exynos5440-cpufreq.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. /*
  2. * Copyright (c) 2013 Samsung Electronics Co., Ltd.
  3. * http://www.samsung.com
  4. *
  5. * Amit Daniel Kachhap <amit.daniel@samsung.com>
  6. *
  7. * EXYNOS5440 - CPU frequency scaling support
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/clk.h>
  14. #include <linux/cpu.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/err.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/module.h>
  20. #include <linux/of_address.h>
  21. #include <linux/of_irq.h>
  22. #include <linux/pm_opp.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/slab.h>
  25. /* Register definitions */
  26. #define XMU_DVFS_CTRL 0x0060
  27. #define XMU_PMU_P0_7 0x0064
  28. #define XMU_C0_3_PSTATE 0x0090
  29. #define XMU_P_LIMIT 0x00a0
  30. #define XMU_P_STATUS 0x00a4
  31. #define XMU_PMUEVTEN 0x00d0
  32. #define XMU_PMUIRQEN 0x00d4
  33. #define XMU_PMUIRQ 0x00d8
  34. /* PMU mask and shift definations */
  35. #define P_VALUE_MASK 0x7
  36. #define XMU_DVFS_CTRL_EN_SHIFT 0
  37. #define P0_7_CPUCLKDEV_SHIFT 21
  38. #define P0_7_CPUCLKDEV_MASK 0x7
  39. #define P0_7_ATBCLKDEV_SHIFT 18
  40. #define P0_7_ATBCLKDEV_MASK 0x7
  41. #define P0_7_CSCLKDEV_SHIFT 15
  42. #define P0_7_CSCLKDEV_MASK 0x7
  43. #define P0_7_CPUEMA_SHIFT 28
  44. #define P0_7_CPUEMA_MASK 0xf
  45. #define P0_7_L2EMA_SHIFT 24
  46. #define P0_7_L2EMA_MASK 0xf
  47. #define P0_7_VDD_SHIFT 8
  48. #define P0_7_VDD_MASK 0x7f
  49. #define P0_7_FREQ_SHIFT 0
  50. #define P0_7_FREQ_MASK 0xff
  51. #define C0_3_PSTATE_VALID_SHIFT 8
  52. #define C0_3_PSTATE_CURR_SHIFT 4
  53. #define C0_3_PSTATE_NEW_SHIFT 0
  54. #define PSTATE_CHANGED_EVTEN_SHIFT 0
  55. #define PSTATE_CHANGED_IRQEN_SHIFT 0
  56. #define PSTATE_CHANGED_SHIFT 0
  57. /* some constant values for clock divider calculation */
  58. #define CPU_DIV_FREQ_MAX 500
  59. #define CPU_DBG_FREQ_MAX 375
  60. #define CPU_ATB_FREQ_MAX 500
  61. #define PMIC_LOW_VOLT 0x30
  62. #define PMIC_HIGH_VOLT 0x28
  63. #define CPUEMA_HIGH 0x2
  64. #define CPUEMA_MID 0x4
  65. #define CPUEMA_LOW 0x7
  66. #define L2EMA_HIGH 0x1
  67. #define L2EMA_MID 0x3
  68. #define L2EMA_LOW 0x4
  69. #define DIV_TAB_MAX 2
  70. /* frequency unit is 20MHZ */
  71. #define FREQ_UNIT 20
  72. #define MAX_VOLTAGE 1550000 /* In microvolt */
  73. #define VOLTAGE_STEP 12500 /* In microvolt */
  74. #define CPUFREQ_NAME "exynos5440_dvfs"
  75. #define DEF_TRANS_LATENCY 100000
  76. enum cpufreq_level_index {
  77. L0, L1, L2, L3, L4,
  78. L5, L6, L7, L8, L9,
  79. };
  80. #define CPUFREQ_LEVEL_END (L7 + 1)
  81. struct exynos_dvfs_data {
  82. void __iomem *base;
  83. struct resource *mem;
  84. int irq;
  85. struct clk *cpu_clk;
  86. unsigned int latency;
  87. struct cpufreq_frequency_table *freq_table;
  88. unsigned int freq_count;
  89. struct device *dev;
  90. bool dvfs_enabled;
  91. struct work_struct irq_work;
  92. };
  93. static struct exynos_dvfs_data *dvfs_info;
  94. static DEFINE_MUTEX(cpufreq_lock);
  95. static struct cpufreq_freqs freqs;
  96. static int init_div_table(void)
  97. {
  98. struct cpufreq_frequency_table *pos, *freq_tbl = dvfs_info->freq_table;
  99. unsigned int tmp, clk_div, ema_div, freq, volt_id;
  100. struct dev_pm_opp *opp;
  101. cpufreq_for_each_entry(pos, freq_tbl) {
  102. opp = dev_pm_opp_find_freq_exact(dvfs_info->dev,
  103. pos->frequency * 1000, true);
  104. if (IS_ERR(opp)) {
  105. dev_err(dvfs_info->dev,
  106. "failed to find valid OPP for %u KHZ\n",
  107. pos->frequency);
