random.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
  5. * Rights Reserved.
  6. *
  7. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  8. *
  9. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  10. * rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or without
  13. * modification, are permitted provided that the following conditions
  14. * are met:
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, and the entire permission notice in its entirety,
  17. * including the disclaimer of warranties.
  18. * 2. Redistributions in binary form must reproduce the above copyright
  19. * notice, this list of conditions and the following disclaimer in the
  20. * documentation and/or other materials provided with the distribution.
  21. * 3. The name of the author may not be used to endorse or promote
  22. * products derived from this software without specific prior
  23. * written permission.
  24. *
  25. * ALTERNATIVELY, this product may be distributed under the terms of
  26. * the GNU General Public License, in which case the provisions of the GPL are
  27. * required INSTEAD OF the above restrictions. (This clause is
  28. * necessary due to a potential bad interaction between the GPL and
  29. * the restrictions contained in a BSD-style copyright.)
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  35. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42. * DAMAGE.
  43. */
  44. /*
  45. * (now, with legal B.S. out of the way.....)
  46. *
  47. * This routine gathers environmental noise from device drivers, etc.,
  48. * and returns good random numbers, suitable for cryptographic use.
  49. * Besides the obvious cryptographic uses, these numbers are also good
  50. * for seeding TCP sequence numbers, and other places where it is
  51. * desirable to have numbers which are not only random, but hard to
  52. * predict by an attacker.
  53. *
  54. * Theory of operation
  55. * ===================
  56. *
  57. * Computers are very predictable devices. Hence it is extremely hard
  58. * to produce truly random numbers on a computer --- as opposed to
  59. * pseudo-random numbers, which can easily generated by using a
  60. * algorithm. Unfortunately, it is very easy for attackers to guess
  61. * the sequence of pseudo-random number generators, and for some
  62. * applications this is not acceptable. So instead, we must try to
  63. * gather "environmental noise" from the computer's environment, which
  64. * must be hard for outside attackers to observe, and use that to
  65. * generate random numbers. In a Unix environment, this is best done
  66. * from inside the kernel.
  67. *
  68. * Sources of randomness from the environment include inter-keyboard
  69. * timings, inter-interrupt timings from some interrupts, and other
  70. * events which are both (a) non-deterministic and (b) hard for an
  71. * outside observer to measure. Randomness from these sources are
  72. * added to an "entropy pool", which is mixed using a CRC-like function.
  73. * This is not cryptographically strong, but it is adequate assuming
  74. * the randomness is not chosen maliciously, and it is fast enough that
  75. * the overhead of doing it on every interrupt is very reasonable.
  76. * As random bytes are mixed into the entropy pool, the routines keep
  77. * an *estimate* of how many bits of randomness have been stored into
  78. * the random number generator's internal state.
  79. *
  80. * When random bytes are desired, they are obtained by taking the SHA
  81. * hash of the contents of the "entropy pool". The SHA hash avoids
  82. * exposing the internal state of the entropy pool. It is believed to
  83. * be computationally infeasible to derive any useful information
  84. * about the input of SHA from its output. Even if it is possible to
  85. * analyze SHA in some clever way, as long as the amount of data
  86. * returned from the generator is less than the inherent entropy in
  87. * the pool, the output data is totally unpredictable. For this
  88. * reason, the routine decreases its internal estimate of how many
  89. * bits of "true randomness" are contained in the entropy pool as it
  90. * outputs random numbers.
  91. *
  92. * If this estimate goes to zero, the routine can still generate
  93. * random numbers; however, an attacker may (at least in theory) be
  94. * able to infer the future output of the generator from prior
  95. * outputs. This requires successful cryptanalysis of SHA, which is
  96. * not believed to be feasible, but there is a remote possibility.
  97. * Nonetheless, these numbers should be useful for the vast majority
  98. * of purposes.
  99. *
  100. * Exported interfaces ---- output
  101. * ===============================
  102. *
  103. * There are three exported interfaces; the first is one designed to
  104. * be used from within the kernel:
  105. *
  106. * void get_random_bytes(void *buf, int nbytes);
  107. *
  108. * This interface will return the requested number of random bytes,
  109. * and place it in the requested buffer.
  110. *
  111. * The two other interfaces are two character devices /dev/random and
  112. * /dev/urandom. /dev/random is suitable for use when very high
  113. * quality randomness is desired (for example, for key generation or
  114. * one-time pads), as it will only return a maximum of the number of
  115. * bits of randomness (as estimated by the random number generator)
  116. * contained in the entropy pool.
  117. *
  118. * The /dev/urandom device does not have this limit, and will return
  119. * as many bytes as are requested. As more and more random bytes are
  120. * requested without giving time for the entropy pool to recharge,
  121. * this will result in random numbers that are merely cryptographically
  122. * strong. For many applications, however, this is acceptable.
  123. *
  124. * Exported interfaces ---- input
  125. * ==============================
  126. *
  127. * The current exported interfaces for gathering environmental noise
  128. * from the devices are:
  129. *
  130. * void add_device_randomness(const void *buf, unsigned int size);
  131. * void add_input_randomness(unsigned int type, unsigned int code,
  132. * unsigned int value);
  133. * void add_interrupt_randomness(int irq, int irq_flags);
  134. * void add_disk_randomness(struct gendisk *disk);
  135. *
  136. * add_device_randomness() is for adding data to the random pool that
  137. * is likely to differ between two devices (or possibly even per boot).
  138. * This would be things like MAC addresses or serial numbers, or the
  139. * read-out of the RTC. This does *not* add any actual entropy to the
  140. * pool, but it initializes the pool to different values for devices
  141. * that might otherwise be identical and have very little entropy
  142. * available to them (particularly common in the embedded world).
  143. *
  144. * add_input_randomness() uses the input layer interrupt timing, as well as
  145. * the event type information from the hardware.
  146. *
  147. * add_interrupt_randomness() uses the interrupt timing as random
  148. * inputs to the entropy pool. Using the cycle counters and the irq source
  149. * as inputs, it feeds the randomness roughly once a second.
  150. *
  151. * add_disk_randomness() uses what amounts to the seek time of block
  152. * layer request events, on a per-disk_devt basis, as input to the
  153. * entropy pool. Note that high-speed solid state drives with very low
  154. * seek times do not make for good sources of entropy, as their seek
  155. * times are usually fairly consistent.
  156. *
  157. * All of these routines try to estimate how many bits of randomness a
  158. * particular randomness source. They do this by keeping track of the
  159. * first and second order deltas of the event timings.
  160. *
  161. * Ensuring unpredictability at system startup
  162. * ============================================
  163. *
  164. * When any operating system starts up, it will go through a sequence
  165. * of actions that are fairly predictable by an adversary, especially
  166. * if the start-up does not involve interaction with a human operator.
  167. * This reduces the actual number of bits of unpredictability in the
  168. * entropy pool below the value in entropy_count. In order to
  169. * counteract this effect, it helps to carry information in the
  170. * entropy pool across shut-downs and start-ups. To do this, put the
  171. * following lines an appropriate script which is run during the boot
  172. * sequence:
  173. *
  174. * echo "Initializing random number generator..."
  175. * random_seed=/var/run/random-seed
  176. * # Carry a random seed from start-up to start-up
  177. * # Load and then save the whole entropy pool
  178. * if [ -f $random_seed ]; then
  179. * cat $random_seed >/dev/urandom
  180. * else
  181. * touch $random_seed
  182. * fi
  183. * chmod 600 $random_seed
  184. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  185. *
  186. * and the following lines in an appropriate script which is run as
  187. * the system is shutdown:
  188. *
  189. * # Carry a random seed from shut-down to start-up
  190. * # Save the whole entropy pool
  191. * echo "Saving random seed..."
  192. * random_seed=/var/run/random-seed
  193. * touch $random_seed
  194. * chmod 600 $random_seed
  195. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  196. *
  197. * For example, on most modern systems using the System V init
  198. * scripts, such code fragments would be found in
  199. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  200. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  201. *
  202. * Effectively, these commands cause the contents of the entropy pool
  203. * to be saved at shut-down time and reloaded into the entropy pool at
  204. * start-up. (The 'dd' in the addition to the bootup script is to
  205. * make sure that /etc/random-seed is different for every start-up,
  206. * even if the system crashes without executing rc.0.) Even with
  207. * complete knowledge of the start-up activities, predicting the state
  208. * of the entropy pool requires knowledge of the previous history of
  209. * the system.
  210. *
  211. * Configuring the /dev/random driver under Linux
  212. * ==============================================
  213. *
  214. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  215. * the /dev/mem major number (#1). So if your system does not have
  216. * /dev/random and /dev/urandom created already, they can be created
  217. * by using the commands:
  218. *
  219. * mknod /dev/random c 1 8
  220. * mknod /dev/urandom c 1 9
  221. *
  222. * Acknowledgements:
  223. * =================
  224. *
  225. * Ideas for constructing this random number generator were derived
  226. * from Pretty Good Privacy's random number generator, and from private
  227. * discussions with Phil Karn. Colin Plumb provided a faster random
  228. * number generator, which speed up the mixing function of the entropy
  229. * pool, taken from PGPfone. Dale Worley has also contributed many
  230. * useful ideas and suggestions to improve this driver.
