amdgpu_amdkfd_gfx_v8.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gfx_v8_0.h"
  31. #include "gca/gfx_8_0_sh_mask.h"
  32. #include "gca/gfx_8_0_d.h"
  33. #include "gca/gfx_8_0_enum.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "oss/oss_3_0_d.h"
  36. #include "gmc/gmc_8_1_sh_mask.h"
  37. #include "gmc/gmc_8_1_d.h"
  38. #include "vi_structs.h"
  39. #include "vid.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. struct cik_sdma_rlc_registers;
  46. /*
  47. * Register access functions
  48. */
  49. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  50. uint32_t sh_mem_config,
  51. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  52. uint32_t sh_mem_bases);
  53. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  54. unsigned int vmid);
  55. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  56. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  57. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  58. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  59. uint32_t queue_id, uint32_t __user *wptr,
  60. uint32_t wptr_shift, uint32_t wptr_mask,
  61. struct mm_struct *mm);
  62. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
  63. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  64. uint32_t pipe_id, uint32_t queue_id);
  65. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  66. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  67. enum kfd_preempt_type reset_type,
  68. unsigned int utimeout, uint32_t pipe_id,
  69. uint32_t queue_id);
  70. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  71. unsigned int utimeout);
  72. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  73. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  74. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  75. unsigned int watch_point_id,
  76. uint32_t cntl_val,
  77. uint32_t addr_hi,
  78. uint32_t addr_lo);
  79. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  80. uint32_t gfx_index_val,
  81. uint32_t sq_cmd);
  82. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  83. unsigned int watch_point_id,
  84. unsigned int reg_offset);
  85. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  86. uint8_t vmid);
  87. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  88. uint8_t vmid);
  89. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  90. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  91. static void set_scratch_backing_va(struct kgd_dev *kgd,
  92. uint64_t va, uint32_t vmid);
  93. /* Because of REG_GET_FIELD() being used, we put this function in the
  94. * asic specific file.
  95. */
  96. static int get_tile_config(struct kgd_dev *kgd,
  97. struct tile_config *config)
  98. {
  99. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  100. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  101. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  102. MC_ARB_RAMCFG, NOOFBANK);
  103. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  104. MC_ARB_RAMCFG, NOOFRANKS);
  105. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  106. config->num_tile_configs =
  107. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  108. config->macro_tile_config_ptr =
  109. adev->gfx.config.macrotile_mode_array;
  110. config->num_macro_tile_configs =
  111. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  112. return 0;
  113. }
  114. static const struct kfd2kgd_calls kfd2kgd = {
  115. .init_gtt_mem_allocation = alloc_gtt_mem,
  116. .free_gtt_mem = free_gtt_mem,
  117. .get_vmem_size = get_vmem_size,
  118. .get_gpu_clock_counter = get_gpu_clock_counter,
  119. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  120. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  121. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  122. .init_pipeline = kgd_init_pipeline,
  123. .init_interrupts = kgd_init_interrupts,
  124. .hqd_load = kgd_hqd_load,
  125. .hqd_sdma_load = kgd_hqd_sdma_load,
  126. .hqd_is_occupied = kgd_hqd_is_occupied,
  127. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  128. .hqd_destroy = kgd_hqd_destroy,
  129. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  130. .address_watch_disable = kgd_address_watch_disable,
  131. .address_watch_execute = kgd_address_watch_execute,
  132. .wave_control_execute = kgd_wave_control_execute,
  133. .address_watch_get_offset = kgd_address_watch_get_offset,
  134. .get_atc_vmid_pasid_mapping_pasid =
  135. get_atc_vmid_pasid_mapping_pasid,
  136. .get_atc_vmid_pasid_mapping_valid =
  137. get_atc_vmid_pasid_mapping_valid,
  138. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  139. .get_fw_version = get_fw_version,
  140. .set_scratch_backing_va = set_scratch_backing_va,
  141. .get_tile_config = get_tile_config,
  142. };
  143. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
  144. {
  145. return (struct kfd2kgd_calls *)&kfd2kgd;
  146. }
  147. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  148. {
  149. return (struct amdgpu_device *)kgd;
  150. }
  151. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  152. uint32_t queue, uint32_t vmid)
  153. {
