caampkc.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. /*
  2. * caam - Freescale FSL CAAM support for Public Key Cryptography
  3. *
  4. * Copyright 2016 Freescale Semiconductor, Inc.
  5. *
  6. * There is no Shared Descriptor for PKC so that the Job Descriptor must carry
  7. * all the desired key parameters, input and output pointers.
  8. */
  9. #include "compat.h"
  10. #include "regs.h"
  11. #include "intern.h"
  12. #include "jr.h"
  13. #include "error.h"
  14. #include "desc_constr.h"
  15. #include "sg_sw_sec4.h"
  16. #include "caampkc.h"
  17. #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + sizeof(struct rsa_pub_pdb))
  18. #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \
  19. sizeof(struct rsa_priv_f1_pdb))
  20. #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \
  21. sizeof(struct rsa_priv_f2_pdb))
  22. #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \
  23. sizeof(struct rsa_priv_f3_pdb))
  24. static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
  25. struct akcipher_request *req)
  26. {
  27. dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
  28. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  29. if (edesc->sec4_sg_bytes)
  30. dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
  31. DMA_TO_DEVICE);
  32. }
  33. static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
  34. struct akcipher_request *req)
  35. {
  36. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  37. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  38. struct caam_rsa_key *key = &ctx->key;
  39. struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
  40. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  41. dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
  42. }
  43. static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
  44. struct akcipher_request *req)
  45. {
  46. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  47. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  48. struct caam_rsa_key *key = &ctx->key;
  49. struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
  50. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  51. dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
  52. }
  53. static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc,
  54. struct akcipher_request *req)
  55. {
  56. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  57. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  58. struct caam_rsa_key *key = &ctx->key;
  59. struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
  60. size_t p_sz = key->p_sz;
  61. size_t q_sz = key->p_sz;
  62. dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
  63. dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
  64. dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
  65. dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_TO_DEVICE);
  66. dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_TO_DEVICE);
  67. }
  68. static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc,
  69. struct akcipher_request *req)
  70. {
  71. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  72. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  73. struct caam_rsa_key *key = &ctx->key;
  74. struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
  75. size_t p_sz = key->p_sz;
  76. size_t q_sz = key->p_sz;
  77. dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
  78. dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
  79. dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
  80. dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
  81. dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
  82. dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_TO_DEVICE);
  83. dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_TO_DEVICE);
  84. }
  85. /* RSA Job Completion handler */
  86. static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
  87. {
  88. struct akcipher_request *req = context;
  89. struct rsa_edesc *edesc;
  90. if (err)
  91. caam_jr_strstatus(dev, err);
  92. edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
  93. rsa_pub_unmap(dev, edesc, req);
  94. rsa_io_unmap(dev, edesc, req);
  95. kfree(edesc);
  96. akcipher_request_complete(req, err);
  97. }
  98. static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err,
  99. void *context)
  100. {
  101. struct akcipher_request *req = context;
  102. struct rsa_edesc *edesc;
  103. if (err)
  104. caam_jr_strstatus(dev, err);
  105. edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
  106. rsa_priv_f1_unmap(dev, edesc, req);
