amdgpu_amdkfd_gfx_v7.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  91. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  92. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  93. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  94. uint32_t queue_id, uint32_t __user *wptr,
  95. uint32_t wptr_shift, uint32_t wptr_mask,
  96. struct mm_struct *mm);
  97. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
  98. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  99. uint32_t pipe_id, uint32_t queue_id);
  100. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  101. enum kfd_preempt_type reset_type,
  102. unsigned int utimeout, uint32_t pipe_id,
  103. uint32_t queue_id);
  104. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  105. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  106. unsigned int utimeout);
  107. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  108. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  109. unsigned int watch_point_id,
  110. uint32_t cntl_val,
  111. uint32_t addr_hi,
  112. uint32_t addr_lo);
  113. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  114. uint32_t gfx_index_val,
  115. uint32_t sq_cmd);
  116. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  117. unsigned int watch_point_id,
  118. unsigned int reg_offset);
  119. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  120. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  121. uint8_t vmid);
  122. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  123. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  124. static void set_scratch_backing_va(struct kgd_dev *kgd,
  125. uint64_t va, uint32_t vmid);
  126. /* Because of REG_GET_FIELD() being used, we put this function in the
  127. * asic specific file.
  128. */
  129. static int get_tile_config(struct kgd_dev *kgd,
  130. struct tile_config *config)
  131. {
  132. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  133. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  134. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  135. MC_ARB_RAMCFG, NOOFBANK);
  136. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  137. MC_ARB_RAMCFG, NOOFRANKS);
  138. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  139. config->num_tile_configs =
  140. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  141. config->macro_tile_config_ptr =
  142. adev->gfx.config.macrotile_mode_array;
  143. config->num_macro_tile_configs =
  144. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  145. return 0;
  146. }
  147. static const struct kfd2kgd_calls kfd2kgd = {
  148. .init_gtt_mem_allocation = alloc_gtt_mem,
  149. .free_gtt_mem = free_gtt_mem,
  150. .get_vmem_size = get_vmem_size,
  151. .get_gpu_clock_counter = get_gpu_clock_counter,
  152. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  153. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  154. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  155. .init_pipeline = kgd_init_pipeline,
  156. .init_interrupts = kgd_init_interrupts,
  157. .hqd_load = kgd_hqd_load,
  158. .hqd_sdma_load = kgd_hqd_sdma_load,
  159. .hqd_is_occupied = kgd_hqd_is_occupied,
  160. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  161. .hqd_destroy = kgd_hqd_destroy,
  162. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  163. .address_watch_disable = kgd_address_watch_disable,
  164. .address_watch_execute = kgd_address_watch_execute,
  165. .wave_control_execute = kgd_wave_control_execute,
  166. .address_watch_get_offset = kgd_address_watch_get_offset,
  167. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  168. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  169. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  170. .get_fw_version = get_fw_version,
  171. .set_scratch_backing_va = set_scratch_backing_va,
  172. .get_tile_config = get_tile_config,
  173. };
  174. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  175. {
  176. return (struct kfd2kgd_calls *)&kfd2kgd;
  177. }
  178. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  179. {
  180. return (struct amdgpu_device *)kgd;
  181. }
  182. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  183. uint32_t queue, uint32_t vmid)
  184. {
  185. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  186. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  187. mutex_lock(&adev->srbm_mutex);
  188. WREG32(mmSRBM_GFX_CNTL, value);
  189. }
  190. static void unlock_srbm(struct kgd_dev *kgd)
  191. {
  192. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  193. WREG32(mmSRBM_GFX_CNTL, 0);
  194. mutex_unlock(&adev->srbm_mutex);
  195. }
  196. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  197. uint32_t queue_id)
  198. {
  199. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  200. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  201. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  202. lock_srbm(kgd, mec, pipe, queue_id, 0);
  203. }
  204. static void release_queue(struct kgd_dev *kgd)
  205. {
  206. unlock_srbm(kgd);
  207. }
  208. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  209. uint32_t sh_mem_config,
  210. uint32_t sh_mem_ape1_base,
  211. uint32_t sh_mem_ape1_limit,
  212. uint32_t sh_mem_bases)
  213. {
  214. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  215. lock_srbm(kgd, 0, 0, 0, vmid);
  216. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  217. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  218. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  219. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  220. unlock_srbm(kgd);
  221. }
  222. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  223. unsigned int vmid)
  224. {
  225. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  226. /*
  227. * We have to assume that there is no outstanding mapping.
