tcp_output.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. /* People can turn this off for buggy TCP's found in printers etc. */
  41. int sysctl_tcp_retrans_collapse __read_mostly = 1;
  42. /* People can turn this on to work with those rare, broken TCPs that
  43. * interpret the window field as a signed quantity.
  44. */
  45. int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  46. /* Default TSQ limit of four TSO segments */
  47. int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  48. /* This limits the percentage of the congestion window which we
  49. * will allow a single TSO frame to consume. Building TSO frames
  50. * which are too large can cause TCP streams to be bursty.
  51. */
  52. int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  53. /* By default, RFC2861 behavior. */
  54. int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  55. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  56. int push_one, gfp_t gfp);
  57. /* Account for new data that has been sent to the network. */
  58. static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  59. {
  60. struct inet_connection_sock *icsk = inet_csk(sk);
  61. struct tcp_sock *tp = tcp_sk(sk);
  62. unsigned int prior_packets = tp->packets_out;
  63. tcp_advance_send_head(sk, skb);
  64. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  65. tp->packets_out += tcp_skb_pcount(skb);
  66. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  67. tcp_rearm_rto(sk);
  68. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  69. tcp_skb_pcount(skb));
  70. }
  71. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  72. * window scaling factor due to loss of precision.
  73. * If window has been shrunk, what should we make? It is not clear at all.
  74. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  75. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  76. * invalid. OK, let's make this for now:
  77. */
  78. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  79. {
  80. const struct tcp_sock *tp = tcp_sk(sk);
  81. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  82. (tp->rx_opt.wscale_ok &&
  83. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  84. return tp->snd_nxt;
  85. else
  86. return tcp_wnd_end(tp);
  87. }
  88. /* Calculate mss to advertise in SYN segment.
  89. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  90. *
  91. * 1. It is independent of path mtu.
  92. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  93. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  94. * attached devices, because some buggy hosts are confused by
  95. * large MSS.
  96. * 4. We do not make 3, we advertise MSS, calculated from first
  97. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  98. * This may be overridden via information stored in routing table.
  99. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  100. * probably even Jumbo".
  101. */
  102. static __u16 tcp_advertise_mss(struct sock *sk)
  103. {
  104. struct tcp_sock *tp = tcp_sk(sk);
  105. const struct dst_entry *dst = __sk_dst_get(sk);
  106. int mss = tp->advmss;
  107. if (dst) {
  108. unsigned int metric = dst_metric_advmss(dst);
  109. if (metric < mss) {
  110. mss = metric;
  111. tp->advmss = mss;
  112. }
  113. }
  114. return (__u16)mss;
  115. }
  116. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  117. * This is the first part of cwnd validation mechanism.
  118. */
  119. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  120. {
  121. struct tcp_sock *tp = tcp_sk(sk);
  122. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  123. u32 cwnd = tp->snd_cwnd;
  124. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  125. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  126. restart_cwnd = min(restart_cwnd, cwnd);
  127. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  128. cwnd >>= 1;
  129. tp->snd_cwnd = max(cwnd, restart_cwnd);
  130. tp->snd_cwnd_stamp = tcp_time_stamp;
  131. tp->snd_cwnd_used = 0;
  132. }
  133. /* Congestion state accounting after a packet has been sent. */
  134. static void tcp_event_data_sent(struct tcp_sock *tp,
  135. struct sock *sk)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const u32 now = tcp_time_stamp;
  139. if (tcp_packets_in_flight(tp) == 0)
  140. tcp_ca_event(sk, CA_EVENT_TX_START);
  141. tp->lsndtime = now;
  142. /* If it is a reply for ato after last received
  143. * packet, enter pingpong mode.
  144. */
  145. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  146. icsk->icsk_ack.pingpong = 1;
  147. }
  148. /* Account for an ACK we sent. */
  149. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  150. {
  151. tcp_dec_quickack_mode(sk, pkts);
  152. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  153. }
  154. u32 tcp_default_init_rwnd(u32 mss)
  155. {
  156. /* Initial receive window should be twice of TCP_INIT_CWND to
  157. * enable proper sending of new unsent data during fast recovery
  158. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  159. * limit when mss is larger than 1460.
  160. */
  161. u32 init_rwnd = TCP_INIT_CWND * 2;
  162. if (mss > 1460)
  163. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  164. return init_rwnd;
  165. }
  166. /* Determine a window scaling and initial window to offer.
  167. * Based on the assumption that the given amount of space
  168. * will be offered. Store the results in the tp structure.
  169. * NOTE: for smooth operation initial space offering should
  170. * be a multiple of mss if possible. We assume here that mss >= 1.
  171. * This MUST be enforced by all callers.
  172. */
  173. void tcp_select_initial_window(int __space, __u32 mss,
  174. __u32 *rcv_wnd, __u32 *window_clamp,
  175. int wscale_ok, __u8 *rcv_wscale,
  176. __u32 init_rcv_wnd)
  177. {
  178. unsigned int space = (__space < 0 ? 0 : __space);
  179. /* If no clamp set the clamp to the max possible scaled window */
  180. if (*window_clamp == 0)
  181. (*window_clamp) = (65535 << 14);
  182. space = min(*window_clamp, space);
  183. /* Quantize space offering to a multiple of mss if possible. */
  184. if (space > mss)
  185. space = (space / mss) * mss;
  186. /* NOTE: offering an initial window larger than 32767
  187. * will break some buggy TCP stacks. If the admin tells us
  188. * it is likely we could be speaking with such a buggy stack
  189. * we will truncate our initial window offering to 32K-1
  190. * unless the remote has sent us a window scaling option,
  191. * which we interpret as a sign the remote TCP is not
  192. * misinterpreting the window field as a signed quantity.
  193. */
  194. if (sysctl_tcp_workaround_signed_windows)
  195. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  196. else
  197. (*rcv_wnd) = space;
  198. (*rcv_wscale) = 0;
  199. if (wscale_ok) {
  200. /* Set window scaling on max possible window
  201. * See RFC1323 for an explanation of the limit to 14
  202. */
  203. space = max_t(u32, space, sysctl_tcp_rmem[2]);
  204. space = max_t(u32, space, sysctl_rmem_max);
  205. space = min_t(u32, space, *window_clamp);
  206. while (space > 65535 && (*rcv_wscale) < 14) {
  207. space >>= 1;
  208. (*rcv_wscale)++;
  209. }
  210. }
  211. if (mss > (1 << *rcv_wscale)) {
  212. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  213. init_rcv_wnd = tcp_default_init_rwnd(mss);
  214. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  215. }
  216. /* Set the clamp no higher than max representable value */
  217. (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
  218. }
  219. EXPORT_SYMBOL(tcp_select_initial_window);
  220. /* Chose a new window to advertise, update state in tcp_sock for the
  221. * socket, and return result with RFC1323 scaling applied. The return
  222. * value can be stuffed directly into th->window for an outgoing
  223. * frame.
  224. */
  225. static u16 tcp_select_window(struct sock *sk)
  226. {
  227. struct tcp_sock *tp = tcp_sk(sk);
  228. u32 old_win = tp->rcv_wnd;
  229. u32 cur_win = tcp_receive_window(tp);
  230. u32 new_win = __tcp_select_window(sk);
  231. /* Never shrink the offered window */
  232. if (new_win < cur_win) {
  233. /* Danger Will Robinson!
  234. * Don't update rcv_wup/rcv_wnd here or else
  235. * we will not be able to advertise a zero
  236. * window in time. --DaveM
  237. *
  238. * Relax Will Robinson.
  239. */
  240. if (new_win == 0)
  241. NET_INC_STATS(sock_net(sk),
  242. LINUX_MIB_TCPWANTZEROWINDOWADV);
  243. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  244. }
  245. tp->rcv_wnd = new_win;
  246. tp->rcv_wup = tp->rcv_nxt;
  247. /* Make sure we do not exceed the maximum possible
  248. * scaled window.
  249. */
  250. if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
  251. new_win = min(new_win, MAX_TCP_WINDOW);
  252. else
  253. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  254. /* RFC1323 scaling applied */
  255. new_win >>= tp->rx_opt.rcv_wscale;
  256. /* If we advertise zero window, disable fast path. */
  257. if (new_win == 0) {
  258. tp->pred_flags = 0;
  259. if (old_win)
  260. NET_INC_STATS(sock_net(sk),
  261. LINUX_MIB_TCPTOZEROWINDOWADV);
  262. } else if (old_win == 0) {
  263. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  264. }
  265. return new_win;
  266. }
  267. /* Packet ECN state for a SYN-ACK */
  268. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  269. {
  270. const struct tcp_sock *tp = tcp_sk(sk);
  271. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  272. if (!(tp->ecn_flags & TCP_ECN_OK))
  273. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  274. else if (tcp_ca_needs_ecn(sk))
  275. INET_ECN_xmit(sk);
  276. }
  277. /* Packet ECN state for a SYN. */
  278. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  279. {
  280. struct tcp_sock *tp = tcp_sk(sk);
  281. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  282. tcp_ca_needs_ecn(sk);
  283. if (!use_ecn) {
  284. const struct dst_entry *dst = __sk_dst_get(sk);
  285. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  286. use_ecn = true;
  287. }
  288. tp->ecn_flags = 0;
  289. if (use_ecn) {
  290. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  291. tp->ecn_flags = TCP_ECN_OK;
  292. if (tcp_ca_needs_ecn(sk))
  293. INET_ECN_xmit(sk);
  294. }
  295. }
  296. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  297. {
  298. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  299. /* tp->ecn_flags are cleared at a later point in time when
  300. * SYN ACK is ultimatively being received.
  301. */
  302. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  303. }
  304. static void
  305. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  306. {
  307. if (inet_rsk(req)->ecn_ok)
  308. th->ece = 1;
  309. }
  310. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  311. * be sent.
  312. */
  313. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  314. struct tcphdr *th, int tcp_header_len)
  315. {
  316. struct tcp_sock *tp = tcp_sk(sk);
  317. if (tp->ecn_flags & TCP_ECN_OK) {
  318. /* Not-retransmitted data segment: set ECT and inject CWR. */
  319. if (skb->len != tcp_header_len &&
  320. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  321. INET_ECN_xmit(sk);
  322. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  323. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  324. th->cwr = 1;
  325. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  326. }
  327. } else if (!tcp_ca_needs_ecn(sk)) {
  328. /* ACK or retransmitted segment: clear ECT|CE */
  329. INET_ECN_dontxmit(sk);
  330. }
  331. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  332. th->ece = 1;
  333. }
  334. }
  335. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  336. * auto increment end seqno.
  337. */
  338. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  339. {
  340. skb->ip_summed = CHECKSUM_PARTIAL;
  341. skb->csum = 0;
  342. TCP_SKB_CB(skb)->tcp_flags = flags;
  343. TCP_SKB_CB(skb)->sacked = 0;
  344. tcp_skb_pcount_set(skb, 1);
  345. TCP_SKB_CB(skb)->seq = seq;
  346. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  347. seq++;
  348. TCP_SKB_CB(skb)->end_seq = seq;
  349. }
  350. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  351. {
  352. return tp->snd_una != tp->snd_up;
  353. }
  354. #define OPTION_SACK_ADVERTISE (1 << 0)
  355. #define OPTION_TS (1 << 1)
  356. #define OPTION_MD5 (1 << 2)
  357. #define OPTION_WSCALE (1 << 3)
  358. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  359. struct tcp_out_options {
  360. u16 options; /* bit field of OPTION_* */
  361. u16 mss; /* 0 to disable */
  362. u8 ws; /* window scale, 0 to disable */
  363. u8 num_sack_blocks; /* number of SACK blocks to include */
  364. u8 hash_size; /* bytes in hash_location */
  365. __u8 *hash_location; /* temporary pointer, overloaded */
  366. __u32 tsval, tsecr; /* need to include OPTION_TS */
  367. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  368. };
  369. /* Write previously computed TCP options to the packet.
  370. *
  371. * Beware: Something in the Internet is very sensitive to the ordering of
  372. * TCP options, we learned this through the hard way, so be careful here.
  373. * Luckily we can at least blame others for their non-compliance but from
  374. * inter-operability perspective it seems that we're somewhat stuck with
  375. * the ordering which we have been using if we want to keep working with
  376. * those broken things (not that it currently hurts anybody as there isn't
  377. * particular reason why the ordering would need to be changed).
  378. *
  379. * At least SACK_PERM as the first option is known to lead to a disaster
  380. * (but it may well be that other scenarios fail similarly).
  381. */
  382. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  383. struct tcp_out_options *opts)
  384. {
  385. u16 options = opts->options; /* mungable copy */
  386. if (unlikely(OPTION_MD5 & options)) {
  387. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  388. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  389. /* overload cookie hash location */
  390. opts->hash_location = (__u8 *)ptr;
  391. ptr += 4;
  392. }
  393. if (unlikely(opts->mss)) {
  394. *ptr++ = htonl((TCPOPT_MSS << 24) |
  395. (TCPOLEN_MSS << 16) |
  396. opts->mss);
  397. }
  398. if (likely(OPTION_TS & options)) {
  399. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  400. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  401. (TCPOLEN_SACK_PERM << 16) |
  402. (TCPOPT_TIMESTAMP << 8) |
  403. TCPOLEN_TIMESTAMP);
  404. options &= ~OPTION_SACK_ADVERTISE;
  405. } else {
  406. *ptr++ = htonl((TCPOPT_NOP << 24) |
  407. (TCPOPT_NOP << 16) |
  408. (TCPOPT_TIMESTAMP << 8) |
  409. TCPOLEN_TIMESTAMP);
  410. }
  411. *ptr++ = htonl(opts->tsval);
  412. *ptr++ = htonl(opts->tsecr);
  413. }
  414. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  415. *ptr++ = htonl((TCPOPT_NOP << 24) |
  416. (TCPOPT_NOP << 16) |
  417. (TCPOPT_SACK_PERM << 8) |
  418. TCPOLEN_SACK_PERM);
  419. }
  420. if (unlikely(OPTION_WSCALE & options)) {
  421. *ptr++ = htonl((TCPOPT_NOP << 24) |
  422. (TCPOPT_WINDOW << 16) |
  423. (TCPOLEN_WINDOW << 8) |
  424. opts->ws);
  425. }
  426. if (unlikely(opts->num_sack_blocks)) {
  427. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  428. tp->duplicate_sack : tp->selective_acks;
  429. int this_sack;
  430. *ptr++ = htonl((TCPOPT_NOP << 24) |
  431. (TCPOPT_NOP << 16) |
  432. (TCPOPT_SACK << 8) |
  433. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  434. TCPOLEN_SACK_PERBLOCK)));
  435. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  436. ++this_sack) {
  437. *ptr++ = htonl(sp[this_sack].start_seq);
  438. *ptr++ = htonl(sp[this_sack].end_seq);
  439. }
  440. tp->rx_opt.dsack = 0;
  441. }
  442. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  443. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  444. u8 *p = (u8 *)ptr;
  445. u32 len; /* Fast Open option length */
  446. if (foc->exp) {
  447. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  448. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  449. TCPOPT_FASTOPEN_MAGIC);
  450. p += TCPOLEN_EXP_FASTOPEN_BASE;
  451. } else {
  452. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  453. *p++ = TCPOPT_FASTOPEN;
  454. *p++ = len;
  455. }
  456. memcpy(p, foc->val, foc->len);
  457. if ((len & 3) == 2) {
  458. p[foc->len] = TCPOPT_NOP;
  459. p[foc->len + 1] = TCPOPT_NOP;
  460. }
  461. ptr += (len + 3) >> 2;
  462. }
  463. }
  464. /* Compute TCP options for SYN packets. This is not the final
  465. * network wire format yet.