  107. rsa_io_unmap(dev, edesc, req);
  108. kfree(edesc);
  109. akcipher_request_complete(req, err);
  110. }
  111. static void rsa_priv_f2_done(struct device *dev, u32 *desc, u32 err,
  112. void *context)
  113. {
  114. struct akcipher_request *req = context;
  115. struct rsa_edesc *edesc;
  116. if (err)
  117. caam_jr_strstatus(dev, err);
  118. edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
  119. rsa_priv_f2_unmap(dev, edesc, req);
  120. rsa_io_unmap(dev, edesc, req);
  121. kfree(edesc);
  122. akcipher_request_complete(req, err);
  123. }
  124. static void rsa_priv_f3_done(struct device *dev, u32 *desc, u32 err,
  125. void *context)
  126. {
  127. struct akcipher_request *req = context;
  128. struct rsa_edesc *edesc;
  129. if (err)
  130. caam_jr_strstatus(dev, err);
  131. edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
  132. rsa_priv_f3_unmap(dev, edesc, req);
  133. rsa_io_unmap(dev, edesc, req);
  134. kfree(edesc);
  135. akcipher_request_complete(req, err);
  136. }
  137. static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
  138. size_t desclen)
  139. {
  140. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  141. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  142. struct device *dev = ctx->dev;
  143. struct rsa_edesc *edesc;
  144. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  145. GFP_KERNEL : GFP_ATOMIC;
  146. int sgc;
  147. int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
  148. int src_nents, dst_nents;
  149. src_nents = sg_nents_for_len(req->src, req->src_len);
  150. dst_nents = sg_nents_for_len(req->dst, req->dst_len);
  151. if (src_nents > 1)
  152. sec4_sg_len = src_nents;
  153. if (dst_nents > 1)
  154. sec4_sg_len += dst_nents;
  155. sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
  156. /* allocate space for base edesc, hw desc commands and link tables */
  157. edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
  158. GFP_DMA | flags);
  159. if (!edesc)
  160. return ERR_PTR(-ENOMEM);
  161. sgc = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
  162. if (unlikely(!sgc)) {
  163. dev_err(dev, "unable to map source\n");
  164. goto src_fail;
  165. }
  166. sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
  167. if (unlikely(!sgc)) {
  168. dev_err(dev, "unable to map destination\n");
  169. goto dst_fail;
  170. }
  171. edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
  172. sec4_sg_index = 0;
  173. if (src_nents > 1) {
  174. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  175. sec4_sg_index += src_nents;
  176. }
  177. if (dst_nents > 1)
  178. sg_to_sec4_sg_last(req->dst, dst_nents,
  179. edesc->sec4_sg + sec4_sg_index, 0);
  180. /* Save nents for later use in Job Descriptor */
  181. edesc->src_nents = src_nents;
  182. edesc->dst_nents = dst_nents;
  183. if (!sec4_sg_bytes)
  184. return edesc;
  185. edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
  186. sec4_sg_bytes, DMA_TO_DEVICE);
  187. if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
  188. dev_err(dev, "unable to map S/G table\n");
  189. goto sec4_sg_fail;
  190. }
  191. edesc->sec4_sg_bytes = sec4_sg_bytes;
  192. return edesc;
  193. sec4_sg_fail:
  194. dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
  195. dst_fail:
  196. dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
  197. src_fail:
  198. kfree(edesc);
  199. return ERR_PTR(-ENOMEM);
  200. }
  201. static int set_rsa_pub_pdb(struct akcipher_request *req,
  202. struct rsa_edesc *edesc)
  203. {
  204. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  205. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  206. struct caam_rsa_key *key = &ctx->key;
  207. struct device *dev = ctx->dev;
  208. struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
  209. int sec4_sg_index = 0;
  210. pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
  211. if (dma_mapping_error(dev, pdb->n_dma)) {
  212. dev_err(dev, "Unable to map RSA modulus memory\n");
  213. return -ENOMEM;
  214. }
  215. pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
  216. if (dma_mapping_error(dev, pdb->e_dma)) {
  217. dev_err(dev, "Unable to map RSA public exponent memory\n");
  218. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  219. return -ENOMEM;
  220. }
  221. if (edesc->src_nents > 1) {
  222. pdb->sgf |= RSA_PDB_SGF_F;
  223. pdb->f_dma = edesc->sec4_sg_dma;
  224. sec4_sg_index += edesc->src_nents;
  225. } else {
  226. pdb->f_dma = sg_dma_address(req->src);
  227. }
  228. if (edesc->dst_nents > 1) {
  229. pdb->sgf |= RSA_PDB_SGF_G;
