ipmr.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <linux/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #include <net/nexthop.h>
  69. struct ipmr_rule {
  70. struct fib_rule common;
  71. };
  72. struct ipmr_result {
  73. struct mr_table *mrt;
  74. };
  75. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  76. * Note that the changes are semaphored via rtnl_lock.
  77. */
  78. static DEFINE_RWLOCK(mrt_lock);
  79. /* Multicast router control variables */
  80. /* Special spinlock for queue of unresolved entries */
  81. static DEFINE_SPINLOCK(mfc_unres_lock);
  82. /* We return to original Alan's scheme. Hash table of resolved
  83. * entries is changed only in process context and protected
  84. * with weak lock mrt_lock. Queue of unresolved entries is protected
  85. * with strong spinlock mfc_unres_lock.
  86. *
  87. * In this case data path is free of exclusive locks at all.
  88. */
  89. static struct kmem_cache *mrt_cachep __read_mostly;
  90. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  91. static void ipmr_free_table(struct mr_table *mrt);
  92. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  93. struct sk_buff *skb, struct mfc_cache *cache,
  94. int local);
  95. static int ipmr_cache_report(struct mr_table *mrt,
  96. struct sk_buff *pkt, vifi_t vifi, int assert);
  97. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  98. struct mfc_cache *c, struct rtmsg *rtm);
  99. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  100. int cmd);
  101. static void mroute_clean_tables(struct mr_table *mrt, bool all);
  102. static void ipmr_expire_process(unsigned long arg);
  103. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  104. #define ipmr_for_each_table(mrt, net) \
  105. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  106. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  107. {
  108. struct mr_table *mrt;
  109. ipmr_for_each_table(mrt, net) {
  110. if (mrt->id == id)
  111. return mrt;
  112. }
  113. return NULL;
  114. }
  115. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  116. struct mr_table **mrt)
  117. {
  118. int err;
  119. struct ipmr_result res;
  120. struct fib_lookup_arg arg = {
  121. .result = &res,
  122. .flags = FIB_LOOKUP_NOREF,
  123. };
  124. /* update flow if oif or iif point to device enslaved to l3mdev */
  125. l3mdev_update_flow(net, flowi4_to_flowi(flp4));
  126. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  127. flowi4_to_flowi(flp4), 0, &arg);
  128. if (err < 0)
  129. return err;
  130. *mrt = res.mrt;
  131. return 0;
  132. }
  133. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  134. int flags, struct fib_lookup_arg *arg)
  135. {
  136. struct ipmr_result *res = arg->result;
  137. struct mr_table *mrt;
  138. switch (rule->action) {
  139. case FR_ACT_TO_TBL:
  140. break;
  141. case FR_ACT_UNREACHABLE:
  142. return -ENETUNREACH;
  143. case FR_ACT_PROHIBIT:
  144. return -EACCES;
  145. case FR_ACT_BLACKHOLE:
  146. default:
  147. return -EINVAL;
  148. }
  149. arg->table = fib_rule_get_table(rule, arg);
  150. mrt = ipmr_get_table(rule->fr_net, arg->table);
  151. if (!mrt)
  152. return -EAGAIN;
  153. res->mrt = mrt;
  154. return 0;
  155. }
  156. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  157. {
  158. return 1;
  159. }
  160. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  161. FRA_GENERIC_POLICY,
  162. };
  163. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  164. struct fib_rule_hdr *frh, struct nlattr **tb)
  165. {
  166. return 0;
  167. }
  168. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  169. struct nlattr **tb)
  170. {
  171. return 1;
  172. }
  173. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  174. struct fib_rule_hdr *frh)
  175. {
  176. frh->dst_len = 0;
  177. frh->src_len = 0;
  178. frh->tos = 0;
  179. return 0;
  180. }
  181. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  182. .family = RTNL_FAMILY_IPMR,