  231. *
  232. * Any flaws in the design are solely my responsibility, and should
  233. * not be attributed to the Phil, Colin, or any of authors of PGP.
  234. *
  235. * Further background information on this topic may be obtained from
  236. * RFC 1750, "Randomness Recommendations for Security", by Donald
  237. * Eastlake, Steve Crocker, and Jeff Schiller.
  238. */
  239. #include <linux/utsname.h>
  240. #include <linux/module.h>
  241. #include <linux/kernel.h>
  242. #include <linux/major.h>
  243. #include <linux/string.h>
  244. #include <linux/fcntl.h>
  245. #include <linux/slab.h>
  246. #include <linux/random.h>
  247. #include <linux/poll.h>
  248. #include <linux/init.h>
  249. #include <linux/fs.h>
  250. #include <linux/genhd.h>
  251. #include <linux/interrupt.h>
  252. #include <linux/mm.h>
  253. #include <linux/nodemask.h>
  254. #include <linux/spinlock.h>
  255. #include <linux/kthread.h>
  256. #include <linux/percpu.h>
  257. #include <linux/cryptohash.h>
  258. #include <linux/fips.h>
  259. #include <linux/ptrace.h>
  260. #include <linux/kmemcheck.h>
  261. #include <linux/workqueue.h>
  262. #include <linux/irq.h>
  263. #include <linux/syscalls.h>
  264. #include <linux/completion.h>
  265. #include <linux/uuid.h>
  266. #include <crypto/chacha20.h>
  267. #include <asm/processor.h>
  268. #include <linux/uaccess.h>
  269. #include <asm/irq.h>
  270. #include <asm/irq_regs.h>
  271. #include <asm/io.h>
  272. #define CREATE_TRACE_POINTS
  273. #include <trace/events/random.h>
  274. /* #define ADD_INTERRUPT_BENCH */
  275. /*
  276. * Configuration information
  277. */
  278. #define INPUT_POOL_SHIFT 12
  279. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  280. #define OUTPUT_POOL_SHIFT 10
  281. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  282. #define SEC_XFER_SIZE 512
  283. #define EXTRACT_SIZE 10
  284. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  285. /*
  286. * To allow fractional bits to be tracked, the entropy_count field is
  287. * denominated in units of 1/8th bits.
  288. *
  289. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  290. * credit_entropy_bits() needs to be 64 bits wide.
  291. */
  292. #define ENTROPY_SHIFT 3
  293. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  294. /*
  295. * The minimum number of bits of entropy before we wake up a read on
  296. * /dev/random. Should be enough to do a significant reseed.
  297. */
  298. static int random_read_wakeup_bits = 64;
  299. /*
  300. * If the entropy count falls under this number of bits, then we
  301. * should wake up processes which are selecting or polling on write
  302. * access to /dev/random.
  303. */
  304. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  305. /*
  306. * Originally, we used a primitive polynomial of degree .poolwords
  307. * over GF(2). The taps for various sizes are defined below. They
  308. * were chosen to be evenly spaced except for the last tap, which is 1
  309. * to get the twisting happening as fast as possible.
  310. *
  311. * For the purposes of better mixing, we use the CRC-32 polynomial as
  312. * well to make a (modified) twisted Generalized Feedback Shift
  313. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  314. * generators. ACM Transactions on Modeling and Computer Simulation
  315. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  316. * GFSR generators II. ACM Transactions on Modeling and Computer
  317. * Simulation 4:254-266)
  318. *
  319. * Thanks to Colin Plumb for suggesting this.
  320. *
  321. * The mixing operation is much less sensitive than the output hash,
  322. * where we use SHA-1. All that we want of mixing operation is that
  323. * it be a good non-cryptographic hash; i.e. it not produce collisions
  324. * when fed "random" data of the sort we expect to see. As long as
  325. * the pool state differs for different inputs, we have preserved the
  326. * input entropy and done a good job. The fact that an intelligent
  327. * attacker can construct inputs that will produce controlled
  328. * alterations to the pool's state is not important because we don't
  329. * consider such inputs to contribute any randomness. The only
  330. * property we need with respect to them is that the attacker can't
  331. * increase his/her knowledge of the pool's state. Since all
  332. * additions are reversible (knowing the final state and the input,
  333. * you can reconstruct the initial state), if an attacker has any
  334. * uncertainty about the initial state, he/she can only shuffle that
  335. * uncertainty about, but never cause any collisions (which would
  336. * decrease the uncertainty).
  337. *
  338. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  339. * Videau in their paper, "The Linux Pseudorandom Number Generator
  340. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  341. * paper, they point out that we are not using a true Twisted GFSR,
  342. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  343. * is, with only three taps, instead of the six that we are using).
  344. * As a result, the resulting polynomial is neither primitive nor
  345. * irreducible, and hence does not have a maximal period over
  346. * GF(2**32). They suggest a slight change to the generator
  347. * polynomial which improves the resulting TGFSR polynomial to be
  348. * irreducible, which we have made here.
  349. */
  350. static struct poolinfo {
  351. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  352. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  353. int tap1, tap2, tap3, tap4, tap5;
  354. } poolinfo_table[] = {
  355. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  356. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  357. { S(128), 104, 76, 51, 25, 1 },
  358. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  359. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  360. { S(32), 26, 19, 14, 7, 1 },
  361. #if 0
  362. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  363. { S(2048), 1638, 1231, 819, 411, 1 },
  364. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  365. { S(1024), 817, 615, 412, 204, 1 },
  366. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  367. { S(1024), 819, 616, 410, 207, 2 },
  368. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  369. { S(512), 411, 308, 208, 104, 1 },
  370. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  371. { S(512), 409, 307, 206, 102, 2 },
  372. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  373. { S(512), 409, 309, 205, 103, 2 },
  374. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  375. { S(256), 205, 155, 101, 52, 1 },
  376. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  377. { S(128), 103, 78, 51, 27, 2 },
  378. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  379. { S(64), 52, 39, 26, 14, 1 },
  380. #endif
  381. };
  382. /*
  383. * Static global variables
  384. */
  385. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  386. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  387. static struct fasync_struct *fasync;
  388. static DEFINE_SPINLOCK(random_ready_list_lock);
  389. static LIST_HEAD(random_ready_list);
  390. struct crng_state {
  391. __u32 state[16];
  392. unsigned long init_time;
  393. spinlock_t lock;
  394. };
  395. struct crng_state primary_crng = {
  396. .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
  397. };
  398. /*
  399. * crng_init = 0 --> Uninitialized
  400. * 1 --> Initialized
  401. * 2 --> Initialized from input_pool
  402. *
  403. * crng_init is protected by primary_crng->lock, and only increases
  404. * its value (from 0->1->2).
  405. */
  406. static int crng_init = 0;
  407. #define crng_ready() (likely(crng_init > 0))
  408. static int crng_init_cnt = 0;
  409. #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
  410. static void _extract_crng(struct crng_state *crng,
  411. __u8 out[CHACHA20_BLOCK_SIZE]);
  412. static void _crng_backtrack_protect(struct crng_state *crng,
  413. __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
  414. static void process_random_ready_list(void);
  415. static void _get_random_bytes(void *buf, int nbytes);
  416. /**********************************************************************
  417. *
  418. * OS independent entropy store. Here are the functions which handle
  419. * storing entropy in an entropy pool.
  420. *
  421. **********************************************************************/
  422. struct entropy_store;
  423. struct entropy_store {
  424. /* read-only data: */
  425. const struct poolinfo *poolinfo;
  426. __u32 *pool;
  427. const char *name;
  428. struct entropy_store *pull;
  429. struct work_struct push_work;
  430. /* read-write data: */
  431. unsigned long last_pulled;
  432. spinlock_t lock;
  433. unsigned short add_ptr;
  434. unsigned short input_rotate;
  435. int entropy_count;
  436. int entropy_total;
  437. unsigned int initialized:1;
  438. unsigned int last_data_init:1;
  439. __u8 last_data[EXTRACT_SIZE];
  440. };
  441. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  442. size_t nbytes, int min, int rsvd);
  443. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  444. size_t nbytes, int fips);
  445. static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
  446. static void push_to_pool(struct work_struct *work);
  447. static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
  448. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
  449. static struct entropy_store input_pool = {
  450. .poolinfo = &poolinfo_table[0],
  451. .name = "input",
  452. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  453. .pool = input_pool_data
  454. };
  455. static struct entropy_store blocking_pool = {
  456. .poolinfo = &poolinfo_table[1],
  457. .name = "blocking",
  458. .pull = &input_pool,
  459. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  460. .pool = blocking_pool_data,
  461. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  462. push_to_pool),
  463. };
  464. static __u32 const twist_table[8] = {
  465. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  466. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  467. /*
  468. * This function adds bytes into the entropy "pool". It does not
  469. * update the entropy estimate. The caller should call
  470. * credit_entropy_bits if this is appropriate.
