caamhash.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (3 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  91. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  92. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  93. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  94. dma_addr_t sh_desc_update_dma ____cacheline_aligned;
  95. dma_addr_t sh_desc_update_first_dma;
  96. dma_addr_t sh_desc_fin_dma;
  97. dma_addr_t sh_desc_digest_dma;
  98. struct device *jrdev;
  99. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  100. int ctx_len;
  101. struct alginfo adata;
  102. };
  103. /* ahash state */
  104. struct caam_hash_state {
  105. dma_addr_t buf_dma;
  106. dma_addr_t ctx_dma;
  107. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  108. int buflen_0;
  109. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  110. int buflen_1;
  111. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  112. int (*update)(struct ahash_request *req);
  113. int (*final)(struct ahash_request *req);
  114. int (*finup)(struct ahash_request *req);
  115. int current_buf;
  116. };
  117. struct caam_export_state {
  118. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  119. u8 caam_ctx[MAX_CTX_LEN];
  120. int buflen;
  121. int (*update)(struct ahash_request *req);
  122. int (*final)(struct ahash_request *req);
  123. int (*finup)(struct ahash_request *req);
  124. };
  125. static inline void switch_buf(struct caam_hash_state *state)
  126. {
  127. state->current_buf ^= 1;
  128. }
  129. static inline u8 *current_buf(struct caam_hash_state *state)
  130. {
  131. return state->current_buf ? state->buf_1 : state->buf_0;
  132. }
  133. static inline u8 *alt_buf(struct caam_hash_state *state)
  134. {
  135. return state->current_buf ? state->buf_0 : state->buf_1;
  136. }
  137. static inline int *current_buflen(struct caam_hash_state *state)
  138. {
  139. return state->current_buf ? &state->buflen_1 : &state->buflen_0;
  140. }
  141. static inline int *alt_buflen(struct caam_hash_state *state)
  142. {
  143. return state->current_buf ? &state->buflen_0 : &state->buflen_1;
  144. }
  145. /* Common job descriptor seq in/out ptr routines */
  146. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  147. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  148. struct caam_hash_state *state,
  149. int ctx_len)
  150. {
  151. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  152. ctx_len, DMA_FROM_DEVICE);
  153. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  154. dev_err(jrdev, "unable to map ctx\n");
  155. state->ctx_dma = 0;
  156. return -ENOMEM;
  157. }
  158. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  159. return 0;
  160. }
  161. /* Map req->result, and append seq_out_ptr command that points to it */
  162. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  163. u8 *result, int digestsize)
  164. {
  165. dma_addr_t dst_dma;
  166. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  167. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  168. return dst_dma;
  169. }
  170. /* Map current buffer in state (if length > 0) and put it in link table */
  171. static inline int buf_map_to_sec4_sg(struct device *jrdev,
  172. struct sec4_sg_entry *sec4_sg,
  173. struct caam_hash_state *state)
  174. {
  175. int buflen = *current_buflen(state);
  176. if (!buflen)
  177. return 0;
  178. state->buf_dma = dma_map_single(jrdev, current_buf(state), buflen,
  179. DMA_TO_DEVICE);
  180. if (dma_mapping_error(jrdev, state->buf_dma)) {
  181. dev_err(jrdev, "unable to map buf\n");
  182. state->buf_dma = 0;
  183. return -ENOMEM;
  184. }
  185. dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0);
  186. return 0;
  187. }
  188. /* Map state->caam_ctx, and add it to link table */
  189. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  190. struct caam_hash_state *state, int ctx_len,
  191. struct sec4_sg_entry *sec4_sg, u32 flag)
  192. {
  193. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  194. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  195. dev_err(jrdev, "unable to map ctx\n");
  196. state->ctx_dma = 0;
  197. return -ENOMEM;
  198. }
  199. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  200. return 0;
  201. }
  202. /*
  203. * For ahash update, final and finup (import_ctx = true)
  204. * import context, read and write to seqout
  205. * For ahash firsts and digest (import_ctx = false)
  206. * read and write to seqout
  207. */
  208. static inline void ahash_gen_sh_desc(u32 *desc, u32 state, int digestsize,
  209. struct caam_hash_ctx *ctx, bool import_ctx)
  210. {
  211. u32 op = ctx->adata.algtype;
  212. u32 *skip_key_load;
  213. init_sh_desc(desc, HDR_SHARE_SERIAL);
  214. /* Append key if it has been set; ahash update excluded */
  215. if ((state != OP_ALG_AS_UPDATE) && (ctx->adata.keylen)) {
  216. /* Skip key loading if already shared */
  217. skip_key_load = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  218. JUMP_COND_SHRD);
  219. append_key_as_imm(desc, ctx->key, ctx->adata.keylen_pad,
  220. ctx->adata.keylen, CLASS_2 |
  221. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  222. set_jump_tgt_here(desc, skip_key_load);
  223. op |= OP_ALG_AAI_HMAC_PRECOMP;
  224. }
  225. /* If needed, import context from software */
  226. if (import_ctx)
  227. append_seq_load(desc, ctx->ctx_len, LDST_CLASS_2_CCB |
  228. LDST_SRCDST_BYTE_CONTEXT);
  229. /* Class 2 operation */
  230. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  231. /*
  232. * Load from buf and/or src and write to req->result or state->context
  233. * Calculate remaining bytes to read
  234. */
  235. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  236. /* Read remaining bytes */
  237. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  238. FIFOLD_TYPE_MSG | KEY_VLF);
  239. /* Store class2 context bytes */
  240. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  241. LDST_SRCDST_BYTE_CONTEXT);
  242. }
  243. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  244. {
  245. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  246. int digestsize = crypto_ahash_digestsize(ahash);
  247. struct device *jrdev = ctx->jrdev;
  248. u32 *desc;
  249. /* ahash_update shared descriptor */
  250. desc = ctx->sh_desc_update;
  251. ahash_gen_sh_desc(desc, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx, true);
  252. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
  253. desc_bytes(desc), DMA_TO_DEVICE);
  254. #ifdef DEBUG
  255. print_hex_dump(KERN_ERR,
  256. "ahash update shdesc@"__stringify(__LINE__)": ",
  257. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  258. #endif
  259. /* ahash_update_first shared descriptor */
  260. desc = ctx->sh_desc_update_first;
  261. ahash_gen_sh_desc(desc, OP_ALG_AS_INIT, ctx->ctx_len, ctx, false);
  262. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
  263. desc_bytes(desc), DMA_TO_DEVICE);
  264. #ifdef DEBUG
  265. print_hex_dump(KERN_ERR,
  266. "ahash update first shdesc@"__stringify(__LINE__)": ",
  267. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  268. #endif