  183. .rule_size = sizeof(struct ipmr_rule),
  184. .addr_size = sizeof(u32),
  185. .action = ipmr_rule_action,
  186. .match = ipmr_rule_match,
  187. .configure = ipmr_rule_configure,
  188. .compare = ipmr_rule_compare,
  189. .fill = ipmr_rule_fill,
  190. .nlgroup = RTNLGRP_IPV4_RULE,
  191. .policy = ipmr_rule_policy,
  192. .owner = THIS_MODULE,
  193. };
  194. static int __net_init ipmr_rules_init(struct net *net)
  195. {
  196. struct fib_rules_ops *ops;
  197. struct mr_table *mrt;
  198. int err;
  199. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  200. if (IS_ERR(ops))
  201. return PTR_ERR(ops);
  202. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  203. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  204. if (IS_ERR(mrt)) {
  205. err = PTR_ERR(mrt);
  206. goto err1;
  207. }
  208. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  209. if (err < 0)
  210. goto err2;
  211. net->ipv4.mr_rules_ops = ops;
  212. return 0;
  213. err2:
  214. ipmr_free_table(mrt);
  215. err1:
  216. fib_rules_unregister(ops);
  217. return err;
  218. }
  219. static void __net_exit ipmr_rules_exit(struct net *net)
  220. {
  221. struct mr_table *mrt, *next;
  222. rtnl_lock();
  223. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  224. list_del(&mrt->list);
  225. ipmr_free_table(mrt);
  226. }
  227. fib_rules_unregister(net->ipv4.mr_rules_ops);
  228. rtnl_unlock();
  229. }
  230. #else
  231. #define ipmr_for_each_table(mrt, net) \
  232. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  233. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  234. {
  235. return net->ipv4.mrt;
  236. }
  237. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  238. struct mr_table **mrt)
  239. {
  240. *mrt = net->ipv4.mrt;
  241. return 0;
  242. }
  243. static int __net_init ipmr_rules_init(struct net *net)
  244. {
  245. struct mr_table *mrt;
  246. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  247. if (IS_ERR(mrt))
  248. return PTR_ERR(mrt);
  249. net->ipv4.mrt = mrt;
  250. return 0;
  251. }
  252. static void __net_exit ipmr_rules_exit(struct net *net)
  253. {
  254. rtnl_lock();
  255. ipmr_free_table(net->ipv4.mrt);
  256. net->ipv4.mrt = NULL;
  257. rtnl_unlock();
  258. }
  259. #endif
  260. static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
  261. const void *ptr)
  262. {
  263. const struct mfc_cache_cmp_arg *cmparg = arg->key;
  264. struct mfc_cache *c = (struct mfc_cache *)ptr;
  265. return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
  266. cmparg->mfc_origin != c->mfc_origin;
  267. }
  268. static const struct rhashtable_params ipmr_rht_params = {
  269. .head_offset = offsetof(struct mfc_cache, mnode),
  270. .key_offset = offsetof(struct mfc_cache, cmparg),
  271. .key_len = sizeof(struct mfc_cache_cmp_arg),
  272. .nelem_hint = 3,
  273. .locks_mul = 1,
  274. .obj_cmpfn = ipmr_hash_cmp,
  275. .automatic_shrinking = true,
  276. };
  277. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  278. {
  279. struct mr_table *mrt;
  280. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  281. if (id != RT_TABLE_DEFAULT && id >= 1000000000)
  282. return ERR_PTR(-EINVAL);
  283. mrt = ipmr_get_table(net, id);
  284. if (mrt)
  285. return mrt;
  286. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  287. if (!mrt)
  288. return ERR_PTR(-ENOMEM);
  289. write_pnet(&mrt->net, net);
  290. mrt->id = id;
  291. rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
  292. INIT_LIST_HEAD(&mrt->mfc_cache_list);
  293. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  294. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  295. (unsigned long)mrt);
  296. mrt->mroute_reg_vif_num = -1;
  297. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  298. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  299. #endif
  300. return mrt;
  301. }
