pnd2_edac.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600
  1. /*
  2. * Driver for Pondicherry2 memory controller.
  3. *
  4. * Copyright (c) 2016, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * [Derived from sb_edac.c]
  16. *
  17. * Translation of system physical addresses to DIMM addresses
  18. * is a two stage process:
  19. *
  20. * First the Pondicherry 2 memory controller handles slice and channel interleaving
  21. * in "sys2pmi()". This is (almost) completley common between platforms.
  22. *
  23. * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
  24. * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/pci.h>
  29. #include <linux/pci_ids.h>
  30. #include <linux/slab.h>
  31. #include <linux/delay.h>
  32. #include <linux/edac.h>
  33. #include <linux/mmzone.h>
  34. #include <linux/smp.h>
  35. #include <linux/bitmap.h>
  36. #include <linux/math64.h>
  37. #include <linux/mod_devicetable.h>
  38. #include <asm/cpu_device_id.h>
  39. #include <asm/intel-family.h>
  40. #include <asm/processor.h>
  41. #include <asm/mce.h>
  42. #include "edac_mc.h"
  43. #include "edac_module.h"
  44. #include "pnd2_edac.h"
  45. #define APL_NUM_CHANNELS 4
  46. #define DNV_NUM_CHANNELS 2
  47. #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */
  48. enum type {
  49. APL,
  50. DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
  51. };
  52. struct dram_addr {
  53. int chan;
  54. int dimm;
  55. int rank;
  56. int bank;
  57. int row;
  58. int col;
  59. };
  60. struct pnd2_pvt {
  61. int dimm_geom[APL_NUM_CHANNELS];
  62. u64 tolm, tohm;
  63. };
  64. /*
  65. * System address space is divided into multiple regions with
  66. * different interleave rules in each. The as0/as1 regions
  67. * have no interleaving at all. The as2 region is interleaved
  68. * between two channels. The mot region is magic and may overlap
  69. * other regions, with its interleave rules taking precedence.
  70. * Addresses not in any of these regions are interleaved across
  71. * all four channels.
  72. */
  73. static struct region {
  74. u64 base;
  75. u64 limit;
  76. u8 enabled;
  77. } mot, as0, as1, as2;
  78. static struct dunit_ops {
  79. char *name;
  80. enum type type;
  81. int pmiaddr_shift;
  82. int pmiidx_shift;
  83. int channels;
  84. int dimms_per_channel;
  85. int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
  86. int (*get_registers)(void);
  87. int (*check_ecc)(void);
  88. void (*mk_region)(char *name, struct region *rp, void *asym);
  89. void (*get_dimm_config)(struct mem_ctl_info *mci);
  90. int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
  91. struct dram_addr *daddr, char *msg);
  92. } *ops;
  93. static struct mem_ctl_info *pnd2_mci;
  94. #define PND2_MSG_SIZE 256
  95. /* Debug macros */
  96. #define pnd2_printk(level, fmt, arg...) \
  97. edac_printk(level, "pnd2", fmt, ##arg)
  98. #define pnd2_mc_printk(mci, level, fmt, arg...) \
  99. edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
  100. #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
  101. #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
  102. #define SELECTOR_DISABLED (-1)
  103. #define _4GB (1ul << 32)
  104. #define PMI_ADDRESS_WIDTH 31
  105. #define PND_MAX_PHYS_BIT 39
  106. #define APL_ASYMSHIFT 28
  107. #define DNV_ASYMSHIFT 31
  108. #define CH_HASH_MASK_LSB 6
  109. #define SLICE_HASH_MASK_LSB 6
  110. #define MOT_SLC_INTLV_BIT 12
  111. #define LOG2_PMI_ADDR_GRANULARITY 5
  112. #define MOT_SHIFT 24
  113. #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  114. #define U64_LSHIFT(val, s) ((u64)(val) << (s))
  115. /*
  116. * On Apollo Lake we access memory controller registers via a
  117. * side-band mailbox style interface in a hidden PCI device
  118. * configuration space.
  119. */
  120. static struct pci_bus *p2sb_bus;
  121. #define P2SB_DEVFN PCI_DEVFN(0xd, 0)
  122. #define P2SB_ADDR_OFF 0xd0
  123. #define P2SB_DATA_OFF 0xd4
  124. #define P2SB_STAT_OFF 0xd8
  125. #define P2SB_ROUT_OFF 0xda
  126. #define P2SB_EADD_OFF 0xdc
  127. #define P2SB_HIDE_OFF 0xe1
  128. #define P2SB_BUSY 1
  129. #define P2SB_READ(size, off, ptr) \
  130. pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
  131. #define P2SB_WRITE(size, off, val) \
  132. pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)
  133. static bool p2sb_is_busy(u16 *status)
  134. {
  135. P2SB_READ(word, P2SB_STAT_OFF, status);
  136. return !!(*status & P2SB_BUSY);
  137. }
  138. static int _apl_rd_reg(int port, int off, int op, u32 *data)
  139. {
  140. int retries = 0xff, ret;
  141. u16 status;
  142. u8 hidden;
  143. /* Unhide the P2SB device, if it's hidden */
  144. P2SB_READ(byte, P2SB_HIDE_OFF, &hidden);
  145. if (hidden)
  146. P2SB_WRITE(byte, P2SB_HIDE_OFF, 0);
  147. if (p2sb_is_busy(&status)) {
  148. ret = -EAGAIN;
  149. goto out;
  150. }
  151. P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off);
  152. P2SB_WRITE(dword, P2SB_DATA_OFF, 0);
  153. P2SB_WRITE(dword, P2SB_EADD_OFF, 0);
  154. P2SB_WRITE(word, P2SB_ROUT_OFF, 0);
  155. P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY);
  156. while (p2sb_is_busy(&status)) {
  157. if (retries-- == 0) {
  158. ret = -EBUSY;
  159. goto out;
  160. }
  161. }
  162. P2SB_READ(dword, P2SB_DATA_OFF, data);
  163. ret = (status >> 1) & 0x3;
  164. out:
  165. /* Hide the P2SB device, if it was hidden before */
  166. if (hidden)
  167. P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden);
  168. return ret;
  169. }
  170. static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
  171. {
  172. int ret = 0;
  173. edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
  174. switch (sz) {
  175. case 8:
  176. ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4));
  177. /* fall through */
  178. case 4:
  179. ret |= _apl_rd_reg(port, off, op, (u32 *)data);
  180. pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
  181. sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
  182. break;
  183. }
  184. return ret;
  185. }
  186. static u64 get_mem_ctrl_hub_base_addr(void)