  269. /* ahash_final shared descriptor */
  270. desc = ctx->sh_desc_fin;
  271. ahash_gen_sh_desc(desc, OP_ALG_AS_FINALIZE, digestsize, ctx, true);
  272. dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
  273. desc_bytes(desc), DMA_TO_DEVICE);
  274. #ifdef DEBUG
  275. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  276. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  277. desc_bytes(desc), 1);
  278. #endif
  279. /* ahash_digest shared descriptor */
  280. desc = ctx->sh_desc_digest;
  281. ahash_gen_sh_desc(desc, OP_ALG_AS_INITFINAL, digestsize, ctx, false);
  282. dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
  283. desc_bytes(desc), DMA_TO_DEVICE);
  284. #ifdef DEBUG
  285. print_hex_dump(KERN_ERR,
  286. "ahash digest shdesc@"__stringify(__LINE__)": ",
  287. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  288. desc_bytes(desc), 1);
  289. #endif
  290. return 0;
  291. }
  292. /* Digest hash size if it is too large */
  293. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  294. u32 *keylen, u8 *key_out, u32 digestsize)
  295. {
  296. struct device *jrdev = ctx->jrdev;
  297. u32 *desc;
  298. struct split_key_result result;
  299. dma_addr_t src_dma, dst_dma;
  300. int ret;
  301. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  302. if (!desc) {
  303. dev_err(jrdev, "unable to allocate key input memory\n");
  304. return -ENOMEM;
  305. }
  306. init_job_desc(desc, 0);
  307. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, src_dma)) {
  310. dev_err(jrdev, "unable to map key input memory\n");
  311. kfree(desc);
  312. return -ENOMEM;
  313. }
  314. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  315. DMA_FROM_DEVICE);
  316. if (dma_mapping_error(jrdev, dst_dma)) {
  317. dev_err(jrdev, "unable to map key output memory\n");
  318. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  319. kfree(desc);
  320. return -ENOMEM;
  321. }
  322. /* Job descriptor to perform unkeyed hash on key_in */
  323. append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
  324. OP_ALG_AS_INITFINAL);
  325. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  326. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  327. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  328. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  329. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  330. LDST_SRCDST_BYTE_CONTEXT);
  331. #ifdef DEBUG
  332. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  333. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  334. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  335. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  336. #endif
  337. result.err = 0;
  338. init_completion(&result.completion);
  339. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  340. if (!ret) {
  341. /* in progress */
  342. wait_for_completion(&result.completion);
  343. ret = result.err;
  344. #ifdef DEBUG
  345. print_hex_dump(KERN_ERR,
  346. "digested key@"__stringify(__LINE__)": ",
  347. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  348. digestsize, 1);
  349. #endif
  350. }
  351. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  352. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  353. *keylen = digestsize;
  354. kfree(desc);
  355. return ret;
  356. }
  357. static int ahash_setkey(struct crypto_ahash *ahash,
  358. const u8 *key, unsigned int keylen)
  359. {
  360. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  361. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  362. int digestsize = crypto_ahash_digestsize(ahash);
  363. int ret;
  364. u8 *hashed_key = NULL;
  365. #ifdef DEBUG
  366. printk(KERN_ERR "keylen %d\n", keylen);
  367. #endif
  368. if (keylen > blocksize) {
  369. hashed_key = kmalloc_array(digestsize,
  370. sizeof(*hashed_key),
  371. GFP_KERNEL | GFP_DMA);
  372. if (!hashed_key)
  373. return -ENOMEM;
  374. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  375. digestsize);
  376. if (ret)
  377. goto bad_free_key;
  378. key = hashed_key;
  379. }
  380. ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, keylen,
  381. CAAM_MAX_HASH_KEY_SIZE);
  382. if (ret)
  383. goto bad_free_key;
  384. #ifdef DEBUG
  385. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  386. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  387. ctx->adata.keylen_pad, 1);
  388. #endif
  389. kfree(hashed_key);
  390. return ahash_set_sh_desc(ahash);
  391. bad_free_key:
  392. kfree(hashed_key);
  393. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  394. return -EINVAL;
  395. }
  396. /*
  397. * ahash_edesc - s/w-extended ahash descriptor
  398. * @dst_dma: physical mapped address of req->result
  399. * @sec4_sg_dma: physical mapped address of h/w link table
  400. * @src_nents: number of segments in input scatterlist
  401. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  402. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  403. * @sec4_sg: h/w link table
  404. */
  405. struct ahash_edesc {
  406. dma_addr_t dst_dma;
  407. dma_addr_t sec4_sg_dma;
  408. int src_nents;
  409. int sec4_sg_bytes;
  410. u32 hw_desc[DESC_JOB_IO_LEN / sizeof(u32)] ____cacheline_aligned;
  411. struct sec4_sg_entry sec4_sg[0];
  412. };
  413. static inline void ahash_unmap(struct device *dev,
  414. struct ahash_edesc *edesc,
  415. struct ahash_request *req, int dst_len)
  416. {
  417. struct caam_hash_state *state = ahash_request_ctx(req);
  418. if (edesc->src_nents)
  419. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  420. if (edesc->dst_dma)
  421. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  422. if (edesc->sec4_sg_bytes)
  423. dma_unmap_single(dev, edesc->sec4_sg_dma,
  424. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  425. if (state->buf_dma) {
  426. dma_unmap_single(dev, state->buf_dma, *current_buflen(state),
  427. DMA_TO_DEVICE);
  428. state->buf_dma = 0;
  429. }
  430. }
  431. static inline void ahash_unmap_ctx(struct device *dev,
  432. struct ahash_edesc *edesc,
  433. struct ahash_request *req, int dst_len, u32 flag)
  434. {
  435. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  436. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  437. struct caam_hash_state *state = ahash_request_ctx(req);
  438. if (state->ctx_dma) {
  439. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  440. state->ctx_dma = 0;
  441. }
  442. ahash_unmap(dev, edesc, req, dst_len);
  443. }
  444. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  445. void *context)
  446. {
  447. struct ahash_request *req = context;
  448. struct ahash_edesc *edesc;
  449. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  450. int digestsize = crypto_ahash_digestsize(ahash);
  451. #ifdef DEBUG
  452. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  453. struct caam_hash_state *state = ahash_request_ctx(req);
  454. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  455. #endif
  456. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  457. if (err)
  458. caam_jr_strstatus(jrdev, err);