  471. *
  472. * The pool is stirred with a primitive polynomial of the appropriate
  473. * degree, and then twisted. We twist by three bits at a time because
  474. * it's cheap to do so and helps slightly in the expected case where
  475. * the entropy is concentrated in the low-order bits.
  476. */
  477. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  478. int nbytes)
  479. {
  480. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  481. int input_rotate;
  482. int wordmask = r->poolinfo->poolwords - 1;
  483. const char *bytes = in;
  484. __u32 w;
  485. tap1 = r->poolinfo->tap1;
  486. tap2 = r->poolinfo->tap2;
  487. tap3 = r->poolinfo->tap3;
  488. tap4 = r->poolinfo->tap4;
  489. tap5 = r->poolinfo->tap5;
  490. input_rotate = r->input_rotate;
  491. i = r->add_ptr;
  492. /* mix one byte at a time to simplify size handling and churn faster */
  493. while (nbytes--) {
  494. w = rol32(*bytes++, input_rotate);
  495. i = (i - 1) & wordmask;
  496. /* XOR in the various taps */
  497. w ^= r->pool[i];
  498. w ^= r->pool[(i + tap1) & wordmask];
  499. w ^= r->pool[(i + tap2) & wordmask];
  500. w ^= r->pool[(i + tap3) & wordmask];
  501. w ^= r->pool[(i + tap4) & wordmask];
  502. w ^= r->pool[(i + tap5) & wordmask];
  503. /* Mix the result back in with a twist */
  504. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  505. /*
  506. * Normally, we add 7 bits of rotation to the pool.
  507. * At the beginning of the pool, add an extra 7 bits
  508. * rotation, so that successive passes spread the
  509. * input bits across the pool evenly.
  510. */
  511. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  512. }
  513. r->input_rotate = input_rotate;
  514. r->add_ptr = i;
  515. }
  516. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  517. int nbytes)
  518. {
  519. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  520. _mix_pool_bytes(r, in, nbytes);
  521. }
  522. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  523. int nbytes)
  524. {
  525. unsigned long flags;
  526. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  527. spin_lock_irqsave(&r->lock, flags);
  528. _mix_pool_bytes(r, in, nbytes);
  529. spin_unlock_irqrestore(&r->lock, flags);
  530. }
  531. struct fast_pool {
  532. __u32 pool[4];
  533. unsigned long last;
  534. unsigned short reg_idx;
  535. unsigned char count;
  536. };
  537. /*
  538. * This is a fast mixing routine used by the interrupt randomness
  539. * collector. It's hardcoded for an 128 bit pool and assumes that any
  540. * locks that might be needed are taken by the caller.
  541. */
  542. static void fast_mix(struct fast_pool *f)
  543. {
  544. __u32 a = f->pool[0], b = f->pool[1];
  545. __u32 c = f->pool[2], d = f->pool[3];
  546. a += b; c += d;
  547. b = rol32(b, 6); d = rol32(d, 27);
  548. d ^= a; b ^= c;
  549. a += b; c += d;
  550. b = rol32(b, 16); d = rol32(d, 14);
  551. d ^= a; b ^= c;
  552. a += b; c += d;
  553. b = rol32(b, 6); d = rol32(d, 27);
  554. d ^= a; b ^= c;
  555. a += b; c += d;
  556. b = rol32(b, 16); d = rol32(d, 14);
  557. d ^= a; b ^= c;
  558. f->pool[0] = a; f->pool[1] = b;
  559. f->pool[2] = c; f->pool[3] = d;
  560. f->count++;
  561. }
  562. static void process_random_ready_list(void)
  563. {
  564. unsigned long flags;
  565. struct random_ready_callback *rdy, *tmp;
  566. spin_lock_irqsave(&random_ready_list_lock, flags);
  567. list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
  568. struct module *owner = rdy->owner;
  569. list_del_init(&rdy->list);
  570. rdy->func(rdy);
  571. module_put(owner);
  572. }
  573. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  574. }
  575. /*
  576. * Credit (or debit) the entropy store with n bits of entropy.
  577. * Use credit_entropy_bits_safe() if the value comes from userspace
  578. * or otherwise should be checked for extreme values.
  579. */
  580. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  581. {
  582. int entropy_count, orig;
  583. const int pool_size = r->poolinfo->poolfracbits;
  584. int nfrac = nbits << ENTROPY_SHIFT;
  585. if (!nbits)
  586. return;
  587. retry:
  588. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  589. if (nfrac < 0) {
  590. /* Debit */
  591. entropy_count += nfrac;
  592. } else {
  593. /*
  594. * Credit: we have to account for the possibility of
  595. * overwriting already present entropy. Even in the
  596. * ideal case of pure Shannon entropy, new contributions
  597. * approach the full value asymptotically:
  598. *
  599. * entropy <- entropy + (pool_size - entropy) *
  600. * (1 - exp(-add_entropy/pool_size))
  601. *
  602. * For add_entropy <= pool_size/2 then
  603. * (1 - exp(-add_entropy/pool_size)) >=
  604. * (add_entropy/pool_size)*0.7869...
  605. * so we can approximate the exponential with
  606. * 3/4*add_entropy/pool_size and still be on the
  607. * safe side by adding at most pool_size/2 at a time.
  608. *
  609. * The use of pool_size-2 in the while statement is to
  610. * prevent rounding artifacts from making the loop
  611. * arbitrarily long; this limits the loop to log2(pool_size)*2
  612. * turns no matter how large nbits is.
  613. */
  614. int pnfrac = nfrac;
  615. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  616. /* The +2 corresponds to the /4 in the denominator */
  617. do {
  618. unsigned int anfrac = min(pnfrac, pool_size/2);
  619. unsigned int add =
  620. ((pool_size - entropy_count)*anfrac*3) >> s;
  621. entropy_count += add;
  622. pnfrac -= anfrac;
  623. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  624. }
  625. if (unlikely(entropy_count < 0)) {
  626. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  627. r->name, entropy_count);
  628. WARN_ON(1);
  629. entropy_count = 0;
  630. } else if (entropy_count > pool_size)
  631. entropy_count = pool_size;
  632. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  633. goto retry;
  634. r->entropy_total += nbits;
  635. if (!r->initialized && r->entropy_total > 128) {
  636. r->initialized = 1;
  637. r->entropy_total = 0;
  638. }
  639. trace_credit_entropy_bits(r->name, nbits,
  640. entropy_count >> ENTROPY_SHIFT,
  641. r->entropy_total, _RET_IP_);
  642. if (r == &input_pool) {
  643. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  644. if (crng_init < 2 && entropy_bits >= 128) {
  645. crng_reseed(&primary_crng, r);
  646. entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
  647. }
  648. /* should we wake readers? */
  649. if (entropy_bits >= random_read_wakeup_bits) {
  650. wake_up_interruptible(&random_read_wait);
  651. kill_fasync(&fasync, SIGIO, POLL_IN);
  652. }
  653. /* If the input pool is getting full, send some
  654. * entropy to the blocking pool until it is 75% full.
  655. */
  656. if (entropy_bits > random_write_wakeup_bits &&
  657. r->initialized &&
  658. r->entropy_total >= 2*random_read_wakeup_bits) {
  659. struct entropy_store *other = &blocking_pool;
  660. if (other->entropy_count <=
  661. 3 * other->poolinfo->poolfracbits / 4) {
  662. schedule_work(&other->push_work);
  663. r->entropy_total = 0;
  664. }
  665. }
  666. }
  667. }
  668. static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  669. {
  670. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  671. if (nbits < 0)
  672. return -EINVAL;
  673. /* Cap the value to avoid overflows */
  674. nbits = min(nbits, nbits_max);
  675. credit_entropy_bits(r, nbits);
  676. return 0;
  677. }
  678. /*********************************************************************
  679. *
  680. * CRNG using CHACHA20
  681. *
  682. *********************************************************************/
  683. #define CRNG_RESEED_INTERVAL (300*HZ)
  684. static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  685. #ifdef CONFIG_NUMA
  686. /*
  687. * Hack to deal with crazy userspace progams when they are all trying
  688. * to access /dev/urandom in parallel. The programs are almost
  689. * certainly doing something terribly wrong, but we'll work around
  690. * their brain damage.