  466. */
  467. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  468. struct tcp_out_options *opts,
  469. struct tcp_md5sig_key **md5)
  470. {
  471. struct tcp_sock *tp = tcp_sk(sk);
  472. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  473. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  474. #ifdef CONFIG_TCP_MD5SIG
  475. *md5 = tp->af_specific->md5_lookup(sk, sk);
  476. if (*md5) {
  477. opts->options |= OPTION_MD5;
  478. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  479. }
  480. #else
  481. *md5 = NULL;
  482. #endif
  483. /* We always get an MSS option. The option bytes which will be seen in
  484. * normal data packets should timestamps be used, must be in the MSS
  485. * advertised. But we subtract them from tp->mss_cache so that
  486. * calculations in tcp_sendmsg are simpler etc. So account for this
  487. * fact here if necessary. If we don't do this correctly, as a
  488. * receiver we won't recognize data packets as being full sized when we
  489. * should, and thus we won't abide by the delayed ACK rules correctly.
  490. * SACKs don't matter, we never delay an ACK when we have any of those
  491. * going out. */
  492. opts->mss = tcp_advertise_mss(sk);
  493. remaining -= TCPOLEN_MSS_ALIGNED;
  494. if (likely(sysctl_tcp_timestamps && !*md5)) {
  495. opts->options |= OPTION_TS;
  496. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  497. opts->tsecr = tp->rx_opt.ts_recent;
  498. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  499. }
  500. if (likely(sysctl_tcp_window_scaling)) {
  501. opts->ws = tp->rx_opt.rcv_wscale;
  502. opts->options |= OPTION_WSCALE;
  503. remaining -= TCPOLEN_WSCALE_ALIGNED;
  504. }
  505. if (likely(sysctl_tcp_sack)) {
  506. opts->options |= OPTION_SACK_ADVERTISE;
  507. if (unlikely(!(OPTION_TS & opts->options)))
  508. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  509. }
  510. if (fastopen && fastopen->cookie.len >= 0) {
  511. u32 need = fastopen->cookie.len;
  512. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  513. TCPOLEN_FASTOPEN_BASE;
  514. need = (need + 3) & ~3U; /* Align to 32 bits */
  515. if (remaining >= need) {
  516. opts->options |= OPTION_FAST_OPEN_COOKIE;
  517. opts->fastopen_cookie = &fastopen->cookie;
  518. remaining -= need;
  519. tp->syn_fastopen = 1;
  520. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  521. }
  522. }
  523. return MAX_TCP_OPTION_SPACE - remaining;
  524. }
  525. /* Set up TCP options for SYN-ACKs. */
  526. static unsigned int tcp_synack_options(struct request_sock *req,
  527. unsigned int mss, struct sk_buff *skb,
  528. struct tcp_out_options *opts,
  529. const struct tcp_md5sig_key *md5,
  530. struct tcp_fastopen_cookie *foc)
  531. {
  532. struct inet_request_sock *ireq = inet_rsk(req);
  533. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  534. #ifdef CONFIG_TCP_MD5SIG
  535. if (md5) {
  536. opts->options |= OPTION_MD5;
  537. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  538. /* We can't fit any SACK blocks in a packet with MD5 + TS
  539. * options. There was discussion about disabling SACK
  540. * rather than TS in order to fit in better with old,
  541. * buggy kernels, but that was deemed to be unnecessary.
  542. */
  543. ireq->tstamp_ok &= !ireq->sack_ok;
  544. }
  545. #endif
  546. /* We always send an MSS option. */
  547. opts->mss = mss;
  548. remaining -= TCPOLEN_MSS_ALIGNED;
  549. if (likely(ireq->wscale_ok)) {
  550. opts->ws = ireq->rcv_wscale;
  551. opts->options |= OPTION_WSCALE;
  552. remaining -= TCPOLEN_WSCALE_ALIGNED;
  553. }
  554. if (likely(ireq->tstamp_ok)) {
  555. opts->options |= OPTION_TS;
  556. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  557. opts->tsecr = req->ts_recent;
  558. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  559. }
  560. if (likely(ireq->sack_ok)) {
  561. opts->options |= OPTION_SACK_ADVERTISE;
  562. if (unlikely(!ireq->tstamp_ok))
  563. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  564. }
  565. if (foc != NULL && foc->len >= 0) {
  566. u32 need = foc->len;
  567. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  568. TCPOLEN_FASTOPEN_BASE;
  569. need = (need + 3) & ~3U; /* Align to 32 bits */
  570. if (remaining >= need) {
  571. opts->options |= OPTION_FAST_OPEN_COOKIE;
  572. opts->fastopen_cookie = foc;
  573. remaining -= need;
  574. }
  575. }
  576. return MAX_TCP_OPTION_SPACE - remaining;
  577. }
  578. /* Compute TCP options for ESTABLISHED sockets. This is not the
  579. * final wire format yet.
  580. */
  581. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  582. struct tcp_out_options *opts,
  583. struct tcp_md5sig_key **md5)
  584. {
  585. struct tcp_sock *tp = tcp_sk(sk);
  586. unsigned int size = 0;
  587. unsigned int eff_sacks;
  588. opts->options = 0;
  589. #ifdef CONFIG_TCP_MD5SIG
  590. *md5 = tp->af_specific->md5_lookup(sk, sk);
  591. if (unlikely(*md5)) {
  592. opts->options |= OPTION_MD5;
  593. size += TCPOLEN_MD5SIG_ALIGNED;
  594. }
  595. #else
  596. *md5 = NULL;
  597. #endif
  598. if (likely(tp->rx_opt.tstamp_ok)) {
  599. opts->options |= OPTION_TS;
  600. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  601. opts->tsecr = tp->rx_opt.ts_recent;
  602. size += TCPOLEN_TSTAMP_ALIGNED;
  603. }
  604. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  605. if (unlikely(eff_sacks)) {
  606. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  607. opts->num_sack_blocks =
  608. min_t(unsigned int, eff_sacks,
  609. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  610. TCPOLEN_SACK_PERBLOCK);
  611. size += TCPOLEN_SACK_BASE_ALIGNED +
  612. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  613. }
  614. return size;
  615. }
  616. /* TCP SMALL QUEUES (TSQ)
  617. *
  618. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  619. * to reduce RTT and bufferbloat.
  620. * We do this using a special skb destructor (tcp_wfree).
  621. *
  622. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  623. * needs to be reallocated in a driver.
  624. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  625. *
  626. * Since transmit from skb destructor is forbidden, we use a tasklet
  627. * to process all sockets that eventually need to send more skbs.
  628. * We use one tasklet per cpu, with its own queue of sockets.
  629. */
  630. struct tsq_tasklet {
  631. struct tasklet_struct tasklet;
  632. struct list_head head; /* queue of tcp sockets */
  633. };
  634. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  635. static void tcp_tsq_handler(struct sock *sk)
  636. {
  637. if ((1 << sk->sk_state) &
  638. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  639. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  640. struct tcp_sock *tp = tcp_sk(sk);
  641. if (tp->lost_out > tp->retrans_out &&
  642. tp->snd_cwnd > tcp_packets_in_flight(tp))
  643. tcp_xmit_retransmit_queue(sk);
  644. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  645. 0, GFP_ATOMIC);
  646. }
  647. }
  648. /*
  649. * One tasklet per cpu tries to send more skbs.
  650. * We run in tasklet context but need to disable irqs when
  651. * transferring tsq->head because tcp_wfree() might
  652. * interrupt us (non NAPI drivers)
  653. */
  654. static void tcp_tasklet_func(unsigned long data)
  655. {
  656. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  657. LIST_HEAD(list);
  658. unsigned long flags;
  659. struct list_head *q, *n;
  660. struct tcp_sock *tp;
  661. struct sock *sk;
  662. local_irq_save(flags);
  663. list_splice_init(&tsq->head, &list);
  664. local_irq_restore(flags);
  665. list_for_each_safe(q, n, &list) {
  666. tp = list_entry(q, struct tcp_sock, tsq_node);
  667. list_del(&tp->tsq_node);
  668. sk = (struct sock *)tp;
  669. smp_mb__before_atomic();
  670. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  671. if (!sk->sk_lock.owned &&
  672. test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
  673. bh_lock_sock(sk);
  674. if (!sock_owned_by_user(sk)) {
  675. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  676. tcp_tsq_handler(sk);
  677. }
  678. bh_unlock_sock(sk);
  679. }
  680. sk_free(sk);
  681. }
  682. }
  683. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  684. TCPF_WRITE_TIMER_DEFERRED | \
  685. TCPF_DELACK_TIMER_DEFERRED | \
  686. TCPF_MTU_REDUCED_DEFERRED)
  687. /**
  688. * tcp_release_cb - tcp release_sock() callback
  689. * @sk: socket
  690. *
  691. * called from release_sock() to perform protocol dependent
  692. * actions before socket release.
  693. */
  694. void tcp_release_cb(struct sock *sk)
  695. {
  696. unsigned long flags, nflags;
  697. /* perform an atomic operation only if at least one flag is set */
  698. do {
  699. flags = sk->sk_tsq_flags;
  700. if (!(flags & TCP_DEFERRED_ALL))
  701. return;
  702. nflags = flags & ~TCP_DEFERRED_ALL;
  703. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  704. if (flags & TCPF_TSQ_DEFERRED)
  705. tcp_tsq_handler(sk);
  706. /* Here begins the tricky part :
  707. * We are called from release_sock() with :
  708. * 1) BH disabled
  709. * 2) sk_lock.slock spinlock held
  710. * 3) socket owned by us (sk->sk_lock.owned == 1)
  711. *
  712. * But following code is meant to be called from BH handlers,
  713. * so we should keep BH disabled, but early release socket ownership
  714. */
  715. sock_release_ownership(sk);
  716. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  717. tcp_write_timer_handler(sk);
  718. __sock_put(sk);
  719. }
  720. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  721. tcp_delack_timer_handler(sk);
  722. __sock_put(sk);
  723. }
  724. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  725. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  726. __sock_put(sk);
  727. }
  728. }
  729. EXPORT_SYMBOL(tcp_release_cb);
  730. void __init tcp_tasklet_init(void)
  731. {
  732. int i;
  733. for_each_possible_cpu(i) {
  734. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  735. INIT_LIST_HEAD(&tsq->head);
  736. tasklet_init(&tsq->tasklet,
  737. tcp_tasklet_func,
  738. (unsigned long)tsq);
  739. }
  740. }
  741. /*
  742. * Write buffer destructor automatically called from kfree_skb.
  743. * We can't xmit new skbs from this context, as we might already
  744. * hold qdisc lock.
  745. */
  746. void tcp_wfree(struct sk_buff *skb)
  747. {
  748. struct sock *sk = skb->sk;
  749. struct tcp_sock *tp = tcp_sk(sk);
  750. unsigned long flags, nval, oval;
  751. int wmem;
  752. /* Keep one reference on sk_wmem_alloc.
  753. * Will be released by sk_free() from here or tcp_tasklet_func()
  754. */
  755. wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
  756. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  757. * Wait until our queues (qdisc + devices) are drained.
  758. * This gives :
  759. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  760. * - chance for incoming ACK (processed by another cpu maybe)
  761. * to migrate this flow (skb->ooo_okay will be eventually set)
  762. */
  763. if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  764. goto out;
  765. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  766. struct tsq_tasklet *tsq;
  767. bool empty;
  768. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  769. goto out;
  770. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
  771. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  772. if (nval != oval)
  773. continue;
  774. /* queue this socket to tasklet queue */
  775. local_irq_save(flags);
  776. tsq = this_cpu_ptr(&tsq_tasklet);
  777. empty = list_empty(&tsq->head);
  778. list_add(&tp->tsq_node, &tsq->head);
  779. if (empty)
  780. tasklet_schedule(&tsq->tasklet);
  781. local_irq_restore(flags);
  782. return;
  783. }
  784. out:
  785. sk_free(sk);
  786. }
  787. /* This routine actually transmits TCP packets queued in by
  788. * tcp_do_sendmsg(). This is used by both the initial
  789. * transmission and possible later retransmissions.
  790. * All SKB's seen here are completely headerless. It is our
  791. * job to build the TCP header, and pass the packet down to
  792. * IP so it can do the same plus pass the packet off to the
  793. * device.
  794. *
  795. * We are working here with either a clone of the original
  796. * SKB, or a fresh unique copy made by the retransmit engine.