  459. ahash_unmap(jrdev, edesc, req, digestsize);
  460. kfree(edesc);
  461. #ifdef DEBUG
  462. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  463. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  464. ctx->ctx_len, 1);
  465. if (req->result)
  466. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  467. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  468. digestsize, 1);
  469. #endif
  470. req->base.complete(&req->base, err);
  471. }
  472. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  473. void *context)
  474. {
  475. struct ahash_request *req = context;
  476. struct ahash_edesc *edesc;
  477. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  478. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  479. struct caam_hash_state *state = ahash_request_ctx(req);
  480. #ifdef DEBUG
  481. int digestsize = crypto_ahash_digestsize(ahash);
  482. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  483. #endif
  484. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  485. if (err)
  486. caam_jr_strstatus(jrdev, err);
  487. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  488. switch_buf(state);
  489. kfree(edesc);
  490. #ifdef DEBUG
  491. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  492. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  493. ctx->ctx_len, 1);
  494. if (req->result)
  495. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  496. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  497. digestsize, 1);
  498. #endif
  499. req->base.complete(&req->base, err);
  500. }
  501. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  502. void *context)
  503. {
  504. struct ahash_request *req = context;
  505. struct ahash_edesc *edesc;
  506. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  507. int digestsize = crypto_ahash_digestsize(ahash);
  508. #ifdef DEBUG
  509. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  510. struct caam_hash_state *state = ahash_request_ctx(req);
  511. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  512. #endif
  513. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  514. if (err)
  515. caam_jr_strstatus(jrdev, err);
  516. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  517. kfree(edesc);
  518. #ifdef DEBUG
  519. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  520. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  521. ctx->ctx_len, 1);
  522. if (req->result)
  523. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  524. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  525. digestsize, 1);
  526. #endif
  527. req->base.complete(&req->base, err);
  528. }
  529. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  530. void *context)
  531. {
  532. struct ahash_request *req = context;
  533. struct ahash_edesc *edesc;
  534. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  535. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  536. struct caam_hash_state *state = ahash_request_ctx(req);
  537. #ifdef DEBUG
  538. int digestsize = crypto_ahash_digestsize(ahash);
  539. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  540. #endif
  541. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  542. if (err)
  543. caam_jr_strstatus(jrdev, err);
  544. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  545. switch_buf(state);
  546. kfree(edesc);
  547. #ifdef DEBUG
  548. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  549. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  550. ctx->ctx_len, 1);
  551. if (req->result)
  552. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  553. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  554. digestsize, 1);
  555. #endif
  556. req->base.complete(&req->base, err);
  557. }
  558. /*
  559. * Allocate an enhanced descriptor, which contains the hardware descriptor
  560. * and space for hardware scatter table containing sg_num entries.
  561. */
  562. static struct ahash_edesc *ahash_edesc_alloc(struct caam_hash_ctx *ctx,
  563. int sg_num, u32 *sh_desc,
  564. dma_addr_t sh_desc_dma,
  565. gfp_t flags)
  566. {
  567. struct ahash_edesc *edesc;
  568. unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry);
  569. edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags);
  570. if (!edesc) {
  571. dev_err(ctx->jrdev, "could not allocate extended descriptor\n");
  572. return NULL;
  573. }
  574. init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
  575. HDR_SHARE_DEFER | HDR_REVERSE);
  576. return edesc;
  577. }
  578. static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
  579. struct ahash_edesc *edesc,
  580. struct ahash_request *req, int nents,
  581. unsigned int first_sg,
  582. unsigned int first_bytes, size_t to_hash)
  583. {
  584. dma_addr_t src_dma;
  585. u32 options;
  586. if (nents > 1 || first_sg) {
  587. struct sec4_sg_entry *sg = edesc->sec4_sg;
  588. unsigned int sgsize = sizeof(*sg) * (first_sg + nents);
  589. sg_to_sec4_sg_last(req->src, nents, sg + first_sg, 0);
  590. src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
  591. if (dma_mapping_error(ctx->jrdev, src_dma)) {
  592. dev_err(ctx->jrdev, "unable to map S/G table\n");
  593. return -ENOMEM;
  594. }
  595. edesc->sec4_sg_bytes = sgsize;
  596. edesc->sec4_sg_dma = src_dma;
  597. options = LDST_SGF;
  598. } else {
  599. src_dma = sg_dma_address(req->src);
  600. options = 0;
  601. }
  602. append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
  603. options);
  604. return 0;
  605. }
  606. /* submit update job descriptor */
  607. static int ahash_update_ctx(struct ahash_request *req)
  608. {
  609. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  610. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  611. struct caam_hash_state *state = ahash_request_ctx(req);
  612. struct device *jrdev = ctx->jrdev;
  613. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  614. GFP_KERNEL : GFP_ATOMIC;
  615. u8 *buf = current_buf(state);
  616. int *buflen = current_buflen(state);
  617. u8 *next_buf = alt_buf(state);
  618. int *next_buflen = alt_buflen(state), last_buflen;
  619. int in_len = *buflen + req->nbytes, to_hash;
  620. u32 *desc;
  621. int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
  622. struct ahash_edesc *edesc;
  623. int ret = 0;
  624. last_buflen = *next_buflen;
  625. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  626. to_hash = in_len - *next_buflen;
  627. if (to_hash) {
  628. src_nents = sg_nents_for_len(req->src,
  629. req->nbytes - (*next_buflen));
  630. if (src_nents < 0) {
  631. dev_err(jrdev, "Invalid number of src SG.\n");
  632. return src_nents;
  633. }
  634. if (src_nents) {
  635. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  636. DMA_TO_DEVICE);
  637. if (!mapped_nents) {
  638. dev_err(jrdev, "unable to DMA map source\n");
  639. return -ENOMEM;
  640. }
  641. } else {
  642. mapped_nents = 0;
  643. }
  644. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  645. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  646. sizeof(struct sec4_sg_entry);
  647. /*