  691. */
  692. static struct crng_state **crng_node_pool __read_mostly;
  693. #endif
  694. static void invalidate_batched_entropy(void);
  695. static void crng_initialize(struct crng_state *crng)
  696. {
  697. int i;
  698. unsigned long rv;
  699. memcpy(&crng->state[0], "expand 32-byte k", 16);
  700. if (crng == &primary_crng)
  701. _extract_entropy(&input_pool, &crng->state[4],
  702. sizeof(__u32) * 12, 0);
  703. else
  704. _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
  705. for (i = 4; i < 16; i++) {
  706. if (!arch_get_random_seed_long(&rv) &&
  707. !arch_get_random_long(&rv))
  708. rv = random_get_entropy();
  709. crng->state[i] ^= rv;
  710. }
  711. crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
  712. }
  713. static int crng_fast_load(const char *cp, size_t len)
  714. {
  715. unsigned long flags;
  716. char *p;
  717. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  718. return 0;
  719. if (crng_ready()) {
  720. spin_unlock_irqrestore(&primary_crng.lock, flags);
  721. return 0;
  722. }
  723. p = (unsigned char *) &primary_crng.state[4];
  724. while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
  725. p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
  726. cp++; crng_init_cnt++; len--;
  727. }
  728. spin_unlock_irqrestore(&primary_crng.lock, flags);
  729. if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
  730. invalidate_batched_entropy();
  731. crng_init = 1;
  732. wake_up_interruptible(&crng_init_wait);
  733. pr_notice("random: fast init done\n");
  734. }
  735. return 1;
  736. }
  737. static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
  738. {
  739. unsigned long flags;
  740. int i, num;
  741. union {
  742. __u8 block[CHACHA20_BLOCK_SIZE];
  743. __u32 key[8];
  744. } buf;
  745. if (r) {
  746. num = extract_entropy(r, &buf, 32, 16, 0);
  747. if (num == 0)
  748. return;
  749. } else {
  750. _extract_crng(&primary_crng, buf.block);
  751. _crng_backtrack_protect(&primary_crng, buf.block,
  752. CHACHA20_KEY_SIZE);
  753. }
  754. spin_lock_irqsave(&primary_crng.lock, flags);
  755. for (i = 0; i < 8; i++) {
  756. unsigned long rv;
  757. if (!arch_get_random_seed_long(&rv) &&
  758. !arch_get_random_long(&rv))
  759. rv = random_get_entropy();
  760. crng->state[i+4] ^= buf.key[i] ^ rv;
  761. }
  762. memzero_explicit(&buf, sizeof(buf));
  763. crng->init_time = jiffies;
  764. spin_unlock_irqrestore(&primary_crng.lock, flags);
  765. if (crng == &primary_crng && crng_init < 2) {
  766. invalidate_batched_entropy();
  767. crng_init = 2;
  768. process_random_ready_list();
  769. wake_up_interruptible(&crng_init_wait);
  770. pr_notice("random: crng init done\n");
  771. }
  772. }
  773. static void _extract_crng(struct crng_state *crng,
  774. __u8 out[CHACHA20_BLOCK_SIZE])
  775. {
  776. unsigned long v, flags;
  777. if (crng_init > 1 &&
  778. time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
  779. crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
  780. spin_lock_irqsave(&crng->lock, flags);
  781. if (arch_get_random_long(&v))
  782. crng->state[14] ^= v;
  783. chacha20_block(&crng->state[0], out);
  784. if (crng->state[12] == 0)
  785. crng->state[13]++;
  786. spin_unlock_irqrestore(&crng->lock, flags);
  787. }
  788. static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
  789. {
  790. struct crng_state *crng = NULL;
  791. #ifdef CONFIG_NUMA
  792. if (crng_node_pool)
  793. crng = crng_node_pool[numa_node_id()];
  794. if (crng == NULL)
  795. #endif
  796. crng = &primary_crng;
  797. _extract_crng(crng, out);
  798. }
  799. /*
  800. * Use the leftover bytes from the CRNG block output (if there is
  801. * enough) to mutate the CRNG key to provide backtracking protection.
  802. */
  803. static void _crng_backtrack_protect(struct crng_state *crng,
  804. __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  805. {
  806. unsigned long flags;
  807. __u32 *s, *d;
  808. int i;
  809. used = round_up(used, sizeof(__u32));
  810. if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
  811. extract_crng(tmp);
  812. used = 0;
  813. }
  814. spin_lock_irqsave(&crng->lock, flags);
  815. s = (__u32 *) &tmp[used];
  816. d = &crng->state[4];
  817. for (i=0; i < 8; i++)
  818. *d++ ^= *s++;
  819. spin_unlock_irqrestore(&crng->lock, flags);
  820. }
  821. static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
  822. {
  823. struct crng_state *crng = NULL;
  824. #ifdef CONFIG_NUMA
  825. if (crng_node_pool)
  826. crng = crng_node_pool[numa_node_id()];
  827. if (crng == NULL)
  828. #endif
  829. crng = &primary_crng;
  830. _crng_backtrack_protect(crng, tmp, used);
  831. }
  832. static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
  833. {
  834. ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
  835. __u8 tmp[CHACHA20_BLOCK_SIZE];
  836. int large_request = (nbytes > 256);
  837. while (nbytes) {
  838. if (large_request && need_resched()) {
  839. if (signal_pending(current)) {
  840. if (ret == 0)
  841. ret = -ERESTARTSYS;
  842. break;
  843. }
  844. schedule();
  845. }
  846. extract_crng(tmp);
  847. i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
  848. if (copy_to_user(buf, tmp, i)) {
  849. ret = -EFAULT;
  850. break;
  851. }
  852. nbytes -= i;
  853. buf += i;
  854. ret += i;
  855. }
  856. crng_backtrack_protect(tmp, i);
  857. /* Wipe data just written to memory */
  858. memzero_explicit(tmp, sizeof(tmp));
  859. return ret;
  860. }
  861. /*********************************************************************
  862. *
  863. * Entropy input management
  864. *
  865. *********************************************************************/
  866. /* There is one of these per entropy source */
  867. struct timer_rand_state {
  868. cycles_t last_time;
  869. long last_delta, last_delta2;
  870. unsigned dont_count_entropy:1;
  871. };
  872. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  873. /*
  874. * Add device- or boot-specific data to the input pool to help
  875. * initialize it.
  876. *
  877. * None of this adds any entropy; it is meant to avoid the problem of
  878. * the entropy pool having similar initial state across largely
  879. * identical devices.
  880. */
  881. void add_device_randomness(const void *buf, unsigned int size)
  882. {
  883. unsigned long time = random_get_entropy() ^ jiffies;
  884. unsigned long flags;
  885. if (!crng_ready()) {
  886. crng_fast_load(buf, size);
  887. return;
  888. }
  889. trace_add_device_randomness(size, _RET_IP_);
  890. spin_lock_irqsave(&input_pool.lock, flags);
  891. _mix_pool_bytes(&input_pool, buf, size);
  892. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  893. spin_unlock_irqrestore(&input_pool.lock, flags);
  894. }
  895. EXPORT_SYMBOL(add_device_randomness);
  896. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  897. /*
  898. * This function adds entropy to the entropy "pool" by using timing
  899. * delays. It uses the timer_rand_state structure to make an estimate
  900. * of how many bits of entropy this call has added to the pool.
  901. *
  902. * The number "num" is also added to the pool - it should somehow describe
  903. * the type of event which just happened. This is currently 0-255 for
  904. * keyboard scan codes, and 256 upwards for interrupts.
  905. *
  906. */
  907. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  908. {
  909. struct entropy_store *r;
  910. struct {
  911. long jiffies;
  912. unsigned cycles;
  913. unsigned num;
  914. } sample;
  915. long delta, delta2, delta3;
  916. preempt_disable();
  917. sample.jiffies = jiffies;
  918. sample.cycles = random_get_entropy();
  919. sample.num = num;
  920. r = &input_pool;
  921. mix_pool_bytes(r, &sample, sizeof(sample));
  922. /*
  923. * Calculate number of bits of randomness we probably added.
  924. * We take into account the first, second and third-order deltas
  925. * in order to make our estimate.
  926. */
  927. if (!state->dont_count_entropy) {
  928. delta = sample.jiffies - state->last_time;
  929. state->last_time = sample.jiffies;
  930. delta2 = delta - state->last_delta;
  931. state->last_delta = delta;
  932. delta3 = delta2 - state->last_delta2;
  933. state->last_delta2 = delta2;
  934. if (delta < 0)
  935. delta = -delta;
  936. if (delta2 < 0)
  937. delta2 = -delta2;
  938. if (delta3 < 0)
  939. delta3 = -delta3;
  940. if (delta > delta2)
  941. delta = delta2;
  942. if (delta > delta3)
  943. delta = delta3;
  944. /*
  945. * delta is now minimum absolute delta.
  946. * Round down by 1 bit on general principles,
  947. * and limit entropy entimate to 12 bits.