  230. pdb->g_dma = edesc->sec4_sg_dma +
  231. sec4_sg_index * sizeof(struct sec4_sg_entry);
  232. } else {
  233. pdb->g_dma = sg_dma_address(req->dst);
  234. }
  235. pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
  236. pdb->f_len = req->src_len;
  237. return 0;
  238. }
  239. static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
  240. struct rsa_edesc *edesc)
  241. {
  242. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  243. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  244. struct caam_rsa_key *key = &ctx->key;
  245. struct device *dev = ctx->dev;
  246. struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
  247. int sec4_sg_index = 0;
  248. pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
  249. if (dma_mapping_error(dev, pdb->n_dma)) {
  250. dev_err(dev, "Unable to map modulus memory\n");
  251. return -ENOMEM;
  252. }
  253. pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
  254. if (dma_mapping_error(dev, pdb->d_dma)) {
  255. dev_err(dev, "Unable to map RSA private exponent memory\n");
  256. dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
  257. return -ENOMEM;
  258. }
  259. if (edesc->src_nents > 1) {
  260. pdb->sgf |= RSA_PRIV_PDB_SGF_G;
  261. pdb->g_dma = edesc->sec4_sg_dma;
  262. sec4_sg_index += edesc->src_nents;
  263. } else {
  264. pdb->g_dma = sg_dma_address(req->src);
  265. }
  266. if (edesc->dst_nents > 1) {
  267. pdb->sgf |= RSA_PRIV_PDB_SGF_F;
  268. pdb->f_dma = edesc->sec4_sg_dma +
  269. sec4_sg_index * sizeof(struct sec4_sg_entry);
  270. } else {
  271. pdb->f_dma = sg_dma_address(req->dst);
  272. }
  273. pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
  274. return 0;
  275. }
  276. static int set_rsa_priv_f2_pdb(struct akcipher_request *req,
  277. struct rsa_edesc *edesc)
  278. {
  279. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  280. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  281. struct caam_rsa_key *key = &ctx->key;
  282. struct device *dev = ctx->dev;
  283. struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
  284. int sec4_sg_index = 0;
  285. size_t p_sz = key->p_sz;
  286. size_t q_sz = key->p_sz;
  287. pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
  288. if (dma_mapping_error(dev, pdb->d_dma)) {
  289. dev_err(dev, "Unable to map RSA private exponent memory\n");
  290. return -ENOMEM;
  291. }
  292. pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
  293. if (dma_mapping_error(dev, pdb->p_dma)) {
  294. dev_err(dev, "Unable to map RSA prime factor p memory\n");
  295. goto unmap_d;
  296. }
  297. pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
  298. if (dma_mapping_error(dev, pdb->q_dma)) {
  299. dev_err(dev, "Unable to map RSA prime factor q memory\n");
  300. goto unmap_p;
  301. }
  302. pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_TO_DEVICE);
  303. if (dma_mapping_error(dev, pdb->tmp1_dma)) {
  304. dev_err(dev, "Unable to map RSA tmp1 memory\n");
  305. goto unmap_q;
  306. }
  307. pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_TO_DEVICE);
  308. if (dma_mapping_error(dev, pdb->tmp2_dma)) {
  309. dev_err(dev, "Unable to map RSA tmp2 memory\n");
  310. goto unmap_tmp1;
  311. }
  312. if (edesc->src_nents > 1) {
  313. pdb->sgf |= RSA_PRIV_PDB_SGF_G;
  314. pdb->g_dma = edesc->sec4_sg_dma;
  315. sec4_sg_index += edesc->src_nents;
  316. } else {
  317. pdb->g_dma = sg_dma_address(req->src);
  318. }
  319. if (edesc->dst_nents > 1) {
  320. pdb->sgf |= RSA_PRIV_PDB_SGF_F;
  321. pdb->f_dma = edesc->sec4_sg_dma +
  322. sec4_sg_index * sizeof(struct sec4_sg_entry);
  323. } else {
  324. pdb->f_dma = sg_dma_address(req->dst);
  325. }
  326. pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
  327. pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
  328. return 0;
  329. unmap_tmp1:
  330. dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_TO_DEVICE);
  331. unmap_q:
  332. dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
  333. unmap_p:
  334. dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
  335. unmap_d:
  336. dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
  337. return -ENOMEM;
  338. }
  339. static int set_rsa_priv_f3_pdb(struct akcipher_request *req,
  340. struct rsa_edesc *edesc)
  341. {
  342. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  343. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  344. struct caam_rsa_key *key = &ctx->key;
  345. struct device *dev = ctx->dev;
  346. struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
  347. int sec4_sg_index = 0;