  154. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  155. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  156. mutex_lock(&adev->srbm_mutex);
  157. WREG32(mmSRBM_GFX_CNTL, value);
  158. }
  159. static void unlock_srbm(struct kgd_dev *kgd)
  160. {
  161. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  162. WREG32(mmSRBM_GFX_CNTL, 0);
  163. mutex_unlock(&adev->srbm_mutex);
  164. }
  165. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  166. uint32_t queue_id)
  167. {
  168. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  169. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  170. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  171. lock_srbm(kgd, mec, pipe, queue_id, 0);
  172. }
  173. static void release_queue(struct kgd_dev *kgd)
  174. {
  175. unlock_srbm(kgd);
  176. }
  177. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  178. uint32_t sh_mem_config,
  179. uint32_t sh_mem_ape1_base,
  180. uint32_t sh_mem_ape1_limit,
  181. uint32_t sh_mem_bases)
  182. {
  183. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  184. lock_srbm(kgd, 0, 0, 0, vmid);
  185. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  186. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  187. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  188. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  189. unlock_srbm(kgd);
  190. }
  191. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  192. unsigned int vmid)
  193. {
  194. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  195. /*
  196. * We have to assume that there is no outstanding mapping.
  197. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  198. * a mapping is in progress or because a mapping finished
  199. * and the SW cleared it.
  200. * So the protocol is to always wait & clear.
  201. */
  202. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  203. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  204. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  205. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  206. cpu_relax();
  207. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  208. /* Mapping vmid to pasid also for IH block */
  209. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  210. return 0;
  211. }
  212. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  213. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  214. {
  215. /* amdgpu owns the per-pipe state */
  216. return 0;
  217. }
  218. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  219. {
  220. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  221. uint32_t mec;
  222. uint32_t pipe;
  223. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  224. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  225. lock_srbm(kgd, mec, pipe, 0, 0);
  226. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  227. unlock_srbm(kgd);
  228. return 0;
  229. }
  230. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  231. {
  232. return 0;
  233. }
  234. static inline struct vi_mqd *get_mqd(void *mqd)
  235. {
  236. return (struct vi_mqd *)mqd;
  237. }
  238. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  239. {
  240. return (struct cik_sdma_rlc_registers *)mqd;
  241. }
  242. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  243. uint32_t queue_id, uint32_t __user *wptr,
  244. uint32_t wptr_shift, uint32_t wptr_mask,
  245. struct mm_struct *mm)
  246. {
  247. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  248. struct vi_mqd *m;
  249. uint32_t *mqd_hqd;
  250. uint32_t reg, wptr_val, data;
  251. m = get_mqd(mqd);
  252. acquire_queue(kgd, pipe_id, queue_id);
  253. /* HIQ is set during driver init period with vmid set to 0*/
  254. if (m->cp_hqd_vmid == 0) {
  255. uint32_t value, mec, pipe;
  256. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  257. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  258. pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
  259. mec, pipe, queue_id);
  260. value = RREG32(mmRLC_CP_SCHEDULERS);
  261. value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
  262. ((mec << 5) | (pipe << 3) | queue_id | 0x80));
  263. WREG32(mmRLC_CP_SCHEDULERS, value);
  264. }
  265. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
  266. mqd_hqd = &m->cp_mqd_base_addr_lo;
  267. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
  268. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  269. /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
  270. * This is safe since EOP RPTR==WPTR for any inactive HQD
  271. * on ASICs that do not support context-save.
  272. * EOP writes/reads can start anywhere in the ring.
  273. */
  274. if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
  275. WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
  276. WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
  277. WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
  278. }
  279. for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
  280. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  281. /* Copy userspace write pointer value to register.
  282. * Activate doorbell logic to monitor subsequent changes.