  648. * allocate space for base edesc and hw desc commands,
  649. * link tables
  650. */
  651. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  652. ctx->sh_desc_update,
  653. ctx->sh_desc_update_dma, flags);
  654. if (!edesc) {
  655. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  656. return -ENOMEM;
  657. }
  658. edesc->src_nents = src_nents;
  659. edesc->sec4_sg_bytes = sec4_sg_bytes;
  660. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  661. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  662. if (ret)
  663. goto unmap_ctx;
  664. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  665. if (ret)
  666. goto unmap_ctx;
  667. if (mapped_nents) {
  668. sg_to_sec4_sg_last(req->src, mapped_nents,
  669. edesc->sec4_sg + sec4_sg_src_index,
  670. 0);
  671. if (*next_buflen)
  672. scatterwalk_map_and_copy(next_buf, req->src,
  673. to_hash - *buflen,
  674. *next_buflen, 0);
  675. } else {
  676. sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index -
  677. 1);
  678. }
  679. desc = edesc->hw_desc;
  680. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  681. sec4_sg_bytes,
  682. DMA_TO_DEVICE);
  683. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  684. dev_err(jrdev, "unable to map S/G table\n");
  685. ret = -ENOMEM;
  686. goto unmap_ctx;
  687. }
  688. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  689. to_hash, LDST_SGF);
  690. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  691. #ifdef DEBUG
  692. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  693. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  694. desc_bytes(desc), 1);
  695. #endif
  696. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  697. if (ret)
  698. goto unmap_ctx;
  699. ret = -EINPROGRESS;
  700. } else if (*next_buflen) {
  701. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  702. req->nbytes, 0);
  703. *buflen = *next_buflen;
  704. *next_buflen = last_buflen;
  705. }
  706. #ifdef DEBUG
  707. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  708. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  709. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  710. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  711. *next_buflen, 1);
  712. #endif
  713. return ret;
  714. unmap_ctx:
  715. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  716. kfree(edesc);
  717. return ret;
  718. }
  719. static int ahash_final_ctx(struct ahash_request *req)
  720. {
  721. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  722. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  723. struct caam_hash_state *state = ahash_request_ctx(req);
  724. struct device *jrdev = ctx->jrdev;
  725. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  726. GFP_KERNEL : GFP_ATOMIC;
  727. int buflen = *current_buflen(state);
  728. u32 *desc;
  729. int sec4_sg_bytes, sec4_sg_src_index;
  730. int digestsize = crypto_ahash_digestsize(ahash);
  731. struct ahash_edesc *edesc;
  732. int ret;
  733. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  734. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  735. /* allocate space for base edesc and hw desc commands, link tables */
  736. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index,
  737. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  738. flags);
  739. if (!edesc)
  740. return -ENOMEM;
  741. desc = edesc->hw_desc;
  742. edesc->sec4_sg_bytes = sec4_sg_bytes;
  743. edesc->src_nents = 0;
  744. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  745. edesc->sec4_sg, DMA_TO_DEVICE);
  746. if (ret)
  747. goto unmap_ctx;
  748. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  749. if (ret)
  750. goto unmap_ctx;
  751. sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 1);
  752. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  753. sec4_sg_bytes, DMA_TO_DEVICE);
  754. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  755. dev_err(jrdev, "unable to map S/G table\n");
  756. ret = -ENOMEM;
  757. goto unmap_ctx;
  758. }
  759. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  760. LDST_SGF);
  761. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  762. digestsize);
  763. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  764. dev_err(jrdev, "unable to map dst\n");
  765. ret = -ENOMEM;
  766. goto unmap_ctx;
  767. }
  768. #ifdef DEBUG
  769. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  770. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  771. #endif
  772. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  773. if (ret)
  774. goto unmap_ctx;
  775. return -EINPROGRESS;
  776. unmap_ctx:
  777. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  778. kfree(edesc);
  779. return ret;
  780. }
  781. static int ahash_finup_ctx(struct ahash_request *req)
  782. {
  783. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  784. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  785. struct caam_hash_state *state = ahash_request_ctx(req);
  786. struct device *jrdev = ctx->jrdev;
  787. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  788. GFP_KERNEL : GFP_ATOMIC;
  789. int buflen = *current_buflen(state);
  790. u32 *desc;
  791. int sec4_sg_src_index;
  792. int src_nents, mapped_nents;
  793. int digestsize = crypto_ahash_digestsize(ahash);
  794. struct ahash_edesc *edesc;
  795. int ret;
  796. src_nents = sg_nents_for_len(req->src, req->nbytes);
  797. if (src_nents < 0) {
  798. dev_err(jrdev, "Invalid number of src SG.\n");
  799. return src_nents;
  800. }
  801. if (src_nents) {
  802. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  803. DMA_TO_DEVICE);
  804. if (!mapped_nents) {
  805. dev_err(jrdev, "unable to DMA map source\n");
  806. return -ENOMEM;
  807. }
  808. } else {
  809. mapped_nents = 0;
  810. }
  811. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  812. /* allocate space for base edesc and hw desc commands, link tables */
  813. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  814. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  815. flags);
  816. if (!edesc) {
  817. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  818. return -ENOMEM;
  819. }
  820. desc = edesc->hw_desc;
  821. edesc->src_nents = src_nents;
  822. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  823. edesc->sec4_sg, DMA_TO_DEVICE);
  824. if (ret)
  825. goto unmap_ctx;
  826. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  827. if (ret)
  828. goto unmap_ctx;
  829. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
  830. sec4_sg_src_index, ctx->ctx_len + buflen,
  831. req->nbytes);
  832. if (ret)
  833. goto unmap_ctx;
  834. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  835. digestsize);
  836. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  837. dev_err(jrdev, "unable to map dst\n");
  838. ret = -ENOMEM;
  839. goto unmap_ctx;
  840. }
  841. #ifdef DEBUG
  842. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  843. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  844. #endif
  845. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  846. if (ret)