  348. size_t p_sz = key->p_sz;
  349. size_t q_sz = key->p_sz;
  350. pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
  351. if (dma_mapping_error(dev, pdb->p_dma)) {
  352. dev_err(dev, "Unable to map RSA prime factor p memory\n");
  353. return -ENOMEM;
  354. }
  355. pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
  356. if (dma_mapping_error(dev, pdb->q_dma)) {
  357. dev_err(dev, "Unable to map RSA prime factor q memory\n");
  358. goto unmap_p;
  359. }
  360. pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE);
  361. if (dma_mapping_error(dev, pdb->dp_dma)) {
  362. dev_err(dev, "Unable to map RSA exponent dp memory\n");
  363. goto unmap_q;
  364. }
  365. pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE);
  366. if (dma_mapping_error(dev, pdb->dq_dma)) {
  367. dev_err(dev, "Unable to map RSA exponent dq memory\n");
  368. goto unmap_dp;
  369. }
  370. pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE);
  371. if (dma_mapping_error(dev, pdb->c_dma)) {
  372. dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n");
  373. goto unmap_dq;
  374. }
  375. pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_TO_DEVICE);
  376. if (dma_mapping_error(dev, pdb->tmp1_dma)) {
  377. dev_err(dev, "Unable to map RSA tmp1 memory\n");
  378. goto unmap_qinv;
  379. }
  380. pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_TO_DEVICE);
  381. if (dma_mapping_error(dev, pdb->tmp2_dma)) {
  382. dev_err(dev, "Unable to map RSA tmp2 memory\n");
  383. goto unmap_tmp1;
  384. }
  385. if (edesc->src_nents > 1) {
  386. pdb->sgf |= RSA_PRIV_PDB_SGF_G;
  387. pdb->g_dma = edesc->sec4_sg_dma;
  388. sec4_sg_index += edesc->src_nents;
  389. } else {
  390. pdb->g_dma = sg_dma_address(req->src);
  391. }
  392. if (edesc->dst_nents > 1) {
  393. pdb->sgf |= RSA_PRIV_PDB_SGF_F;
  394. pdb->f_dma = edesc->sec4_sg_dma +
  395. sec4_sg_index * sizeof(struct sec4_sg_entry);
  396. } else {
  397. pdb->f_dma = sg_dma_address(req->dst);
  398. }
  399. pdb->sgf |= key->n_sz;
  400. pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
  401. return 0;
  402. unmap_tmp1:
  403. dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_TO_DEVICE);
  404. unmap_qinv:
  405. dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
  406. unmap_dq:
  407. dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
  408. unmap_dp:
  409. dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
  410. unmap_q:
  411. dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
  412. unmap_p:
  413. dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
  414. return -ENOMEM;
  415. }
  416. static int caam_rsa_enc(struct akcipher_request *req)
  417. {
  418. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  419. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  420. struct caam_rsa_key *key = &ctx->key;
  421. struct device *jrdev = ctx->dev;
  422. struct rsa_edesc *edesc;
  423. int ret;
  424. if (unlikely(!key->n || !key->e))
  425. return -EINVAL;
  426. if (req->dst_len < key->n_sz) {
  427. req->dst_len = key->n_sz;
  428. dev_err(jrdev, "Output buffer length less than parameter n\n");
  429. return -EOVERFLOW;
  430. }
  431. /* Allocate extended descriptor */
  432. edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
  433. if (IS_ERR(edesc))
  434. return PTR_ERR(edesc);
  435. /* Set RSA Encrypt Protocol Data Block */
  436. ret = set_rsa_pub_pdb(req, edesc);
  437. if (ret)
  438. goto init_fail;
  439. /* Initialize Job Descriptor */
  440. init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
  441. ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req);
  442. if (!ret)
  443. return -EINPROGRESS;
  444. rsa_pub_unmap(jrdev, edesc, req);
  445. init_fail:
  446. rsa_io_unmap(jrdev, edesc, req);
  447. kfree(edesc);
  448. return ret;
  449. }
  450. static int caam_rsa_dec_priv_f1(struct akcipher_request *req)
  451. {
  452. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  453. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  454. struct device *jrdev = ctx->dev;
  455. struct rsa_edesc *edesc;
  456. int ret;
  457. /* Allocate extended descriptor */
  458. edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
  459. if (IS_ERR(edesc))
  460. return PTR_ERR(edesc);
  461. /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
  462. ret = set_rsa_priv_f1_pdb(req, edesc);
  463. if (ret)
  464. goto init_fail;
  465. /* Initialize Job Descriptor */
  466. init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
  467. ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req);