  187. {
  188. struct b_cr_mchbar_lo_pci lo;
  189. struct b_cr_mchbar_hi_pci hi;
  190. struct pci_dev *pdev;
  191. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
  192. if (pdev) {
  193. pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
  194. pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
  195. pci_dev_put(pdev);
  196. } else {
  197. return 0;
  198. }
  199. if (!lo.enable) {
  200. edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
  201. return 0;
  202. }
  203. return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
  204. }
  205. static u64 get_sideband_reg_base_addr(void)
  206. {
  207. struct pci_dev *pdev;
  208. u32 hi, lo;
  209. u8 hidden;
  210. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
  211. if (pdev) {
  212. /* Unhide the P2SB device, if it's hidden */
  213. pci_read_config_byte(pdev, 0xe1, &hidden);
  214. if (hidden)
  215. pci_write_config_byte(pdev, 0xe1, 0);
  216. pci_read_config_dword(pdev, 0x10, &lo);
  217. pci_read_config_dword(pdev, 0x14, &hi);
  218. lo &= 0xfffffff0;
  219. /* Hide the P2SB device, if it was hidden before */
  220. if (hidden)
  221. pci_write_config_byte(pdev, 0xe1, hidden);
  222. pci_dev_put(pdev);
  223. return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
  224. } else {
  225. return 0xfd000000;
  226. }
  227. }
  228. static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
  229. {
  230. struct pci_dev *pdev;
  231. char *base;
  232. u64 addr;
  233. if (op == 4) {
  234. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
  235. if (!pdev)
  236. return -ENODEV;
  237. pci_read_config_dword(pdev, off, data);
  238. pci_dev_put(pdev);
  239. } else {
  240. /* MMIO via memory controller hub base address */
  241. if (op == 0 && port == 0x4c) {
  242. addr = get_mem_ctrl_hub_base_addr();
  243. if (!addr)
  244. return -ENODEV;
  245. } else {
  246. /* MMIO via sideband register base address */
  247. addr = get_sideband_reg_base_addr();
  248. if (!addr)
  249. return -ENODEV;
  250. addr += (port << 16);
  251. }
  252. base = ioremap((resource_size_t)addr, 0x10000);
  253. if (!base)
  254. return -ENODEV;
  255. if (sz == 8)
  256. *(u32 *)(data + 4) = *(u32 *)(base + off + 4);
  257. *(u32 *)data = *(u32 *)(base + off);
  258. iounmap(base);
  259. }
  260. edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
  261. (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);
  262. return 0;
  263. }
  264. #define RD_REGP(regp, regname, port) \
  265. ops->rd_reg(port, \
  266. regname##_offset, \
  267. regname##_r_opcode, \
  268. regp, sizeof(struct regname), \
  269. #regname)
  270. #define RD_REG(regp, regname) \
  271. ops->rd_reg(regname ## _port, \
  272. regname##_offset, \
  273. regname##_r_opcode, \
  274. regp, sizeof(struct regname), \
  275. #regname)
  276. static u64 top_lm, top_hm;
  277. static bool two_slices;
  278. static bool two_channels; /* Both PMI channels in one slice enabled */
  279. static u8 sym_chan_mask;
  280. static u8 asym_chan_mask;
  281. static u8 chan_mask;
  282. static int slice_selector = -1;
  283. static int chan_selector = -1;
  284. static u64 slice_hash_mask;
  285. static u64 chan_hash_mask;
  286. static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
  287. {
  288. rp->enabled = 1;
  289. rp->base = base;
  290. rp->limit = limit;
  291. edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
  292. }
  293. static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
  294. {
  295. if (mask == 0) {
  296. pr_info(FW_BUG "MOT mask cannot be zero\n");
  297. return;
  298. }
  299. if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
  300. pr_info(FW_BUG "MOT mask not power of two\n");
  301. return;
  302. }
  303. if (base & ~mask) {
  304. pr_info(FW_BUG "MOT region base/mask alignment error\n");
  305. return;
  306. }
  307. rp->base = base;
  308. rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
  309. rp->enabled = 1;
  310. edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
  311. }
  312. static bool in_region(struct region *rp, u64 addr)
  313. {
  314. if (!rp->enabled)
  315. return false;
  316. return rp->base <= addr && addr <= rp->limit;
  317. }
  318. static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
  319. {
  320. int mask = 0;
  321. if (!p->slice_0_mem_disabled)
  322. mask |= p->sym_slice0_channel_enabled;
  323. if (!p->slice_1_disabled)
  324. mask |= p->sym_slice1_channel_enabled << 2;
  325. if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
  326. mask &= 0x5;
  327. return mask;
  328. }
  329. static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
  330. struct b_cr_asym_mem_region0_mchbar *as0,
  331. struct b_cr_asym_mem_region1_mchbar *as1,
  332. struct b_cr_asym_2way_mem_region_mchbar *as2way)
  333. {
  334. const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
  335. int mask = 0;
  336. if (as2way->asym_2way_interleave_enable)
  337. mask = intlv[as2way->asym_2way_intlv_mode];
  338. if (as0->slice0_asym_enable)
  339. mask |= (1 << as0->slice0_asym_channel_select);
  340. if (as1->slice1_asym_enable)
  341. mask |= (4 << as1->slice1_asym_channel_select);
  342. if (p->slice_0_mem_disabled)
  343. mask &= 0xc;
  344. if (p->slice_1_disabled)
  345. mask &= 0x3;
  346. if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
  347. mask &= 0x5;
  348. return mask;
  349. }
  350. static struct b_cr_tolud_pci tolud;
  351. static struct b_cr_touud_lo_pci touud_lo;
  352. static struct b_cr_touud_hi_pci touud_hi;
  353. static struct b_cr_asym_mem_region0_mchbar asym0;
  354. static struct b_cr_asym_mem_region1_mchbar asym1;
  355. static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
  356. static struct b_cr_mot_out_base_mchbar mot_base;
  357. static struct b_cr_mot_out_mask_mchbar mot_mask;
  358. static struct b_cr_slice_channel_hash chash;
  359. /* Apollo Lake dunit */
  360. /*
  361. * Validated on board with just two DIMMs in the [0] and [2] positions
  362. * in this array. Other port number matches documentation, but caution
  363. * advised.