  847. goto unmap_ctx;
  848. return -EINPROGRESS;
  849. unmap_ctx:
  850. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  851. kfree(edesc);
  852. return ret;
  853. }
  854. static int ahash_digest(struct ahash_request *req)
  855. {
  856. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  857. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  858. struct caam_hash_state *state = ahash_request_ctx(req);
  859. struct device *jrdev = ctx->jrdev;
  860. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  861. GFP_KERNEL : GFP_ATOMIC;
  862. u32 *desc;
  863. int digestsize = crypto_ahash_digestsize(ahash);
  864. int src_nents, mapped_nents;
  865. struct ahash_edesc *edesc;
  866. int ret;
  867. state->buf_dma = 0;
  868. src_nents = sg_nents_for_len(req->src, req->nbytes);
  869. if (src_nents < 0) {
  870. dev_err(jrdev, "Invalid number of src SG.\n");
  871. return src_nents;
  872. }
  873. if (src_nents) {
  874. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  875. DMA_TO_DEVICE);
  876. if (!mapped_nents) {
  877. dev_err(jrdev, "unable to map source for DMA\n");
  878. return -ENOMEM;
  879. }
  880. } else {
  881. mapped_nents = 0;
  882. }
  883. /* allocate space for base edesc and hw desc commands, link tables */
  884. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ? mapped_nents : 0,
  885. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  886. flags);
  887. if (!edesc) {
  888. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  889. return -ENOMEM;
  890. }
  891. edesc->src_nents = src_nents;
  892. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  893. req->nbytes);
  894. if (ret) {
  895. ahash_unmap(jrdev, edesc, req, digestsize);
  896. kfree(edesc);
  897. return ret;
  898. }
  899. desc = edesc->hw_desc;
  900. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  901. digestsize);
  902. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  903. dev_err(jrdev, "unable to map dst\n");
  904. ahash_unmap(jrdev, edesc, req, digestsize);
  905. kfree(edesc);
  906. return -ENOMEM;
  907. }
  908. #ifdef DEBUG
  909. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  910. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  911. #endif
  912. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  913. if (!ret) {
  914. ret = -EINPROGRESS;
  915. } else {
  916. ahash_unmap(jrdev, edesc, req, digestsize);
  917. kfree(edesc);
  918. }
  919. return ret;
  920. }
  921. /* submit ahash final if it the first job descriptor */
  922. static int ahash_final_no_ctx(struct ahash_request *req)
  923. {
  924. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  925. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  926. struct caam_hash_state *state = ahash_request_ctx(req);
  927. struct device *jrdev = ctx->jrdev;
  928. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  929. GFP_KERNEL : GFP_ATOMIC;
  930. u8 *buf = current_buf(state);
  931. int buflen = *current_buflen(state);
  932. u32 *desc;
  933. int digestsize = crypto_ahash_digestsize(ahash);
  934. struct ahash_edesc *edesc;
  935. int ret;
  936. /* allocate space for base edesc and hw desc commands, link tables */
  937. edesc = ahash_edesc_alloc(ctx, 0, ctx->sh_desc_digest,
  938. ctx->sh_desc_digest_dma, flags);
  939. if (!edesc)
  940. return -ENOMEM;
  941. desc = edesc->hw_desc;
  942. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  943. if (dma_mapping_error(jrdev, state->buf_dma)) {
  944. dev_err(jrdev, "unable to map src\n");
  945. goto unmap;
  946. }
  947. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  948. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  949. digestsize);
  950. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  951. dev_err(jrdev, "unable to map dst\n");
  952. goto unmap;
  953. }
  954. edesc->src_nents = 0;
  955. #ifdef DEBUG
  956. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  957. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  958. #endif
  959. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  960. if (!ret) {
  961. ret = -EINPROGRESS;
  962. } else {
  963. ahash_unmap(jrdev, edesc, req, digestsize);
  964. kfree(edesc);
  965. }
  966. return ret;
  967. unmap:
  968. ahash_unmap(jrdev, edesc, req, digestsize);
  969. kfree(edesc);
  970. return -ENOMEM;
  971. }
  972. /* submit ahash update if it the first job descriptor after update */
  973. static int ahash_update_no_ctx(struct ahash_request *req)
  974. {
  975. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  976. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  977. struct caam_hash_state *state = ahash_request_ctx(req);
  978. struct device *jrdev = ctx->jrdev;
  979. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  980. GFP_KERNEL : GFP_ATOMIC;
  981. u8 *buf = current_buf(state);
  982. int *buflen = current_buflen(state);
  983. u8 *next_buf = alt_buf(state);
  984. int *next_buflen = alt_buflen(state);
  985. int in_len = *buflen + req->nbytes, to_hash;
  986. int sec4_sg_bytes, src_nents, mapped_nents;
  987. struct ahash_edesc *edesc;
  988. u32 *desc;
  989. int ret = 0;
  990. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  991. to_hash = in_len - *next_buflen;
  992. if (to_hash) {
  993. src_nents = sg_nents_for_len(req->src,
  994. req->nbytes - *next_buflen);
  995. if (src_nents < 0) {
  996. dev_err(jrdev, "Invalid number of src SG.\n");
  997. return src_nents;
  998. }
  999. if (src_nents) {
  1000. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1001. DMA_TO_DEVICE);
  1002. if (!mapped_nents) {
  1003. dev_err(jrdev, "unable to DMA map source\n");
  1004. return -ENOMEM;
  1005. }
  1006. } else {
  1007. mapped_nents = 0;
  1008. }
  1009. sec4_sg_bytes = (1 + mapped_nents) *
  1010. sizeof(struct sec4_sg_entry);
  1011. /*
  1012. * allocate space for base edesc and hw desc commands,
  1013. * link tables
  1014. */
  1015. edesc = ahash_edesc_alloc(ctx, 1 + mapped_nents,
  1016. ctx->sh_desc_update_first,
  1017. ctx->sh_desc_update_first_dma,
  1018. flags);
  1019. if (!edesc) {
  1020. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1021. return -ENOMEM;
  1022. }
  1023. edesc->src_nents = src_nents;
  1024. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1025. edesc->dst_dma = 0;
  1026. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1027. if (ret)
  1028. goto unmap_ctx;
  1029. sg_to_sec4_sg_last(req->src, mapped_nents,
  1030. edesc->sec4_sg + 1, 0);
  1031. if (*next_buflen) {
  1032. scatterwalk_map_and_copy(next_buf, req->src,
  1033. to_hash - *buflen,
  1034. *next_buflen, 0);
  1035. }
  1036. desc = edesc->hw_desc;
  1037. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1038. sec4_sg_bytes,
  1039. DMA_TO_DEVICE);
  1040. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1041. dev_err(jrdev, "unable to map S/G table\n");
  1042. ret = -ENOMEM;
  1043. goto unmap_ctx;
  1044. }
  1045. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1046. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1047. if (ret)
  1048. goto unmap_ctx;
  1049. #ifdef DEBUG