  797. */
  798. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  799. gfp_t gfp_mask)
  800. {
  801. const struct inet_connection_sock *icsk = inet_csk(sk);
  802. struct inet_sock *inet;
  803. struct tcp_sock *tp;
  804. struct tcp_skb_cb *tcb;
  805. struct tcp_out_options opts;
  806. unsigned int tcp_options_size, tcp_header_size;
  807. struct tcp_md5sig_key *md5;
  808. struct tcphdr *th;
  809. int err;
  810. BUG_ON(!skb || !tcp_skb_pcount(skb));
  811. tp = tcp_sk(sk);
  812. if (clone_it) {
  813. skb_mstamp_get(&skb->skb_mstamp);
  814. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  815. - tp->snd_una;
  816. tcp_rate_skb_sent(sk, skb);
  817. if (unlikely(skb_cloned(skb)))
  818. skb = pskb_copy(skb, gfp_mask);
  819. else
  820. skb = skb_clone(skb, gfp_mask);
  821. if (unlikely(!skb))
  822. return -ENOBUFS;
  823. }
  824. inet = inet_sk(sk);
  825. tcb = TCP_SKB_CB(skb);
  826. memset(&opts, 0, sizeof(opts));
  827. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  828. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  829. else
  830. tcp_options_size = tcp_established_options(sk, skb, &opts,
  831. &md5);
  832. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  833. /* if no packet is in qdisc/device queue, then allow XPS to select
  834. * another queue. We can be called from tcp_tsq_handler()
  835. * which holds one reference to sk_wmem_alloc.
  836. *
  837. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  838. * One way to get this would be to set skb->truesize = 2 on them.
  839. */
  840. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  841. /* If we had to use memory reserve to allocate this skb,
  842. * this might cause drops if packet is looped back :
  843. * Other socket might not have SOCK_MEMALLOC.
  844. * Packets not looped back do not care about pfmemalloc.
  845. */
  846. skb->pfmemalloc = 0;
  847. skb_push(skb, tcp_header_size);
  848. skb_reset_transport_header(skb);
  849. skb_orphan(skb);
  850. skb->sk = sk;
  851. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  852. skb_set_hash_from_sk(skb, sk);
  853. atomic_add(skb->truesize, &sk->sk_wmem_alloc);
  854. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  855. /* Build TCP header and checksum it. */
  856. th = (struct tcphdr *)skb->data;
  857. th->source = inet->inet_sport;
  858. th->dest = inet->inet_dport;
  859. th->seq = htonl(tcb->seq);
  860. th->ack_seq = htonl(tp->rcv_nxt);
  861. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  862. tcb->tcp_flags);
  863. th->check = 0;
  864. th->urg_ptr = 0;
  865. /* The urg_mode check is necessary during a below snd_una win probe */
  866. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  867. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  868. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  869. th->urg = 1;
  870. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  871. th->urg_ptr = htons(0xFFFF);
  872. th->urg = 1;
  873. }
  874. }
  875. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  876. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  877. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  878. th->window = htons(tcp_select_window(sk));
  879. tcp_ecn_send(sk, skb, th, tcp_header_size);
  880. } else {
  881. /* RFC1323: The window in SYN & SYN/ACK segments
  882. * is never scaled.
  883. */
  884. th->window = htons(min(tp->rcv_wnd, 65535U));
  885. }
  886. #ifdef CONFIG_TCP_MD5SIG
  887. /* Calculate the MD5 hash, as we have all we need now */
  888. if (md5) {
  889. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  890. tp->af_specific->calc_md5_hash(opts.hash_location,
  891. md5, sk, skb);
  892. }
  893. #endif
  894. icsk->icsk_af_ops->send_check(sk, skb);
  895. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  896. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  897. if (skb->len != tcp_header_size) {
  898. tcp_event_data_sent(tp, sk);
  899. tp->data_segs_out += tcp_skb_pcount(skb);
  900. }
  901. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  902. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  903. tcp_skb_pcount(skb));
  904. tp->segs_out += tcp_skb_pcount(skb);
  905. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  906. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  907. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  908. /* Our usage of tstamp should remain private */
  909. skb->tstamp = 0;
  910. /* Cleanup our debris for IP stacks */
  911. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  912. sizeof(struct inet6_skb_parm)));
  913. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  914. if (likely(err <= 0))
  915. return err;
  916. tcp_enter_cwr(sk);
  917. return net_xmit_eval(err);
  918. }
  919. /* This routine just queues the buffer for sending.
  920. *
  921. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  922. * otherwise socket can stall.
  923. */
  924. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  925. {
  926. struct tcp_sock *tp = tcp_sk(sk);
  927. /* Advance write_seq and place onto the write_queue. */
  928. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  929. __skb_header_release(skb);
  930. tcp_add_write_queue_tail(sk, skb);
  931. sk->sk_wmem_queued += skb->truesize;
  932. sk_mem_charge(sk, skb->truesize);
  933. }
  934. /* Initialize TSO segments for a packet. */
  935. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  936. {
  937. if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
  938. /* Avoid the costly divide in the normal
  939. * non-TSO case.
  940. */
  941. tcp_skb_pcount_set(skb, 1);
  942. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  943. } else {
  944. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  945. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  946. }
  947. }
  948. /* When a modification to fackets out becomes necessary, we need to check
  949. * skb is counted to fackets_out or not.
  950. */
  951. static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
  952. int decr)
  953. {
  954. struct tcp_sock *tp = tcp_sk(sk);
  955. if (!tp->sacked_out || tcp_is_reno(tp))
  956. return;
  957. if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
  958. tp->fackets_out -= decr;
  959. }
  960. /* Pcount in the middle of the write queue got changed, we need to do various
  961. * tweaks to fix counters
  962. */
  963. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  964. {
  965. struct tcp_sock *tp = tcp_sk(sk);
  966. tp->packets_out -= decr;
  967. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  968. tp->sacked_out -= decr;
  969. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  970. tp->retrans_out -= decr;
  971. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  972. tp->lost_out -= decr;
  973. /* Reno case is special. Sigh... */
  974. if (tcp_is_reno(tp) && decr > 0)
  975. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  976. tcp_adjust_fackets_out(sk, skb, decr);
  977. if (tp->lost_skb_hint &&
  978. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  979. (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
  980. tp->lost_cnt_hint -= decr;
  981. tcp_verify_left_out(tp);
  982. }
  983. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  984. {
  985. return TCP_SKB_CB(skb)->txstamp_ack ||
  986. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  987. }
  988. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  989. {
  990. struct skb_shared_info *shinfo = skb_shinfo(skb);
  991. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  992. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  993. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  994. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  995. shinfo->tx_flags &= ~tsflags;
  996. shinfo2->tx_flags |= tsflags;
  997. swap(shinfo->tskey, shinfo2->tskey);
  998. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  999. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1000. }
  1001. }
  1002. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1003. {
  1004. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1005. TCP_SKB_CB(skb)->eor = 0;
  1006. }
  1007. /* Function to create two new TCP segments. Shrinks the given segment
  1008. * to the specified size and appends a new segment with the rest of the
  1009. * packet to the list. This won't be called frequently, I hope.
  1010. * Remember, these are still headerless SKBs at this point.
  1011. */
  1012. int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
  1013. unsigned int mss_now, gfp_t gfp)
  1014. {
  1015. struct tcp_sock *tp = tcp_sk(sk);
  1016. struct sk_buff *buff;
  1017. int nsize, old_factor;
  1018. int nlen;
  1019. u8 flags;
  1020. if (WARN_ON(len > skb->len))
  1021. return -EINVAL;
  1022. nsize = skb_headlen(skb) - len;
  1023. if (nsize < 0)
  1024. nsize = 0;
  1025. if (skb_unclone(skb, gfp))
  1026. return -ENOMEM;
  1027. /* Get a new skb... force flag on. */
  1028. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1029. if (!buff)
  1030. return -ENOMEM; /* We'll just try again later. */
  1031. sk->sk_wmem_queued += buff->truesize;
  1032. sk_mem_charge(sk, buff->truesize);
  1033. nlen = skb->len - len - nsize;
  1034. buff->truesize += nlen;
  1035. skb->truesize -= nlen;
  1036. /* Correct the sequence numbers. */
  1037. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1038. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1039. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1040. /* PSH and FIN should only be set in the second packet. */
  1041. flags = TCP_SKB_CB(skb)->tcp_flags;
  1042. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1043. TCP_SKB_CB(buff)->tcp_flags = flags;
  1044. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1045. tcp_skb_fragment_eor(skb, buff);
  1046. if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
  1047. /* Copy and checksum data tail into the new buffer. */
  1048. buff->csum = csum_partial_copy_nocheck(skb->data + len,
  1049. skb_put(buff, nsize),
  1050. nsize, 0);
  1051. skb_trim(skb, len);
  1052. skb->csum = csum_block_sub(skb->csum, buff->csum, len);
  1053. } else {
  1054. skb->ip_summed = CHECKSUM_PARTIAL;
  1055. skb_split(skb, buff, len);
  1056. }
  1057. buff->ip_summed = skb->ip_summed;
  1058. buff->tstamp = skb->tstamp;
  1059. tcp_fragment_tstamp(skb, buff);
  1060. old_factor = tcp_skb_pcount(skb);
  1061. /* Fix up tso_factor for both original and new SKB. */
  1062. tcp_set_skb_tso_segs(skb, mss_now);
  1063. tcp_set_skb_tso_segs(buff, mss_now);
  1064. /* Update delivered info for the new segment */
  1065. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1066. /* If this packet has been sent out already, we must
  1067. * adjust the various packet counters.
  1068. */
  1069. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1070. int diff = old_factor - tcp_skb_pcount(skb) -
  1071. tcp_skb_pcount(buff);
  1072. if (diff)
  1073. tcp_adjust_pcount(sk, skb, diff);
  1074. }
  1075. /* Link BUFF into the send queue. */
  1076. __skb_header_release(buff);
  1077. tcp_insert_write_queue_after(skb, buff, sk);
  1078. return 0;
  1079. }
  1080. /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
  1081. * eventually). The difference is that pulled data not copied, but
  1082. * immediately discarded.
  1083. */
  1084. static void __pskb_trim_head(struct sk_buff *skb, int len)
  1085. {
  1086. struct skb_shared_info *shinfo;
  1087. int i, k, eat;
  1088. eat = min_t(int, len, skb_headlen(skb));
  1089. if (eat) {
  1090. __skb_pull(skb, eat);
  1091. len -= eat;
  1092. if (!len)
  1093. return;
  1094. }
  1095. eat = len;
  1096. k = 0;
  1097. shinfo = skb_shinfo(skb);
  1098. for (i = 0; i < shinfo->nr_frags; i++) {
  1099. int size = skb_frag_size(&shinfo->frags[i]);
  1100. if (size <= eat) {
  1101. skb_frag_unref(skb, i);
  1102. eat -= size;
  1103. } else {
  1104. shinfo->frags[k] = shinfo->frags[i];
  1105. if (eat) {
  1106. shinfo->frags[k].page_offset += eat;
  1107. skb_frag_size_sub(&shinfo->frags[k], eat);
  1108. eat = 0;
  1109. }
  1110. k++;
  1111. }
  1112. }
  1113. shinfo->nr_frags = k;
  1114. skb_reset_tail_pointer(skb);
  1115. skb->data_len -= len;
  1116. skb->len = skb->data_len;
  1117. }
  1118. /* Remove acked data from a packet in the transmit queue. */
  1119. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1120. {
  1121. if (skb_unclone(skb, GFP_ATOMIC))
  1122. return -ENOMEM;
  1123. __pskb_trim_head(skb, len);
  1124. TCP_SKB_CB(skb)->seq += len;
  1125. skb->ip_summed = CHECKSUM_PARTIAL;
  1126. skb->truesize -= len;
  1127. sk->sk_wmem_queued -= len;
  1128. sk_mem_uncharge(sk, len);
  1129. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1130. /* Any change of skb->len requires recalculation of tso factor. */
  1131. if (tcp_skb_pcount(skb) > 1)
  1132. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1133. return 0;
  1134. }
  1135. /* Calculate MSS not accounting any TCP options. */
  1136. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1137. {
  1138. const struct tcp_sock *tp = tcp_sk(sk);
  1139. const struct inet_connection_sock *icsk = inet_csk(sk);
  1140. int mss_now;
  1141. /* Calculate base mss without TCP options:
  1142. It is MMS_S - sizeof(tcphdr) of rfc1122
  1143. */
  1144. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1145. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1146. if (icsk->icsk_af_ops->net_frag_header_len) {
  1147. const struct dst_entry *dst = __sk_dst_get(sk);
  1148. if (dst && dst_allfrag(dst))
  1149. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1150. }
  1151. /* Clamp it (mss_clamp does not include tcp options) */
  1152. if (mss_now > tp->rx_opt.mss_clamp)
  1153. mss_now = tp->rx_opt.mss_clamp;
  1154. /* Now subtract optional transport overhead */
  1155. mss_now -= icsk->icsk_ext_hdr_len;
  1156. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1157. if (mss_now < 48)
  1158. mss_now = 48;
  1159. return mss_now;
  1160. }
  1161. /* Calculate MSS. Not accounting for SACKs here. */
  1162. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1163. {
  1164. /* Subtract TCP options size, not including SACKs */
  1165. return __tcp_mtu_to_mss(sk, pmtu) -
  1166. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1167. }
  1168. /* Inverse of above */
  1169. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1170. {
  1171. const struct tcp_sock *tp = tcp_sk(sk);
  1172. const struct inet_connection_sock *icsk = inet_csk(sk);
  1173. int mtu;
  1174. mtu = mss +
  1175. tp->tcp_header_len +
  1176. icsk->icsk_ext_hdr_len +
  1177. icsk->icsk_af_ops->net_header_len;
  1178. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1179. if (icsk->icsk_af_ops->net_frag_header_len) {
  1180. const struct dst_entry *dst = __sk_dst_get(sk);
  1181. if (dst && dst_allfrag(dst))
  1182. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1183. }
  1184. return mtu;
  1185. }
  1186. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1187. /* MTU probing init per socket */
  1188. void tcp_mtup_init(struct sock *sk)
  1189. {
  1190. struct tcp_sock *tp = tcp_sk(sk);
  1191. struct inet_connection_sock *icsk = inet_csk(sk);
  1192. struct net *net = sock_net(sk);
  1193. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1194. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1195. icsk->icsk_af_ops->net_header_len;
  1196. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1197. icsk->icsk_mtup.probe_size = 0;
  1198. if (icsk->icsk_mtup.enabled)
  1199. icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
  1200. }
  1201. EXPORT_SYMBOL(tcp_mtup_init);
  1202. /* This function synchronize snd mss to current pmtu/exthdr set.