  228. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  229. * a mapping is in progress or because a mapping finished and the
  230. * SW cleared it. So the protocol is to always wait & clear.
  231. */
  232. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  233. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  234. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  235. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  236. cpu_relax();
  237. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  238. /* Mapping vmid to pasid also for IH block */
  239. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  240. return 0;
  241. }
  242. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  243. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  244. {
  245. /* amdgpu owns the per-pipe state */
  246. return 0;
  247. }
  248. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  249. {
  250. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  251. uint32_t mec;
  252. uint32_t pipe;
  253. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  254. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  255. lock_srbm(kgd, mec, pipe, 0, 0);
  256. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  257. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  258. unlock_srbm(kgd);
  259. return 0;
  260. }
  261. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  262. {
  263. uint32_t retval;
  264. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  265. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  266. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  267. return retval;
  268. }
  269. static inline struct cik_mqd *get_mqd(void *mqd)
  270. {
  271. return (struct cik_mqd *)mqd;
  272. }
  273. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  274. {
  275. return (struct cik_sdma_rlc_registers *)mqd;
  276. }
  277. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  278. uint32_t queue_id, uint32_t __user *wptr,
  279. uint32_t wptr_shift, uint32_t wptr_mask,
  280. struct mm_struct *mm)
  281. {
  282. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  283. struct cik_mqd *m;
  284. uint32_t *mqd_hqd;
  285. uint32_t reg, wptr_val, data;
  286. m = get_mqd(mqd);
  287. acquire_queue(kgd, pipe_id, queue_id);
  288. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  289. mqd_hqd = &m->cp_mqd_base_addr_lo;
  290. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  291. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  292. /* Copy userspace write pointer value to register.
  293. * Activate doorbell logic to monitor subsequent changes.
  294. */
  295. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  296. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  297. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  298. if (read_user_wptr(mm, wptr, wptr_val))
  299. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  300. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  301. WREG32(mmCP_HQD_ACTIVE, data);
  302. release_queue(kgd);
  303. return 0;
  304. }
  305. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
  306. {
  307. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  308. struct cik_sdma_rlc_registers *m;
  309. uint32_t sdma_base_addr;
  310. m = get_sdma_mqd(mqd);
  311. sdma_base_addr = get_sdma_base_addr(m);
  312. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  313. m->sdma_rlc_virtual_addr);
  314. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
  315. m->sdma_rlc_rb_base);
  316. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  317. m->sdma_rlc_rb_base_hi);
  318. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  319. m->sdma_rlc_rb_rptr_addr_lo);
  320. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  321. m->sdma_rlc_rb_rptr_addr_hi);
  322. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
  323. m->sdma_rlc_doorbell);
  324. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  325. m->sdma_rlc_rb_cntl);
  326. return 0;
  327. }
  328. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  329. uint32_t pipe_id, uint32_t queue_id)
  330. {
  331. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  332. uint32_t act;
  333. bool retval = false;
  334. uint32_t low, high;
  335. acquire_queue(kgd, pipe_id, queue_id);
  336. act = RREG32(mmCP_HQD_ACTIVE);
  337. if (act) {
  338. low = lower_32_bits(queue_address >> 8);
  339. high = upper_32_bits(queue_address >> 8);
  340. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  341. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  342. retval = true;
  343. }
  344. release_queue(kgd);
  345. return retval;
  346. }