  302. static void ipmr_free_table(struct mr_table *mrt)
  303. {
  304. del_timer_sync(&mrt->ipmr_expire_timer);
  305. mroute_clean_tables(mrt, true);
  306. rhltable_destroy(&mrt->mfc_hash);
  307. kfree(mrt);
  308. }
  309. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  310. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  311. {
  312. struct net *net = dev_net(dev);
  313. dev_close(dev);
  314. dev = __dev_get_by_name(net, "tunl0");
  315. if (dev) {
  316. const struct net_device_ops *ops = dev->netdev_ops;
  317. struct ifreq ifr;
  318. struct ip_tunnel_parm p;
  319. memset(&p, 0, sizeof(p));
  320. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  321. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  322. p.iph.version = 4;
  323. p.iph.ihl = 5;
  324. p.iph.protocol = IPPROTO_IPIP;
  325. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  326. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  327. if (ops->ndo_do_ioctl) {
  328. mm_segment_t oldfs = get_fs();
  329. set_fs(KERNEL_DS);
  330. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  331. set_fs(oldfs);
  332. }
  333. }
  334. }
  335. /* Initialize ipmr pimreg/tunnel in_device */
  336. static bool ipmr_init_vif_indev(const struct net_device *dev)
  337. {
  338. struct in_device *in_dev;
  339. ASSERT_RTNL();
  340. in_dev = __in_dev_get_rtnl(dev);
  341. if (!in_dev)
  342. return false;
  343. ipv4_devconf_setall(in_dev);
  344. neigh_parms_data_state_setall(in_dev->arp_parms);
  345. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  346. return true;
  347. }
  348. static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  349. {
  350. struct net_device *dev;
  351. dev = __dev_get_by_name(net, "tunl0");
  352. if (dev) {
  353. const struct net_device_ops *ops = dev->netdev_ops;
  354. int err;
  355. struct ifreq ifr;
  356. struct ip_tunnel_parm p;
  357. memset(&p, 0, sizeof(p));
  358. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  359. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  360. p.iph.version = 4;
  361. p.iph.ihl = 5;
  362. p.iph.protocol = IPPROTO_IPIP;
  363. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  364. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  365. if (ops->ndo_do_ioctl) {
  366. mm_segment_t oldfs = get_fs();
  367. set_fs(KERNEL_DS);
  368. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  369. set_fs(oldfs);
  370. } else {
  371. err = -EOPNOTSUPP;
  372. }
  373. dev = NULL;
  374. if (err == 0 &&
  375. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  376. dev->flags |= IFF_MULTICAST;
  377. if (!ipmr_init_vif_indev(dev))
  378. goto failure;
  379. if (dev_open(dev))
  380. goto failure;
  381. dev_hold(dev);
  382. }
  383. }
  384. return dev;
  385. failure:
  386. unregister_netdevice(dev);
  387. return NULL;
  388. }
  389. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  390. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  391. {
  392. struct net *net = dev_net(dev);
  393. struct mr_table *mrt;
  394. struct flowi4 fl4 = {
  395. .flowi4_oif = dev->ifindex,
  396. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  397. .flowi4_mark = skb->mark,
  398. };
  399. int err;
  400. err = ipmr_fib_lookup(net, &fl4, &mrt);
  401. if (err < 0) {
  402. kfree_skb(skb);
  403. return err;
  404. }
  405. read_lock(&mrt_lock);
  406. dev->stats.tx_bytes += skb->len;
  407. dev->stats.tx_packets++;
  408. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  409. read_unlock(&mrt_lock);
  410. kfree_skb(skb);
  411. return NETDEV_TX_OK;
  412. }
  413. static int reg_vif_get_iflink(const struct net_device *dev)
  414. {
  415. return 0;
  416. }
  417. static const struct net_device_ops reg_vif_netdev_ops = {
  418. .ndo_start_xmit = reg_vif_xmit,
  419. .ndo_get_iflink = reg_vif_get_iflink,
  420. };
  421. static void reg_vif_setup(struct net_device *dev)
  422. {
  423. dev->type = ARPHRD_PIMREG;