  1203. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1204. for TCP options, but includes only bare TCP header.
  1205. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1206. It is minimum of user_mss and mss received with SYN.
  1207. It also does not include TCP options.
  1208. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1209. tp->mss_cache is current effective sending mss, including
  1210. all tcp options except for SACKs. It is evaluated,
  1211. taking into account current pmtu, but never exceeds
  1212. tp->rx_opt.mss_clamp.
  1213. NOTE1. rfc1122 clearly states that advertised MSS
  1214. DOES NOT include either tcp or ip options.
  1215. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1216. are READ ONLY outside this function. --ANK (980731)
  1217. */
  1218. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1219. {
  1220. struct tcp_sock *tp = tcp_sk(sk);
  1221. struct inet_connection_sock *icsk = inet_csk(sk);
  1222. int mss_now;
  1223. if (icsk->icsk_mtup.search_high > pmtu)
  1224. icsk->icsk_mtup.search_high = pmtu;
  1225. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1226. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1227. /* And store cached results */
  1228. icsk->icsk_pmtu_cookie = pmtu;
  1229. if (icsk->icsk_mtup.enabled)
  1230. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1231. tp->mss_cache = mss_now;
  1232. return mss_now;
  1233. }
  1234. EXPORT_SYMBOL(tcp_sync_mss);
  1235. /* Compute the current effective MSS, taking SACKs and IP options,
  1236. * and even PMTU discovery events into account.
  1237. */
  1238. unsigned int tcp_current_mss(struct sock *sk)
  1239. {
  1240. const struct tcp_sock *tp = tcp_sk(sk);
  1241. const struct dst_entry *dst = __sk_dst_get(sk);
  1242. u32 mss_now;
  1243. unsigned int header_len;
  1244. struct tcp_out_options opts;
  1245. struct tcp_md5sig_key *md5;
  1246. mss_now = tp->mss_cache;
  1247. if (dst) {
  1248. u32 mtu = dst_mtu(dst);
  1249. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1250. mss_now = tcp_sync_mss(sk, mtu);
  1251. }
  1252. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1253. sizeof(struct tcphdr);
  1254. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1255. * some common options. If this is an odd packet (because we have SACK
  1256. * blocks etc) then our calculated header_len will be different, and
  1257. * we have to adjust mss_now correspondingly */
  1258. if (header_len != tp->tcp_header_len) {
  1259. int delta = (int) header_len - tp->tcp_header_len;
  1260. mss_now -= delta;
  1261. }
  1262. return mss_now;
  1263. }
  1264. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1265. * As additional protections, we do not touch cwnd in retransmission phases,
  1266. * and if application hit its sndbuf limit recently.
  1267. */
  1268. static void tcp_cwnd_application_limited(struct sock *sk)
  1269. {
  1270. struct tcp_sock *tp = tcp_sk(sk);
  1271. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1272. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1273. /* Limited by application or receiver window. */
  1274. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1275. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1276. if (win_used < tp->snd_cwnd) {
  1277. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1278. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1279. }
  1280. tp->snd_cwnd_used = 0;
  1281. }
  1282. tp->snd_cwnd_stamp = tcp_time_stamp;
  1283. }
  1284. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1285. {
  1286. struct tcp_sock *tp = tcp_sk(sk);
  1287. /* Track the maximum number of outstanding packets in each
  1288. * window, and remember whether we were cwnd-limited then.
  1289. */
  1290. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1291. tp->packets_out > tp->max_packets_out) {
  1292. tp->max_packets_out = tp->packets_out;
  1293. tp->max_packets_seq = tp->snd_nxt;
  1294. tp->is_cwnd_limited = is_cwnd_limited;
  1295. }
  1296. if (tcp_is_cwnd_limited(sk)) {
  1297. /* Network is feed fully. */
  1298. tp->snd_cwnd_used = 0;
  1299. tp->snd_cwnd_stamp = tcp_time_stamp;
  1300. } else {
  1301. /* Network starves. */
  1302. if (tp->packets_out > tp->snd_cwnd_used)
  1303. tp->snd_cwnd_used = tp->packets_out;
  1304. if (sysctl_tcp_slow_start_after_idle &&
  1305. (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
  1306. tcp_cwnd_application_limited(sk);
  1307. /* The following conditions together indicate the starvation
  1308. * is caused by insufficient sender buffer:
  1309. * 1) just sent some data (see tcp_write_xmit)
  1310. * 2) not cwnd limited (this else condition)
  1311. * 3) no more data to send (null tcp_send_head )
  1312. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1313. */
  1314. if (!tcp_send_head(sk) && sk->sk_socket &&
  1315. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1316. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1317. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1318. }
  1319. }
  1320. /* Minshall's variant of the Nagle send check. */
  1321. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1322. {
  1323. return after(tp->snd_sml, tp->snd_una) &&
  1324. !after(tp->snd_sml, tp->snd_nxt);
  1325. }
  1326. /* Update snd_sml if this skb is under mss
  1327. * Note that a TSO packet might end with a sub-mss segment
  1328. * The test is really :
  1329. * if ((skb->len % mss) != 0)
  1330. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1331. * But we can avoid doing the divide again given we already have
  1332. * skb_pcount = skb->len / mss_now
  1333. */
  1334. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1335. const struct sk_buff *skb)
  1336. {
  1337. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1338. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1339. }
  1340. /* Return false, if packet can be sent now without violation Nagle's rules:
  1341. * 1. It is full sized. (provided by caller in %partial bool)
  1342. * 2. Or it contains FIN. (already checked by caller)
  1343. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1344. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1345. * With Minshall's modification: all sent small packets are ACKed.
  1346. */
  1347. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1348. int nonagle)
  1349. {
  1350. return partial &&
  1351. ((nonagle & TCP_NAGLE_CORK) ||
  1352. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1353. }
  1354. /* Return how many segs we'd like on a TSO packet,
  1355. * to send one TSO packet per ms
  1356. */
  1357. u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1358. int min_tso_segs)
  1359. {
  1360. u32 bytes, segs;
  1361. bytes = min(sk->sk_pacing_rate >> 10,
  1362. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1363. /* Goal is to send at least one packet per ms,
  1364. * not one big TSO packet every 100 ms.
  1365. * This preserves ACK clocking and is consistent
  1366. * with tcp_tso_should_defer() heuristic.
  1367. */
  1368. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1369. return min_t(u32, segs, sk->sk_gso_max_segs);
  1370. }
  1371. EXPORT_SYMBOL(tcp_tso_autosize);
  1372. /* Return the number of segments we want in the skb we are transmitting.
  1373. * See if congestion control module wants to decide; otherwise, autosize.
  1374. */
  1375. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1376. {
  1377. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1378. u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
  1379. return tso_segs ? :
  1380. tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
  1381. }
  1382. /* Returns the portion of skb which can be sent right away */
  1383. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1384. const struct sk_buff *skb,
  1385. unsigned int mss_now,
  1386. unsigned int max_segs,
  1387. int nonagle)
  1388. {
  1389. const struct tcp_sock *tp = tcp_sk(sk);
  1390. u32 partial, needed, window, max_len;
  1391. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1392. max_len = mss_now * max_segs;
  1393. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1394. return max_len;
  1395. needed = min(skb->len, window);
  1396. if (max_len <= needed)
  1397. return max_len;
  1398. partial = needed % mss_now;
  1399. /* If last segment is not a full MSS, check if Nagle rules allow us
  1400. * to include this last segment in this skb.
  1401. * Otherwise, we'll split the skb at last MSS boundary
  1402. */
  1403. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1404. return needed - partial;
  1405. return needed;
  1406. }
  1407. /* Can at least one segment of SKB be sent right now, according to the
  1408. * congestion window rules? If so, return how many segments are allowed.
  1409. */
  1410. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1411. const struct sk_buff *skb)
  1412. {
  1413. u32 in_flight, cwnd, halfcwnd;
  1414. /* Don't be strict about the congestion window for the final FIN. */
  1415. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1416. tcp_skb_pcount(skb) == 1)
  1417. return 1;
  1418. in_flight = tcp_packets_in_flight(tp);
  1419. cwnd = tp->snd_cwnd;
  1420. if (in_flight >= cwnd)
  1421. return 0;
  1422. /* For better scheduling, ensure we have at least
  1423. * 2 GSO packets in flight.
  1424. */
  1425. halfcwnd = max(cwnd >> 1, 1U);
  1426. return min(halfcwnd, cwnd - in_flight);
  1427. }
  1428. /* Initialize TSO state of a skb.
  1429. * This must be invoked the first time we consider transmitting
  1430. * SKB onto the wire.
  1431. */
  1432. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1433. {
  1434. int tso_segs = tcp_skb_pcount(skb);
  1435. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1436. tcp_set_skb_tso_segs(skb, mss_now);
  1437. tso_segs = tcp_skb_pcount(skb);
  1438. }
  1439. return tso_segs;
  1440. }
  1441. /* Return true if the Nagle test allows this packet to be
  1442. * sent now.
  1443. */
  1444. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1445. unsigned int cur_mss, int nonagle)
  1446. {
  1447. /* Nagle rule does not apply to frames, which sit in the middle of the
  1448. * write_queue (they have no chances to get new data).
  1449. *
  1450. * This is implemented in the callers, where they modify the 'nonagle'
  1451. * argument based upon the location of SKB in the send queue.
  1452. */
  1453. if (nonagle & TCP_NAGLE_PUSH)
  1454. return true;
  1455. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1456. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1457. return true;
  1458. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1459. return true;
  1460. return false;
  1461. }
  1462. /* Does at least the first segment of SKB fit into the send window? */
  1463. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1464. const struct sk_buff *skb,
  1465. unsigned int cur_mss)
  1466. {
  1467. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1468. if (skb->len > cur_mss)
  1469. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1470. return !after(end_seq, tcp_wnd_end(tp));
  1471. }
  1472. /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
  1473. * should be put on the wire right now. If so, it returns the number of
  1474. * packets allowed by the congestion window.
  1475. */
  1476. static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
  1477. unsigned int cur_mss, int nonagle)
  1478. {
  1479. const struct tcp_sock *tp = tcp_sk(sk);
  1480. unsigned int cwnd_quota;
  1481. tcp_init_tso_segs(skb, cur_mss);
  1482. if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
  1483. return 0;
  1484. cwnd_quota = tcp_cwnd_test(tp, skb);
  1485. if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
  1486. cwnd_quota = 0;
  1487. return cwnd_quota;
  1488. }
  1489. /* Test if sending is allowed right now. */
  1490. bool tcp_may_send_now(struct sock *sk)
  1491. {
  1492. const struct tcp_sock *tp = tcp_sk(sk);
  1493. struct sk_buff *skb = tcp_send_head(sk);
  1494. return skb &&
  1495. tcp_snd_test(sk, skb, tcp_current_mss(sk),
  1496. (tcp_skb_is_last(sk, skb) ?
  1497. tp->nonagle : TCP_NAGLE_PUSH));
  1498. }
  1499. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1500. * which is put after SKB on the list. It is very much like
  1501. * tcp_fragment() except that it may make several kinds of assumptions
  1502. * in order to speed up the splitting operation. In particular, we
  1503. * know that all the data is in scatter-gather pages, and that the
  1504. * packet has never been sent out before (and thus is not cloned).
  1505. */
  1506. static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
  1507. unsigned int mss_now, gfp_t gfp)
  1508. {
  1509. struct sk_buff *buff;
  1510. int nlen = skb->len - len;
  1511. u8 flags;
  1512. /* All of a TSO frame must be composed of paged data. */
  1513. if (skb->len != skb->data_len)
  1514. return tcp_fragment(sk, skb, len, mss_now, gfp);
  1515. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1516. if (unlikely(!buff))
  1517. return -ENOMEM;
  1518. sk->sk_wmem_queued += buff->truesize;
  1519. sk_mem_charge(sk, buff->truesize);
  1520. buff->truesize += nlen;
  1521. skb->truesize -= nlen;
  1522. /* Correct the sequence numbers. */
  1523. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1524. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1525. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1526. /* PSH and FIN should only be set in the second packet. */
  1527. flags = TCP_SKB_CB(skb)->tcp_flags;
  1528. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1529. TCP_SKB_CB(buff)->tcp_flags = flags;
  1530. /* This packet was never sent out yet, so no SACK bits. */
  1531. TCP_SKB_CB(buff)->sacked = 0;
  1532. tcp_skb_fragment_eor(skb, buff);
  1533. buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
  1534. skb_split(skb, buff, len);
  1535. tcp_fragment_tstamp(skb, buff);
  1536. /* Fix up tso_factor for both original and new SKB. */
  1537. tcp_set_skb_tso_segs(skb, mss_now);
  1538. tcp_set_skb_tso_segs(buff, mss_now);
  1539. /* Link BUFF into the send queue. */
  1540. __skb_header_release(buff);
  1541. tcp_insert_write_queue_after(skb, buff, sk);
  1542. return 0;
  1543. }
  1544. /* Try to defer sending, if possible, in order to minimize the amount
  1545. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1546. *
  1547. * This algorithm is from John Heffner.
  1548. */
  1549. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1550. bool *is_cwnd_limited, u32 max_segs)
  1551. {
  1552. const struct inet_connection_sock *icsk = inet_csk(sk);
  1553. u32 age, send_win, cong_win, limit, in_flight;
  1554. struct tcp_sock *tp = tcp_sk(sk);
  1555. struct skb_mstamp now;
  1556. struct sk_buff *head;
  1557. int win_divisor;
  1558. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1559. goto send_now;
  1560. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1561. goto send_now;
  1562. /* Avoid bursty behavior by allowing defer
  1563. * only if the last write was recent.