  948. */
  949. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  950. }
  951. preempt_enable();
  952. }
  953. void add_input_randomness(unsigned int type, unsigned int code,
  954. unsigned int value)
  955. {
  956. static unsigned char last_value;
  957. /* ignore autorepeat and the like */
  958. if (value == last_value)
  959. return;
  960. last_value = value;
  961. add_timer_randomness(&input_timer_state,
  962. (type << 4) ^ code ^ (code >> 4) ^ value);
  963. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  964. }
  965. EXPORT_SYMBOL_GPL(add_input_randomness);
  966. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  967. #ifdef ADD_INTERRUPT_BENCH
  968. static unsigned long avg_cycles, avg_deviation;
  969. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  970. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  971. static void add_interrupt_bench(cycles_t start)
  972. {
  973. long delta = random_get_entropy() - start;
  974. /* Use a weighted moving average */
  975. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  976. avg_cycles += delta;
  977. /* And average deviation */
  978. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  979. avg_deviation += delta;
  980. }
  981. #else
  982. #define add_interrupt_bench(x)
  983. #endif
  984. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  985. {
  986. __u32 *ptr = (__u32 *) regs;
  987. unsigned int idx;
  988. if (regs == NULL)
  989. return 0;
  990. idx = READ_ONCE(f->reg_idx);
  991. if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
  992. idx = 0;
  993. ptr += idx++;
  994. WRITE_ONCE(f->reg_idx, idx);
  995. return *ptr;
  996. }
  997. void add_interrupt_randomness(int irq, int irq_flags)
  998. {
  999. struct entropy_store *r;
  1000. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  1001. struct pt_regs *regs = get_irq_regs();
  1002. unsigned long now = jiffies;
  1003. cycles_t cycles = random_get_entropy();
  1004. __u32 c_high, j_high;
  1005. __u64 ip;
  1006. unsigned long seed;
  1007. int credit = 0;
  1008. if (cycles == 0)
  1009. cycles = get_reg(fast_pool, regs);
  1010. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  1011. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  1012. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  1013. fast_pool->pool[1] ^= now ^ c_high;
  1014. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  1015. fast_pool->pool[2] ^= ip;
  1016. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  1017. get_reg(fast_pool, regs);
  1018. fast_mix(fast_pool);
  1019. add_interrupt_bench(cycles);
  1020. if (!crng_ready()) {
  1021. if ((fast_pool->count >= 64) &&
  1022. crng_fast_load((char *) fast_pool->pool,
  1023. sizeof(fast_pool->pool))) {
  1024. fast_pool->count = 0;
  1025. fast_pool->last = now;
  1026. }
  1027. return;
  1028. }
  1029. if ((fast_pool->count < 64) &&
  1030. !time_after(now, fast_pool->last + HZ))
  1031. return;
  1032. r = &input_pool;
  1033. if (!spin_trylock(&r->lock))
  1034. return;
  1035. fast_pool->last = now;
  1036. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  1037. /*
  1038. * If we have architectural seed generator, produce a seed and
  1039. * add it to the pool. For the sake of paranoia don't let the
  1040. * architectural seed generator dominate the input from the
  1041. * interrupt noise.
  1042. */
  1043. if (arch_get_random_seed_long(&seed)) {
  1044. __mix_pool_bytes(r, &seed, sizeof(seed));
  1045. credit = 1;
  1046. }
  1047. spin_unlock(&r->lock);
  1048. fast_pool->count = 0;
  1049. /* award one bit for the contents of the fast pool */
  1050. credit_entropy_bits(r, credit + 1);
  1051. }
  1052. EXPORT_SYMBOL_GPL(add_interrupt_randomness);
  1053. #ifdef CONFIG_BLOCK
  1054. void add_disk_randomness(struct gendisk *disk)
  1055. {
  1056. if (!disk || !disk->random)
  1057. return;
  1058. /* first major is 1, so we get >= 0x200 here */
  1059. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  1060. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  1061. }
  1062. EXPORT_SYMBOL_GPL(add_disk_randomness);
  1063. #endif
  1064. /*********************************************************************
  1065. *
  1066. * Entropy extraction routines
  1067. *
  1068. *********************************************************************/
  1069. /*
  1070. * This utility inline function is responsible for transferring entropy
  1071. * from the primary pool to the secondary extraction pool. We make
  1072. * sure we pull enough for a 'catastrophic reseed'.
  1073. */
  1074. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  1075. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1076. {
  1077. if (!r->pull ||
  1078. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  1079. r->entropy_count > r->poolinfo->poolfracbits)
  1080. return;
  1081. _xfer_secondary_pool(r, nbytes);
  1082. }
  1083. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1084. {
  1085. __u32 tmp[OUTPUT_POOL_WORDS];
  1086. int bytes = nbytes;
  1087. /* pull at least as much as a wakeup */
  1088. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  1089. /* but never more than the buffer size */
  1090. bytes = min_t(int, bytes, sizeof(tmp));
  1091. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  1092. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  1093. bytes = extract_entropy(r->pull, tmp, bytes,
  1094. random_read_wakeup_bits / 8, 0);
  1095. mix_pool_bytes(r, tmp, bytes);
  1096. credit_entropy_bits(r, bytes*8);
  1097. }
  1098. /*
  1099. * Used as a workqueue function so that when the input pool is getting
  1100. * full, we can "spill over" some entropy to the output pools. That
  1101. * way the output pools can store some of the excess entropy instead
  1102. * of letting it go to waste.
  1103. */
  1104. static void push_to_pool(struct work_struct *work)
  1105. {
  1106. struct entropy_store *r = container_of(work, struct entropy_store,
  1107. push_work);
  1108. BUG_ON(!r);
  1109. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  1110. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  1111. r->pull->entropy_count >> ENTROPY_SHIFT);
  1112. }
  1113. /*
  1114. * This function decides how many bytes to actually take from the
  1115. * given pool, and also debits the entropy count accordingly.
  1116. */
  1117. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  1118. int reserved)
  1119. {
  1120. int entropy_count, orig, have_bytes;
  1121. size_t ibytes, nfrac;
  1122. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  1123. /* Can we pull enough? */
  1124. retry:
  1125. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  1126. ibytes = nbytes;
  1127. /* never pull more than available */
  1128. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  1129. if ((have_bytes -= reserved) < 0)
  1130. have_bytes = 0;
  1131. ibytes = min_t(size_t, ibytes, have_bytes);
  1132. if (ibytes < min)
  1133. ibytes = 0;
  1134. if (unlikely(entropy_count < 0)) {
  1135. pr_warn("random: negative entropy count: pool %s count %d\n",
  1136. r->name, entropy_count);
  1137. WARN_ON(1);
  1138. entropy_count = 0;
  1139. }
  1140. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  1141. if ((size_t) entropy_count > nfrac)
  1142. entropy_count -= nfrac;
  1143. else
  1144. entropy_count = 0;
  1145. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  1146. goto retry;
  1147. trace_debit_entropy(r->name, 8 * ibytes);
  1148. if (ibytes &&
  1149. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  1150. wake_up_interruptible(&random_write_wait);
  1151. kill_fasync(&fasync, SIGIO, POLL_OUT);
  1152. }
  1153. return ibytes;
  1154. }
  1155. /*
  1156. * This function does the actual extraction for extract_entropy and
  1157. * extract_entropy_user.
  1158. *
  1159. * Note: we assume that .poolwords is a multiple of 16 words.
  1160. */
  1161. static void extract_buf(struct entropy_store *r, __u8 *out)
  1162. {
  1163. int i;
  1164. union {
  1165. __u32 w[5];
  1166. unsigned long l[LONGS(20)];
  1167. } hash;
  1168. __u32 workspace[SHA_WORKSPACE_WORDS];
  1169. unsigned long flags;
  1170. /*
  1171. * If we have an architectural hardware random number
  1172. * generator, use it for SHA's initial vector
  1173. */
  1174. sha_init(hash.w);
  1175. for (i = 0; i < LONGS(20); i++) {
  1176. unsigned long v;
  1177. if (!arch_get_random_long(&v))
  1178. break;
  1179. hash.l[i] = v;
  1180. }
  1181. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  1182. spin_lock_irqsave(&r->lock, flags);
  1183. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  1184. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  1185. /*
  1186. * We mix the hash back into the pool to prevent backtracking
  1187. * attacks (where the attacker knows the state of the pool
  1188. * plus the current outputs, and attempts to find previous
  1189. * ouputs), unless the hash function can be inverted. By
  1190. * mixing at least a SHA1 worth of hash data back, we make
  1191. * brute-forcing the feedback as hard as brute-forcing the
  1192. * hash.
  1193. */
  1194. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  1195. spin_unlock_irqrestore(&r->lock, flags);
  1196. memzero_explicit(workspace, sizeof(workspace));
  1197. /*
  1198. * In case the hash function has some recognizable output
  1199. * pattern, we fold it in half. Thus, we always feed back
  1200. * twice as much data as we output.
  1201. */
  1202. hash.w[0] ^= hash.w[3];
  1203. hash.w[1] ^= hash.w[4];
  1204. hash.w[2] ^= rol32(hash.w[2], 16);
  1205. memcpy(out, &hash, EXTRACT_SIZE);
  1206. memzero_explicit(&hash, sizeof(hash));
  1207. }
  1208. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  1209. size_t nbytes, int fips)
  1210. {
  1211. ssize_t ret = 0, i;
  1212. __u8 tmp[EXTRACT_SIZE];
  1213. unsigned long flags;
  1214. while (nbytes) {
  1215. extract_buf(r, tmp);
  1216. if (fips) {
  1217. spin_lock_irqsave(&r->lock, flags);
  1218. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1219. panic("Hardware RNG duplicated output!\n");
  1220. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1221. spin_unlock_irqrestore(&r->lock, flags);
  1222. }
  1223. i = min_t(int, nbytes, EXTRACT_SIZE);
  1224. memcpy(buf, tmp, i);
  1225. nbytes -= i;
  1226. buf += i;
  1227. ret += i;
  1228. }
  1229. /* Wipe data just returned from memory */
  1230. memzero_explicit(tmp, sizeof(tmp));
  1231. return ret;
  1232. }
  1233. /*
  1234. * This function extracts randomness from the "entropy pool", and
  1235. * returns it in a buffer.