  283. */
  284. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  285. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  286. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  287. if (read_user_wptr(mm, wptr, wptr_val))
  288. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  289. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  290. WREG32(mmCP_HQD_ACTIVE, data);
  291. release_queue(kgd);
  292. return 0;
  293. }
  294. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
  295. {
  296. return 0;
  297. }
  298. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  299. uint32_t pipe_id, uint32_t queue_id)
  300. {
  301. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  302. uint32_t act;
  303. bool retval = false;
  304. uint32_t low, high;
  305. acquire_queue(kgd, pipe_id, queue_id);
  306. act = RREG32(mmCP_HQD_ACTIVE);
  307. if (act) {
  308. low = lower_32_bits(queue_address >> 8);
  309. high = upper_32_bits(queue_address >> 8);
  310. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  311. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  312. retval = true;
  313. }
  314. release_queue(kgd);
  315. return retval;
  316. }
  317. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  318. {
  319. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  320. struct cik_sdma_rlc_registers *m;
  321. uint32_t sdma_base_addr;
  322. uint32_t sdma_rlc_rb_cntl;
  323. m = get_sdma_mqd(mqd);
  324. sdma_base_addr = get_sdma_base_addr(m);
  325. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  326. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  327. return true;
  328. return false;
  329. }
  330. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  331. enum kfd_preempt_type reset_type,
  332. unsigned int utimeout, uint32_t pipe_id,
  333. uint32_t queue_id)
  334. {
  335. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  336. uint32_t temp;
  337. enum hqd_dequeue_request_type type;
  338. unsigned long flags, end_jiffies;
  339. int retry;
  340. struct vi_mqd *m = get_mqd(mqd);
  341. acquire_queue(kgd, pipe_id, queue_id);
  342. if (m->cp_hqd_vmid == 0)
  343. WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
  344. switch (reset_type) {
  345. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  346. type = DRAIN_PIPE;
  347. break;
  348. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  349. type = RESET_WAVES;
  350. break;
  351. default:
  352. type = DRAIN_PIPE;
  353. break;
  354. }
  355. /* Workaround: If IQ timer is active and the wait time is close to or
  356. * equal to 0, dequeueing is not safe. Wait until either the wait time
  357. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  358. * cleared before continuing. Also, ensure wait times are set to at
  359. * least 0x3.
  360. */
  361. local_irq_save(flags);
  362. preempt_disable();
  363. retry = 5000; /* wait for 500 usecs at maximum */
  364. while (true) {
  365. temp = RREG32(mmCP_HQD_IQ_TIMER);
  366. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  367. pr_debug("HW is processing IQ\n");
  368. goto loop;
  369. }
  370. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  371. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  372. == 3) /* SEM-rearm is safe */
  373. break;
  374. /* Wait time 3 is safe for CP, but our MMIO read/write
  375. * time is close to 1 microsecond, so check for 10 to
  376. * leave more buffer room
  377. */
  378. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  379. >= 10)
  380. break;
  381. pr_debug("IQ timer is active\n");
  382. } else
  383. break;
  384. loop:
  385. if (!retry) {
  386. pr_err("CP HQD IQ timer status time out\n");
  387. break;
  388. }
  389. ndelay(100);
  390. --retry;
  391. }
  392. retry = 1000;
  393. while (true) {
  394. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  395. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  396. break;
  397. pr_debug("Dequeue request is pending\n");
  398. if (!retry) {
  399. pr_err("CP HQD dequeue request time out\n");
  400. break;
  401. }
  402. ndelay(100);
  403. --retry;
  404. }
  405. local_irq_restore(flags);
  406. preempt_enable();
  407. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  408. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  409. while (true) {
  410. temp = RREG32(mmCP_HQD_ACTIVE);
  411. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  412. break;
  413. if (time_after(jiffies, end_jiffies)) {
  414. pr_err("cp queue preemption time out.\n");
  415. release_queue(kgd);
  416. return -ETIME;
  417. }
  418. usleep_range(500, 1000);
  419. }
  420. release_queue(kgd);
  421. return 0;
  422. }
