853. if (r)
  854. goto err1;
  855. r = dma_fence_wait_timeout(f, false, timeout);
  856. if (r == 0) {
  857. DRM_ERROR("amdgpu: IB test timed out\n");
  858. r = -ETIMEDOUT;
  859. goto err1;
  860. } else if (r < 0) {
  861. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  862. goto err1;
  863. }
  864. tmp = le32_to_cpu(adev->wb.wb[index]);
  865. if (tmp == 0xDEADBEEF) {
  866. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  867. r = 0;
  868. } else {
  869. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  870. r = -EINVAL;
  871. }
  872. err1:
  873. amdgpu_ib_free(adev, &ib, NULL);
  874. dma_fence_put(f);
  875. err0:
  876. amdgpu_wb_free(adev, index);
  877. return r;
  878. }
  879. /**
  880. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  881. *
  882. * @ib: indirect buffer to fill with commands
  883. * @pe: addr of the page entry
  884. * @src: src addr to copy from
  885. * @count: number of page entries to update
  886. *
  887. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  888. */
  889. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  890. uint64_t pe, uint64_t src,
  891. unsigned count)
  892. {
  893. unsigned bytes = count * 8;
  894. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  895. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  896. ib->ptr[ib->length_dw++] = bytes - 1;
  897. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  898. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  899. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  900. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  901. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  902. }
  903. /**
  904. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  905. *
  906. * @ib: indirect buffer to fill with commands
  907. * @pe: addr of the page entry
  908. * @addr: dst addr to write into pe
  909. * @count: number of page entries to update
  910. * @incr: increase next addr by incr bytes
  911. * @flags: access flags
  912. *
  913. * Update PTEs by writing them manually using sDMA (VEGA10).
  914. */
  915. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  916. uint64_t value, unsigned count,
  917. uint32_t incr)
  918. {
  919. unsigned ndw = count * 2;
  920. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  921. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  922. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  923. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  924. ib->ptr[ib->length_dw++] = ndw - 1;
  925. for (; ndw > 0; ndw -= 2) {
  926. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  927. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  928. value += incr;
  929. }
  930. }
  931. /**
  932. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  933. *
  934. * @ib: indirect buffer to fill with commands
  935. * @pe: addr of the page entry
  936. * @addr: dst addr to write into pe
  937. * @count: number of page entries to update
  938. * @incr: increase next addr by incr bytes
  939. * @flags: access flags
  940. *
  941. * Update the page tables using sDMA (VEGA10).
  942. */
  943. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  944. uint64_t pe,
  945. uint64_t addr, unsigned count,
  946. uint32_t incr, uint64_t flags)
  947. {
  948. /* for physically contiguous pages (vram) */
  949. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  950. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  951. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  952. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  953. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  954. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  955. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  956. ib->ptr[ib->length_dw++] = incr; /* increment size */
  957. ib->ptr[ib->length_dw++] = 0;
  958. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  959. }
  960. /**
  961. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  962. *
  963. * @ib: indirect buffer to fill with padding
  964. *
  965. */
  966. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  967. {
  968. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  969. u32 pad_count;
  970. int i;
  971. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  972. for (i = 0; i < pad_count; i++)
  973. if (sdma && sdma->burst_nop && (i == 0))
  974. ib->ptr[ib->length_dw++] =
  975. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  976. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  977. else
  978. ib->ptr[ib->length_dw++] =
  979. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  980. }
  981. /**
  982. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  983. *
  984. * @ring: amdgpu_ring pointer
  985. *
  986. * Make sure all previous operations are completed (CIK).
  987. */
  988. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  989. {
  990. uint32_t seq = ring->fence_drv.sync_seq;
  991. uint64_t addr = ring->fence_drv.gpu_addr;
  992. /* wait for idle */
  993. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  994. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  995. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  996. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  997. amdgpu_ring_write(ring, addr & 0xfffffffc);
  998. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  999. amdgpu_ring_write(ring, seq); /* reference */
  1000. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1001. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1002. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1003. }
  1004. /**
  1005. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  1006. *
  1007. * @ring: amdgpu_ring pointer
  1008. * @vm: amdgpu_vm pointer
  1009. *
  1010. * Update the page table base and flush the VM TLB
  1011. * using sDMA (VEGA10).