  1236. *
  1237. * The min parameter specifies the minimum amount we can pull before
  1238. * failing to avoid races that defeat catastrophic reseeding while the
  1239. * reserved parameter indicates how much entropy we must leave in the
  1240. * pool after each pull to avoid starving other readers.
  1241. */
  1242. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1243. size_t nbytes, int min, int reserved)
  1244. {
  1245. __u8 tmp[EXTRACT_SIZE];
  1246. unsigned long flags;
  1247. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1248. if (fips_enabled) {
  1249. spin_lock_irqsave(&r->lock, flags);
  1250. if (!r->last_data_init) {
  1251. r->last_data_init = 1;
  1252. spin_unlock_irqrestore(&r->lock, flags);
  1253. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1254. ENTROPY_BITS(r), _RET_IP_);
  1255. xfer_secondary_pool(r, EXTRACT_SIZE);
  1256. extract_buf(r, tmp);
  1257. spin_lock_irqsave(&r->lock, flags);
  1258. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1259. }
  1260. spin_unlock_irqrestore(&r->lock, flags);
  1261. }
  1262. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1263. xfer_secondary_pool(r, nbytes);
  1264. nbytes = account(r, nbytes, min, reserved);
  1265. return _extract_entropy(r, buf, nbytes, fips_enabled);
  1266. }
  1267. /*
  1268. * This function extracts randomness from the "entropy pool", and
  1269. * returns it in a userspace buffer.
  1270. */
  1271. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1272. size_t nbytes)
  1273. {
  1274. ssize_t ret = 0, i;
  1275. __u8 tmp[EXTRACT_SIZE];
  1276. int large_request = (nbytes > 256);
  1277. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1278. xfer_secondary_pool(r, nbytes);
  1279. nbytes = account(r, nbytes, 0, 0);
  1280. while (nbytes) {
  1281. if (large_request && need_resched()) {
  1282. if (signal_pending(current)) {
  1283. if (ret == 0)
  1284. ret = -ERESTARTSYS;
  1285. break;
  1286. }
  1287. schedule();
  1288. }
  1289. extract_buf(r, tmp);
  1290. i = min_t(int, nbytes, EXTRACT_SIZE);
  1291. if (copy_to_user(buf, tmp, i)) {
  1292. ret = -EFAULT;
  1293. break;
  1294. }
  1295. nbytes -= i;
  1296. buf += i;
  1297. ret += i;
  1298. }
  1299. /* Wipe data just returned from memory */
  1300. memzero_explicit(tmp, sizeof(tmp));
  1301. return ret;
  1302. }
  1303. #define warn_unseeded_randomness(previous) \
  1304. _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
  1305. static void _warn_unseeded_randomness(const char *func_name, void *caller,
  1306. void **previous)
  1307. {
  1308. #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1309. const bool print_once = false;
  1310. #else
  1311. static bool print_once __read_mostly;
  1312. #endif
  1313. if (print_once ||
  1314. crng_ready() ||
  1315. (previous && (caller == READ_ONCE(*previous))))
  1316. return;
  1317. WRITE_ONCE(*previous, caller);
  1318. #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1319. print_once = true;
  1320. #endif
  1321. pr_notice("random: %s called from %pS with crng_init=%d\n",
  1322. func_name, caller, crng_init);
  1323. }
  1324. /*
  1325. * This function is the exported kernel interface. It returns some
  1326. * number of good random numbers, suitable for key generation, seeding
  1327. * TCP sequence numbers, etc. It does not rely on the hardware random
  1328. * number generator. For random bytes direct from the hardware RNG
  1329. * (when available), use get_random_bytes_arch(). In order to ensure
  1330. * that the randomness provided by this function is okay, the function
  1331. * wait_for_random_bytes() should be called and return 0 at least once
  1332. * at any point prior.
  1333. */
  1334. static void _get_random_bytes(void *buf, int nbytes)
  1335. {
  1336. __u8 tmp[CHACHA20_BLOCK_SIZE];
  1337. trace_get_random_bytes(nbytes, _RET_IP_);
  1338. while (nbytes >= CHACHA20_BLOCK_SIZE) {
  1339. extract_crng(buf);
  1340. buf += CHACHA20_BLOCK_SIZE;
  1341. nbytes -= CHACHA20_BLOCK_SIZE;
  1342. }
  1343. if (nbytes > 0) {
  1344. extract_crng(tmp);
  1345. memcpy(buf, tmp, nbytes);
  1346. crng_backtrack_protect(tmp, nbytes);
  1347. } else
  1348. crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
  1349. memzero_explicit(tmp, sizeof(tmp));
  1350. }
  1351. void get_random_bytes(void *buf, int nbytes)
  1352. {
  1353. static void *previous;
  1354. warn_unseeded_randomness(&previous);
  1355. _get_random_bytes(buf, nbytes);
  1356. }
  1357. EXPORT_SYMBOL(get_random_bytes);
  1358. /*
  1359. * Wait for the urandom pool to be seeded and thus guaranteed to supply
  1360. * cryptographically secure random numbers. This applies to: the /dev/urandom
  1361. * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
  1362. * family of functions. Using any of these functions without first calling
  1363. * this function forfeits the guarantee of security.
  1364. *
  1365. * Returns: 0 if the urandom pool has been seeded.
  1366. * -ERESTARTSYS if the function was interrupted by a signal.
  1367. */
  1368. int wait_for_random_bytes(void)
  1369. {
  1370. if (likely(crng_ready()))
  1371. return 0;
  1372. return wait_event_interruptible(crng_init_wait, crng_ready());
  1373. }
  1374. EXPORT_SYMBOL(wait_for_random_bytes);
  1375. /*
  1376. * Add a callback function that will be invoked when the nonblocking
  1377. * pool is initialised.
  1378. *
  1379. * returns: 0 if callback is successfully added
  1380. * -EALREADY if pool is already initialised (callback not called)
  1381. * -ENOENT if module for callback is not alive
  1382. */
  1383. int add_random_ready_callback(struct random_ready_callback *rdy)
  1384. {
  1385. struct module *owner;
  1386. unsigned long flags;
  1387. int err = -EALREADY;
  1388. if (crng_ready())
  1389. return err;
  1390. owner = rdy->owner;
  1391. if (!try_module_get(owner))
  1392. return -ENOENT;
  1393. spin_lock_irqsave(&random_ready_list_lock, flags);
  1394. if (crng_ready())
  1395. goto out;
  1396. owner = NULL;
  1397. list_add(&rdy->list, &random_ready_list);
  1398. err = 0;
  1399. out:
  1400. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1401. module_put(owner);
  1402. return err;
  1403. }
  1404. EXPORT_SYMBOL(add_random_ready_callback);
  1405. /*
  1406. * Delete a previously registered readiness callback function.
  1407. */
  1408. void del_random_ready_callback(struct random_ready_callback *rdy)
  1409. {
  1410. unsigned long flags;
  1411. struct module *owner = NULL;
  1412. spin_lock_irqsave(&random_ready_list_lock, flags);
  1413. if (!list_empty(&rdy->list)) {
  1414. list_del_init(&rdy->list);
  1415. owner = rdy->owner;
  1416. }
  1417. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1418. module_put(owner);
  1419. }
  1420. EXPORT_SYMBOL(del_random_ready_callback);
  1421. /*
  1422. * This function will use the architecture-specific hardware random
  1423. * number generator if it is available. The arch-specific hw RNG will
  1424. * almost certainly be faster than what we can do in software, but it
  1425. * is impossible to verify that it is implemented securely (as
  1426. * opposed, to, say, the AES encryption of a sequence number using a
  1427. * key known by the NSA). So it's useful if we need the speed, but
  1428. * only if we're willing to trust the hardware manufacturer not to
  1429. * have put in a back door.
  1430. */
  1431. void get_random_bytes_arch(void *buf, int nbytes)
  1432. {
  1433. char *p = buf;
  1434. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1435. while (nbytes) {
  1436. unsigned long v;
  1437. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1438. if (!arch_get_random_long(&v))
  1439. break;
  1440. memcpy(p, &v, chunk);
  1441. p += chunk;
  1442. nbytes -= chunk;
  1443. }
  1444. if (nbytes)
  1445. get_random_bytes(p, nbytes);
  1446. }
  1447. EXPORT_SYMBOL(get_random_bytes_arch);
  1448. /*
  1449. * init_std_data - initialize pool with system data
  1450. *
  1451. * @r: pool to initialize
  1452. *
  1453. * This function clears the pool's entropy count and mixes some system
  1454. * data into the pool to prepare it for use. The pool is not cleared
  1455. * as that can only decrease the entropy in the pool.