  423. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  424. unsigned int utimeout)
  425. {
  426. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  427. struct cik_sdma_rlc_registers *m;
  428. uint32_t sdma_base_addr;
  429. uint32_t temp;
  430. int timeout = utimeout;
  431. m = get_sdma_mqd(mqd);
  432. sdma_base_addr = get_sdma_base_addr(m);
  433. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  434. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  435. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  436. while (true) {
  437. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  438. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  439. break;
  440. if (timeout <= 0)
  441. return -ETIME;
  442. msleep(20);
  443. timeout -= 20;
  444. }
  445. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  446. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
  447. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
  448. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
  449. return 0;
  450. }
  451. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  452. uint8_t vmid)
  453. {
  454. uint32_t reg;
  455. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  456. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  457. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  458. }
  459. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  460. uint8_t vmid)
  461. {
  462. uint32_t reg;
  463. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  464. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  465. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  466. }
  467. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  468. {
  469. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  470. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  471. }
  472. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  473. {
  474. return 0;
  475. }
  476. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  477. unsigned int watch_point_id,
  478. uint32_t cntl_val,
  479. uint32_t addr_hi,
  480. uint32_t addr_lo)
  481. {
  482. return 0;
  483. }
  484. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  485. uint32_t gfx_index_val,
  486. uint32_t sq_cmd)
  487. {
  488. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  489. uint32_t data = 0;
  490. mutex_lock(&adev->grbm_idx_mutex);
  491. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  492. WREG32(mmSQ_CMD, sq_cmd);
  493. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  494. INSTANCE_BROADCAST_WRITES, 1);
  495. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  496. SH_BROADCAST_WRITES, 1);
  497. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  498. SE_BROADCAST_WRITES, 1);
  499. WREG32(mmGRBM_GFX_INDEX, data);
  500. mutex_unlock(&adev->grbm_idx_mutex);
  501. return 0;
  502. }
  503. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  504. unsigned int watch_point_id,
  505. unsigned int reg_offset)
  506. {
  507. return 0;
  508. }
  509. static void set_scratch_backing_va(struct kgd_dev *kgd,
  510. uint64_t va, uint32_t vmid)
  511. {
  512. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  513. lock_srbm(kgd, 0, 0, 0, vmid);
  514. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  515. unlock_srbm(kgd);
  516. }
  517. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  518. {
  519. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  520. const union amdgpu_firmware_header *hdr;
  521. BUG_ON(kgd == NULL);
  522. switch (type) {
  523. case KGD_ENGINE_PFP:
  524. hdr = (const union amdgpu_firmware_header *)
  525. adev->gfx.pfp_fw->data;
  526. break;
  527. case KGD_ENGINE_ME:
  528. hdr = (const union amdgpu_firmware_header *)
  529. adev->gfx.me_fw->data;
  530. break;
  531. case KGD_ENGINE_CE:
  532. hdr = (const union amdgpu_firmware_header *)
  533. adev->gfx.ce_fw->data;
  534. break;
  535. case KGD_ENGINE_MEC1:
  536. hdr = (const union amdgpu_firmware_header *)
  537. adev->gfx.mec_fw->data;
  538. break;
  539. case KGD_ENGINE_MEC2:
  540. hdr = (const union amdgpu_firmware_header *)
  541. adev->gfx.mec2_fw->data;
  542. break;
  543. case KGD_ENGINE_RLC:
  544. hdr = (const union amdgpu_firmware_header *)
  545. adev->gfx.rlc_fw->data;
  546. break;
  547. case KGD_ENGINE_SDMA1:
  548. hdr = (const union amdgpu_firmware_header *)
  549. adev->sdma.instance[0].fw->data;
  550. break;
  551. case KGD_ENGINE_SDMA2:
  552. hdr = (const union amdgpu_firmware_header *)
  553. adev->sdma.instance[1].fw->data;
  554. break;
  555. default:
  556. return 0;
  557. }
  558. if (hdr == NULL)
  559. return 0;
  560. /* Only 12 bit in use*/
  561. return hdr->common.ucode_version;
  562. }