  364. */
  365. static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
  366. static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];
  367. /* Denverton dunit */
  368. static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
  369. static struct d_cr_dsch dsch;
  370. static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
  371. static struct d_cr_drp drp[DNV_NUM_CHANNELS];
  372. static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
  373. static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
  374. static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
  375. static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
  376. static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
  377. static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];
  378. static void apl_mk_region(char *name, struct region *rp, void *asym)
  379. {
  380. struct b_cr_asym_mem_region0_mchbar *a = asym;
  381. mk_region(name, rp,
  382. U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
  383. U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
  384. GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
  385. }
  386. static void dnv_mk_region(char *name, struct region *rp, void *asym)
  387. {
  388. struct b_cr_asym_mem_region_denverton *a = asym;
  389. mk_region(name, rp,
  390. U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
  391. U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
  392. GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
  393. }
  394. static int apl_get_registers(void)
  395. {
  396. int ret = -ENODEV;
  397. int i;
  398. if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
  399. return -ENODEV;
  400. /*
  401. * RD_REGP() will fail for unpopulated or non-existent
  402. * DIMM slots. Return success if we find at least one DIMM.
  403. */
  404. for (i = 0; i < APL_NUM_CHANNELS; i++)
  405. if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
  406. ret = 0;
  407. return ret;
  408. }
  409. static int dnv_get_registers(void)
  410. {
  411. int i;
  412. if (RD_REG(&dsch, d_cr_dsch))
  413. return -ENODEV;
  414. for (i = 0; i < DNV_NUM_CHANNELS; i++)
  415. if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
  416. RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
  417. RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
  418. RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
  419. RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
  420. RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
  421. RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
  422. RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
  423. return -ENODEV;
  424. return 0;
  425. }
  426. /*
  427. * Read all the h/w config registers once here (they don't
  428. * change at run time. Figure out which address ranges have
  429. * which interleave characteristics.
  430. */
  431. static int get_registers(void)
  432. {
  433. const int intlv[] = { 10, 11, 12, 12 };
  434. if (RD_REG(&tolud, b_cr_tolud_pci) ||
  435. RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
  436. RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
  437. RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
  438. RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
  439. RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
  440. RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
  441. RD_REG(&chash, b_cr_slice_channel_hash))
  442. return -ENODEV;
  443. if (ops->get_registers())
  444. return -ENODEV;
  445. if (ops->type == DNV) {
  446. /* PMI channel idx (always 0) for asymmetric region */
  447. asym0.slice0_asym_channel_select = 0;
  448. asym1.slice1_asym_channel_select = 0;
  449. /* PMI channel bitmap (always 1) for symmetric region */
  450. chash.sym_slice0_channel_enabled = 0x1;
  451. chash.sym_slice1_channel_enabled = 0x1;
  452. }
  453. if (asym0.slice0_asym_enable)
  454. ops->mk_region("as0", &as0, &asym0);
  455. if (asym1.slice1_asym_enable)
  456. ops->mk_region("as1", &as1, &asym1);
  457. if (asym_2way.asym_2way_interleave_enable) {
  458. mk_region("as2way", &as2,
  459. U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
  460. U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
  461. GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
  462. }
  463. if (mot_base.imr_en) {
  464. mk_region_mask("mot", &mot,
  465. U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
  466. U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
  467. }
  468. top_lm = U64_LSHIFT(tolud.tolud, 20);
  469. top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);
  470. two_slices = !chash.slice_1_disabled &&
  471. !chash.slice_0_mem_disabled &&
  472. (chash.sym_slice0_channel_enabled != 0) &&
  473. (chash.sym_slice1_channel_enabled != 0);
  474. two_channels = !chash.ch_1_disabled &&
  475. !chash.enable_pmi_dual_data_mode &&
  476. ((chash.sym_slice0_channel_enabled == 3) ||
  477. (chash.sym_slice1_channel_enabled == 3));
  478. sym_chan_mask = gen_sym_mask(&chash);
  479. asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
  480. chan_mask = sym_chan_mask | asym_chan_mask;
  481. if (two_slices && !two_channels) {
  482. if (chash.hvm_mode)
  483. slice_selector = 29;
  484. else
  485. slice_selector = intlv[chash.interleave_mode];
  486. } else if (!two_slices && two_channels) {
  487. if (chash.hvm_mode)
  488. chan_selector = 29;
  489. else
  490. chan_selector = intlv[chash.interleave_mode];
  491. } else if (two_slices && two_channels) {
  492. if (chash.hvm_mode) {
  493. slice_selector = 29;
  494. chan_selector = 30;
  495. } else {
  496. slice_selector = intlv[chash.interleave_mode];
  497. chan_selector = intlv[chash.interleave_mode] + 1;
  498. }
  499. }
  500. if (two_slices) {
  501. if (!chash.hvm_mode)
  502. slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
  503. if (!two_channels)
  504. slice_hash_mask |= BIT_ULL(slice_selector);
  505. }
  506. if (two_channels) {
  507. if (!chash.hvm_mode)
  508. chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
  509. if (!two_slices)
  510. chan_hash_mask |= BIT_ULL(chan_selector);
  511. }
  512. return 0;
  513. }
  514. /* Get a contiguous memory address (remove the MMIO gap) */
  515. static u64 remove_mmio_gap(u64 sys)
  516. {