  347. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  348. {
  349. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  350. struct cik_sdma_rlc_registers *m;
  351. uint32_t sdma_base_addr;
  352. uint32_t sdma_rlc_rb_cntl;
  353. m = get_sdma_mqd(mqd);
  354. sdma_base_addr = get_sdma_base_addr(m);
  355. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  356. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  357. return true;
  358. return false;
  359. }
  360. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  361. enum kfd_preempt_type reset_type,
  362. unsigned int utimeout, uint32_t pipe_id,
  363. uint32_t queue_id)
  364. {
  365. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  366. uint32_t temp;
  367. enum hqd_dequeue_request_type type;
  368. unsigned long flags, end_jiffies;
  369. int retry;
  370. acquire_queue(kgd, pipe_id, queue_id);
  371. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  372. switch (reset_type) {
  373. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  374. type = DRAIN_PIPE;
  375. break;
  376. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  377. type = RESET_WAVES;
  378. break;
  379. default:
  380. type = DRAIN_PIPE;
  381. break;
  382. }
  383. /* Workaround: If IQ timer is active and the wait time is close to or
  384. * equal to 0, dequeueing is not safe. Wait until either the wait time
  385. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  386. * cleared before continuing. Also, ensure wait times are set to at
  387. * least 0x3.
  388. */
  389. local_irq_save(flags);
  390. preempt_disable();
  391. retry = 5000; /* wait for 500 usecs at maximum */
  392. while (true) {
  393. temp = RREG32(mmCP_HQD_IQ_TIMER);
  394. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  395. pr_debug("HW is processing IQ\n");
  396. goto loop;
  397. }
  398. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  399. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  400. == 3) /* SEM-rearm is safe */
  401. break;
  402. /* Wait time 3 is safe for CP, but our MMIO read/write
  403. * time is close to 1 microsecond, so check for 10 to
  404. * leave more buffer room
  405. */
  406. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  407. >= 10)
  408. break;
  409. pr_debug("IQ timer is active\n");
  410. } else
  411. break;
  412. loop:
  413. if (!retry) {
  414. pr_err("CP HQD IQ timer status time out\n");
  415. break;
  416. }
  417. ndelay(100);
  418. --retry;
  419. }
  420. retry = 1000;
  421. while (true) {
  422. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  423. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  424. break;
  425. pr_debug("Dequeue request is pending\n");
  426. if (!retry) {
  427. pr_err("CP HQD dequeue request time out\n");
  428. break;
  429. }
  430. ndelay(100);
  431. --retry;
  432. }
  433. local_irq_restore(flags);
  434. preempt_enable();
  435. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  436. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  437. while (true) {
  438. temp = RREG32(mmCP_HQD_ACTIVE);
  439. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  440. break;
  441. if (time_after(jiffies, end_jiffies)) {
  442. pr_err("cp queue preemption time out\n");
  443. release_queue(kgd);
  444. return -ETIME;
  445. }
  446. usleep_range(500, 1000);
  447. }
  448. release_queue(kgd);
  449. return 0;
  450. }
  451. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  452. unsigned int utimeout)
  453. {
  454. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  455. struct cik_sdma_rlc_registers *m;
  456. uint32_t sdma_base_addr;
  457. uint32_t temp;
  458. int timeout = utimeout;
  459. m = get_sdma_mqd(mqd);
  460. sdma_base_addr = get_sdma_base_addr(m);
  461. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  462. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  463. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  464. while (true) {
  465. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  466. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  467. break;
  468. if (timeout <= 0)
  469. return -ETIME;
  470. msleep(20);
  471. timeout -= 20;
  472. }
  473. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  474. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
  475. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
  476. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
  477. return 0;
  478. }
  479. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  480. {
  481. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  482. union TCP_WATCH_CNTL_BITS cntl;
  483. unsigned int i;
  484. cntl.u32All = 0;
  485. cntl.bitfields.valid = 0;