  1012. */
  1013. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1014. unsigned vm_id, uint64_t pd_addr)
  1015. {
  1016. struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
  1017. uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id);
  1018. unsigned eng = ring->vm_inv_eng;
  1019. pd_addr = amdgpu_gart_get_vm_pde(ring->adev, pd_addr);
  1020. pd_addr |= AMDGPU_PTE_VALID;
  1021. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1022. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1023. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
  1024. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  1025. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1026. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1027. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
  1028. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  1029. /* flush TLB */
  1030. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1031. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1032. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  1033. amdgpu_ring_write(ring, req);
  1034. /* wait for flush */
  1035. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1036. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1037. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  1038. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  1039. amdgpu_ring_write(ring, 0);
  1040. amdgpu_ring_write(ring, 1 << vm_id); /* reference */
  1041. amdgpu_ring_write(ring, 1 << vm_id); /* mask */
  1042. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1043. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  1044. }
  1045. static int sdma_v4_0_early_init(void *handle)
  1046. {
  1047. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1048. if (adev->asic_type == CHIP_RAVEN)
  1049. adev->sdma.num_instances = 1;
  1050. else
  1051. adev->sdma.num_instances = 2;
  1052. sdma_v4_0_set_ring_funcs(adev);
  1053. sdma_v4_0_set_buffer_funcs(adev);
  1054. sdma_v4_0_set_vm_pte_funcs(adev);
  1055. sdma_v4_0_set_irq_funcs(adev);
  1056. return 0;
  1057. }
  1058. static int sdma_v4_0_sw_init(void *handle)
  1059. {
  1060. struct amdgpu_ring *ring;
  1061. int r, i;
  1062. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1063. /* SDMA trap event */
  1064. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  1065. &adev->sdma.trap_irq);
  1066. if (r)
  1067. return r;
  1068. /* SDMA trap event */
  1069. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  1070. &adev->sdma.trap_irq);
  1071. if (r)
  1072. return r;
  1073. r = sdma_v4_0_init_microcode(adev);
  1074. if (r) {
  1075. DRM_ERROR("Failed to load sdma firmware!\n");
  1076. return r;
  1077. }
  1078. for (i = 0; i < adev->sdma.num_instances; i++) {
  1079. ring = &adev->sdma.instance[i].ring;
  1080. ring->ring_obj = NULL;
  1081. ring->use_doorbell = true;
  1082. DRM_INFO("use_doorbell being set to: [%s]\n",
  1083. ring->use_doorbell?"true":"false");
  1084. ring->doorbell_index = (i == 0) ?
  1085. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  1086. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  1087. sprintf(ring->name, "sdma%d", i);
  1088. r = amdgpu_ring_init(adev, ring, 1024,
  1089. &adev->sdma.trap_irq,
  1090. (i == 0) ?
  1091. AMDGPU_SDMA_IRQ_TRAP0 :
  1092. AMDGPU_SDMA_IRQ_TRAP1);
  1093. if (r)
  1094. return r;
  1095. }
  1096. return r;
  1097. }
  1098. static int sdma_v4_0_sw_fini(void *handle)
  1099. {
  1100. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1101. int i;
  1102. for (i = 0; i < adev->sdma.num_instances; i++)
  1103. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1104. return 0;
  1105. }
  1106. static int sdma_v4_0_hw_init(void *handle)
  1107. {
  1108. int r;
  1109. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1110. sdma_v4_0_init_golden_registers(adev);
  1111. r = sdma_v4_0_start(adev);
  1112. return r;
  1113. }
  1114. static int sdma_v4_0_hw_fini(void *handle)
  1115. {
  1116. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1117. if (amdgpu_sriov_vf(adev))
  1118. return 0;
  1119. sdma_v4_0_ctx_switch_enable(adev, false);
  1120. sdma_v4_0_enable(adev, false);
  1121. return 0;
  1122. }
  1123. static int sdma_v4_0_suspend(void *handle)
  1124. {
  1125. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1126. return sdma_v4_0_hw_fini(adev);
  1127. }
  1128. static int sdma_v4_0_resume(void *handle)
  1129. {
  1130. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1131. return sdma_v4_0_hw_init(adev);
  1132. }
  1133. static bool sdma_v4_0_is_idle(void *handle)
  1134. {
  1135. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1136. u32 i;
  1137. for (i = 0; i < adev->sdma.num_instances; i++) {
  1138. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
  1139. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1140. return false;
  1141. }
  1142. return true;
  1143. }
  1144. static int sdma_v4_0_wait_for_idle(void *handle)
  1145. {
  1146. unsigned i;
  1147. u32 sdma0, sdma1;
  1148. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1149. for (i = 0; i < adev->usec_timeout; i++) {
  1150. sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
  1151. sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
  1152. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1153. return 0;
  1154. udelay(1);
  1155. }
  1156. return -ETIMEDOUT;
  1157. }
  1158. static int sdma_v4_0_soft_reset(void *handle)
  1159. {
  1160. /* todo */
  1161. return 0;
  1162. }
  1163. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1164. struct amdgpu_irq_src *source,
  1165. unsigned type,
  1166. enum amdgpu_interrupt_state state)
  1167. {
  1168. u32 sdma_cntl;
  1169. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1170. sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
  1171. sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
  1172. sdma_cntl = RREG32(reg_offset);
  1173. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1174. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1175. WREG32(reg_offset, sdma_cntl);
  1176. return 0;
  1177. }
  1178. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1179. struct amdgpu_irq_src *source,
  1180. struct amdgpu_iv_entry *entry)
  1181. {
  1182. DRM_DEBUG("IH: SDMA trap\n");
  1183. switch (entry->client_id) {
  1184. case AMDGPU_IH_CLIENTID_SDMA0:
  1185. switch (entry->ring_id) {
  1186. case 0:
  1187. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1188. break;
  1189. case 1:
  1190. /* XXX compute */
  1191. break;
  1192. case 2:
  1193. /* XXX compute */
  1194. break;
  1195. case 3:
  1196. /* XXX page queue*/
  1197. break;
  1198. }
  1199. break;
  1200. case AMDGPU_IH_CLIENTID_SDMA1:
  1201. switch (entry->ring_id) {
  1202. case 0:
  1203. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1204. break;
  1205. case 1:
  1206. /* XXX compute */
  1207. break;
  1208. case 2:
  1209. /* XXX compute */
  1210. break;
  1211. case 3:
  1212. /* XXX page queue*/
  1213. break;
  1214. }
  1215. break;
  1216. }
  1217. return 0;
  1218. }
  1219. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1220. struct amdgpu_irq_src *source,
  1221. struct amdgpu_iv_entry *entry)
  1222. {
  1223. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1224. schedule_work(&adev->reset_work);
  1225. return 0;
  1226. }
  1227. static void sdma_v4_0_update_medium_grain_clock_gating(
  1228. struct amdgpu_device *adev,
  1229. bool enable)
  1230. {
  1231. uint32_t data, def;
  1232. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1233. /* enable sdma0 clock gating */
  1234. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1235. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1236. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1237. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1238. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1239. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1240. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1241. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1242. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1243. if (def != data)
  1244. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1245. if (adev->asic_type == CHIP_VEGA10) {
  1246. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1247. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1248. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1249. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1250. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1251. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1252. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1253. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1254. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1255. if (def != data)
  1256. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1257. }
  1258. } else {
  1259. /* disable sdma0 clock gating */
  1260. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1261. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1262. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1263. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1264. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1265. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1266. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1267. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1268. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1269. if (def != data)
  1270. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1271. if (adev->asic_type == CHIP_VEGA10) {
  1272. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1273. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1274. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1275. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1276. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1277. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1278. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1279. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1280. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1281. if (def != data)
  1282. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1283. }
  1284. }
  1285. }
  1286. static void sdma_v4_0_update_medium_grain_light_sleep(
  1287. struct amdgpu_device *adev,
  1288. bool enable)
  1289. {
  1290. uint32_t data, def;
  1291. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1292. /* 1-not override: enable sdma0 mem light sleep */
  1293. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1294. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1295. if (def != data)
  1296. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1297. /* 1-not override: enable sdma1 mem light sleep */
  1298. if (adev->asic_type == CHIP_VEGA10) {
  1299. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1300. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1301. if (def != data)
  1302. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1303. }
  1304. } else {
  1305. /* 0-override:disable sdma0 mem light sleep */
  1306. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1307. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1308. if (def != data)
  1309. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1310. /* 0-override:disable sdma1 mem light sleep */
  1311. if (adev->asic_type == CHIP_VEGA10) {
  1312. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1313. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1314. if (def != data)
  1315. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1316. }
  1317. }
  1318. }
  1319. static int sdma_v4_0_set_clockgating_state(void *handle,
  1320. enum amd_clockgating_state state)
  1321. {
  1322. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1323. if (amdgpu_sriov_vf(adev))
  1324. return 0;
  1325. switch (adev->asic_type) {
  1326. case CHIP_VEGA10:
  1327. case CHIP_RAVEN:
  1328. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1329. state == AMD_CG_STATE_GATE ? true : false);
  1330. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1331. state == AMD_CG_STATE_GATE ? true : false);
  1332. break;
  1333. default:
  1334. break;
  1335. }
  1336. return 0;
  1337. }
  1338. static int sdma_v4_0_set_powergating_state(void *handle,
  1339. enum amd_powergating_state state)
  1340. {
  1341. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1342. switch (adev->asic_type) {
  1343. case CHIP_RAVEN:
  1344. sdma_v4_1_update_power_gating(adev,
  1345. state == AMD_PG_STATE_GATE ? true : false);
  1346. break;
  1347. default:
  1348. break;
  1349. }
  1350. return 0;
  1351. }
  1352. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1353. {
  1354. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1355. int data;
  1356. if (amdgpu_sriov_vf(adev))
  1357. *flags = 0;