  517. return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
  518. }
  519. /* Squeeze out one address bit, shift upper part down to fill gap */
  520. static void remove_addr_bit(u64 *addr, int bitidx)
  521. {
  522. u64 mask;
  523. if (bitidx == -1)
  524. return;
  525. mask = (1ull << bitidx) - 1;
  526. *addr = ((*addr >> 1) & ~mask) | (*addr & mask);
  527. }
  528. /* XOR all the bits from addr specified in mask */
  529. static int hash_by_mask(u64 addr, u64 mask)
  530. {
  531. u64 result = addr & mask;
  532. result = (result >> 32) ^ result;
  533. result = (result >> 16) ^ result;
  534. result = (result >> 8) ^ result;
  535. result = (result >> 4) ^ result;
  536. result = (result >> 2) ^ result;
  537. result = (result >> 1) ^ result;
  538. return (int)result & 1;
  539. }
  540. /*
  541. * First stage decode. Take the system address and figure out which
  542. * second stage will deal with it based on interleave modes.
  543. */
  544. static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
  545. {
  546. u64 contig_addr, contig_base, contig_offset, contig_base_adj;
  547. int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
  548. MOT_CHAN_INTLV_BIT_1SLC_2CH;
  549. int slice_intlv_bit_rm = SELECTOR_DISABLED;
  550. int chan_intlv_bit_rm = SELECTOR_DISABLED;
  551. /* Determine if address is in the MOT region. */
  552. bool mot_hit = in_region(&mot, addr);
  553. /* Calculate the number of symmetric regions enabled. */
  554. int sym_channels = hweight8(sym_chan_mask);
  555. /*
  556. * The amount we need to shift the asym base can be determined by the
  557. * number of enabled symmetric channels.
  558. * NOTE: This can only work because symmetric memory is not supposed
  559. * to do a 3-way interleave.
  560. */
  561. int sym_chan_shift = sym_channels >> 1;
  562. /* Give up if address is out of range, or in MMIO gap */
  563. if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
  564. (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
  565. snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
  566. return -EINVAL;
  567. }
  568. /* Get a contiguous memory address (remove the MMIO gap) */
  569. contig_addr = remove_mmio_gap(addr);
  570. if (in_region(&as0, addr)) {
  571. *pmiidx = asym0.slice0_asym_channel_select;
  572. contig_base = remove_mmio_gap(as0.base);
  573. contig_offset = contig_addr - contig_base;
  574. contig_base_adj = (contig_base >> sym_chan_shift) *
  575. ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
  576. contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
  577. } else if (in_region(&as1, addr)) {
  578. *pmiidx = 2u + asym1.slice1_asym_channel_select;
  579. contig_base = remove_mmio_gap(as1.base);
  580. contig_offset = contig_addr - contig_base;
  581. contig_base_adj = (contig_base >> sym_chan_shift) *
  582. ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
  583. contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
  584. } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
  585. bool channel1;
  586. mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
  587. *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
  588. channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
  589. hash_by_mask(contig_addr, chan_hash_mask);
  590. *pmiidx |= (u32)channel1;
  591. contig_base = remove_mmio_gap(as2.base);
  592. chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
  593. contig_offset = contig_addr - contig_base;
  594. remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
  595. contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
  596. } else {
  597. /* Otherwise we're in normal, boring symmetric mode. */
  598. *pmiidx = 0u;
  599. if (two_slices) {
  600. bool slice1;
  601. if (mot_hit) {
  602. slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
  603. slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
  604. } else {
  605. slice_intlv_bit_rm = slice_selector;
  606. slice1 = hash_by_mask(addr, slice_hash_mask);
  607. }
  608. *pmiidx = (u32)slice1 << 1;
  609. }
  610. if (two_channels) {
  611. bool channel1;
  612. mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
  613. MOT_CHAN_INTLV_BIT_1SLC_2CH;
  614. if (mot_hit) {
  615. chan_intlv_bit_rm = mot_intlv_bit;
  616. channel1 = (addr >> mot_intlv_bit) & 1;
  617. } else {
  618. chan_intlv_bit_rm = chan_selector;
  619. channel1 = hash_by_mask(contig_addr, chan_hash_mask);
  620. }
  621. *pmiidx |= (u32)channel1;
  622. }
  623. }
  624. /* Remove the chan_selector bit first */
  625. remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
  626. /* Remove the slice bit (we remove it second because it must be lower */
  627. remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
  628. *pmiaddr = contig_addr;
  629. return 0;
  630. }
  631. /* Translate PMI address to memory (rank, row, bank, column) */
  632. #define C(n) (0x10 | (n)) /* column */
  633. #define B(n) (0x20 | (n)) /* bank */
  634. #define R(n) (0x40 | (n)) /* row */
  635. #define RS (0x80) /* rank */
  636. /* addrdec values */
  637. #define AMAP_1KB 0
  638. #define AMAP_2KB 1
  639. #define AMAP_4KB 2
  640. #define AMAP_RSVD 3
  641. /* dden values */
  642. #define DEN_4Gb 0
  643. #define DEN_8Gb 2
  644. /* dwid values */
  645. #define X8 0
  646. #define X16 1
  647. static struct dimm_geometry {
  648. u8 addrdec;
  649. u8 dden;
  650. u8 dwid;
  651. u8 rowbits, colbits;
  652. u16 bits[PMI_ADDRESS_WIDTH];
  653. } dimms[] = {
  654. {
  655. .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
  656. .rowbits = 15, .colbits = 10,
  657. .bits = {
  658. C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
  659. R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
  660. R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
  661. 0, 0, 0, 0
  662. }
  663. },
  664. {
  665. .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
  666. .rowbits = 16, .colbits = 10,
  667. .bits = {
  668. C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
  669. R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
  670. R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
  671. R(15), 0, 0, 0
  672. }
  673. },
  674. {
  675. .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
  676. .rowbits = 16, .colbits = 10,
  677. .bits = {