  1050. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1051. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1052. desc_bytes(desc), 1);
  1053. #endif
  1054. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1055. if (ret)
  1056. goto unmap_ctx;
  1057. ret = -EINPROGRESS;
  1058. state->update = ahash_update_ctx;
  1059. state->finup = ahash_finup_ctx;
  1060. state->final = ahash_final_ctx;
  1061. } else if (*next_buflen) {
  1062. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1063. req->nbytes, 0);
  1064. *buflen = *next_buflen;
  1065. *next_buflen = 0;
  1066. }
  1067. #ifdef DEBUG
  1068. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1069. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1070. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1071. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1072. *next_buflen, 1);
  1073. #endif
  1074. return ret;
  1075. unmap_ctx:
  1076. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1077. kfree(edesc);
  1078. return ret;
  1079. }
  1080. /* submit ahash finup if it the first job descriptor after update */
  1081. static int ahash_finup_no_ctx(struct ahash_request *req)
  1082. {
  1083. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1084. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1085. struct caam_hash_state *state = ahash_request_ctx(req);
  1086. struct device *jrdev = ctx->jrdev;
  1087. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  1088. GFP_KERNEL : GFP_ATOMIC;
  1089. int buflen = *current_buflen(state);
  1090. u32 *desc;
  1091. int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
  1092. int digestsize = crypto_ahash_digestsize(ahash);
  1093. struct ahash_edesc *edesc;
  1094. int ret;
  1095. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1096. if (src_nents < 0) {
  1097. dev_err(jrdev, "Invalid number of src SG.\n");
  1098. return src_nents;
  1099. }
  1100. if (src_nents) {
  1101. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1102. DMA_TO_DEVICE);
  1103. if (!mapped_nents) {
  1104. dev_err(jrdev, "unable to DMA map source\n");
  1105. return -ENOMEM;
  1106. }
  1107. } else {
  1108. mapped_nents = 0;
  1109. }
  1110. sec4_sg_src_index = 2;
  1111. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  1112. sizeof(struct sec4_sg_entry);
  1113. /* allocate space for base edesc and hw desc commands, link tables */
  1114. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  1115. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  1116. flags);
  1117. if (!edesc) {
  1118. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1119. return -ENOMEM;
  1120. }
  1121. desc = edesc->hw_desc;
  1122. edesc->src_nents = src_nents;
  1123. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1124. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1125. if (ret)
  1126. goto unmap;
  1127. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
  1128. req->nbytes);
  1129. if (ret) {
  1130. dev_err(jrdev, "unable to map S/G table\n");
  1131. goto unmap;
  1132. }
  1133. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1134. digestsize);
  1135. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1136. dev_err(jrdev, "unable to map dst\n");
  1137. goto unmap;
  1138. }
  1139. #ifdef DEBUG
  1140. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1141. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1142. #endif
  1143. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1144. if (!ret) {
  1145. ret = -EINPROGRESS;
  1146. } else {
  1147. ahash_unmap(jrdev, edesc, req, digestsize);
  1148. kfree(edesc);
  1149. }
  1150. return ret;
  1151. unmap:
  1152. ahash_unmap(jrdev, edesc, req, digestsize);
  1153. kfree(edesc);
  1154. return -ENOMEM;
  1155. }
  1156. /* submit first update job descriptor after init */
  1157. static int ahash_update_first(struct ahash_request *req)
  1158. {
  1159. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1160. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1161. struct caam_hash_state *state = ahash_request_ctx(req);
  1162. struct device *jrdev = ctx->jrdev;
  1163. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  1164. GFP_KERNEL : GFP_ATOMIC;
  1165. u8 *next_buf = alt_buf(state);
  1166. int *next_buflen = alt_buflen(state);
  1167. int to_hash;
  1168. u32 *desc;
  1169. int src_nents, mapped_nents;
  1170. struct ahash_edesc *edesc;
  1171. int ret = 0;
  1172. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1173. 1);
  1174. to_hash = req->nbytes - *next_buflen;
  1175. if (to_hash) {
  1176. src_nents = sg_nents_for_len(req->src,
  1177. req->nbytes - *next_buflen);
  1178. if (src_nents < 0) {
  1179. dev_err(jrdev, "Invalid number of src SG.\n");
  1180. return src_nents;
  1181. }
  1182. if (src_nents) {
  1183. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1184. DMA_TO_DEVICE);
  1185. if (!mapped_nents) {
  1186. dev_err(jrdev, "unable to map source for DMA\n");
  1187. return -ENOMEM;
  1188. }
  1189. } else {
  1190. mapped_nents = 0;
  1191. }
  1192. /*
  1193. * allocate space for base edesc and hw desc commands,
  1194. * link tables
  1195. */
  1196. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ?
  1197. mapped_nents : 0,
  1198. ctx->sh_desc_update_first,
  1199. ctx->sh_desc_update_first_dma,
  1200. flags);
  1201. if (!edesc) {
  1202. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1203. return -ENOMEM;
  1204. }
  1205. edesc->src_nents = src_nents;
  1206. edesc->dst_dma = 0;
  1207. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  1208. to_hash);
  1209. if (ret)
  1210. goto unmap_ctx;
  1211. if (*next_buflen)
  1212. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1213. *next_buflen, 0);
  1214. desc = edesc->hw_desc;
  1215. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1216. if (ret)
  1217. goto unmap_ctx;
  1218. #ifdef DEBUG
  1219. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1220. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1221. desc_bytes(desc), 1);
  1222. #endif
  1223. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1224. if (ret)
  1225. goto unmap_ctx;
  1226. ret = -EINPROGRESS;
  1227. state->update = ahash_update_ctx;
  1228. state->finup = ahash_finup_ctx;
  1229. state->final = ahash_final_ctx;
  1230. } else if (*next_buflen) {
  1231. state->update = ahash_update_no_ctx;
  1232. state->finup = ahash_finup_no_ctx;
  1233. state->final = ahash_final_no_ctx;
  1234. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1235. req->nbytes, 0);
  1236. switch_buf(state);
  1237. }
  1238. #ifdef DEBUG
  1239. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1240. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1241. *next_buflen, 1);
  1242. #endif
  1243. return ret;
  1244. unmap_ctx:
  1245. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1246. kfree(edesc);
  1247. return ret;
  1248. }
  1249. static int ahash_finup_first(struct ahash_request *req)
  1250. {
  1251. return ahash_digest(req);
  1252. }
  1253. static int ahash_init(struct ahash_request *req)
  1254. {
  1255. struct caam_hash_state *state = ahash_request_ctx(req);