  1564. */
  1565. if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
  1566. goto send_now;
  1567. in_flight = tcp_packets_in_flight(tp);
  1568. BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
  1569. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1570. /* From in_flight test above, we know that cwnd > in_flight. */
  1571. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1572. limit = min(send_win, cong_win);
  1573. /* If a full-sized TSO skb can be sent, do it. */
  1574. if (limit >= max_segs * tp->mss_cache)
  1575. goto send_now;
  1576. /* Middle in queue won't get any more data, full sendable already? */
  1577. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1578. goto send_now;
  1579. win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
  1580. if (win_divisor) {
  1581. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1582. /* If at least some fraction of a window is available,
  1583. * just use it.
  1584. */
  1585. chunk /= win_divisor;
  1586. if (limit >= chunk)
  1587. goto send_now;
  1588. } else {
  1589. /* Different approach, try not to defer past a single
  1590. * ACK. Receiver should ACK every other full sized
  1591. * frame, so if we have space for more than 3 frames
  1592. * then send now.
  1593. */
  1594. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1595. goto send_now;
  1596. }
  1597. head = tcp_write_queue_head(sk);
  1598. skb_mstamp_get(&now);
  1599. age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
  1600. /* If next ACK is likely to come too late (half srtt), do not defer */
  1601. if (age < (tp->srtt_us >> 4))
  1602. goto send_now;
  1603. /* Ok, it looks like it is advisable to defer. */
  1604. if (cong_win < send_win && cong_win <= skb->len)
  1605. *is_cwnd_limited = true;
  1606. return true;
  1607. send_now:
  1608. return false;
  1609. }
  1610. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1611. {
  1612. struct inet_connection_sock *icsk = inet_csk(sk);
  1613. struct tcp_sock *tp = tcp_sk(sk);
  1614. struct net *net = sock_net(sk);
  1615. u32 interval;
  1616. s32 delta;
  1617. interval = net->ipv4.sysctl_tcp_probe_interval;
  1618. delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
  1619. if (unlikely(delta >= interval * HZ)) {
  1620. int mss = tcp_current_mss(sk);
  1621. /* Update current search range */
  1622. icsk->icsk_mtup.probe_size = 0;
  1623. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1624. sizeof(struct tcphdr) +
  1625. icsk->icsk_af_ops->net_header_len;
  1626. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1627. /* Update probe time stamp */
  1628. icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
  1629. }
  1630. }
  1631. /* Create a new MTU probe if we are ready.
  1632. * MTU probe is regularly attempting to increase the path MTU by
  1633. * deliberately sending larger packets. This discovers routing
  1634. * changes resulting in larger path MTUs.
  1635. *
  1636. * Returns 0 if we should wait to probe (no cwnd available),
  1637. * 1 if a probe was sent,
  1638. * -1 otherwise
  1639. */
  1640. static int tcp_mtu_probe(struct sock *sk)
  1641. {
  1642. struct inet_connection_sock *icsk = inet_csk(sk);
  1643. struct tcp_sock *tp = tcp_sk(sk);
  1644. struct sk_buff *skb, *nskb, *next;
  1645. struct net *net = sock_net(sk);
  1646. int probe_size;
  1647. int size_needed;
  1648. int copy, len;
  1649. int mss_now;
  1650. int interval;
  1651. /* Not currently probing/verifying,
  1652. * not in recovery,
  1653. * have enough cwnd, and
  1654. * not SACKing (the variable headers throw things off)
  1655. */
  1656. if (likely(!icsk->icsk_mtup.enabled ||
  1657. icsk->icsk_mtup.probe_size ||
  1658. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1659. tp->snd_cwnd < 11 ||
  1660. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1661. return -1;
  1662. /* Use binary search for probe_size between tcp_mss_base,
  1663. * and current mss_clamp. if (search_high - search_low)
  1664. * smaller than a threshold, backoff from probing.
  1665. */
  1666. mss_now = tcp_current_mss(sk);
  1667. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1668. icsk->icsk_mtup.search_low) >> 1);
  1669. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1670. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1671. /* When misfortune happens, we are reprobing actively,
  1672. * and then reprobe timer has expired. We stick with current
  1673. * probing process by not resetting search range to its orignal.
  1674. */
  1675. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1676. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1677. /* Check whether enough time has elaplased for
  1678. * another round of probing.
  1679. */
  1680. tcp_mtu_check_reprobe(sk);
  1681. return -1;
  1682. }
  1683. /* Have enough data in the send queue to probe? */
  1684. if (tp->write_seq - tp->snd_nxt < size_needed)
  1685. return -1;
  1686. if (tp->snd_wnd < size_needed)
  1687. return -1;
  1688. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1689. return 0;
  1690. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1691. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1692. if (!tcp_packets_in_flight(tp))
  1693. return -1;
  1694. else
  1695. return 0;
  1696. }
  1697. /* We're allowed to probe. Build it now. */
  1698. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1699. if (!nskb)
  1700. return -1;
  1701. sk->sk_wmem_queued += nskb->truesize;
  1702. sk_mem_charge(sk, nskb->truesize);
  1703. skb = tcp_send_head(sk);
  1704. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1705. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1706. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1707. TCP_SKB_CB(nskb)->sacked = 0;
  1708. nskb->csum = 0;
  1709. nskb->ip_summed = skb->ip_summed;
  1710. tcp_insert_write_queue_before(nskb, skb, sk);
  1711. len = 0;
  1712. tcp_for_write_queue_from_safe(skb, next, sk) {
  1713. copy = min_t(int, skb->len, probe_size - len);
  1714. if (nskb->ip_summed) {
  1715. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1716. } else {
  1717. __wsum csum = skb_copy_and_csum_bits(skb, 0,
  1718. skb_put(nskb, copy),
  1719. copy, 0);
  1720. nskb->csum = csum_block_add(nskb->csum, csum, len);
  1721. }
  1722. if (skb->len <= copy) {
  1723. /* We've eaten all the data from this skb.
  1724. * Throw it away. */
  1725. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1726. tcp_unlink_write_queue(skb, sk);
  1727. sk_wmem_free_skb(sk, skb);
  1728. } else {
  1729. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1730. ~(TCPHDR_FIN|TCPHDR_PSH);
  1731. if (!skb_shinfo(skb)->nr_frags) {
  1732. skb_pull(skb, copy);
  1733. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1734. skb->csum = csum_partial(skb->data,
  1735. skb->len, 0);
  1736. } else {
  1737. __pskb_trim_head(skb, copy);
  1738. tcp_set_skb_tso_segs(skb, mss_now);
  1739. }
  1740. TCP_SKB_CB(skb)->seq += copy;
  1741. }
  1742. len += copy;
  1743. if (len >= probe_size)
  1744. break;
  1745. }
  1746. tcp_init_tso_segs(nskb, nskb->len);
  1747. /* We're ready to send. If this fails, the probe will
  1748. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1749. */
  1750. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1751. /* Decrement cwnd here because we are sending
  1752. * effectively two packets. */
  1753. tp->snd_cwnd--;
  1754. tcp_event_new_data_sent(sk, nskb);
  1755. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1756. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1757. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1758. return 1;
  1759. }
  1760. return -1;
  1761. }
  1762. /* TCP Small Queues :
  1763. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1764. * (These limits are doubled for retransmits)
  1765. * This allows for :
  1766. * - better RTT estimation and ACK scheduling
  1767. * - faster recovery
  1768. * - high rates
  1769. * Alas, some drivers / subsystems require a fair amount
  1770. * of queued bytes to ensure line rate.
  1771. * One example is wifi aggregation (802.11 AMPDU)
  1772. */
  1773. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1774. unsigned int factor)
  1775. {
  1776. unsigned int limit;
  1777. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
  1778. limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
  1779. limit <<= factor;
  1780. if (atomic_read(&sk->sk_wmem_alloc) > limit) {
  1781. /* Always send the 1st or 2nd skb in write queue.
  1782. * No need to wait for TX completion to call us back,
  1783. * after softirq/tasklet schedule.
  1784. * This helps when TX completions are delayed too much.
  1785. */
  1786. if (skb == sk->sk_write_queue.next ||
  1787. skb->prev == sk->sk_write_queue.next)
  1788. return false;
  1789. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1790. /* It is possible TX completion already happened
  1791. * before we set TSQ_THROTTLED, so we must
  1792. * test again the condition.
  1793. */
  1794. smp_mb__after_atomic();
  1795. if (atomic_read(&sk->sk_wmem_alloc) > limit)
  1796. return true;
  1797. }
  1798. return false;
  1799. }
  1800. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1801. {
  1802. const u32 now = tcp_time_stamp;
  1803. if (tp->chrono_type > TCP_CHRONO_UNSPEC)
  1804. tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
  1805. tp->chrono_start = now;
  1806. tp->chrono_type = new;
  1807. }
  1808. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1809. {
  1810. struct tcp_sock *tp = tcp_sk(sk);
  1811. /* If there are multiple conditions worthy of tracking in a
  1812. * chronograph then the highest priority enum takes precedence
  1813. * over the other conditions. So that if something "more interesting"
  1814. * starts happening, stop the previous chrono and start a new one.
  1815. */
  1816. if (type > tp->chrono_type)
  1817. tcp_chrono_set(tp, type);
  1818. }
  1819. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1820. {
  1821. struct tcp_sock *tp = tcp_sk(sk);
  1822. /* There are multiple conditions worthy of tracking in a
  1823. * chronograph, so that the highest priority enum takes
  1824. * precedence over the other conditions (see tcp_chrono_start).
  1825. * If a condition stops, we only stop chrono tracking if
  1826. * it's the "most interesting" or current chrono we are
  1827. * tracking and starts busy chrono if we have pending data.
  1828. */
  1829. if (tcp_write_queue_empty(sk))
  1830. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1831. else if (type == tp->chrono_type)
  1832. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1833. }
  1834. /* This routine writes packets to the network. It advances the
  1835. * send_head. This happens as incoming acks open up the remote
  1836. * window for us.
  1837. *
  1838. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1839. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1840. * account rare use of URG, this is not a big flaw.
  1841. *
  1842. * Send at most one packet when push_one > 0. Temporarily ignore
  1843. * cwnd limit to force at most one packet out when push_one == 2.
  1844. * Returns true, if no segments are in flight and we have queued segments,
  1845. * but cannot send anything now because of SWS or another problem.
  1846. */
  1847. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1848. int push_one, gfp_t gfp)
  1849. {
  1850. struct tcp_sock *tp = tcp_sk(sk);
  1851. struct sk_buff *skb;
  1852. unsigned int tso_segs, sent_pkts;
  1853. int cwnd_quota;
  1854. int result;
  1855. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1856. u32 max_segs;
  1857. sent_pkts = 0;
  1858. if (!push_one) {
  1859. /* Do MTU probing. */
  1860. result = tcp_mtu_probe(sk);
  1861. if (!result) {
  1862. return false;
  1863. } else if (result > 0) {
  1864. sent_pkts = 1;
  1865. }
  1866. }
  1867. max_segs = tcp_tso_segs(sk, mss_now);
  1868. while ((skb = tcp_send_head(sk))) {
  1869. unsigned int limit;
  1870. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1871. BUG_ON(!tso_segs);
  1872. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1873. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1874. skb_mstamp_get(&skb->skb_mstamp);
  1875. goto repair; /* Skip network transmission */
  1876. }
  1877. cwnd_quota = tcp_cwnd_test(tp, skb);
  1878. if (!cwnd_quota) {
  1879. if (push_one == 2)
  1880. /* Force out a loss probe pkt. */
  1881. cwnd_quota = 1;
  1882. else
  1883. break;
  1884. }
  1885. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  1886. is_rwnd_limited = true;
  1887. break;
  1888. }
  1889. if (tso_segs == 1) {
  1890. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1891. (tcp_skb_is_last(sk, skb) ?
  1892. nonagle : TCP_NAGLE_PUSH))))
  1893. break;
  1894. } else {
  1895. if (!push_one &&
  1896. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1897. max_segs))
  1898. break;
  1899. }
  1900. limit = mss_now;
  1901. if (tso_segs > 1 && !tcp_urg_mode(tp))
  1902. limit = tcp_mss_split_point(sk, skb, mss_now,
  1903. min_t(unsigned int,
  1904. cwnd_quota,
  1905. max_segs),
  1906. nonagle);
  1907. if (skb->len > limit &&
  1908. unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
  1909. break;
  1910. if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  1911. clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
  1912. if (tcp_small_queue_check(sk, skb, 0))
  1913. break;
  1914. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  1915. break;
  1916. repair:
  1917. /* Advance the send_head. This one is sent out.
  1918. * This call will increment packets_out.
  1919. */
  1920. tcp_event_new_data_sent(sk, skb);
  1921. tcp_minshall_update(tp, mss_now, skb);
  1922. sent_pkts += tcp_skb_pcount(skb);
  1923. if (push_one)
  1924. break;
  1925. }
  1926. if (is_rwnd_limited)
  1927. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  1928. else
  1929. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  1930. if (likely(sent_pkts)) {
  1931. if (tcp_in_cwnd_reduction(sk))
  1932. tp->prr_out += sent_pkts;
  1933. /* Send one loss probe per tail loss episode. */
  1934. if (push_one != 2)
  1935. tcp_schedule_loss_probe(sk);
  1936. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  1937. tcp_cwnd_validate(sk, is_cwnd_limited);
  1938. return false;
  1939. }
  1940. return !tp->packets_out && tcp_send_head(sk);
  1941. }
  1942. bool tcp_schedule_loss_probe(struct sock *sk)
  1943. {
  1944. struct inet_connection_sock *icsk = inet_csk(sk);
  1945. struct tcp_sock *tp = tcp_sk(sk);
  1946. u32 timeout, tlp_time_stamp, rto_time_stamp;
  1947. u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
  1948. /* No consecutive loss probes. */
  1949. if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
  1950. tcp_rearm_rto(sk);
  1951. return false;
  1952. }
  1953. /* Don't do any loss probe on a Fast Open connection before 3WHS
  1954. * finishes.
  1955. */
  1956. if (tp->fastopen_rsk)
  1957. return false;
  1958. /* TLP is only scheduled when next timer event is RTO. */
  1959. if (icsk->icsk_pending != ICSK_TIME_RETRANS)
  1960. return false;
  1961. /* Schedule a loss probe in 2*RTT for SACK capable connections
  1962. * in Open state, that are either limited by cwnd or application.