  678. C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
  679. R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
  680. R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
  681. R(15), 0, 0, 0
  682. }
  683. },
  684. {
  685. .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
  686. .rowbits = 16, .colbits = 11,
  687. .bits = {
  688. C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
  689. R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
  690. R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13),
  691. R(14), R(15), 0, 0
  692. }
  693. },
  694. {
  695. .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
  696. .rowbits = 15, .colbits = 10,
  697. .bits = {
  698. C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
  699. R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
  700. R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
  701. 0, 0, 0, 0
  702. }
  703. },
  704. {
  705. .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
  706. .rowbits = 16, .colbits = 10,
  707. .bits = {
  708. C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
  709. R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
  710. R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
  711. R(15), 0, 0, 0
  712. }
  713. },
  714. {
  715. .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
  716. .rowbits = 16, .colbits = 10,
  717. .bits = {
  718. C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
  719. R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
  720. R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
  721. R(15), 0, 0, 0
  722. }
  723. },
  724. {
  725. .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
  726. .rowbits = 16, .colbits = 11,
  727. .bits = {
  728. C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
  729. R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
  730. R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13),
  731. R(14), R(15), 0, 0
  732. }
  733. },
  734. {
  735. .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
  736. .rowbits = 15, .colbits = 10,
  737. .bits = {
  738. C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
  739. B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  740. R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
  741. 0, 0, 0, 0
  742. }
  743. },
  744. {
  745. .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
  746. .rowbits = 16, .colbits = 10,
  747. .bits = {
  748. C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
  749. B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  750. R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
  751. R(15), 0, 0, 0
  752. }
  753. },
  754. {
  755. .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
  756. .rowbits = 16, .colbits = 10,
  757. .bits = {
  758. C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
  759. B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  760. R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
  761. R(15), 0, 0, 0
  762. }
  763. },
  764. {
  765. .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
  766. .rowbits = 16, .colbits = 11,
  767. .bits = {
  768. C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
  769. B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
  770. R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13),
  771. R(14), R(15), 0, 0
  772. }
  773. }
  774. };
  775. static int bank_hash(u64 pmiaddr, int idx, int shft)
  776. {
  777. int bhash = 0;
  778. switch (idx) {
  779. case 0:
  780. bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
  781. break;
  782. case 1:
  783. bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
  784. bhash ^= ((pmiaddr >> 22) & 1) << 1;
  785. break;
  786. case 2:
  787. bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
  788. break;
  789. }
  790. return bhash;
  791. }
  792. static int rank_hash(u64 pmiaddr)
  793. {
  794. return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
  795. }
  796. /* Second stage decode. Compute rank, bank, row & column. */
  797. static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
  798. struct dram_addr *daddr, char *msg)
  799. {
  800. struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
  801. struct pnd2_pvt *pvt = mci->pvt_info;
  802. int g = pvt->dimm_geom[pmiidx];
  803. struct dimm_geometry *d = &dimms[g];
  804. int column = 0, bank = 0, row = 0, rank = 0;
  805. int i, idx, type, skiprs = 0;
  806. for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
  807. int bit = (pmiaddr >> i) & 1;
  808. if (i + skiprs >= PMI_ADDRESS_WIDTH) {
  809. snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
  810. return -EINVAL;
  811. }
  812. type = d->bits[i + skiprs] & ~0xf;
  813. idx = d->bits[i + skiprs] & 0xf;
  814. /*
  815. * On single rank DIMMs ignore the rank select bit
  816. * and shift remainder of "bits[]" down one place.
  817. */
  818. if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
  819. skiprs = 1;
  820. type = d->bits[i + skiprs] & ~0xf;
  821. idx = d->bits[i + skiprs] & 0xf;
  822. }
  823. switch (type) {
  824. case C(0):
  825. column |= (bit << idx);
  826. break;
  827. case B(0):
  828. bank |= (bit << idx);
  829. if (cr_drp0->bahen)
  830. bank ^= bank_hash(pmiaddr, idx, d->addrdec);
  831. break;
  832. case R(0):
  833. row |= (bit << idx);
  834. break;
  835. case RS:
  836. rank = bit;
  837. if (cr_drp0->rsien)
  838. rank ^= rank_hash(pmiaddr);
  839. break;
  840. default:
  841. if (bit) {
  842. snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
  843. return -EINVAL;
  844. }
  845. goto done;
  846. }
  847. }
  848. done:
  849. daddr->col = column;
  850. daddr->bank = bank;
  851. daddr->row = row;
  852. daddr->rank = rank;
  853. daddr->dimm = 0;
  854. return 0;
  855. }
  856. /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
  857. #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
  858. static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
  859. struct dram_addr *daddr, char *msg)
  860. {
  861. /* Rank 0 or 1 */
  862. daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
  863. /* Rank 2 or 3 */
  864. daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);
  865. /*
  866. * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
  867. * flip them if DIMM1 is larger than DIMM0.