  424. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  425. dev->flags = IFF_NOARP;
  426. dev->netdev_ops = &reg_vif_netdev_ops;
  427. dev->destructor = free_netdev;
  428. dev->features |= NETIF_F_NETNS_LOCAL;
  429. }
  430. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  431. {
  432. struct net_device *dev;
  433. char name[IFNAMSIZ];
  434. if (mrt->id == RT_TABLE_DEFAULT)
  435. sprintf(name, "pimreg");
  436. else
  437. sprintf(name, "pimreg%u", mrt->id);
  438. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  439. if (!dev)
  440. return NULL;
  441. dev_net_set(dev, net);
  442. if (register_netdevice(dev)) {
  443. free_netdev(dev);
  444. return NULL;
  445. }
  446. if (!ipmr_init_vif_indev(dev))
  447. goto failure;
  448. if (dev_open(dev))
  449. goto failure;
  450. dev_hold(dev);
  451. return dev;
  452. failure:
  453. unregister_netdevice(dev);
  454. return NULL;
  455. }
  456. /* called with rcu_read_lock() */
  457. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  458. unsigned int pimlen)
  459. {
  460. struct net_device *reg_dev = NULL;
  461. struct iphdr *encap;
  462. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  463. /* Check that:
  464. * a. packet is really sent to a multicast group
  465. * b. packet is not a NULL-REGISTER
  466. * c. packet is not truncated
  467. */
  468. if (!ipv4_is_multicast(encap->daddr) ||
  469. encap->tot_len == 0 ||
  470. ntohs(encap->tot_len) + pimlen > skb->len)
  471. return 1;
  472. read_lock(&mrt_lock);
  473. if (mrt->mroute_reg_vif_num >= 0)
  474. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  475. read_unlock(&mrt_lock);
  476. if (!reg_dev)
  477. return 1;
  478. skb->mac_header = skb->network_header;
  479. skb_pull(skb, (u8 *)encap - skb->data);
  480. skb_reset_network_header(skb);
  481. skb->protocol = htons(ETH_P_IP);
  482. skb->ip_summed = CHECKSUM_NONE;
  483. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  484. netif_rx(skb);
  485. return NET_RX_SUCCESS;
  486. }
  487. #else
  488. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  489. {
  490. return NULL;
  491. }
  492. #endif
  493. /**
  494. * vif_delete - Delete a VIF entry
  495. * @notify: Set to 1, if the caller is a notifier_call
  496. */
  497. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  498. struct list_head *head)
  499. {
  500. struct vif_device *v;
  501. struct net_device *dev;
  502. struct in_device *in_dev;
  503. if (vifi < 0 || vifi >= mrt->maxvif)
  504. return -EADDRNOTAVAIL;
  505. v = &mrt->vif_table[vifi];
  506. write_lock_bh(&mrt_lock);
  507. dev = v->dev;
  508. v->dev = NULL;
  509. if (!dev) {
  510. write_unlock_bh(&mrt_lock);
  511. return -EADDRNOTAVAIL;
  512. }
  513. if (vifi == mrt->mroute_reg_vif_num)
  514. mrt->mroute_reg_vif_num = -1;
  515. if (vifi + 1 == mrt->maxvif) {
  516. int tmp;
  517. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  518. if (VIF_EXISTS(mrt, tmp))
  519. break;
  520. }
  521. mrt->maxvif = tmp+1;
  522. }
  523. write_unlock_bh(&mrt_lock);
  524. dev_set_allmulti(dev, -1);
  525. in_dev = __in_dev_get_rtnl(dev);
  526. if (in_dev) {
  527. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  528. inet_netconf_notify_devconf(dev_net(dev),
  529. NETCONFA_MC_FORWARDING,
  530. dev->ifindex, &in_dev->cnf);
  531. ip_rt_multicast_event(in_dev);
  532. }
  533. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  534. unregister_netdevice_queue(dev, head);
  535. dev_put(dev);
  536. return 0;
  537. }
  538. static void ipmr_cache_free_rcu(struct rcu_head *head)
  539. {
  540. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  541. kmem_cache_free(mrt_cachep, c);
  542. }
  543. static inline void ipmr_cache_free(struct mfc_cache *c)
  544. {
  545. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  546. }
  547. /* Destroy an unresolved cache entry, killing queued skbs
  548. * and reporting error to netlink readers.