  1456. */
  1457. static void init_std_data(struct entropy_store *r)
  1458. {
  1459. int i;
  1460. ktime_t now = ktime_get_real();
  1461. unsigned long rv;
  1462. r->last_pulled = jiffies;
  1463. mix_pool_bytes(r, &now, sizeof(now));
  1464. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1465. if (!arch_get_random_seed_long(&rv) &&
  1466. !arch_get_random_long(&rv))
  1467. rv = random_get_entropy();
  1468. mix_pool_bytes(r, &rv, sizeof(rv));
  1469. }
  1470. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1471. }
  1472. /*
  1473. * Note that setup_arch() may call add_device_randomness()
  1474. * long before we get here. This allows seeding of the pools
  1475. * with some platform dependent data very early in the boot
  1476. * process. But it limits our options here. We must use
  1477. * statically allocated structures that already have all
  1478. * initializations complete at compile time. We should also
  1479. * take care not to overwrite the precious per platform data
  1480. * we were given.
  1481. */
  1482. static int rand_initialize(void)
  1483. {
  1484. #ifdef CONFIG_NUMA
  1485. int i;
  1486. struct crng_state *crng;
  1487. struct crng_state **pool;
  1488. #endif
  1489. init_std_data(&input_pool);
  1490. init_std_data(&blocking_pool);
  1491. crng_initialize(&primary_crng);
  1492. #ifdef CONFIG_NUMA
  1493. pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
  1494. for_each_online_node(i) {
  1495. crng = kmalloc_node(sizeof(struct crng_state),
  1496. GFP_KERNEL | __GFP_NOFAIL, i);
  1497. spin_lock_init(&crng->lock);
  1498. crng_initialize(crng);
  1499. pool[i] = crng;
  1500. }
  1501. mb();
  1502. crng_node_pool = pool;
  1503. #endif
  1504. return 0;
  1505. }
  1506. early_initcall(rand_initialize);
  1507. #ifdef CONFIG_BLOCK
  1508. void rand_initialize_disk(struct gendisk *disk)
  1509. {
  1510. struct timer_rand_state *state;
  1511. /*
  1512. * If kzalloc returns null, we just won't use that entropy
  1513. * source.
  1514. */
  1515. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1516. if (state) {
  1517. state->last_time = INITIAL_JIFFIES;
  1518. disk->random = state;
  1519. }
  1520. }
  1521. #endif
  1522. static ssize_t
  1523. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1524. {
  1525. ssize_t n;
  1526. if (nbytes == 0)
  1527. return 0;
  1528. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1529. while (1) {
  1530. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1531. if (n < 0)
  1532. return n;
  1533. trace_random_read(n*8, (nbytes-n)*8,
  1534. ENTROPY_BITS(&blocking_pool),
  1535. ENTROPY_BITS(&input_pool));
  1536. if (n > 0)
  1537. return n;
  1538. /* Pool is (near) empty. Maybe wait and retry. */
  1539. if (nonblock)
  1540. return -EAGAIN;
  1541. wait_event_interruptible(random_read_wait,
  1542. ENTROPY_BITS(&input_pool) >=
  1543. random_read_wakeup_bits);
  1544. if (signal_pending(current))
  1545. return -ERESTARTSYS;
  1546. }
  1547. }
  1548. static ssize_t
  1549. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1550. {
  1551. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1552. }
  1553. static ssize_t
  1554. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1555. {
  1556. unsigned long flags;
  1557. static int maxwarn = 10;
  1558. int ret;
  1559. if (!crng_ready() && maxwarn > 0) {
  1560. maxwarn--;
  1561. printk(KERN_NOTICE "random: %s: uninitialized urandom read "
  1562. "(%zd bytes read)\n",
  1563. current->comm, nbytes);
  1564. spin_lock_irqsave(&primary_crng.lock, flags);
  1565. crng_init_cnt = 0;
  1566. spin_unlock_irqrestore(&primary_crng.lock, flags);
  1567. }
  1568. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1569. ret = extract_crng_user(buf, nbytes);
  1570. trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
  1571. return ret;
  1572. }
  1573. static unsigned int
  1574. random_poll(struct file *file, poll_table * wait)
  1575. {
  1576. unsigned int mask;
  1577. poll_wait(file, &random_read_wait, wait);
  1578. poll_wait(file, &random_write_wait, wait);
  1579. mask = 0;
  1580. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1581. mask |= POLLIN | POLLRDNORM;
  1582. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1583. mask |= POLLOUT | POLLWRNORM;
  1584. return mask;
  1585. }
  1586. static int
  1587. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1588. {
  1589. size_t bytes;
  1590. __u32 buf[16];
  1591. const char __user *p = buffer;
  1592. while (count > 0) {
  1593. bytes = min(count, sizeof(buf));
  1594. if (copy_from_user(&buf, p, bytes))
  1595. return -EFAULT;
  1596. count -= bytes;
  1597. p += bytes;
  1598. mix_pool_bytes(r, buf, bytes);
  1599. cond_resched();
  1600. }
  1601. return 0;
  1602. }
  1603. static ssize_t random_write(struct file *file, const char __user *buffer,
  1604. size_t count, loff_t *ppos)
  1605. {
  1606. size_t ret;
  1607. ret = write_pool(&input_pool, buffer, count);
  1608. if (ret)
  1609. return ret;
  1610. return (ssize_t)count;
  1611. }
  1612. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1613. {
  1614. int size, ent_count;
  1615. int __user *p = (int __user *)arg;
  1616. int retval;
  1617. switch (cmd) {
  1618. case RNDGETENTCNT:
  1619. /* inherently racy, no point locking */
  1620. ent_count = ENTROPY_BITS(&input_pool);
  1621. if (put_user(ent_count, p))
  1622. return -EFAULT;
  1623. return 0;
  1624. case RNDADDTOENTCNT:
  1625. if (!capable(CAP_SYS_ADMIN))
  1626. return -EPERM;
  1627. if (get_user(ent_count, p))
  1628. return -EFAULT;
  1629. return credit_entropy_bits_safe(&input_pool, ent_count);
  1630. case RNDADDENTROPY:
  1631. if (!capable(CAP_SYS_ADMIN))
  1632. return -EPERM;
  1633. if (get_user(ent_count, p++))
  1634. return -EFAULT;
  1635. if (ent_count < 0)
  1636. return -EINVAL;
  1637. if (get_user(size, p++))
  1638. return -EFAULT;
  1639. retval = write_pool(&input_pool, (const char __user *)p,
  1640. size);
  1641. if (retval < 0)
  1642. return retval;
  1643. return credit_entropy_bits_safe(&input_pool, ent_count);
  1644. case RNDZAPENTCNT:
  1645. case RNDCLEARPOOL:
  1646. /*
  1647. * Clear the entropy pool counters. We no longer clear
  1648. * the entropy pool, as that's silly.
  1649. */
  1650. if (!capable(CAP_SYS_ADMIN))
  1651. return -EPERM;
  1652. input_pool.entropy_count = 0;
  1653. blocking_pool.entropy_count = 0;
  1654. return 0;
  1655. default:
  1656. return -EINVAL;
  1657. }
  1658. }
  1659. static int random_fasync(int fd, struct file *filp, int on)
  1660. {
  1661. return fasync_helper(fd, filp, on, &fasync);
  1662. }
  1663. const struct file_operations random_fops = {
  1664. .read = random_read,
  1665. .write = random_write,
  1666. .poll = random_poll,
  1667. .unlocked_ioctl = random_ioctl,
  1668. .fasync = random_fasync,
  1669. .llseek = noop_llseek,
  1670. };
  1671. const struct file_operations urandom_fops = {
  1672. .read = urandom_read,
  1673. .write = random_write,
  1674. .unlocked_ioctl = random_ioctl,
  1675. .fasync = random_fasync,
  1676. .llseek = noop_llseek,
  1677. };
  1678. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1679. unsigned int, flags)
  1680. {
  1681. int ret;
  1682. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1683. return -EINVAL;
  1684. if (count > INT_MAX)
  1685. count = INT_MAX;
  1686. if (flags & GRND_RANDOM)
  1687. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1688. if (!crng_ready()) {
  1689. if (flags & GRND_NONBLOCK)
  1690. return -EAGAIN;
  1691. ret = wait_for_random_bytes();
  1692. if (unlikely(ret))
  1693. return ret;
  1694. }
  1695. return urandom_read(NULL, buf, count, NULL);
  1696. }
  1697. /********************************************************************
  1698. *
  1699. * Sysctl interface
  1700. *
  1701. ********************************************************************/
  1702. #ifdef CONFIG_SYSCTL
  1703. #include <linux/sysctl.h>
  1704. static int min_read_thresh = 8, min_write_thresh;
  1705. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1706. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1707. static int random_min_urandom_seed = 60;
  1708. static char sysctl_bootid[16];
  1709. /*
  1710. * This function is used to return both the bootid UUID, and random
  1711. * UUID. The difference is in whether table->data is NULL; if it is,
  1712. * then a new UUID is generated and returned to the user.
  1713. *
  1714. * If the user accesses this via the proc interface, the UUID will be
  1715. * returned as an ASCII string in the standard UUID format; if via the
  1716. * sysctl system call, as 16 bytes of binary data.