  468. if (!ret)
  469. return -EINPROGRESS;
  470. rsa_priv_f1_unmap(jrdev, edesc, req);
  471. init_fail:
  472. rsa_io_unmap(jrdev, edesc, req);
  473. kfree(edesc);
  474. return ret;
  475. }
  476. static int caam_rsa_dec_priv_f2(struct akcipher_request *req)
  477. {
  478. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  479. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  480. struct device *jrdev = ctx->dev;
  481. struct rsa_edesc *edesc;
  482. int ret;
  483. /* Allocate extended descriptor */
  484. edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN);
  485. if (IS_ERR(edesc))
  486. return PTR_ERR(edesc);
  487. /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */
  488. ret = set_rsa_priv_f2_pdb(req, edesc);
  489. if (ret)
  490. goto init_fail;
  491. /* Initialize Job Descriptor */
  492. init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2);
  493. ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f2_done, req);
  494. if (!ret)
  495. return -EINPROGRESS;
  496. rsa_priv_f2_unmap(jrdev, edesc, req);
  497. init_fail:
  498. rsa_io_unmap(jrdev, edesc, req);
  499. kfree(edesc);
  500. return ret;
  501. }
  502. static int caam_rsa_dec_priv_f3(struct akcipher_request *req)
  503. {
  504. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  505. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  506. struct device *jrdev = ctx->dev;
  507. struct rsa_edesc *edesc;
  508. int ret;
  509. /* Allocate extended descriptor */
  510. edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN);
  511. if (IS_ERR(edesc))
  512. return PTR_ERR(edesc);
  513. /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */
  514. ret = set_rsa_priv_f3_pdb(req, edesc);
  515. if (ret)
  516. goto init_fail;
  517. /* Initialize Job Descriptor */
  518. init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3);
  519. ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f3_done, req);
  520. if (!ret)
  521. return -EINPROGRESS;
  522. rsa_priv_f3_unmap(jrdev, edesc, req);
  523. init_fail:
  524. rsa_io_unmap(jrdev, edesc, req);
  525. kfree(edesc);
  526. return ret;
  527. }
  528. static int caam_rsa_dec(struct akcipher_request *req)
  529. {
  530. struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
  531. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  532. struct caam_rsa_key *key = &ctx->key;
  533. int ret;
  534. if (unlikely(!key->n || !key->d))
  535. return -EINVAL;
  536. if (req->dst_len < key->n_sz) {
  537. req->dst_len = key->n_sz;
  538. dev_err(ctx->dev, "Output buffer length less than parameter n\n");
  539. return -EOVERFLOW;
  540. }
  541. if (key->priv_form == FORM3)
  542. ret = caam_rsa_dec_priv_f3(req);
  543. else if (key->priv_form == FORM2)
  544. ret = caam_rsa_dec_priv_f2(req);
  545. else
  546. ret = caam_rsa_dec_priv_f1(req);
  547. return ret;
  548. }
  549. static void caam_rsa_free_key(struct caam_rsa_key *key)
  550. {
  551. kzfree(key->d);
  552. kzfree(key->p);
  553. kzfree(key->q);
  554. kzfree(key->dp);
  555. kzfree(key->dq);
  556. kzfree(key->qinv);
  557. kzfree(key->tmp1);
  558. kzfree(key->tmp2);
  559. kfree(key->e);
  560. kfree(key->n);
  561. memset(key, 0, sizeof(*key));
  562. }
  563. static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)
  564. {
  565. while (!**ptr && *nbytes) {
  566. (*ptr)++;
  567. (*nbytes)--;
  568. }
  569. }
  570. /**
  571. * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members.
  572. * dP, dQ and qInv could decode to less than corresponding p, q length, as the
  573. * BER-encoding requires that the minimum number of bytes be used to encode the
  574. * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate
  575. * length.
  576. *
  577. * @ptr : pointer to {dP, dQ, qInv} CRT member
  578. * @nbytes: length in bytes of {dP, dQ, qInv} CRT member
  579. * @dstlen: length in bytes of corresponding p or q prime factor
  580. */
  581. static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)
  582. {
  583. u8 *dst;
  584. caam_rsa_drop_leading_zeros(&ptr, &nbytes);
  585. if (!nbytes)
  586. return NULL;
  587. dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL);
  588. if (!dst)
  589. return NULL;
  590. memcpy(dst + (dstlen - nbytes), ptr, nbytes);
  591. return dst;
  592. }
  593. /**
  594. * caam_read_raw_data - Read a raw byte stream as a positive integer.
  595. * The function skips buffer's leading zeros, copies the remained data
  596. * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
  597. * the address of the new buffer.