  1256. state->update = ahash_update_first;
  1257. state->finup = ahash_finup_first;
  1258. state->final = ahash_final_no_ctx;
  1259. state->ctx_dma = 0;
  1260. state->current_buf = 0;
  1261. state->buf_dma = 0;
  1262. state->buflen_0 = 0;
  1263. state->buflen_1 = 0;
  1264. return 0;
  1265. }
  1266. static int ahash_update(struct ahash_request *req)
  1267. {
  1268. struct caam_hash_state *state = ahash_request_ctx(req);
  1269. return state->update(req);
  1270. }
  1271. static int ahash_finup(struct ahash_request *req)
  1272. {
  1273. struct caam_hash_state *state = ahash_request_ctx(req);
  1274. return state->finup(req);
  1275. }
  1276. static int ahash_final(struct ahash_request *req)
  1277. {
  1278. struct caam_hash_state *state = ahash_request_ctx(req);
  1279. return state->final(req);
  1280. }
  1281. static int ahash_export(struct ahash_request *req, void *out)
  1282. {
  1283. struct caam_hash_state *state = ahash_request_ctx(req);
  1284. struct caam_export_state *export = out;
  1285. int len;
  1286. u8 *buf;
  1287. if (state->current_buf) {
  1288. buf = state->buf_1;
  1289. len = state->buflen_1;
  1290. } else {
  1291. buf = state->buf_0;
  1292. len = state->buflen_0;
  1293. }
  1294. memcpy(export->buf, buf, len);
  1295. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1296. export->buflen = len;
  1297. export->update = state->update;
  1298. export->final = state->final;
  1299. export->finup = state->finup;
  1300. return 0;
  1301. }
  1302. static int ahash_import(struct ahash_request *req, const void *in)
  1303. {
  1304. struct caam_hash_state *state = ahash_request_ctx(req);
  1305. const struct caam_export_state *export = in;
  1306. memset(state, 0, sizeof(*state));
  1307. memcpy(state->buf_0, export->buf, export->buflen);
  1308. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1309. state->buflen_0 = export->buflen;
  1310. state->update = export->update;
  1311. state->final = export->final;
  1312. state->finup = export->finup;
  1313. return 0;
  1314. }
  1315. struct caam_hash_template {
  1316. char name[CRYPTO_MAX_ALG_NAME];
  1317. char driver_name[CRYPTO_MAX_ALG_NAME];
  1318. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1319. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1320. unsigned int blocksize;
  1321. struct ahash_alg template_ahash;
  1322. u32 alg_type;
  1323. };
  1324. /* ahash descriptors */
  1325. static struct caam_hash_template driver_hash[] = {
  1326. {
  1327. .name = "sha1",
  1328. .driver_name = "sha1-caam",
  1329. .hmac_name = "hmac(sha1)",
  1330. .hmac_driver_name = "hmac-sha1-caam",
  1331. .blocksize = SHA1_BLOCK_SIZE,
  1332. .template_ahash = {
  1333. .init = ahash_init,
  1334. .update = ahash_update,
  1335. .final = ahash_final,
  1336. .finup = ahash_finup,
  1337. .digest = ahash_digest,
  1338. .export = ahash_export,
  1339. .import = ahash_import,
  1340. .setkey = ahash_setkey,
  1341. .halg = {
  1342. .digestsize = SHA1_DIGEST_SIZE,
  1343. .statesize = sizeof(struct caam_export_state),
  1344. },
  1345. },
  1346. .alg_type = OP_ALG_ALGSEL_SHA1,
  1347. }, {
  1348. .name = "sha224",
  1349. .driver_name = "sha224-caam",
  1350. .hmac_name = "hmac(sha224)",
  1351. .hmac_driver_name = "hmac-sha224-caam",
  1352. .blocksize = SHA224_BLOCK_SIZE,
  1353. .template_ahash = {
  1354. .init = ahash_init,
  1355. .update = ahash_update,
  1356. .final = ahash_final,
  1357. .finup = ahash_finup,
  1358. .digest = ahash_digest,
  1359. .export = ahash_export,
  1360. .import = ahash_import,
  1361. .setkey = ahash_setkey,
  1362. .halg = {
  1363. .digestsize = SHA224_DIGEST_SIZE,
  1364. .statesize = sizeof(struct caam_export_state),
  1365. },
  1366. },
  1367. .alg_type = OP_ALG_ALGSEL_SHA224,
  1368. }, {
  1369. .name = "sha256",
  1370. .driver_name = "sha256-caam",
  1371. .hmac_name = "hmac(sha256)",
  1372. .hmac_driver_name = "hmac-sha256-caam",
  1373. .blocksize = SHA256_BLOCK_SIZE,
  1374. .template_ahash = {
  1375. .init = ahash_init,
  1376. .update = ahash_update,
  1377. .final = ahash_final,
  1378. .finup = ahash_finup,
  1379. .digest = ahash_digest,
  1380. .export = ahash_export,
  1381. .import = ahash_import,
  1382. .setkey = ahash_setkey,
  1383. .halg = {
  1384. .digestsize = SHA256_DIGEST_SIZE,
  1385. .statesize = sizeof(struct caam_export_state),
  1386. },
  1387. },
  1388. .alg_type = OP_ALG_ALGSEL_SHA256,
  1389. }, {
  1390. .name = "sha384",
  1391. .driver_name = "sha384-caam",
  1392. .hmac_name = "hmac(sha384)",
  1393. .hmac_driver_name = "hmac-sha384-caam",
  1394. .blocksize = SHA384_BLOCK_SIZE,
  1395. .template_ahash = {
  1396. .init = ahash_init,
  1397. .update = ahash_update,
  1398. .final = ahash_final,
  1399. .finup = ahash_finup,
  1400. .digest = ahash_digest,
  1401. .export = ahash_export,
  1402. .import = ahash_import,
  1403. .setkey = ahash_setkey,
  1404. .halg = {
  1405. .digestsize = SHA384_DIGEST_SIZE,
  1406. .statesize = sizeof(struct caam_export_state),
  1407. },
  1408. },
  1409. .alg_type = OP_ALG_ALGSEL_SHA384,
  1410. }, {
  1411. .name = "sha512",
  1412. .driver_name = "sha512-caam",
  1413. .hmac_name = "hmac(sha512)",
  1414. .hmac_driver_name = "hmac-sha512-caam",
  1415. .blocksize = SHA512_BLOCK_SIZE,
  1416. .template_ahash = {
  1417. .init = ahash_init,
  1418. .update = ahash_update,
  1419. .final = ahash_final,
  1420. .finup = ahash_finup,
  1421. .digest = ahash_digest,
  1422. .export = ahash_export,
  1423. .import = ahash_import,
  1424. .setkey = ahash_setkey,
  1425. .halg = {
  1426. .digestsize = SHA512_DIGEST_SIZE,
  1427. .statesize = sizeof(struct caam_export_state),
  1428. },
  1429. },
  1430. .alg_type = OP_ALG_ALGSEL_SHA512,
  1431. }, {
  1432. .name = "md5",
  1433. .driver_name = "md5-caam",
  1434. .hmac_name = "hmac(md5)",
  1435. .hmac_driver_name = "hmac-md5-caam",
  1436. .blocksize = MD5_BLOCK_WORDS * 4,
  1437. .template_ahash = {
  1438. .init = ahash_init,
  1439. .update = ahash_update,
  1440. .final = ahash_final,
  1441. .finup = ahash_finup,
  1442. .digest = ahash_digest,
  1443. .export = ahash_export,
  1444. .import = ahash_import,
  1445. .setkey = ahash_setkey,
  1446. .halg = {
  1447. .digestsize = MD5_DIGEST_SIZE,
  1448. .statesize = sizeof(struct caam_export_state),
  1449. },
  1450. },
  1451. .alg_type = OP_ALG_ALGSEL_MD5,
  1452. },
  1453. };
  1454. struct caam_hash_alg {
  1455. struct list_head entry;
  1456. int alg_type;
  1457. struct ahash_alg ahash_alg;
  1458. };
  1459. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1460. {
  1461. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1462. struct crypto_alg *base = tfm->__crt_alg;
  1463. struct hash_alg_common *halg =
  1464. container_of(base, struct hash_alg_common, base);
  1465. struct ahash_alg *alg =
  1466. container_of(halg, struct ahash_alg, halg);
  1467. struct caam_hash_alg *caam_hash =
  1468. container_of(alg, struct caam_hash_alg, ahash_alg);