  108. return PTR_ERR(opp);
  109. }
  110. freq = pos->frequency / 1000; /* In MHZ */
  111. clk_div = ((freq / CPU_DIV_FREQ_MAX) & P0_7_CPUCLKDEV_MASK)
  112. << P0_7_CPUCLKDEV_SHIFT;
  113. clk_div |= ((freq / CPU_ATB_FREQ_MAX) & P0_7_ATBCLKDEV_MASK)
  114. << P0_7_ATBCLKDEV_SHIFT;
  115. clk_div |= ((freq / CPU_DBG_FREQ_MAX) & P0_7_CSCLKDEV_MASK)
  116. << P0_7_CSCLKDEV_SHIFT;
  117. /* Calculate EMA */
  118. volt_id = dev_pm_opp_get_voltage(opp);
  119. volt_id = (MAX_VOLTAGE - volt_id) / VOLTAGE_STEP;
  120. if (volt_id < PMIC_HIGH_VOLT) {
  121. ema_div = (CPUEMA_HIGH << P0_7_CPUEMA_SHIFT) |
  122. (L2EMA_HIGH << P0_7_L2EMA_SHIFT);
  123. } else if (volt_id > PMIC_LOW_VOLT) {
  124. ema_div = (CPUEMA_LOW << P0_7_CPUEMA_SHIFT) |
  125. (L2EMA_LOW << P0_7_L2EMA_SHIFT);
  126. } else {
  127. ema_div = (CPUEMA_MID << P0_7_CPUEMA_SHIFT) |
  128. (L2EMA_MID << P0_7_L2EMA_SHIFT);
  129. }
  130. tmp = (clk_div | ema_div | (volt_id << P0_7_VDD_SHIFT)
  131. | ((freq / FREQ_UNIT) << P0_7_FREQ_SHIFT));
  132. __raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 *
  133. (pos - freq_tbl));
  134. dev_pm_opp_put(opp);
  135. }
  136. return 0;
  137. }
  138. static void exynos_enable_dvfs(unsigned int cur_frequency)
  139. {
  140. unsigned int tmp, cpu;
  141. struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
  142. struct cpufreq_frequency_table *pos;
  143. /* Disable DVFS */
  144. __raw_writel(0, dvfs_info->base + XMU_DVFS_CTRL);
  145. /* Enable PSTATE Change Event */
  146. tmp = __raw_readl(dvfs_info->base + XMU_PMUEVTEN);
  147. tmp |= (1 << PSTATE_CHANGED_EVTEN_SHIFT);
  148. __raw_writel(tmp, dvfs_info->base + XMU_PMUEVTEN);
  149. /* Enable PSTATE Change IRQ */
  150. tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQEN);
  151. tmp |= (1 << PSTATE_CHANGED_IRQEN_SHIFT);
  152. __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQEN);
  153. /* Set initial performance index */
  154. cpufreq_for_each_entry(pos, freq_table)
  155. if (pos->frequency == cur_frequency)
  156. break;
  157. if (pos->frequency == CPUFREQ_TABLE_END) {
  158. dev_crit(dvfs_info->dev, "Boot up frequency not supported\n");
  159. /* Assign the highest frequency */
  160. pos = freq_table;
  161. cur_frequency = pos->frequency;
  162. }
  163. dev_info(dvfs_info->dev, "Setting dvfs initial frequency = %uKHZ",
  164. cur_frequency);
  165. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) {
  166. tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
  167. tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
  168. tmp |= ((pos - freq_table) << C0_3_PSTATE_NEW_SHIFT);
  169. __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
  170. }
  171. /* Enable DVFS */
  172. __raw_writel(1 << XMU_DVFS_CTRL_EN_SHIFT,
  173. dvfs_info->base + XMU_DVFS_CTRL);
  174. }
  175. static int exynos_target(struct cpufreq_policy *policy, unsigned int index)
  176. {
  177. unsigned int tmp;
  178. int i;
  179. struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
  180. mutex_lock(&cpufreq_lock);
  181. freqs.old = policy->cur;
  182. freqs.new = freq_table[index].frequency;
  183. cpufreq_freq_transition_begin(policy, &freqs);
  184. /* Set the target frequency in all C0_3_PSTATE register */
  185. for_each_cpu(i, policy->cpus) {
  186. tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + i * 4);
  187. tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
  188. tmp |= (index << C0_3_PSTATE_NEW_SHIFT);
  189. __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + i * 4);
  190. }