  1963. */
  1964. if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
  1965. !tp->packets_out || !tcp_is_sack(tp) ||
  1966. icsk->icsk_ca_state != TCP_CA_Open)
  1967. return false;
  1968. if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
  1969. tcp_send_head(sk))
  1970. return false;
  1971. /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
  1972. * for delayed ack when there's one outstanding packet. If no RTT
  1973. * sample is available then probe after TCP_TIMEOUT_INIT.
  1974. */
  1975. timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
  1976. if (tp->packets_out == 1)
  1977. timeout = max_t(u32, timeout,
  1978. (rtt + (rtt >> 1) + TCP_DELACK_MAX));
  1979. timeout = max_t(u32, timeout, msecs_to_jiffies(10));
  1980. /* If RTO is shorter, just schedule TLP in its place. */
  1981. tlp_time_stamp = tcp_time_stamp + timeout;
  1982. rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
  1983. if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
  1984. s32 delta = rto_time_stamp - tcp_time_stamp;
  1985. if (delta > 0)
  1986. timeout = delta;
  1987. }
  1988. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  1989. TCP_RTO_MAX);
  1990. return true;
  1991. }
  1992. /* Thanks to skb fast clones, we can detect if a prior transmit of
  1993. * a packet is still in a qdisc or driver queue.
  1994. * In this case, there is very little point doing a retransmit !
  1995. */
  1996. static bool skb_still_in_host_queue(const struct sock *sk,
  1997. const struct sk_buff *skb)
  1998. {
  1999. if (unlikely(skb_fclone_busy(sk, skb))) {
  2000. NET_INC_STATS(sock_net(sk),
  2001. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2002. return true;
  2003. }
  2004. return false;
  2005. }
  2006. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2007. * retransmit the last segment.
  2008. */
  2009. void tcp_send_loss_probe(struct sock *sk)
  2010. {
  2011. struct tcp_sock *tp = tcp_sk(sk);
  2012. struct sk_buff *skb;
  2013. int pcount;
  2014. int mss = tcp_current_mss(sk);
  2015. skb = tcp_send_head(sk);
  2016. if (skb) {
  2017. if (tcp_snd_wnd_test(tp, skb, mss)) {
  2018. pcount = tp->packets_out;
  2019. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2020. if (tp->packets_out > pcount)
  2021. goto probe_sent;
  2022. goto rearm_timer;
  2023. }
  2024. skb = tcp_write_queue_prev(sk, skb);
  2025. } else {
  2026. skb = tcp_write_queue_tail(sk);
  2027. }
  2028. /* At most one outstanding TLP retransmission. */
  2029. if (tp->tlp_high_seq)
  2030. goto rearm_timer;
  2031. /* Retransmit last segment. */
  2032. if (WARN_ON(!skb))
  2033. goto rearm_timer;
  2034. if (skb_still_in_host_queue(sk, skb))
  2035. goto rearm_timer;
  2036. pcount = tcp_skb_pcount(skb);
  2037. if (WARN_ON(!pcount))
  2038. goto rearm_timer;
  2039. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2040. if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
  2041. GFP_ATOMIC)))
  2042. goto rearm_timer;
  2043. skb = tcp_write_queue_next(sk, skb);
  2044. }
  2045. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2046. goto rearm_timer;
  2047. if (__tcp_retransmit_skb(sk, skb, 1))
  2048. goto rearm_timer;
  2049. /* Record snd_nxt for loss detection. */
  2050. tp->tlp_high_seq = tp->snd_nxt;
  2051. probe_sent:
  2052. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2053. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2054. inet_csk(sk)->icsk_pending = 0;
  2055. rearm_timer:
  2056. tcp_rearm_rto(sk);
  2057. }
  2058. /* Push out any pending frames which were held back due to
  2059. * TCP_CORK or attempt at coalescing tiny packets.
  2060. * The socket must be locked by the caller.
  2061. */
  2062. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2063. int nonagle)
  2064. {
  2065. /* If we are closed, the bytes will have to remain here.
  2066. * In time closedown will finish, we empty the write queue and
  2067. * all will be happy.
  2068. */
  2069. if (unlikely(sk->sk_state == TCP_CLOSE))
  2070. return;
  2071. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2072. sk_gfp_mask(sk, GFP_ATOMIC)))
  2073. tcp_check_probe_timer(sk);
  2074. }
  2075. /* Send _single_ skb sitting at the send head. This function requires
  2076. * true push pending frames to setup probe timer etc.
  2077. */
  2078. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2079. {
  2080. struct sk_buff *skb = tcp_send_head(sk);
  2081. BUG_ON(!skb || skb->len < mss_now);
  2082. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2083. }
  2084. /* This function returns the amount that we can raise the
  2085. * usable window based on the following constraints
  2086. *
  2087. * 1. The window can never be shrunk once it is offered (RFC 793)
  2088. * 2. We limit memory per socket
  2089. *
  2090. * RFC 1122:
  2091. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2092. * RECV.NEXT + RCV.WIN fixed until:
  2093. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2094. *
  2095. * i.e. don't raise the right edge of the window until you can raise
  2096. * it at least MSS bytes.
  2097. *
  2098. * Unfortunately, the recommended algorithm breaks header prediction,
  2099. * since header prediction assumes th->window stays fixed.
  2100. *
  2101. * Strictly speaking, keeping th->window fixed violates the receiver
  2102. * side SWS prevention criteria. The problem is that under this rule
  2103. * a stream of single byte packets will cause the right side of the
  2104. * window to always advance by a single byte.
  2105. *
  2106. * Of course, if the sender implements sender side SWS prevention
  2107. * then this will not be a problem.
  2108. *
  2109. * BSD seems to make the following compromise:
  2110. *
  2111. * If the free space is less than the 1/4 of the maximum
  2112. * space available and the free space is less than 1/2 mss,
  2113. * then set the window to 0.
  2114. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2115. * Otherwise, just prevent the window from shrinking
  2116. * and from being larger than the largest representable value.
  2117. *
  2118. * This prevents incremental opening of the window in the regime
  2119. * where TCP is limited by the speed of the reader side taking
  2120. * data out of the TCP receive queue. It does nothing about
  2121. * those cases where the window is constrained on the sender side
  2122. * because the pipeline is full.
  2123. *
  2124. * BSD also seems to "accidentally" limit itself to windows that are a
  2125. * multiple of MSS, at least until the free space gets quite small.
  2126. * This would appear to be a side effect of the mbuf implementation.
  2127. * Combining these two algorithms results in the observed behavior
  2128. * of having a fixed window size at almost all times.
  2129. *
  2130. * Below we obtain similar behavior by forcing the offered window to
  2131. * a multiple of the mss when it is feasible to do so.
  2132. *
  2133. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2134. * Regular options like TIMESTAMP are taken into account.
  2135. */
  2136. u32 __tcp_select_window(struct sock *sk)
  2137. {
  2138. struct inet_connection_sock *icsk = inet_csk(sk);
  2139. struct tcp_sock *tp = tcp_sk(sk);
  2140. /* MSS for the peer's data. Previous versions used mss_clamp
  2141. * here. I don't know if the value based on our guesses
  2142. * of peer's MSS is better for the performance. It's more correct
  2143. * but may be worse for the performance because of rcv_mss
  2144. * fluctuations. --SAW 1998/11/1
  2145. */
  2146. int mss = icsk->icsk_ack.rcv_mss;
  2147. int free_space = tcp_space(sk);
  2148. int allowed_space = tcp_full_space(sk);
  2149. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2150. int window;
  2151. if (unlikely(mss > full_space)) {
  2152. mss = full_space;
  2153. if (mss <= 0)
  2154. return 0;
  2155. }
  2156. if (free_space < (full_space >> 1)) {
  2157. icsk->icsk_ack.quick = 0;
  2158. if (tcp_under_memory_pressure(sk))
  2159. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2160. 4U * tp->advmss);
  2161. /* free_space might become our new window, make sure we don't
  2162. * increase it due to wscale.
  2163. */
  2164. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2165. /* if free space is less than mss estimate, or is below 1/16th
  2166. * of the maximum allowed, try to move to zero-window, else
  2167. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2168. * new incoming data is dropped due to memory limits.
  2169. * With large window, mss test triggers way too late in order
  2170. * to announce zero window in time before rmem limit kicks in.
  2171. */
  2172. if (free_space < (allowed_space >> 4) || free_space < mss)
  2173. return 0;
  2174. }
  2175. if (free_space > tp->rcv_ssthresh)
  2176. free_space = tp->rcv_ssthresh;
  2177. /* Don't do rounding if we are using window scaling, since the
  2178. * scaled window will not line up with the MSS boundary anyway.
  2179. */
  2180. window = tp->rcv_wnd;
  2181. if (tp->rx_opt.rcv_wscale) {
  2182. window = free_space;
  2183. /* Advertise enough space so that it won't get scaled away.
  2184. * Import case: prevent zero window announcement if
  2185. * 1<<rcv_wscale > mss.
  2186. */
  2187. if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
  2188. window = (((window >> tp->rx_opt.rcv_wscale) + 1)
  2189. << tp->rx_opt.rcv_wscale);
  2190. } else {
  2191. /* Get the largest window that is a nice multiple of mss.
  2192. * Window clamp already applied above.
  2193. * If our current window offering is within 1 mss of the
  2194. * free space we just keep it. This prevents the divide
  2195. * and multiply from happening most of the time.
  2196. * We also don't do any window rounding when the free space
  2197. * is too small.
  2198. */
  2199. if (window <= free_space - mss || window > free_space)
  2200. window = (free_space / mss) * mss;
  2201. else if (mss == full_space &&
  2202. free_space > window + (full_space >> 1))
  2203. window = free_space;
  2204. }
  2205. return window;
  2206. }
  2207. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2208. const struct sk_buff *next_skb)
  2209. {
  2210. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2211. const struct skb_shared_info *next_shinfo =
  2212. skb_shinfo(next_skb);
  2213. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2214. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2215. shinfo->tskey = next_shinfo->tskey;
  2216. TCP_SKB_CB(skb)->txstamp_ack |=
  2217. TCP_SKB_CB(next_skb)->txstamp_ack;
  2218. }
  2219. }
  2220. /* Collapses two adjacent SKB's during retransmission. */
  2221. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2222. {
  2223. struct tcp_sock *tp = tcp_sk(sk);
  2224. struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
  2225. int skb_size, next_skb_size;
  2226. skb_size = skb->len;
  2227. next_skb_size = next_skb->len;
  2228. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2229. if (next_skb_size) {
  2230. if (next_skb_size <= skb_availroom(skb))
  2231. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2232. next_skb_size);
  2233. else if (!skb_shift(skb, next_skb, next_skb_size))
  2234. return false;
  2235. }
  2236. tcp_highest_sack_combine(sk, next_skb, skb);
  2237. tcp_unlink_write_queue(next_skb, sk);
  2238. if (next_skb->ip_summed == CHECKSUM_PARTIAL)
  2239. skb->ip_summed = CHECKSUM_PARTIAL;
  2240. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2241. skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
  2242. /* Update sequence range on original skb. */
  2243. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2244. /* Merge over control information. This moves PSH/FIN etc. over */
  2245. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2246. /* All done, get rid of second SKB and account for it so
  2247. * packet counting does not break.
  2248. */
  2249. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2250. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2251. /* changed transmit queue under us so clear hints */
  2252. tcp_clear_retrans_hints_partial(tp);
  2253. if (next_skb == tp->retransmit_skb_hint)
  2254. tp->retransmit_skb_hint = skb;
  2255. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2256. tcp_skb_collapse_tstamp(skb, next_skb);
  2257. sk_wmem_free_skb(sk, next_skb);
  2258. return true;
  2259. }
  2260. /* Check if coalescing SKBs is legal. */
  2261. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2262. {
  2263. if (tcp_skb_pcount(skb) > 1)
  2264. return false;
  2265. if (skb_cloned(skb))
  2266. return false;
  2267. if (skb == tcp_send_head(sk))
  2268. return false;
  2269. /* Some heuristics for collapsing over SACK'd could be invented */
  2270. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2271. return false;
  2272. return true;
  2273. }
  2274. /* Collapse packets in the retransmit queue to make to create
  2275. * less packets on the wire. This is only done on retransmission.
  2276. */
  2277. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2278. int space)
  2279. {
  2280. struct tcp_sock *tp = tcp_sk(sk);
  2281. struct sk_buff *skb = to, *tmp;
  2282. bool first = true;
  2283. if (!sysctl_tcp_retrans_collapse)
  2284. return;
  2285. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2286. return;
  2287. tcp_for_write_queue_from_safe(skb, tmp, sk) {
  2288. if (!tcp_can_collapse(sk, skb))
  2289. break;
  2290. if (!tcp_skb_can_collapse_to(to))
  2291. break;
  2292. space -= skb->len;
  2293. if (first) {
  2294. first = false;
  2295. continue;
  2296. }
  2297. if (space < 0)
  2298. break;
  2299. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2300. break;
  2301. if (!tcp_collapse_retrans(sk, to))
  2302. break;
  2303. }
  2304. }
  2305. /* This retransmits one SKB. Policy decisions and retransmit queue
  2306. * state updates are done by the caller. Returns non-zero if an
  2307. * error occurred which prevented the send.
  2308. */
  2309. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2310. {
  2311. struct inet_connection_sock *icsk = inet_csk(sk);
  2312. struct tcp_sock *tp = tcp_sk(sk);
  2313. unsigned int cur_mss;
  2314. int diff, len, err;
  2315. /* Inconclusive MTU probe */
  2316. if (icsk->icsk_mtup.probe_size)
  2317. icsk->icsk_mtup.probe_size = 0;
  2318. /* Do not sent more than we queued. 1/4 is reserved for possible
  2319. * copying overhead: fragmentation, tunneling, mangling etc.