  549. */
  550. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  551. {
  552. struct net *net = read_pnet(&mrt->net);
  553. struct sk_buff *skb;
  554. struct nlmsgerr *e;
  555. atomic_dec(&mrt->cache_resolve_queue_len);
  556. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  557. if (ip_hdr(skb)->version == 0) {
  558. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  559. nlh->nlmsg_type = NLMSG_ERROR;
  560. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  561. skb_trim(skb, nlh->nlmsg_len);
  562. e = nlmsg_data(nlh);
  563. e->error = -ETIMEDOUT;
  564. memset(&e->msg, 0, sizeof(e->msg));
  565. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  566. } else {
  567. kfree_skb(skb);
  568. }
  569. }
  570. ipmr_cache_free(c);
  571. }
  572. /* Timer process for the unresolved queue. */
  573. static void ipmr_expire_process(unsigned long arg)
  574. {
  575. struct mr_table *mrt = (struct mr_table *)arg;
  576. unsigned long now;
  577. unsigned long expires;
  578. struct mfc_cache *c, *next;
  579. if (!spin_trylock(&mfc_unres_lock)) {
  580. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  581. return;
  582. }
  583. if (list_empty(&mrt->mfc_unres_queue))
  584. goto out;
  585. now = jiffies;
  586. expires = 10*HZ;
  587. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  588. if (time_after(c->mfc_un.unres.expires, now)) {
  589. unsigned long interval = c->mfc_un.unres.expires - now;
  590. if (interval < expires)
  591. expires = interval;
  592. continue;
  593. }
  594. list_del(&c->list);
  595. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  596. ipmr_destroy_unres(mrt, c);
  597. }
  598. if (!list_empty(&mrt->mfc_unres_queue))
  599. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  600. out:
  601. spin_unlock(&mfc_unres_lock);
  602. }
  603. /* Fill oifs list. It is called under write locked mrt_lock. */
  604. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  605. unsigned char *ttls)
  606. {
  607. int vifi;
  608. cache->mfc_un.res.minvif = MAXVIFS;
  609. cache->mfc_un.res.maxvif = 0;
  610. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  611. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  612. if (VIF_EXISTS(mrt, vifi) &&
  613. ttls[vifi] && ttls[vifi] < 255) {
  614. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  615. if (cache->mfc_un.res.minvif > vifi)
  616. cache->mfc_un.res.minvif = vifi;
  617. if (cache->mfc_un.res.maxvif <= vifi)
  618. cache->mfc_un.res.maxvif = vifi + 1;
  619. }
  620. }
  621. cache->mfc_un.res.lastuse = jiffies;
  622. }
  623. static int vif_add(struct net *net, struct mr_table *mrt,
  624. struct vifctl *vifc, int mrtsock)
  625. {
  626. int vifi = vifc->vifc_vifi;
  627. struct vif_device *v = &mrt->vif_table[vifi];
  628. struct net_device *dev;
  629. struct in_device *in_dev;
  630. int err;
  631. /* Is vif busy ? */
  632. if (VIF_EXISTS(mrt, vifi))
  633. return -EADDRINUSE;
  634. switch (vifc->vifc_flags) {
  635. case VIFF_REGISTER:
  636. if (!ipmr_pimsm_enabled())
  637. return -EINVAL;
  638. /* Special Purpose VIF in PIM
  639. * All the packets will be sent to the daemon
  640. */
  641. if (mrt->mroute_reg_vif_num >= 0)
  642. return -EADDRINUSE;
  643. dev = ipmr_reg_vif(net, mrt);
  644. if (!dev)
  645. return -ENOBUFS;
  646. err = dev_set_allmulti(dev, 1);
  647. if (err) {
  648. unregister_netdevice(dev);
  649. dev_put(dev);
  650. return err;
  651. }
  652. break;
  653. case VIFF_TUNNEL:
  654. dev = ipmr_new_tunnel(net, vifc);
  655. if (!dev)
  656. return -ENOBUFS;
  657. err = dev_set_allmulti(dev, 1);
  658. if (err) {
  659. ipmr_del_tunnel(dev, vifc);
  660. dev_put(dev);
  661. return err;
  662. }
  663. break;
  664. case VIFF_USE_IFINDEX:
  665. case 0:
  666. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  667. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  668. if (dev && !__in_dev_get_rtnl(dev)) {
  669. dev_put(dev);
  670. return -EADDRNOTAVAIL;
  671. }
  672. } else {
  673. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  674. }
  675. if (!dev)
  676. return -EADDRNOTAVAIL;
  677. err = dev_set_allmulti(dev, 1);
  678. if (err) {
  679. dev_put(dev);
  680. return err;
  681. }
  682. break;
  683. default:
  684. return -EINVAL;
  685. }
  686. in_dev = __in_dev_get_rtnl(dev);
  687. if (!in_dev) {
  688. dev_put(dev);
  689. return -EADDRNOTAVAIL;
  690. }
  691. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  692. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
  693. &in_dev->cnf);
  694. ip_rt_multicast_event(in_dev);
  695. /* Fill in the VIF structures */
  696. v->rate_limit = vifc->vifc_rate_limit;
  697. v->local = vifc->vifc_lcl_addr.s_addr;
  698. v->remote = vifc->vifc_rmt_addr.s_addr;