  191. mutex_unlock(&cpufreq_lock);
  192. return 0;
  193. }
  194. static void exynos_cpufreq_work(struct work_struct *work)
  195. {
  196. unsigned int cur_pstate, index;
  197. struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
  198. struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
  199. /* Ensure we can access cpufreq structures */
  200. if (unlikely(dvfs_info->dvfs_enabled == false))
  201. goto skip_work;
  202. mutex_lock(&cpufreq_lock);
  203. freqs.old = policy->cur;
  204. cur_pstate = __raw_readl(dvfs_info->base + XMU_P_STATUS);
  205. if (cur_pstate >> C0_3_PSTATE_VALID_SHIFT & 0x1)
  206. index = (cur_pstate >> C0_3_PSTATE_CURR_SHIFT) & P_VALUE_MASK;
  207. else
  208. index = (cur_pstate >> C0_3_PSTATE_NEW_SHIFT) & P_VALUE_MASK;
  209. if (likely(index < dvfs_info->freq_count)) {
  210. freqs.new = freq_table[index].frequency;
  211. } else {
  212. dev_crit(dvfs_info->dev, "New frequency out of range\n");
  213. freqs.new = freqs.old;
  214. }
  215. cpufreq_freq_transition_end(policy, &freqs, 0);
  216. cpufreq_cpu_put(policy);
  217. mutex_unlock(&cpufreq_lock);
  218. skip_work:
  219. enable_irq(dvfs_info->irq);
  220. }
  221. static irqreturn_t exynos_cpufreq_irq(int irq, void *id)
  222. {
  223. unsigned int tmp;
  224. tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQ);
  225. if (tmp >> PSTATE_CHANGED_SHIFT & 0x1) {
  226. __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQ);
  227. disable_irq_nosync(irq);
  228. schedule_work(&dvfs_info->irq_work);
  229. }
  230. return IRQ_HANDLED;
  231. }
  232. static void exynos_sort_descend_freq_table(void)
  233. {
  234. struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table;
  235. int i = 0, index;
  236. unsigned int tmp_freq;
  237. /*
  238. * Exynos5440 clock controller state logic expects the cpufreq table to
  239. * be in descending order. But the OPP library constructs the table in
  240. * ascending order. So to make the table descending we just need to
  241. * swap the i element with the N - i element.
  242. */
  243. for (i = 0; i < dvfs_info->freq_count / 2; i++) {
  244. index = dvfs_info->freq_count - i - 1;
  245. tmp_freq = freq_tbl[i].frequency;
  246. freq_tbl[i].frequency = freq_tbl[index].frequency;
  247. freq_tbl[index].frequency = tmp_freq;
  248. }
  249. }
  250. static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
  251. {
  252. policy->clk = dvfs_info->cpu_clk;
  253. return cpufreq_generic_init(policy, dvfs_info->freq_table,
  254. dvfs_info->latency);
  255. }
  256. static struct cpufreq_driver exynos_driver = {
  257. .flags = CPUFREQ_STICKY | CPUFREQ_ASYNC_NOTIFICATION |
  258. CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  259. .verify = cpufreq_generic_frequency_table_verify,
  260. .target_index = exynos_target,
  261. .get = cpufreq_generic_get,
  262. .init = exynos_cpufreq_cpu_init,
  263. .name = CPUFREQ_NAME,
  264. .attr = cpufreq_generic_attr,
  265. };
  266. static const struct of_device_id exynos_cpufreq_match[] = {
  267. {
  268. .compatible = "samsung,exynos5440-cpufreq",
  269. },
  270. {},
  271. };
  272. MODULE_DEVICE_TABLE(of, exynos_cpufreq_match);
  273. static int exynos_cpufreq_probe(struct platform_device *pdev)
  274. {
  275. int ret = -EINVAL;
  276. struct device_node *np;
  277. struct resource res;
  278. unsigned int cur_frequency;
  279. np = pdev->dev.of_node;
  280. if (!np)
  281. return -ENODEV;
  282. dvfs_info = devm_kzalloc(&pdev->dev, sizeof(*dvfs_info), GFP_KERNEL);
  283. if (!dvfs_info) {