  2320. */
  2321. if (atomic_read(&sk->sk_wmem_alloc) >
  2322. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2323. sk->sk_sndbuf))
  2324. return -EAGAIN;
  2325. if (skb_still_in_host_queue(sk, skb))
  2326. return -EBUSY;
  2327. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2328. if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  2329. BUG();
  2330. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2331. return -ENOMEM;
  2332. }
  2333. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2334. return -EHOSTUNREACH; /* Routing failure or similar. */
  2335. cur_mss = tcp_current_mss(sk);
  2336. /* If receiver has shrunk his window, and skb is out of
  2337. * new window, do not retransmit it. The exception is the
  2338. * case, when window is shrunk to zero. In this case
  2339. * our retransmit serves as a zero window probe.
  2340. */
  2341. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2342. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2343. return -EAGAIN;
  2344. len = cur_mss * segs;
  2345. if (skb->len > len) {
  2346. if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
  2347. return -ENOMEM; /* We'll try again later. */
  2348. } else {
  2349. if (skb_unclone(skb, GFP_ATOMIC))
  2350. return -ENOMEM;
  2351. diff = tcp_skb_pcount(skb);
  2352. tcp_set_skb_tso_segs(skb, cur_mss);
  2353. diff -= tcp_skb_pcount(skb);
  2354. if (diff)
  2355. tcp_adjust_pcount(sk, skb, diff);
  2356. if (skb->len < cur_mss)
  2357. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2358. }
  2359. /* RFC3168, section 6.1.1.1. ECN fallback */
  2360. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2361. tcp_ecn_clear_syn(sk, skb);
  2362. /* Update global and local TCP statistics. */
  2363. segs = tcp_skb_pcount(skb);
  2364. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2365. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2366. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2367. tp->total_retrans += segs;
  2368. /* make sure skb->data is aligned on arches that require it
  2369. * and check if ack-trimming & collapsing extended the headroom
  2370. * beyond what csum_start can cover.
  2371. */
  2372. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2373. skb_headroom(skb) >= 0xFFFF)) {
  2374. struct sk_buff *nskb;
  2375. skb_mstamp_get(&skb->skb_mstamp);
  2376. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2377. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2378. -ENOBUFS;
  2379. } else {
  2380. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2381. }
  2382. if (likely(!err)) {
  2383. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2384. } else if (err != -EBUSY) {
  2385. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2386. }
  2387. return err;
  2388. }
  2389. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2390. {
  2391. struct tcp_sock *tp = tcp_sk(sk);
  2392. int err = __tcp_retransmit_skb(sk, skb, segs);
  2393. if (err == 0) {
  2394. #if FASTRETRANS_DEBUG > 0
  2395. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2396. net_dbg_ratelimited("retrans_out leaked\n");
  2397. }
  2398. #endif
  2399. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2400. tp->retrans_out += tcp_skb_pcount(skb);
  2401. /* Save stamp of the first retransmit. */
  2402. if (!tp->retrans_stamp)
  2403. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2404. }
  2405. if (tp->undo_retrans < 0)
  2406. tp->undo_retrans = 0;
  2407. tp->undo_retrans += tcp_skb_pcount(skb);
  2408. return err;
  2409. }
  2410. /* This gets called after a retransmit timeout, and the initially
  2411. * retransmitted data is acknowledged. It tries to continue
  2412. * resending the rest of the retransmit queue, until either
  2413. * we've sent it all or the congestion window limit is reached.
  2414. * If doing SACK, the first ACK which comes back for a timeout
  2415. * based retransmit packet might feed us FACK information again.
  2416. * If so, we use it to avoid unnecessarily retransmissions.
  2417. */
  2418. void tcp_xmit_retransmit_queue(struct sock *sk)
  2419. {
  2420. const struct inet_connection_sock *icsk = inet_csk(sk);
  2421. struct tcp_sock *tp = tcp_sk(sk);
  2422. struct sk_buff *skb;
  2423. struct sk_buff *hole = NULL;
  2424. u32 max_segs;
  2425. int mib_idx;
  2426. if (!tp->packets_out)
  2427. return;
  2428. if (tp->retransmit_skb_hint) {
  2429. skb = tp->retransmit_skb_hint;
  2430. } else {
  2431. skb = tcp_write_queue_head(sk);
  2432. }
  2433. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2434. tcp_for_write_queue_from(skb, sk) {
  2435. __u8 sacked;
  2436. int segs;
  2437. if (skb == tcp_send_head(sk))
  2438. break;
  2439. /* we could do better than to assign each time */
  2440. if (!hole)
  2441. tp->retransmit_skb_hint = skb;
  2442. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2443. if (segs <= 0)
  2444. return;
  2445. sacked = TCP_SKB_CB(skb)->sacked;
  2446. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2447. * we need to make sure not sending too bigs TSO packets
  2448. */
  2449. segs = min_t(int, segs, max_segs);
  2450. if (tp->retrans_out >= tp->lost_out) {
  2451. break;
  2452. } else if (!(sacked & TCPCB_LOST)) {
  2453. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2454. hole = skb;
  2455. continue;
  2456. } else {
  2457. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2458. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2459. else
  2460. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2461. }
  2462. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2463. continue;
  2464. if (tcp_small_queue_check(sk, skb, 1))
  2465. return;
  2466. if (tcp_retransmit_skb(sk, skb, segs))
  2467. return;
  2468. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2469. if (tcp_in_cwnd_reduction(sk))
  2470. tp->prr_out += tcp_skb_pcount(skb);
  2471. if (skb == tcp_write_queue_head(sk) &&
  2472. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2473. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2474. inet_csk(sk)->icsk_rto,
  2475. TCP_RTO_MAX);
  2476. }
  2477. }
  2478. /* We allow to exceed memory limits for FIN packets to expedite
  2479. * connection tear down and (memory) recovery.
  2480. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2481. * or even be forced to close flow without any FIN.
  2482. * In general, we want to allow one skb per socket to avoid hangs
  2483. * with edge trigger epoll()
  2484. */
  2485. void sk_forced_mem_schedule(struct sock *sk, int size)
  2486. {
  2487. int amt;
  2488. if (size <= sk->sk_forward_alloc)
  2489. return;
  2490. amt = sk_mem_pages(size);
  2491. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2492. sk_memory_allocated_add(sk, amt);
  2493. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2494. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2495. }
  2496. /* Send a FIN. The caller locks the socket for us.
  2497. * We should try to send a FIN packet really hard, but eventually give up.
  2498. */
  2499. void tcp_send_fin(struct sock *sk)
  2500. {
  2501. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2502. struct tcp_sock *tp = tcp_sk(sk);
  2503. /* Optimization, tack on the FIN if we have one skb in write queue and
  2504. * this skb was not yet sent, or we are under memory pressure.
  2505. * Note: in the latter case, FIN packet will be sent after a timeout,
  2506. * as TCP stack thinks it has already been transmitted.
  2507. */
  2508. if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
  2509. coalesce:
  2510. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2511. TCP_SKB_CB(tskb)->end_seq++;
  2512. tp->write_seq++;
  2513. if (!tcp_send_head(sk)) {
  2514. /* This means tskb was already sent.
  2515. * Pretend we included the FIN on previous transmit.
  2516. * We need to set tp->snd_nxt to the value it would have
  2517. * if FIN had been sent. This is because retransmit path
  2518. * does not change tp->snd_nxt.
  2519. */
  2520. tp->snd_nxt++;
  2521. return;
  2522. }
  2523. } else {
  2524. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2525. if (unlikely(!skb)) {
  2526. if (tskb)
  2527. goto coalesce;
  2528. return;
  2529. }
  2530. skb_reserve(skb, MAX_TCP_HEADER);
  2531. sk_forced_mem_schedule(sk, skb->truesize);
  2532. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2533. tcp_init_nondata_skb(skb, tp->write_seq,
  2534. TCPHDR_ACK | TCPHDR_FIN);
  2535. tcp_queue_skb(sk, skb);
  2536. }
  2537. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2538. }
  2539. /* We get here when a process closes a file descriptor (either due to
  2540. * an explicit close() or as a byproduct of exit()'ing) and there
  2541. * was unread data in the receive queue. This behavior is recommended
  2542. * by RFC 2525, section 2.17. -DaveM
  2543. */
  2544. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2545. {
  2546. struct sk_buff *skb;
  2547. /* NOTE: No TCP options attached and we never retransmit this. */
  2548. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2549. if (!skb) {
  2550. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2551. return;
  2552. }
  2553. /* Reserve space for headers and prepare control bits. */
  2554. skb_reserve(skb, MAX_TCP_HEADER);
  2555. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2556. TCPHDR_ACK | TCPHDR_RST);
  2557. skb_mstamp_get(&skb->skb_mstamp);
  2558. /* Send it off. */
  2559. if (tcp_transmit_skb(sk, skb, 0, priority))
  2560. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2561. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2562. }
  2563. /* Send a crossed SYN-ACK during socket establishment.
  2564. * WARNING: This routine must only be called when we have already sent
  2565. * a SYN packet that crossed the incoming SYN that caused this routine
  2566. * to get called. If this assumption fails then the initial rcv_wnd
  2567. * and rcv_wscale values will not be correct.
  2568. */
  2569. int tcp_send_synack(struct sock *sk)
  2570. {
  2571. struct sk_buff *skb;
  2572. skb = tcp_write_queue_head(sk);
  2573. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2574. pr_debug("%s: wrong queue state\n", __func__);
  2575. return -EFAULT;
  2576. }
  2577. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2578. if (skb_cloned(skb)) {
  2579. struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
  2580. if (!nskb)
  2581. return -ENOMEM;
  2582. tcp_unlink_write_queue(skb, sk);
  2583. __skb_header_release(nskb);
  2584. __tcp_add_write_queue_head(sk, nskb);
  2585. sk_wmem_free_skb(sk, skb);
  2586. sk->sk_wmem_queued += nskb->truesize;
  2587. sk_mem_charge(sk, nskb->truesize);
  2588. skb = nskb;
  2589. }
  2590. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2591. tcp_ecn_send_synack(sk, skb);
  2592. }
  2593. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2594. }
  2595. /**
  2596. * tcp_make_synack - Prepare a SYN-ACK.
  2597. * sk: listener socket
  2598. * dst: dst entry attached to the SYNACK
  2599. * req: request_sock pointer
  2600. *
  2601. * Allocate one skb and build a SYNACK packet.
  2602. * @dst is consumed : Caller should not use it again.
  2603. */
  2604. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2605. struct request_sock *req,
  2606. struct tcp_fastopen_cookie *foc,
  2607. enum tcp_synack_type synack_type)
  2608. {
  2609. struct inet_request_sock *ireq = inet_rsk(req);
  2610. const struct tcp_sock *tp = tcp_sk(sk);
  2611. struct tcp_md5sig_key *md5 = NULL;
  2612. struct tcp_out_options opts;
  2613. struct sk_buff *skb;
  2614. int tcp_header_size;
  2615. struct tcphdr *th;
  2616. int mss;
  2617. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2618. if (unlikely(!skb)) {
  2619. dst_release(dst);
  2620. return NULL;
  2621. }
  2622. /* Reserve space for headers. */
  2623. skb_reserve(skb, MAX_TCP_HEADER);
  2624. switch (synack_type) {
  2625. case TCP_SYNACK_NORMAL:
  2626. skb_set_owner_w(skb, req_to_sk(req));
  2627. break;
  2628. case TCP_SYNACK_COOKIE:
  2629. /* Under synflood, we do not attach skb to a socket,
  2630. * to avoid false sharing.
  2631. */
  2632. break;
  2633. case TCP_SYNACK_FASTOPEN:
  2634. /* sk is a const pointer, because we want to express multiple
  2635. * cpu might call us concurrently.
  2636. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2637. */
  2638. skb_set_owner_w(skb, (struct sock *)sk);
  2639. break;
  2640. }
  2641. skb_dst_set(skb, dst);
  2642. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2643. memset(&opts, 0, sizeof(opts));
  2644. #ifdef CONFIG_SYN_COOKIES
  2645. if (unlikely(req->cookie_ts))
  2646. skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
  2647. else
  2648. #endif
  2649. skb_mstamp_get(&skb->skb_mstamp);
  2650. #ifdef CONFIG_TCP_MD5SIG
  2651. rcu_read_lock();
  2652. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2653. #endif
  2654. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2655. tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
  2656. sizeof(*th);
  2657. skb_push(skb, tcp_header_size);
  2658. skb_reset_transport_header(skb);
  2659. th = (struct tcphdr *)skb->data;
  2660. memset(th, 0, sizeof(struct tcphdr));
  2661. th->syn = 1;
  2662. th->ack = 1;
  2663. tcp_ecn_make_synack(req, th);
  2664. th->source = htons(ireq->ir_num);
  2665. th->dest = ireq->ir_rmt_port;
  2666. /* Setting of flags are superfluous here for callers (and ECE is
  2667. * not even correctly set)
  2668. */
  2669. tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
  2670. TCPHDR_SYN | TCPHDR_ACK);
  2671. th->seq = htonl(TCP_SKB_CB(skb)->seq);
  2672. /* XXX data is queued and acked as is. No buffer/window check */
  2673. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2674. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2675. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2676. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2677. th->doff = (tcp_header_size >> 2);
  2678. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2679. #ifdef CONFIG_TCP_MD5SIG
  2680. /* Okay, we have all we need - do the md5 hash if needed */
  2681. if (md5)
  2682. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2683. md5, req_to_sk(req), skb);
  2684. rcu_read_unlock();
  2685. #endif
  2686. /* Do not fool tcpdump (if any), clean our debris */
  2687. skb->tstamp = 0;
  2688. return skb;
  2689. }
  2690. EXPORT_SYMBOL(tcp_make_synack);
  2691. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2692. {
  2693. struct inet_connection_sock *icsk = inet_csk(sk);
  2694. const struct tcp_congestion_ops *ca;
  2695. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2696. if (ca_key == TCP_CA_UNSPEC)
  2697. return;
  2698. rcu_read_lock();
  2699. ca = tcp_ca_find_key(ca_key);
  2700. if (likely(ca && try_module_get(ca->owner))) {
  2701. module_put(icsk->icsk_ca_ops->owner);
  2702. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2703. icsk->icsk_ca_ops = ca;
  2704. }
  2705. rcu_read_unlock();
  2706. }
  2707. /* Do all connect socket setups that can be done AF independent. */
  2708. static void tcp_connect_init(struct sock *sk)
  2709. {
  2710. const struct dst_entry *dst = __sk_dst_get(sk);
  2711. struct tcp_sock *tp = tcp_sk(sk);
  2712. __u8 rcv_wscale;
  2713. /* We'll fix this up when we get a response from the other end.