  1469. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1470. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1471. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1472. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1473. HASH_MSG_LEN + 32,
  1474. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1475. HASH_MSG_LEN + 64,
  1476. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1477. dma_addr_t dma_addr;
  1478. /*
  1479. * Get a Job ring from Job Ring driver to ensure in-order
  1480. * crypto request processing per tfm
  1481. */
  1482. ctx->jrdev = caam_jr_alloc();
  1483. if (IS_ERR(ctx->jrdev)) {
  1484. pr_err("Job Ring Device allocation for transform failed\n");
  1485. return PTR_ERR(ctx->jrdev);
  1486. }
  1487. dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update,
  1488. offsetof(struct caam_hash_ctx,
  1489. sh_desc_update_dma),
  1490. DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  1491. if (dma_mapping_error(ctx->jrdev, dma_addr)) {
  1492. dev_err(ctx->jrdev, "unable to map shared descriptors\n");
  1493. caam_jr_free(ctx->jrdev);
  1494. return -ENOMEM;
  1495. }
  1496. ctx->sh_desc_update_dma = dma_addr;
  1497. ctx->sh_desc_update_first_dma = dma_addr +
  1498. offsetof(struct caam_hash_ctx,
  1499. sh_desc_update_first);
  1500. ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1501. sh_desc_fin);
  1502. ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1503. sh_desc_digest);
  1504. /* copy descriptor header template value */
  1505. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1506. ctx->ctx_len = runninglen[(ctx->adata.algtype &
  1507. OP_ALG_ALGSEL_SUBMASK) >>
  1508. OP_ALG_ALGSEL_SHIFT];
  1509. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1510. sizeof(struct caam_hash_state));
  1511. return ahash_set_sh_desc(ahash);
  1512. }
  1513. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1514. {
  1515. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1516. dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma,
  1517. offsetof(struct caam_hash_ctx,
  1518. sh_desc_update_dma),
  1519. DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  1520. caam_jr_free(ctx->jrdev);
  1521. }
  1522. static void __exit caam_algapi_hash_exit(void)
  1523. {
  1524. struct caam_hash_alg *t_alg, *n;
  1525. if (!hash_list.next)
  1526. return;
  1527. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1528. crypto_unregister_ahash(&t_alg->ahash_alg);
  1529. list_del(&t_alg->entry);
  1530. kfree(t_alg);
  1531. }
  1532. }
  1533. static struct caam_hash_alg *
  1534. caam_hash_alloc(struct caam_hash_template *template,
  1535. bool keyed)
  1536. {
  1537. struct caam_hash_alg *t_alg;
  1538. struct ahash_alg *halg;
  1539. struct crypto_alg *alg;
  1540. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1541. if (!t_alg) {
  1542. pr_err("failed to allocate t_alg\n");
  1543. return ERR_PTR(-ENOMEM);
  1544. }
  1545. t_alg->ahash_alg = template->template_ahash;
  1546. halg = &t_alg->ahash_alg;
  1547. alg = &halg->halg.base;
  1548. if (keyed) {
  1549. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1550. template->hmac_name);
  1551. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1552. template->hmac_driver_name);
  1553. } else {
  1554. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1555. template->name);
  1556. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1557. template->driver_name);
  1558. t_alg->ahash_alg.setkey = NULL;
  1559. }
  1560. alg->cra_module = THIS_MODULE;
  1561. alg->cra_init = caam_hash_cra_init;
  1562. alg->cra_exit = caam_hash_cra_exit;
  1563. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1564. alg->cra_priority = CAAM_CRA_PRIORITY;
  1565. alg->cra_blocksize = template->blocksize;
  1566. alg->cra_alignmask = 0;
  1567. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1568. alg->cra_type = &crypto_ahash_type;
  1569. t_alg->alg_type = template->alg_type;
  1570. return t_alg;
  1571. }
  1572. static int __init caam_algapi_hash_init(void)
  1573. {
  1574. struct device_node *dev_node;
  1575. struct platform_device *pdev;
  1576. struct device *ctrldev;
  1577. int i = 0, err = 0;
  1578. struct caam_drv_private *priv;
  1579. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1580. u32 cha_inst, cha_vid;
  1581. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1582. if (!dev_node) {
  1583. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1584. if (!dev_node)
  1585. return -ENODEV;
  1586. }
  1587. pdev = of_find_device_by_node(dev_node);
  1588. if (!pdev) {
  1589. of_node_put(dev_node);
  1590. return -ENODEV;
  1591. }
  1592. ctrldev = &pdev->dev;
  1593. priv = dev_get_drvdata(ctrldev);
  1594. of_node_put(dev_node);
  1595. /*
  1596. * If priv is NULL, it's probably because the caam driver wasn't
  1597. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1598. */
  1599. if (!priv)
  1600. return -ENODEV;
  1601. /*
  1602. * Register crypto algorithms the device supports. First, identify
  1603. * presence and attributes of MD block.
  1604. */
  1605. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1606. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1607. /*
  1608. * Skip registration of any hashing algorithms if MD block
  1609. * is not present.
  1610. */
  1611. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1612. return -ENODEV;
  1613. /* Limit digest size based on LP256 */
  1614. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1615. md_limit = SHA256_DIGEST_SIZE;
  1616. INIT_LIST_HEAD(&hash_list);
  1617. /* register crypto algorithms the device supports */
  1618. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1619. struct caam_hash_alg *t_alg;
  1620. struct caam_hash_template *alg = driver_hash + i;
  1621. /* If MD size is not supported by device, skip registration */
  1622. if (alg->template_ahash.halg.digestsize > md_limit)
  1623. continue;
  1624. /* register hmac version */
  1625. t_alg = caam_hash_alloc(alg, true);
  1626. if (IS_ERR(t_alg)) {
  1627. err = PTR_ERR(t_alg);
  1628. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1629. continue;
  1630. }
  1631. err = crypto_register_ahash(&t_alg->ahash_alg);
  1632. if (err) {
  1633. pr_warn("%s alg registration failed: %d\n",
  1634. t_alg->ahash_alg.halg.base.cra_driver_name,
  1635. err);
  1636. kfree(t_alg);
  1637. } else
  1638. list_add_tail(&t_alg->entry, &hash_list);
  1639. /* register unkeyed version */
  1640. t_alg = caam_hash_alloc(alg, false);
  1641. if (IS_ERR(t_alg)) {
  1642. err = PTR_ERR(t_alg);
  1643. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1644. continue;
  1645. }
  1646. err = crypto_register_ahash(&t_alg->ahash_alg);
  1647. if (err) {
  1648. pr_warn("%s alg registration failed: %d\n",
  1649. t_alg->ahash_alg.halg.base.cra_driver_name,
  1650. err);
  1651. kfree(t_alg);
  1652. } else
  1653. list_add_tail(&t_alg->entry, &hash_list);
  1654. }
  1655. return err;
  1656. }
  1657. module_init(caam_algapi_hash_init);
  1658. module_exit(caam_algapi_hash_exit);
  1659. MODULE_LICENSE("GPL");
  1660. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1661. MODULE_AUTHOR("Freescale Semiconductor - NMG");