  284. ret = -ENOMEM;
  285. goto err_put_node;
  286. }
  287. dvfs_info->dev = &pdev->dev;
  288. ret = of_address_to_resource(np, 0, &res);
  289. if (ret)
  290. goto err_put_node;
  291. dvfs_info->base = devm_ioremap_resource(dvfs_info->dev, &res);
  292. if (IS_ERR(dvfs_info->base)) {
  293. ret = PTR_ERR(dvfs_info->base);
  294. goto err_put_node;
  295. }
  296. dvfs_info->irq = irq_of_parse_and_map(np, 0);
  297. if (!dvfs_info->irq) {
  298. dev_err(dvfs_info->dev, "No cpufreq irq found\n");
  299. ret = -ENODEV;
  300. goto err_put_node;
  301. }
  302. ret = dev_pm_opp_of_add_table(dvfs_info->dev);
  303. if (ret) {
  304. dev_err(dvfs_info->dev, "failed to init OPP table: %d\n", ret);
  305. goto err_put_node;
  306. }
  307. ret = dev_pm_opp_init_cpufreq_table(dvfs_info->dev,
  308. &dvfs_info->freq_table);
  309. if (ret) {
  310. dev_err(dvfs_info->dev,
  311. "failed to init cpufreq table: %d\n", ret);
  312. goto err_free_opp;
  313. }
  314. dvfs_info->freq_count = dev_pm_opp_get_opp_count(dvfs_info->dev);
  315. exynos_sort_descend_freq_table();
  316. if (of_property_read_u32(np, "clock-latency", &dvfs_info->latency))
  317. dvfs_info->latency = DEF_TRANS_LATENCY;
  318. dvfs_info->cpu_clk = devm_clk_get(dvfs_info->dev, "armclk");
  319. if (IS_ERR(dvfs_info->cpu_clk)) {
  320. dev_err(dvfs_info->dev, "Failed to get cpu clock\n");
  321. ret = PTR_ERR(dvfs_info->cpu_clk);
  322. goto err_free_table;
  323. }
  324. cur_frequency = clk_get_rate(dvfs_info->cpu_clk);
  325. if (!cur_frequency) {
  326. dev_err(dvfs_info->dev, "Failed to get clock rate\n");
  327. ret = -EINVAL;
  328. goto err_free_table;
  329. }
  330. cur_frequency /= 1000;
  331. INIT_WORK(&dvfs_info->irq_work, exynos_cpufreq_work);
  332. ret = devm_request_irq(dvfs_info->dev, dvfs_info->irq,
  333. exynos_cpufreq_irq, IRQF_TRIGGER_NONE,
  334. CPUFREQ_NAME, dvfs_info);
  335. if (ret) {
  336. dev_err(dvfs_info->dev, "Failed to register IRQ\n");
  337. goto err_free_table;
  338. }
  339. ret = init_div_table();
  340. if (ret) {
  341. dev_err(dvfs_info->dev, "Failed to initialise div table\n");
  342. goto err_free_table;
  343. }
  344. exynos_enable_dvfs(cur_frequency);
  345. ret = cpufreq_register_driver(&exynos_driver);
  346. if (ret) {
  347. dev_err(dvfs_info->dev,
  348. "%s: failed to register cpufreq driver\n", __func__);
  349. goto err_free_table;
  350. }
  351. of_node_put(np);
  352. dvfs_info->dvfs_enabled = true;
  353. return 0;
  354. err_free_table:
  355. dev_pm_opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table);
  356. err_free_opp:
  357. dev_pm_opp_of_remove_table(dvfs_info->dev);
  358. err_put_node:
  359. of_node_put(np);
  360. dev_err(&pdev->dev, "%s: failed initialization\n", __func__);
  361. return ret;
  362. }
  363. static int exynos_cpufreq_remove(struct platform_device *pdev)
  364. {
  365. cpufreq_unregister_driver(&exynos_driver);
  366. dev_pm_opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table);
  367. dev_pm_opp_of_remove_table(dvfs_info->dev);
  368. return 0;
  369. }
  370. static struct platform_driver exynos_cpufreq_platdrv = {
  371. .driver = {
  372. .name = "exynos5440-cpufreq",
  373. .of_match_table = exynos_cpufreq_match,
  374. },
  375. .probe = exynos_cpufreq_probe,
  376. .remove = exynos_cpufreq_remove,
  377. };
  378. module_platform_driver(exynos_cpufreq_platdrv);
  379. MODULE_AUTHOR("Amit Daniel Kachhap <amit.daniel@samsung.com>");
  380. MODULE_DESCRIPTION("Exynos5440 cpufreq driver");
  381. MODULE_LICENSE("GPL");