  598. *
  599. * @buf : The data to read
  600. * @nbytes: The amount of data to read
  601. */
  602. static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
  603. {
  604. u8 *val;
  605. caam_rsa_drop_leading_zeros(&buf, nbytes);
  606. if (!*nbytes)
  607. return NULL;
  608. val = kzalloc(*nbytes, GFP_DMA | GFP_KERNEL);
  609. if (!val)
  610. return NULL;
  611. memcpy(val, buf, *nbytes);
  612. return val;
  613. }
  614. static int caam_rsa_check_key_length(unsigned int len)
  615. {
  616. if (len > 4096)
  617. return -EINVAL;
  618. return 0;
  619. }
  620. static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
  621. unsigned int keylen)
  622. {
  623. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  624. struct rsa_key raw_key = {NULL};
  625. struct caam_rsa_key *rsa_key = &ctx->key;
  626. int ret;
  627. /* Free the old RSA key if any */
  628. caam_rsa_free_key(rsa_key);
  629. ret = rsa_parse_pub_key(&raw_key, key, keylen);
  630. if (ret)
  631. return ret;
  632. /* Copy key in DMA zone */
  633. rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL);
  634. if (!rsa_key->e)
  635. goto err;
  636. /*
  637. * Skip leading zeros and copy the positive integer to a buffer
  638. * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
  639. * expects a positive integer for the RSA modulus and uses its length as
  640. * decryption output length.
  641. */
  642. rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
  643. if (!rsa_key->n)
  644. goto err;
  645. if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
  646. caam_rsa_free_key(rsa_key);
  647. return -EINVAL;
  648. }
  649. rsa_key->e_sz = raw_key.e_sz;
  650. rsa_key->n_sz = raw_key.n_sz;
  651. memcpy(rsa_key->e, raw_key.e, raw_key.e_sz);
  652. return 0;
  653. err:
  654. caam_rsa_free_key(rsa_key);
  655. return -ENOMEM;
  656. }
  657. static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx,
  658. struct rsa_key *raw_key)
  659. {
  660. struct caam_rsa_key *rsa_key = &ctx->key;
  661. size_t p_sz = raw_key->p_sz;
  662. size_t q_sz = raw_key->q_sz;
  663. rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz);
  664. if (!rsa_key->p)
  665. return;
  666. rsa_key->p_sz = p_sz;
  667. rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz);
  668. if (!rsa_key->q)
  669. goto free_p;
  670. rsa_key->q_sz = q_sz;
  671. rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL);
  672. if (!rsa_key->tmp1)
  673. goto free_q;
  674. rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL);
  675. if (!rsa_key->tmp2)
  676. goto free_tmp1;
  677. rsa_key->priv_form = FORM2;
  678. rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz);
  679. if (!rsa_key->dp)
  680. goto free_tmp2;
  681. rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz);
  682. if (!rsa_key->dq)
  683. goto free_dp;
  684. rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz,
  685. q_sz);
  686. if (!rsa_key->qinv)
  687. goto free_dq;
  688. rsa_key->priv_form = FORM3;
  689. return;
  690. free_dq:
  691. kzfree(rsa_key->dq);
  692. free_dp:
  693. kzfree(rsa_key->dp);
  694. free_tmp2:
  695. kzfree(rsa_key->tmp2);
  696. free_tmp1:
  697. kzfree(rsa_key->tmp1);
  698. free_q:
  699. kzfree(rsa_key->q);
  700. free_p:
  701. kzfree(rsa_key->p);
  702. }
  703. static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
  704. unsigned int keylen)
  705. {
  706. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  707. struct rsa_key raw_key = {NULL};
  708. struct caam_rsa_key *rsa_key = &ctx->key;
  709. int ret;
  710. /* Free the old RSA key if any */
  711. caam_rsa_free_key(rsa_key);
  712. ret = rsa_parse_priv_key(&raw_key, key, keylen);
  713. if (ret)
  714. return ret;
  715. /* Copy key in DMA zone */
  716. rsa_key->d = kzalloc(raw_key.d_sz, GFP_DMA | GFP_KERNEL);
  717. if (!rsa_key->d)
  718. goto err;
  719. rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL);
  720. if (!rsa_key->e)
  721. goto err;
  722. /*
  723. * Skip leading zeros and copy the positive integer to a buffer
  724. * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
  725. * expects a positive integer for the RSA modulus and uses its length as
  726. * decryption output length.