  699. v->flags = vifc->vifc_flags;
  700. if (!mrtsock)
  701. v->flags |= VIFF_STATIC;
  702. v->threshold = vifc->vifc_threshold;
  703. v->bytes_in = 0;
  704. v->bytes_out = 0;
  705. v->pkt_in = 0;
  706. v->pkt_out = 0;
  707. v->link = dev->ifindex;
  708. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  709. v->link = dev_get_iflink(dev);
  710. /* And finish update writing critical data */
  711. write_lock_bh(&mrt_lock);
  712. v->dev = dev;
  713. if (v->flags & VIFF_REGISTER)
  714. mrt->mroute_reg_vif_num = vifi;
  715. if (vifi+1 > mrt->maxvif)
  716. mrt->maxvif = vifi+1;
  717. write_unlock_bh(&mrt_lock);
  718. return 0;
  719. }
  720. /* called with rcu_read_lock() */
  721. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  722. __be32 origin,
  723. __be32 mcastgrp)
  724. {
  725. struct mfc_cache_cmp_arg arg = {
  726. .mfc_mcastgrp = mcastgrp,
  727. .mfc_origin = origin
  728. };
  729. struct rhlist_head *tmp, *list;
  730. struct mfc_cache *c;
  731. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  732. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  733. return c;
  734. return NULL;
  735. }
  736. /* Look for a (*,*,oif) entry */
  737. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  738. int vifi)
  739. {
  740. struct mfc_cache_cmp_arg arg = {
  741. .mfc_mcastgrp = htonl(INADDR_ANY),
  742. .mfc_origin = htonl(INADDR_ANY)
  743. };
  744. struct rhlist_head *tmp, *list;
  745. struct mfc_cache *c;
  746. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  747. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  748. if (c->mfc_un.res.ttls[vifi] < 255)
  749. return c;
  750. return NULL;
  751. }
  752. /* Look for a (*,G) entry */
  753. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  754. __be32 mcastgrp, int vifi)
  755. {
  756. struct mfc_cache_cmp_arg arg = {
  757. .mfc_mcastgrp = mcastgrp,
  758. .mfc_origin = htonl(INADDR_ANY)
  759. };
  760. struct rhlist_head *tmp, *list;
  761. struct mfc_cache *c, *proxy;
  762. if (mcastgrp == htonl(INADDR_ANY))
  763. goto skip;
  764. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  765. rhl_for_each_entry_rcu(c, tmp, list, mnode) {
  766. if (c->mfc_un.res.ttls[vifi] < 255)
  767. return c;
  768. /* It's ok if the vifi is part of the static tree */
  769. proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
  770. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  771. return c;
  772. }
  773. skip:
  774. return ipmr_cache_find_any_parent(mrt, vifi);
  775. }
  776. /* Look for a (S,G,iif) entry if parent != -1 */
  777. static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
  778. __be32 origin, __be32 mcastgrp,
  779. int parent)
  780. {
  781. struct mfc_cache_cmp_arg arg = {
  782. .mfc_mcastgrp = mcastgrp,
  783. .mfc_origin = origin,
  784. };
  785. struct rhlist_head *tmp, *list;
  786. struct mfc_cache *c;
  787. list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
  788. rhl_for_each_entry_rcu(c, tmp, list, mnode)
  789. if (parent == -1 || parent == c->mfc_parent)
  790. return c;
  791. return NULL;
  792. }
  793. /* Allocate a multicast cache entry */
  794. static struct mfc_cache *ipmr_cache_alloc(void)
  795. {
  796. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  797. if (c) {
  798. c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
  799. c->mfc_un.res.minvif = MAXVIFS;
  800. }
  801. return c;
  802. }
  803. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  804. {
  805. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  806. if (c) {
  807. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  808. c->mfc_un.unres.expires = jiffies + 10*HZ;
  809. }
  810. return c;
  811. }
  812. /* A cache entry has gone into a resolved state from queued */
  813. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  814. struct mfc_cache *uc, struct mfc_cache *c)
  815. {
  816. struct sk_buff *skb;
  817. struct nlmsgerr *e;
  818. /* Play the pending entries through our router */
  819. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  820. if (ip_hdr(skb)->version == 0) {
  821. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  822. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  823. nlh->nlmsg_len = skb_tail_pointer(skb) -
  824. (u8 *)nlh;
  825. } else {
  826. nlh->nlmsg_type = NLMSG_ERROR;
  827. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  828. skb_trim(skb, nlh->nlmsg_len);
  829. e = nlmsg_data(nlh);
  830. e->error = -EMSGSIZE;
  831. memset(&e->msg, 0, sizeof(e->msg));
  832. }
  833. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  834. } else {
  835. ip_mr_forward(net, mrt, skb, c, 0);
  836. }
  837. }
  838. }
  839. /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  840. * expects the following bizarre scheme.