  868. */
  869. daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;
  870. daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
  871. daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
  872. daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
  873. if (dsch.ddr4en)
  874. daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
  875. if (dmap1[pmiidx].bxor) {
  876. if (dsch.ddr4en) {
  877. daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
  878. daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
  879. if (dsch.chan_width == 0)
  880. /* 64/72 bit dram channel width */
  881. daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
  882. else
  883. /* 32/40 bit dram channel width */
  884. daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
  885. daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
  886. } else {
  887. daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
  888. daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
  889. if (dsch.chan_width == 0)
  890. daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
  891. else
  892. daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
  893. }
  894. }
  895. daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
  896. daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
  897. daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
  898. daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
  899. daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
  900. daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
  901. daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
  902. daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
  903. daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
  904. daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
  905. daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
  906. daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
  907. daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
  908. daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
  909. if (dmap4[pmiidx].row14 != 31)
  910. daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
  911. if (dmap4[pmiidx].row15 != 31)
  912. daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
  913. if (dmap4[pmiidx].row16 != 31)
  914. daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
  915. if (dmap4[pmiidx].row17 != 31)
  916. daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);
  917. daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
  918. daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
  919. daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
  920. daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
  921. daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
  922. daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
  923. daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
  924. if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
  925. daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);
  926. return 0;
  927. }
  928. static int check_channel(int ch)
  929. {
  930. if (drp0[ch].dramtype != 0) {
  931. pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
  932. return 1;
  933. } else if (drp0[ch].eccen == 0) {
  934. pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
  935. return 1;
  936. }
  937. return 0;
  938. }
  939. static int apl_check_ecc_active(void)
  940. {
  941. int i, ret = 0;
  942. /* Check dramtype and ECC mode for each present DIMM */
  943. for (i = 0; i < APL_NUM_CHANNELS; i++)
  944. if (chan_mask & BIT(i))
  945. ret += check_channel(i);
  946. return ret ? -EINVAL : 0;
  947. }
  948. #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
  949. static int check_unit(int ch)
  950. {
  951. struct d_cr_drp *d = &drp[ch];
  952. if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
  953. pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
  954. return 1;
  955. }
  956. return 0;
  957. }
  958. static int dnv_check_ecc_active(void)
  959. {
  960. int i, ret = 0;
  961. for (i = 0; i < DNV_NUM_CHANNELS; i++)
  962. ret += check_unit(i);
  963. return ret ? -EINVAL : 0;
  964. }
  965. static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
  966. struct dram_addr *daddr, char *msg)
  967. {
  968. u64 pmiaddr;
  969. u32 pmiidx;
  970. int ret;
  971. ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
  972. if (ret)
  973. return ret;
  974. pmiaddr >>= ops->pmiaddr_shift;
  975. /* pmi channel idx to dimm channel idx */
  976. pmiidx >>= ops->pmiidx_shift;
  977. daddr->chan = pmiidx;
  978. ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
  979. if (ret)
  980. return ret;
  981. edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
  982. addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);
  983. return 0;
  984. }
  985. static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
  986. struct dram_addr *daddr)
  987. {
  988. enum hw_event_mc_err_type tp_event;
  989. char *optype, msg[PND2_MSG_SIZE];
  990. bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
  991. bool overflow = m->status & MCI_STATUS_OVER;
  992. bool uc_err = m->status & MCI_STATUS_UC;
  993. bool recov = m->status & MCI_STATUS_S;
  994. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  995. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  996. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  997. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  998. int rc;
  999. tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) :
  1000. HW_EVENT_ERR_CORRECTED;
  1001. /*
  1002. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  1003. * memory errors should fit in this mask:
  1004. * 000f 0000 1mmm cccc (binary)
  1005. * where:
  1006. * f = Correction Report Filtering Bit. If 1, subsequent errors
  1007. * won't be shown
  1008. * mmm = error type
  1009. * cccc = channel
  1010. * If the mask doesn't match, report an error to the parsing logic
  1011. */
  1012. if (!((errcode & 0xef80) == 0x80)) {
  1013. optype = "Can't parse: it is not a mem";
  1014. } else {
  1015. switch (optypenum) {
  1016. case 0:
  1017. optype = "generic undef request error";
  1018. break;
  1019. case 1:
  1020. optype = "memory read error";
  1021. break;
  1022. case 2:
  1023. optype = "memory write error";
  1024. break;
  1025. case 3:
  1026. optype = "addr/cmd error";
  1027. break;
  1028. case 4:
  1029. optype = "memory scrubbing error";
  1030. break;
  1031. default:
  1032. optype = "reserved";
  1033. break;
  1034. }
  1035. }
  1036. /* Only decode errors with an valid address (ADDRV) */
  1037. if (!(m->status & MCI_STATUS_ADDRV))
  1038. return;
  1039. rc = get_memory_error_data(mci, m->addr, daddr, msg);
  1040. if (rc)
  1041. goto address_error;
  1042. snprintf(msg, sizeof(msg),
  1043. "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
  1044. overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
  1045. errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);
  1046. edac_dbg(0, "%s\n", msg);
  1047. /* Call the helper to output message */
  1048. edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
  1049. m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);
  1050. return;
  1051. address_error:
  1052. edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
  1053. }
  1054. static void apl_get_dimm_config(struct mem_ctl_info *mci)
  1055. {
  1056. struct pnd2_pvt *pvt = mci->pvt_info;
  1057. struct dimm_info *dimm;
  1058. struct d_cr_drp0 *d;
  1059. u64 capacity;
  1060. int i, g;
  1061. for (i = 0; i < APL_NUM_CHANNELS; i++) {
  1062. if (!(chan_mask & BIT(i)))
  1063. continue;
  1064. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0);
  1065. if (!dimm) {
  1066. edac_dbg(0, "No allocated DIMM for channel %d\n", i);
  1067. continue;
  1068. }
  1069. d = &drp0[i];
  1070. for (g = 0; g < ARRAY_SIZE(dimms); g++)
  1071. if (dimms[g].addrdec == d->addrdec &&
  1072. dimms[g].dden == d->dden &&
  1073. dimms[g].dwid == d->dwid)
  1074. break;
  1075. if (g == ARRAY_SIZE(dimms)) {
  1076. edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
  1077. continue;
  1078. }
  1079. pvt->dimm_geom[i] = g;
  1080. capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
  1081. (1ul << dimms[g].colbits);
  1082. edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
  1083. dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
  1084. dimm->grain = 32;
  1085. dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
  1086. dimm->mtype = MEM_DDR3;
  1087. dimm->edac_mode = EDAC_SECDED;
  1088. snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
  1089. }
  1090. }
  1091. static const int dnv_dtypes[] = {
  1092. DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
  1093. };
  1094. static void dnv_get_dimm_config(struct mem_ctl_info *mci)
  1095. {
  1096. int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
  1097. struct dimm_info *dimm;
  1098. struct d_cr_drp *d;
  1099. u64 capacity;
  1100. if (dsch.ddr4en) {
  1101. memtype = MEM_DDR4;
  1102. banks = 16;
  1103. colbits = 10;
  1104. } else {
  1105. memtype = MEM_DDR3;
  1106. banks = 8;
  1107. }
  1108. for (i = 0; i < DNV_NUM_CHANNELS; i++) {
  1109. if (dmap4[i].row14 == 31)
  1110. rowbits = 14;
  1111. else if (dmap4[i].row15 == 31)
  1112. rowbits = 15;
  1113. else if (dmap4[i].row16 == 31)
  1114. rowbits = 16;
  1115. else if (dmap4[i].row17 == 31)
  1116. rowbits = 17;
  1117. else
  1118. rowbits = 18;
  1119. if (memtype == MEM_DDR3) {
  1120. if (dmap1[i].ca11 != 0x3f)
  1121. colbits = 12;
  1122. else
  1123. colbits = 10;
  1124. }
  1125. d = &drp[i];
  1126. /* DIMM0 is present if rank0 and/or rank1 is enabled */
  1127. ranks_of_dimm[0] = d->rken0 + d->rken1;
  1128. /* DIMM1 is present if rank2 and/or rank3 is enabled */
  1129. ranks_of_dimm[1] = d->rken2 + d->rken3;
  1130. for (j = 0; j < DNV_MAX_DIMMS; j++) {
  1131. if (!ranks_of_dimm[j])
  1132. continue;
  1133. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
  1134. if (!dimm) {
  1135. edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
  1136. continue;
  1137. }
  1138. capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
  1139. edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
  1140. dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
  1141. dimm->grain = 32;
  1142. dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
  1143. dimm->mtype = memtype;
  1144. dimm->edac_mode = EDAC_SECDED;
  1145. snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
  1146. }
  1147. }
  1148. }
  1149. static int pnd2_register_mci(struct mem_ctl_info **ppmci)
  1150. {
  1151. struct edac_mc_layer layers[2];
  1152. struct mem_ctl_info *mci;
  1153. struct pnd2_pvt *pvt;
  1154. int rc;
  1155. rc = ops->check_ecc();
  1156. if (rc < 0)
  1157. return rc;
  1158. /* Allocate a new MC control structure */
  1159. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  1160. layers[0].size = ops->channels;
  1161. layers[0].is_virt_csrow = false;
  1162. layers[1].type = EDAC_MC_LAYER_SLOT;
  1163. layers[1].size = ops->dimms_per_channel;
  1164. layers[1].is_virt_csrow = true;
  1165. mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
  1166. if (!mci)
  1167. return -ENOMEM;
  1168. pvt = mci->pvt_info;
  1169. memset(pvt, 0, sizeof(*pvt));
  1170. mci->mod_name = "pnd2_edac.c";
  1171. mci->dev_name = ops->name;
  1172. mci->ctl_name = "Pondicherry2";
  1173. /* Get dimm basic config and the memory layout */
  1174. ops->get_dimm_config(mci);
  1175. if (edac_mc_add_mc(mci)) {
  1176. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  1177. edac_mc_free(mci);
  1178. return -EINVAL;
  1179. }
  1180. *ppmci = mci;
  1181. return 0;
  1182. }
  1183. static void pnd2_unregister_mci(struct mem_ctl_info *mci)
  1184. {
  1185. if (unlikely(!mci || !mci->pvt_info)) {
  1186. pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
  1187. return;
  1188. }
  1189. /* Remove MC sysfs nodes */
  1190. edac_mc_del_mc(NULL);
  1191. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  1192. edac_mc_free(mci);
  1193. }
  1194. /*
  1195. * Callback function registered with core kernel mce code.
  1196. * Called once for each logged error.
  1197. */
  1198. static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
  1199. {
  1200. struct mce *mce = (struct mce *)data;
  1201. struct mem_ctl_info *mci;
  1202. struct dram_addr daddr;
  1203. char *type;
  1204. if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
  1205. return NOTIFY_DONE;
  1206. mci = pnd2_mci;
  1207. if (!mci)
  1208. return NOTIFY_DONE;
  1209. /*
  1210. * Just let mcelog handle it if the error is
  1211. * outside the memory controller. A memory error
  1212. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  1213. * bit 12 has an special meaning.