  727. */
  728. rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
  729. if (!rsa_key->n)
  730. goto err;
  731. if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
  732. caam_rsa_free_key(rsa_key);
  733. return -EINVAL;
  734. }
  735. rsa_key->d_sz = raw_key.d_sz;
  736. rsa_key->e_sz = raw_key.e_sz;
  737. rsa_key->n_sz = raw_key.n_sz;
  738. memcpy(rsa_key->d, raw_key.d, raw_key.d_sz);
  739. memcpy(rsa_key->e, raw_key.e, raw_key.e_sz);
  740. caam_rsa_set_priv_key_form(ctx, &raw_key);
  741. return 0;
  742. err:
  743. caam_rsa_free_key(rsa_key);
  744. return -ENOMEM;
  745. }
  746. static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm)
  747. {
  748. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  749. return ctx->key.n_sz;
  750. }
  751. /* Per session pkc's driver context creation function */
  752. static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
  753. {
  754. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  755. ctx->dev = caam_jr_alloc();
  756. if (IS_ERR(ctx->dev)) {
  757. pr_err("Job Ring Device allocation for transform failed\n");
  758. return PTR_ERR(ctx->dev);
  759. }
  760. return 0;
  761. }
  762. /* Per session pkc's driver context cleanup function */
  763. static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
  764. {
  765. struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
  766. struct caam_rsa_key *key = &ctx->key;
  767. caam_rsa_free_key(key);
  768. caam_jr_free(ctx->dev);
  769. }
  770. static struct akcipher_alg caam_rsa = {
  771. .encrypt = caam_rsa_enc,
  772. .decrypt = caam_rsa_dec,
  773. .sign = caam_rsa_dec,
  774. .verify = caam_rsa_enc,
  775. .set_pub_key = caam_rsa_set_pub_key,
  776. .set_priv_key = caam_rsa_set_priv_key,
  777. .max_size = caam_rsa_max_size,
  778. .init = caam_rsa_init_tfm,
  779. .exit = caam_rsa_exit_tfm,
  780. .base = {
  781. .cra_name = "rsa",
  782. .cra_driver_name = "rsa-caam",
  783. .cra_priority = 3000,
  784. .cra_module = THIS_MODULE,
  785. .cra_ctxsize = sizeof(struct caam_rsa_ctx),
  786. },
  787. };
  788. /* Public Key Cryptography module initialization handler */
  789. static int __init caam_pkc_init(void)
  790. {
  791. struct device_node *dev_node;
  792. struct platform_device *pdev;
  793. struct device *ctrldev;
  794. struct caam_drv_private *priv;
  795. u32 cha_inst, pk_inst;
  796. int err;
  797. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  798. if (!dev_node) {
  799. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  800. if (!dev_node)
  801. return -ENODEV;
  802. }
  803. pdev = of_find_device_by_node(dev_node);
  804. if (!pdev) {
  805. of_node_put(dev_node);
  806. return -ENODEV;
  807. }
  808. ctrldev = &pdev->dev;
  809. priv = dev_get_drvdata(ctrldev);
  810. of_node_put(dev_node);
  811. /*
  812. * If priv is NULL, it's probably because the caam driver wasn't
  813. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  814. */
  815. if (!priv)
  816. return -ENODEV;
  817. /* Determine public key hardware accelerator presence. */
  818. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  819. pk_inst = (cha_inst & CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
  820. /* Do not register algorithms if PKHA is not present. */
  821. if (!pk_inst)
  822. return -ENODEV;
  823. err = crypto_register_akcipher(&caam_rsa);
  824. if (err)
  825. dev_warn(ctrldev, "%s alg registration failed\n",
  826. caam_rsa.base.cra_driver_name);
  827. else
  828. dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
  829. return err;
  830. }
  831. static void __exit caam_pkc_exit(void)
  832. {
  833. crypto_unregister_akcipher(&caam_rsa);
  834. }
  835. module_init(caam_pkc_init);
  836. module_exit(caam_pkc_exit);
  837. MODULE_LICENSE("Dual BSD/GPL");
  838. MODULE_DESCRIPTION("FSL CAAM support for PKC functions of crypto API");
  839. MODULE_AUTHOR("Freescale Semiconductor");