  1358. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1359. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1360. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1361. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1362. /* AMD_CG_SUPPORT_SDMA_LS */
  1363. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1364. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1365. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1366. }
  1367. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1368. .name = "sdma_v4_0",
  1369. .early_init = sdma_v4_0_early_init,
  1370. .late_init = NULL,
  1371. .sw_init = sdma_v4_0_sw_init,
  1372. .sw_fini = sdma_v4_0_sw_fini,
  1373. .hw_init = sdma_v4_0_hw_init,
  1374. .hw_fini = sdma_v4_0_hw_fini,
  1375. .suspend = sdma_v4_0_suspend,
  1376. .resume = sdma_v4_0_resume,
  1377. .is_idle = sdma_v4_0_is_idle,
  1378. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1379. .soft_reset = sdma_v4_0_soft_reset,
  1380. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1381. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1382. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1383. };
  1384. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1385. .type = AMDGPU_RING_TYPE_SDMA,
  1386. .align_mask = 0xf,
  1387. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1388. .support_64bit_ptrs = true,
  1389. .vmhub = AMDGPU_MMHUB,
  1390. .get_rptr = sdma_v4_0_ring_get_rptr,
  1391. .get_wptr = sdma_v4_0_ring_get_wptr,
  1392. .set_wptr = sdma_v4_0_ring_set_wptr,
  1393. .emit_frame_size =
  1394. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1395. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1396. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1397. 18 + /* sdma_v4_0_ring_emit_vm_flush */
  1398. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1399. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1400. .emit_ib = sdma_v4_0_ring_emit_ib,
  1401. .emit_fence = sdma_v4_0_ring_emit_fence,
  1402. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1403. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1404. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1405. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1406. .test_ring = sdma_v4_0_ring_test_ring,
  1407. .test_ib = sdma_v4_0_ring_test_ib,
  1408. .insert_nop = sdma_v4_0_ring_insert_nop,
  1409. .pad_ib = sdma_v4_0_ring_pad_ib,
  1410. };
  1411. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1412. {
  1413. int i;
  1414. for (i = 0; i < adev->sdma.num_instances; i++)
  1415. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1416. }
  1417. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1418. .set = sdma_v4_0_set_trap_irq_state,
  1419. .process = sdma_v4_0_process_trap_irq,
  1420. };
  1421. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1422. .process = sdma_v4_0_process_illegal_inst_irq,
  1423. };
  1424. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1425. {
  1426. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1427. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1428. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1429. }
  1430. /**
  1431. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1432. *
  1433. * @ring: amdgpu_ring structure holding ring information
  1434. * @src_offset: src GPU address
  1435. * @dst_offset: dst GPU address
  1436. * @byte_count: number of bytes to xfer
  1437. *
  1438. * Copy GPU buffers using the DMA engine (VEGA10).
  1439. * Used by the amdgpu ttm implementation to move pages if
  1440. * registered as the asic copy callback.
  1441. */
  1442. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1443. uint64_t src_offset,
  1444. uint64_t dst_offset,
  1445. uint32_t byte_count)
  1446. {
  1447. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1448. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1449. ib->ptr[ib->length_dw++] = byte_count - 1;
  1450. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1451. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1452. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1453. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1454. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1455. }
  1456. /**
  1457. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1458. *
  1459. * @ring: amdgpu_ring structure holding ring information
  1460. * @src_data: value to write to buffer
  1461. * @dst_offset: dst GPU address
  1462. * @byte_count: number of bytes to xfer
  1463. *
  1464. * Fill GPU buffers using the DMA engine (VEGA10).
  1465. */
  1466. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1467. uint32_t src_data,
  1468. uint64_t dst_offset,
  1469. uint32_t byte_count)
  1470. {
  1471. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1472. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1473. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1474. ib->ptr[ib->length_dw++] = src_data;
  1475. ib->ptr[ib->length_dw++] = byte_count - 1;
  1476. }
  1477. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1478. .copy_max_bytes = 0x400000,
  1479. .copy_num_dw = 7,
  1480. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1481. .fill_max_bytes = 0x400000,
  1482. .fill_num_dw = 5,
  1483. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1484. };
  1485. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1486. {
  1487. if (adev->mman.buffer_funcs == NULL) {
  1488. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1489. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1490. }
  1491. }
  1492. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1493. .copy_pte = sdma_v4_0_vm_copy_pte,
  1494. .write_pte = sdma_v4_0_vm_write_pte,
  1495. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1496. };
  1497. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1498. {
  1499. unsigned i;
  1500. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1501. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1502. for (i = 0; i < adev->sdma.num_instances; i++)
  1503. adev->vm_manager.vm_pte_rings[i] =
  1504. &adev->sdma.instance[i].ring;
  1505. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1506. }
  1507. }
  1508. const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
  1509. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1510. .major = 4,
  1511. .minor = 0,
  1512. .rev = 0,
  1513. .funcs = &sdma_v4_0_ip_funcs,
  1514. };