  1214. */
  1215. if ((mce->status & 0xefff) >> 7 != 1)
  1216. return NOTIFY_DONE;
  1217. if (mce->mcgstatus & MCG_STATUS_MCIP)
  1218. type = "Exception";
  1219. else
  1220. type = "Event";
  1221. pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
  1222. pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
  1223. mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
  1224. pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
  1225. pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
  1226. pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
  1227. pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
  1228. mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);
  1229. pnd2_mce_output_error(mci, mce, &daddr);
  1230. /* Advice mcelog that the error were handled */
  1231. return NOTIFY_STOP;
  1232. }
  1233. static struct notifier_block pnd2_mce_dec = {
  1234. .notifier_call = pnd2_mce_check_error,
  1235. };
  1236. #ifdef CONFIG_EDAC_DEBUG
  1237. /*
  1238. * Write an address to this file to exercise the address decode
  1239. * logic in this driver.
  1240. */
  1241. static u64 pnd2_fake_addr;
  1242. #define PND2_BLOB_SIZE 1024
  1243. static char pnd2_result[PND2_BLOB_SIZE];
  1244. static struct dentry *pnd2_test;
  1245. static struct debugfs_blob_wrapper pnd2_blob = {
  1246. .data = pnd2_result,
  1247. .size = 0
  1248. };
  1249. static int debugfs_u64_set(void *data, u64 val)
  1250. {
  1251. struct dram_addr daddr;
  1252. struct mce m;
  1253. *(u64 *)data = val;
  1254. m.mcgstatus = 0;
  1255. /* ADDRV + MemRd + Unknown channel */
  1256. m.status = MCI_STATUS_ADDRV + 0x9f;
  1257. m.addr = val;
  1258. pnd2_mce_output_error(pnd2_mci, &m, &daddr);
  1259. snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
  1260. "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
  1261. m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
  1262. pnd2_blob.size = strlen(pnd2_blob.data);
  1263. return 0;
  1264. }
  1265. DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
  1266. static void setup_pnd2_debug(void)
  1267. {
  1268. pnd2_test = edac_debugfs_create_dir("pnd2_test");
  1269. edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
  1270. &pnd2_fake_addr, &fops_u64_wo);
  1271. debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
  1272. }
  1273. static void teardown_pnd2_debug(void)
  1274. {
  1275. debugfs_remove_recursive(pnd2_test);
  1276. }
  1277. #else
  1278. static void setup_pnd2_debug(void) {}
  1279. static void teardown_pnd2_debug(void) {}
  1280. #endif /* CONFIG_EDAC_DEBUG */
  1281. static int pnd2_probe(void)
  1282. {
  1283. int rc;
  1284. edac_dbg(2, "\n");
  1285. rc = get_registers();
  1286. if (rc)
  1287. return rc;
  1288. return pnd2_register_mci(&pnd2_mci);
  1289. }
  1290. static void pnd2_remove(void)
  1291. {
  1292. edac_dbg(0, "\n");
  1293. pnd2_unregister_mci(pnd2_mci);
  1294. }
  1295. static struct dunit_ops apl_ops = {
  1296. .name = "pnd2/apl",
  1297. .type = APL,
  1298. .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY,
  1299. .pmiidx_shift = 0,
  1300. .channels = APL_NUM_CHANNELS,
  1301. .dimms_per_channel = 1,
  1302. .rd_reg = apl_rd_reg,
  1303. .get_registers = apl_get_registers,
  1304. .check_ecc = apl_check_ecc_active,
  1305. .mk_region = apl_mk_region,
  1306. .get_dimm_config = apl_get_dimm_config,
  1307. .pmi2mem = apl_pmi2mem,
  1308. };
  1309. static struct dunit_ops dnv_ops = {
  1310. .name = "pnd2/dnv",
  1311. .type = DNV,
  1312. .pmiaddr_shift = 0,
  1313. .pmiidx_shift = 1,
  1314. .channels = DNV_NUM_CHANNELS,
  1315. .dimms_per_channel = 2,
  1316. .rd_reg = dnv_rd_reg,
  1317. .get_registers = dnv_get_registers,
  1318. .check_ecc = dnv_check_ecc_active,
  1319. .mk_region = dnv_mk_region,
  1320. .get_dimm_config = dnv_get_dimm_config,
  1321. .pmi2mem = dnv_pmi2mem,
  1322. };
  1323. static const struct x86_cpu_id pnd2_cpuids[] = {
  1324. { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops },
  1325. { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON, 0, (kernel_ulong_t)&dnv_ops },
  1326. { }
  1327. };
  1328. MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);
  1329. static int __init pnd2_init(void)
  1330. {
  1331. const struct x86_cpu_id *id;
  1332. int rc;
  1333. edac_dbg(2, "\n");
  1334. id = x86_match_cpu(pnd2_cpuids);
  1335. if (!id)
  1336. return -ENODEV;
  1337. ops = (struct dunit_ops *)id->driver_data;
  1338. if (ops->type == APL) {
  1339. p2sb_bus = pci_find_bus(0, 0);
  1340. if (!p2sb_bus)
  1341. return -ENODEV;
  1342. }
  1343. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1344. opstate_init();
  1345. rc = pnd2_probe();
  1346. if (rc < 0) {
  1347. pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
  1348. return rc;
  1349. }
  1350. if (!pnd2_mci)
  1351. return -ENODEV;
  1352. mce_register_decode_chain(&pnd2_mce_dec);
  1353. setup_pnd2_debug();
  1354. return 0;
  1355. }
  1356. static void __exit pnd2_exit(void)
  1357. {
  1358. edac_dbg(2, "\n");
  1359. teardown_pnd2_debug();
  1360. mce_unregister_decode_chain(&pnd2_mce_dec);
  1361. pnd2_remove();
  1362. }
  1363. module_init(pnd2_init);
  1364. module_exit(pnd2_exit);
  1365. module_param(edac_op_state, int, 0444);
  1366. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1367. MODULE_LICENSE("GPL v2");
  1368. MODULE_AUTHOR("Tony Luck");
  1369. MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");