  486. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  487. cntl.bitfields.atc = 1;
  488. /* Turning off this address until we set all the registers */
  489. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  490. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  491. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  492. return 0;
  493. }
  494. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  495. unsigned int watch_point_id,
  496. uint32_t cntl_val,
  497. uint32_t addr_hi,
  498. uint32_t addr_lo)
  499. {
  500. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  501. union TCP_WATCH_CNTL_BITS cntl;
  502. cntl.u32All = cntl_val;
  503. /* Turning off this watch point until we set all the registers */
  504. cntl.bitfields.valid = 0;
  505. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  506. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  507. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  508. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  509. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  510. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  511. /* Enable the watch point */
  512. cntl.bitfields.valid = 1;
  513. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  514. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  515. return 0;
  516. }
  517. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  518. uint32_t gfx_index_val,
  519. uint32_t sq_cmd)
  520. {
  521. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  522. uint32_t data;
  523. mutex_lock(&adev->grbm_idx_mutex);
  524. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  525. WREG32(mmSQ_CMD, sq_cmd);
  526. /* Restore the GRBM_GFX_INDEX register */
  527. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  528. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  529. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  530. WREG32(mmGRBM_GFX_INDEX, data);
  531. mutex_unlock(&adev->grbm_idx_mutex);
  532. return 0;
  533. }
  534. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  535. unsigned int watch_point_id,
  536. unsigned int reg_offset)
  537. {
  538. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  539. }
  540. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  541. uint8_t vmid)
  542. {
  543. uint32_t reg;
  544. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  545. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  546. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  547. }
  548. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  549. uint8_t vmid)
  550. {
  551. uint32_t reg;
  552. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  553. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  554. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  555. }
  556. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  557. {
  558. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  559. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  560. }
  561. static void set_scratch_backing_va(struct kgd_dev *kgd,
  562. uint64_t va, uint32_t vmid)
  563. {
  564. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  565. lock_srbm(kgd, 0, 0, 0, vmid);
  566. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  567. unlock_srbm(kgd);
  568. }
  569. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  570. {
  571. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  572. const union amdgpu_firmware_header *hdr;
  573. BUG_ON(kgd == NULL);
  574. switch (type) {
  575. case KGD_ENGINE_PFP:
  576. hdr = (const union amdgpu_firmware_header *)
  577. adev->gfx.pfp_fw->data;
  578. break;
  579. case KGD_ENGINE_ME:
  580. hdr = (const union amdgpu_firmware_header *)
  581. adev->gfx.me_fw->data;
  582. break;
  583. case KGD_ENGINE_CE:
  584. hdr = (const union amdgpu_firmware_header *)
  585. adev->gfx.ce_fw->data;
  586. break;
  587. case KGD_ENGINE_MEC1:
  588. hdr = (const union amdgpu_firmware_header *)
  589. adev->gfx.mec_fw->data;
  590. break;
  591. case KGD_ENGINE_MEC2:
  592. hdr = (const union amdgpu_firmware_header *)
  593. adev->gfx.mec2_fw->data;
  594. break;
  595. case KGD_ENGINE_RLC:
  596. hdr = (const union amdgpu_firmware_header *)
  597. adev->gfx.rlc_fw->data;
  598. break;
  599. case KGD_ENGINE_SDMA1:
  600. hdr = (const union amdgpu_firmware_header *)
  601. adev->sdma.instance[0].fw->data;
  602. break;
  603. case KGD_ENGINE_SDMA2:
  604. hdr = (const union amdgpu_firmware_header *)
  605. adev->sdma.instance[1].fw->data;
  606. break;
  607. default:
  608. return 0;
  609. }
  610. if (hdr == NULL)
  611. return 0;
  612. /* Only 12 bit in use*/
  613. return hdr->common.ucode_version;
  614. }