  1717. */
  1718. static int proc_do_uuid(struct ctl_table *table, int write,
  1719. void __user *buffer, size_t *lenp, loff_t *ppos)
  1720. {
  1721. struct ctl_table fake_table;
  1722. unsigned char buf[64], tmp_uuid[16], *uuid;
  1723. uuid = table->data;
  1724. if (!uuid) {
  1725. uuid = tmp_uuid;
  1726. generate_random_uuid(uuid);
  1727. } else {
  1728. static DEFINE_SPINLOCK(bootid_spinlock);
  1729. spin_lock(&bootid_spinlock);
  1730. if (!uuid[8])
  1731. generate_random_uuid(uuid);
  1732. spin_unlock(&bootid_spinlock);
  1733. }
  1734. sprintf(buf, "%pU", uuid);
  1735. fake_table.data = buf;
  1736. fake_table.maxlen = sizeof(buf);
  1737. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1738. }
  1739. /*
  1740. * Return entropy available scaled to integral bits
  1741. */
  1742. static int proc_do_entropy(struct ctl_table *table, int write,
  1743. void __user *buffer, size_t *lenp, loff_t *ppos)
  1744. {
  1745. struct ctl_table fake_table;
  1746. int entropy_count;
  1747. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1748. fake_table.data = &entropy_count;
  1749. fake_table.maxlen = sizeof(entropy_count);
  1750. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1751. }
  1752. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1753. extern struct ctl_table random_table[];
  1754. struct ctl_table random_table[] = {
  1755. {
  1756. .procname = "poolsize",
  1757. .data = &sysctl_poolsize,
  1758. .maxlen = sizeof(int),
  1759. .mode = 0444,
  1760. .proc_handler = proc_dointvec,
  1761. },
  1762. {
  1763. .procname = "entropy_avail",
  1764. .maxlen = sizeof(int),
  1765. .mode = 0444,
  1766. .proc_handler = proc_do_entropy,
  1767. .data = &input_pool.entropy_count,
  1768. },
  1769. {
  1770. .procname = "read_wakeup_threshold",
  1771. .data = &random_read_wakeup_bits,
  1772. .maxlen = sizeof(int),
  1773. .mode = 0644,
  1774. .proc_handler = proc_dointvec_minmax,
  1775. .extra1 = &min_read_thresh,
  1776. .extra2 = &max_read_thresh,
  1777. },
  1778. {
  1779. .procname = "write_wakeup_threshold",
  1780. .data = &random_write_wakeup_bits,
  1781. .maxlen = sizeof(int),
  1782. .mode = 0644,
  1783. .proc_handler = proc_dointvec_minmax,
  1784. .extra1 = &min_write_thresh,
  1785. .extra2 = &max_write_thresh,
  1786. },
  1787. {
  1788. .procname = "urandom_min_reseed_secs",
  1789. .data = &random_min_urandom_seed,
  1790. .maxlen = sizeof(int),
  1791. .mode = 0644,
  1792. .proc_handler = proc_dointvec,
  1793. },
  1794. {
  1795. .procname = "boot_id",
  1796. .data = &sysctl_bootid,
  1797. .maxlen = 16,
  1798. .mode = 0444,
  1799. .proc_handler = proc_do_uuid,
  1800. },
  1801. {
  1802. .procname = "uuid",
  1803. .maxlen = 16,
  1804. .mode = 0444,
  1805. .proc_handler = proc_do_uuid,
  1806. },
  1807. #ifdef ADD_INTERRUPT_BENCH
  1808. {
  1809. .procname = "add_interrupt_avg_cycles",
  1810. .data = &avg_cycles,
  1811. .maxlen = sizeof(avg_cycles),
  1812. .mode = 0444,
  1813. .proc_handler = proc_doulongvec_minmax,
  1814. },
  1815. {
  1816. .procname = "add_interrupt_avg_deviation",
  1817. .data = &avg_deviation,
  1818. .maxlen = sizeof(avg_deviation),
  1819. .mode = 0444,
  1820. .proc_handler = proc_doulongvec_minmax,
  1821. },
  1822. #endif
  1823. { }
  1824. };
  1825. #endif /* CONFIG_SYSCTL */
  1826. struct batched_entropy {
  1827. union {
  1828. u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
  1829. u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
  1830. };
  1831. unsigned int position;
  1832. };
  1833. static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
  1834. /*
  1835. * Get a random word for internal kernel use only. The quality of the random
  1836. * number is either as good as RDRAND or as good as /dev/urandom, with the
  1837. * goal of being quite fast and not depleting entropy. In order to ensure
  1838. * that the randomness provided by this function is okay, the function
  1839. * wait_for_random_bytes() should be called and return 0 at least once
  1840. * at any point prior.
  1841. */
  1842. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
  1843. u64 get_random_u64(void)
  1844. {
  1845. u64 ret;
  1846. bool use_lock;
  1847. unsigned long flags = 0;
  1848. struct batched_entropy *batch;
  1849. static void *previous;
  1850. #if BITS_PER_LONG == 64
  1851. if (arch_get_random_long((unsigned long *)&ret))
  1852. return ret;
  1853. #else
  1854. if (arch_get_random_long((unsigned long *)&ret) &&
  1855. arch_get_random_long((unsigned long *)&ret + 1))
  1856. return ret;
  1857. #endif
  1858. warn_unseeded_randomness(&previous);
  1859. use_lock = READ_ONCE(crng_init) < 2;
  1860. batch = &get_cpu_var(batched_entropy_u64);
  1861. if (use_lock)
  1862. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  1863. if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
  1864. extract_crng((u8 *)batch->entropy_u64);
  1865. batch->position = 0;
  1866. }
  1867. ret = batch->entropy_u64[batch->position++];
  1868. if (use_lock)
  1869. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1870. put_cpu_var(batched_entropy_u64);
  1871. return ret;
  1872. }
  1873. EXPORT_SYMBOL(get_random_u64);
  1874. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
  1875. u32 get_random_u32(void)
  1876. {
  1877. u32 ret;
  1878. bool use_lock;
  1879. unsigned long flags = 0;
  1880. struct batched_entropy *batch;
  1881. static void *previous;
  1882. if (arch_get_random_int(&ret))
  1883. return ret;
  1884. warn_unseeded_randomness(&previous);
  1885. use_lock = READ_ONCE(crng_init) < 2;
  1886. batch = &get_cpu_var(batched_entropy_u32);
  1887. if (use_lock)
  1888. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  1889. if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
  1890. extract_crng((u8 *)batch->entropy_u32);
  1891. batch->position = 0;
  1892. }
  1893. ret = batch->entropy_u32[batch->position++];
  1894. if (use_lock)
  1895. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1896. put_cpu_var(batched_entropy_u32);
  1897. return ret;
  1898. }
  1899. EXPORT_SYMBOL(get_random_u32);
  1900. /* It's important to invalidate all potential batched entropy that might
  1901. * be stored before the crng is initialized, which we can do lazily by
  1902. * simply resetting the counter to zero so that it's re-extracted on the
  1903. * next usage. */
  1904. static void invalidate_batched_entropy(void)
  1905. {
  1906. int cpu;
  1907. unsigned long flags;
  1908. write_lock_irqsave(&batched_entropy_reset_lock, flags);
  1909. for_each_possible_cpu (cpu) {
  1910. per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
  1911. per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
  1912. }
  1913. write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1914. }
  1915. /**
  1916. * randomize_page - Generate a random, page aligned address
  1917. * @start: The smallest acceptable address the caller will take.
  1918. * @range: The size of the area, starting at @start, within which the
  1919. * random address must fall.
  1920. *
  1921. * If @start + @range would overflow, @range is capped.
  1922. *
  1923. * NOTE: Historical use of randomize_range, which this replaces, presumed that
  1924. * @start was already page aligned. We now align it regardless.
  1925. *
  1926. * Return: A page aligned address within [start, start + range). On error,
  1927. * @start is returned.
  1928. */
  1929. unsigned long
  1930. randomize_page(unsigned long start, unsigned long range)
  1931. {
  1932. if (!PAGE_ALIGNED(start)) {
  1933. range -= PAGE_ALIGN(start) - start;
  1934. start = PAGE_ALIGN(start);
  1935. }
  1936. if (start > ULONG_MAX - range)
  1937. range = ULONG_MAX - start;
  1938. range >>= PAGE_SHIFT;
  1939. if (range == 0)
  1940. return start;
  1941. return start + (get_random_long() % range << PAGE_SHIFT);
  1942. }
  1943. /* Interface for in-kernel drivers of true hardware RNGs.
  1944. * Those devices may produce endless random bits and will be throttled
  1945. * when our pool is full.
  1946. */
  1947. void add_hwgenerator_randomness(const char *buffer, size_t count,
  1948. size_t entropy)
  1949. {
  1950. struct entropy_store *poolp = &input_pool;
  1951. if (!crng_ready()) {
  1952. crng_fast_load(buffer, count);
  1953. return;
  1954. }
  1955. /* Suspend writing if we're above the trickle threshold.
  1956. * We'll be woken up again once below random_write_wakeup_thresh,
  1957. * or when the calling thread is about to terminate.
  1958. */
  1959. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  1960. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  1961. mix_pool_bytes(poolp, buffer, count);
  1962. credit_entropy_bits(poolp, entropy);
  1963. }
  1964. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);