  2714. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2715. */
  2716. tp->tcp_header_len = sizeof(struct tcphdr) +
  2717. (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
  2718. #ifdef CONFIG_TCP_MD5SIG
  2719. if (tp->af_specific->md5_lookup(sk, sk))
  2720. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2721. #endif
  2722. /* If user gave his TCP_MAXSEG, record it to clamp */
  2723. if (tp->rx_opt.user_mss)
  2724. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2725. tp->max_window = 0;
  2726. tcp_mtup_init(sk);
  2727. tcp_sync_mss(sk, dst_mtu(dst));
  2728. tcp_ca_dst_init(sk, dst);
  2729. if (!tp->window_clamp)
  2730. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2731. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2732. tcp_initialize_rcv_mss(sk);
  2733. /* limit the window selection if the user enforce a smaller rx buffer */
  2734. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2735. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2736. tp->window_clamp = tcp_full_space(sk);
  2737. tcp_select_initial_window(tcp_full_space(sk),
  2738. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2739. &tp->rcv_wnd,
  2740. &tp->window_clamp,
  2741. sysctl_tcp_window_scaling,
  2742. &rcv_wscale,
  2743. dst_metric(dst, RTAX_INITRWND));
  2744. tp->rx_opt.rcv_wscale = rcv_wscale;
  2745. tp->rcv_ssthresh = tp->rcv_wnd;
  2746. sk->sk_err = 0;
  2747. sock_reset_flag(sk, SOCK_DONE);
  2748. tp->snd_wnd = 0;
  2749. tcp_init_wl(tp, 0);
  2750. tp->snd_una = tp->write_seq;
  2751. tp->snd_sml = tp->write_seq;
  2752. tp->snd_up = tp->write_seq;
  2753. tp->snd_nxt = tp->write_seq;
  2754. if (likely(!tp->repair))
  2755. tp->rcv_nxt = 0;
  2756. else
  2757. tp->rcv_tstamp = tcp_time_stamp;
  2758. tp->rcv_wup = tp->rcv_nxt;
  2759. tp->copied_seq = tp->rcv_nxt;
  2760. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  2761. inet_csk(sk)->icsk_retransmits = 0;
  2762. tcp_clear_retrans(tp);
  2763. }
  2764. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2765. {
  2766. struct tcp_sock *tp = tcp_sk(sk);
  2767. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2768. tcb->end_seq += skb->len;
  2769. __skb_header_release(skb);
  2770. __tcp_add_write_queue_tail(sk, skb);
  2771. sk->sk_wmem_queued += skb->truesize;
  2772. sk_mem_charge(sk, skb->truesize);
  2773. tp->write_seq = tcb->end_seq;
  2774. tp->packets_out += tcp_skb_pcount(skb);
  2775. }
  2776. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2777. * queue a data-only packet after the regular SYN, such that regular SYNs
  2778. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2779. * only the SYN sequence, the data are retransmitted in the first ACK.
  2780. * If cookie is not cached or other error occurs, falls back to send a
  2781. * regular SYN with Fast Open cookie request option.
  2782. */
  2783. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2784. {
  2785. struct tcp_sock *tp = tcp_sk(sk);
  2786. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2787. int space, err = 0;
  2788. struct sk_buff *syn_data;
  2789. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2790. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2791. goto fallback;
  2792. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2793. * user-MSS. Reserve maximum option space for middleboxes that add
  2794. * private TCP options. The cost is reduced data space in SYN :(
  2795. */
  2796. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2797. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2798. MAX_TCP_OPTION_SPACE;
  2799. space = min_t(size_t, space, fo->size);
  2800. /* limit to order-0 allocations */
  2801. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2802. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2803. if (!syn_data)
  2804. goto fallback;
  2805. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2806. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2807. if (space) {
  2808. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2809. &fo->data->msg_iter);
  2810. if (unlikely(!copied)) {
  2811. kfree_skb(syn_data);
  2812. goto fallback;
  2813. }
  2814. if (copied != space) {
  2815. skb_trim(syn_data, copied);
  2816. space = copied;
  2817. }
  2818. }
  2819. /* No more data pending in inet_wait_for_connect() */
  2820. if (space == fo->size)
  2821. fo->data = NULL;
  2822. fo->copied = space;
  2823. tcp_connect_queue_skb(sk, syn_data);
  2824. if (syn_data->len)
  2825. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2826. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2827. syn->skb_mstamp = syn_data->skb_mstamp;
  2828. /* Now full SYN+DATA was cloned and sent (or not),
  2829. * remove the SYN from the original skb (syn_data)
  2830. * we keep in write queue in case of a retransmit, as we
  2831. * also have the SYN packet (with no data) in the same queue.
  2832. */
  2833. TCP_SKB_CB(syn_data)->seq++;
  2834. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2835. if (!err) {
  2836. tp->syn_data = (fo->copied > 0);
  2837. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2838. goto done;
  2839. }
  2840. fallback:
  2841. /* Send a regular SYN with Fast Open cookie request option */
  2842. if (fo->cookie.len > 0)
  2843. fo->cookie.len = 0;
  2844. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2845. if (err)
  2846. tp->syn_fastopen = 0;
  2847. done:
  2848. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2849. return err;
  2850. }
  2851. /* Build a SYN and send it off. */
  2852. int tcp_connect(struct sock *sk)
  2853. {
  2854. struct tcp_sock *tp = tcp_sk(sk);
  2855. struct sk_buff *buff;
  2856. int err;
  2857. tcp_connect_init(sk);
  2858. if (unlikely(tp->repair)) {
  2859. tcp_finish_connect(sk, NULL);
  2860. return 0;
  2861. }
  2862. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2863. if (unlikely(!buff))
  2864. return -ENOBUFS;
  2865. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2866. tp->retrans_stamp = tcp_time_stamp;
  2867. tcp_connect_queue_skb(sk, buff);
  2868. tcp_ecn_send_syn(sk, buff);
  2869. /* Send off SYN; include data in Fast Open. */
  2870. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2871. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2872. if (err == -ECONNREFUSED)
  2873. return err;
  2874. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2875. * in order to make this packet get counted in tcpOutSegs.
  2876. */
  2877. tp->snd_nxt = tp->write_seq;
  2878. tp->pushed_seq = tp->write_seq;
  2879. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2880. /* Timer for repeating the SYN until an answer. */
  2881. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2882. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2883. return 0;
  2884. }
  2885. EXPORT_SYMBOL(tcp_connect);
  2886. /* Send out a delayed ack, the caller does the policy checking
  2887. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  2888. * for details.
  2889. */
  2890. void tcp_send_delayed_ack(struct sock *sk)
  2891. {
  2892. struct inet_connection_sock *icsk = inet_csk(sk);
  2893. int ato = icsk->icsk_ack.ato;
  2894. unsigned long timeout;
  2895. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  2896. if (ato > TCP_DELACK_MIN) {
  2897. const struct tcp_sock *tp = tcp_sk(sk);
  2898. int max_ato = HZ / 2;
  2899. if (icsk->icsk_ack.pingpong ||
  2900. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  2901. max_ato = TCP_DELACK_MAX;
  2902. /* Slow path, intersegment interval is "high". */
  2903. /* If some rtt estimate is known, use it to bound delayed ack.
  2904. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  2905. * directly.
  2906. */
  2907. if (tp->srtt_us) {
  2908. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  2909. TCP_DELACK_MIN);
  2910. if (rtt < max_ato)
  2911. max_ato = rtt;
  2912. }
  2913. ato = min(ato, max_ato);
  2914. }
  2915. /* Stay within the limit we were given */
  2916. timeout = jiffies + ato;
  2917. /* Use new timeout only if there wasn't a older one earlier. */
  2918. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  2919. /* If delack timer was blocked or is about to expire,
  2920. * send ACK now.
  2921. */
  2922. if (icsk->icsk_ack.blocked ||
  2923. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  2924. tcp_send_ack(sk);
  2925. return;
  2926. }
  2927. if (!time_before(timeout, icsk->icsk_ack.timeout))
  2928. timeout = icsk->icsk_ack.timeout;
  2929. }
  2930. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  2931. icsk->icsk_ack.timeout = timeout;
  2932. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  2933. }
  2934. /* This routine sends an ack and also updates the window. */
  2935. void tcp_send_ack(struct sock *sk)
  2936. {
  2937. struct sk_buff *buff;
  2938. /* If we have been reset, we may not send again. */
  2939. if (sk->sk_state == TCP_CLOSE)
  2940. return;
  2941. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  2942. /* We are not putting this on the write queue, so
  2943. * tcp_transmit_skb() will set the ownership to this
  2944. * sock.
  2945. */
  2946. buff = alloc_skb(MAX_TCP_HEADER,
  2947. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  2948. if (unlikely(!buff)) {
  2949. inet_csk_schedule_ack(sk);
  2950. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  2951. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  2952. TCP_DELACK_MAX, TCP_RTO_MAX);
  2953. return;
  2954. }
  2955. /* Reserve space for headers and prepare control bits. */
  2956. skb_reserve(buff, MAX_TCP_HEADER);
  2957. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  2958. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  2959. * too much.
  2960. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  2961. */
  2962. skb_set_tcp_pure_ack(buff);
  2963. /* Send it off, this clears delayed acks for us. */
  2964. skb_mstamp_get(&buff->skb_mstamp);
  2965. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  2966. }
  2967. EXPORT_SYMBOL_GPL(tcp_send_ack);
  2968. /* This routine sends a packet with an out of date sequence
  2969. * number. It assumes the other end will try to ack it.
  2970. *
  2971. * Question: what should we make while urgent mode?
  2972. * 4.4BSD forces sending single byte of data. We cannot send
  2973. * out of window data, because we have SND.NXT==SND.MAX...
  2974. *
  2975. * Current solution: to send TWO zero-length segments in urgent mode:
  2976. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  2977. * out-of-date with SND.UNA-1 to probe window.
  2978. */
  2979. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  2980. {
  2981. struct tcp_sock *tp = tcp_sk(sk);
  2982. struct sk_buff *skb;
  2983. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  2984. skb = alloc_skb(MAX_TCP_HEADER,
  2985. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  2986. if (!skb)
  2987. return -1;
  2988. /* Reserve space for headers and set control bits. */
  2989. skb_reserve(skb, MAX_TCP_HEADER);
  2990. /* Use a previous sequence. This should cause the other
  2991. * end to send an ack. Don't queue or clone SKB, just
  2992. * send it.
  2993. */
  2994. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  2995. skb_mstamp_get(&skb->skb_mstamp);
  2996. NET_INC_STATS(sock_net(sk), mib);
  2997. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  2998. }
  2999. void tcp_send_window_probe(struct sock *sk)
  3000. {
  3001. if (sk->sk_state == TCP_ESTABLISHED) {
  3002. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3003. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3004. }
  3005. }
  3006. /* Initiate keepalive or window probe from timer. */
  3007. int tcp_write_wakeup(struct sock *sk, int mib)
  3008. {
  3009. struct tcp_sock *tp = tcp_sk(sk);
  3010. struct sk_buff *skb;
  3011. if (sk->sk_state == TCP_CLOSE)
  3012. return -1;
  3013. skb = tcp_send_head(sk);
  3014. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3015. int err;
  3016. unsigned int mss = tcp_current_mss(sk);
  3017. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3018. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3019. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3020. /* We are probing the opening of a window
  3021. * but the window size is != 0
  3022. * must have been a result SWS avoidance ( sender )
  3023. */
  3024. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3025. skb->len > mss) {
  3026. seg_size = min(seg_size, mss);
  3027. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3028. if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
  3029. return -1;
  3030. } else if (!tcp_skb_pcount(skb))
  3031. tcp_set_skb_tso_segs(skb, mss);
  3032. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3033. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3034. if (!err)
  3035. tcp_event_new_data_sent(sk, skb);
  3036. return err;
  3037. } else {
  3038. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3039. tcp_xmit_probe_skb(sk, 1, mib);
  3040. return tcp_xmit_probe_skb(sk, 0, mib);
  3041. }
  3042. }
  3043. /* A window probe timeout has occurred. If window is not closed send
  3044. * a partial packet else a zero probe.
  3045. */
  3046. void tcp_send_probe0(struct sock *sk)
  3047. {
  3048. struct inet_connection_sock *icsk = inet_csk(sk);
  3049. struct tcp_sock *tp = tcp_sk(sk);
  3050. struct net *net = sock_net(sk);
  3051. unsigned long probe_max;
  3052. int err;
  3053. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3054. if (tp->packets_out || !tcp_send_head(sk)) {
  3055. /* Cancel probe timer, if it is not required. */
  3056. icsk->icsk_probes_out = 0;
  3057. icsk->icsk_backoff = 0;
  3058. return;
  3059. }
  3060. if (err <= 0) {
  3061. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3062. icsk->icsk_backoff++;
  3063. icsk->icsk_probes_out++;
  3064. probe_max = TCP_RTO_MAX;
  3065. } else {
  3066. /* If packet was not sent due to local congestion,
  3067. * do not backoff and do not remember icsk_probes_out.
  3068. * Let local senders to fight for local resources.
  3069. *
  3070. * Use accumulated backoff yet.
  3071. */
  3072. if (!icsk->icsk_probes_out)
  3073. icsk->icsk_probes_out = 1;
  3074. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3075. }
  3076. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3077. tcp_probe0_when(sk, probe_max),
  3078. TCP_RTO_MAX);
  3079. }
  3080. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3081. {
  3082. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3083. struct flowi fl;
  3084. int res;
  3085. tcp_rsk(req)->txhash = net_tx_rndhash();
  3086. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3087. if (!res) {
  3088. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3089. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3090. if (unlikely(tcp_passive_fastopen(sk)))
  3091. tcp_sk(sk)->total_retrans++;
  3092. }
  3093. return res;
  3094. }
  3095. EXPORT_SYMBOL(tcp_rtx_synack);