  841. *
  842. * Called under mrt_lock.
  843. */
  844. static int ipmr_cache_report(struct mr_table *mrt,
  845. struct sk_buff *pkt, vifi_t vifi, int assert)
  846. {
  847. const int ihl = ip_hdrlen(pkt);
  848. struct sock *mroute_sk;
  849. struct igmphdr *igmp;
  850. struct igmpmsg *msg;
  851. struct sk_buff *skb;
  852. int ret;
  853. if (assert == IGMPMSG_WHOLEPKT)
  854. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  855. else
  856. skb = alloc_skb(128, GFP_ATOMIC);
  857. if (!skb)
  858. return -ENOBUFS;
  859. if (assert == IGMPMSG_WHOLEPKT) {
  860. /* Ugly, but we have no choice with this interface.
  861. * Duplicate old header, fix ihl, length etc.
  862. * And all this only to mangle msg->im_msgtype and
  863. * to set msg->im_mbz to "mbz" :-)
  864. */
  865. skb_push(skb, sizeof(struct iphdr));
  866. skb_reset_network_header(skb);
  867. skb_reset_transport_header(skb);
  868. msg = (struct igmpmsg *)skb_network_header(skb);
  869. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  870. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  871. msg->im_mbz = 0;
  872. msg->im_vif = mrt->mroute_reg_vif_num;
  873. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  874. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  875. sizeof(struct iphdr));
  876. } else {
  877. /* Copy the IP header */
  878. skb_set_network_header(skb, skb->len);
  879. skb_put(skb, ihl);
  880. skb_copy_to_linear_data(skb, pkt->data, ihl);
  881. /* Flag to the kernel this is a route add */
  882. ip_hdr(skb)->protocol = 0;
  883. msg = (struct igmpmsg *)skb_network_header(skb);
  884. msg->im_vif = vifi;
  885. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  886. /* Add our header */
  887. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  888. igmp->type = assert;
  889. msg->im_msgtype = assert;
  890. igmp->code = 0;
  891. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  892. skb->transport_header = skb->network_header;
  893. }
  894. rcu_read_lock();
  895. mroute_sk = rcu_dereference(mrt->mroute_sk);
  896. if (!mroute_sk) {
  897. rcu_read_unlock();
  898. kfree_skb(skb);
  899. return -EINVAL;
  900. }
  901. /* Deliver to mrouted */
  902. ret = sock_queue_rcv_skb(mroute_sk, skb);
  903. rcu_read_unlock();
  904. if (ret < 0) {
  905. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  906. kfree_skb(skb);
  907. }
  908. return ret;
  909. }
  910. /* Queue a packet for resolution. It gets locked cache entry! */
  911. static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
  912. struct sk_buff *skb)
  913. {
  914. const struct iphdr *iph = ip_hdr(skb);
  915. struct mfc_cache *c;
  916. bool found = false;
  917. int err;
  918. spin_lock_bh(&mfc_unres_lock);
  919. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  920. if (c->mfc_mcastgrp == iph->daddr &&
  921. c->mfc_origin == iph->saddr) {
  922. found = true;
  923. break;
  924. }
  925. }
  926. if (!found) {
  927. /* Create a new entry if allowable */
  928. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  929. (c = ipmr_cache_alloc_unres()) == NULL) {
  930. spin_unlock_bh(&mfc_unres_lock);
  931. kfree_skb(skb);
  932. return -ENOBUFS;
  933. }
  934. /* Fill in the new cache entry */
  935. c->mfc_parent = -1;
  936. c->mfc_origin = iph->saddr;
  937. c->mfc_mcastgrp = iph->daddr;
  938. /* Reflect first query at mrouted. */
  939. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  940. if (err < 0) {
  941. /* If the report failed throw the cache entry
  942. out - Brad Parker
  943. */
  944. spin_unlock_bh(&mfc_unres_lock);
  945. ipmr_cache_free(c);
  946. kfree_skb(skb);
  947. return err;
  948. }
  949. atomic_inc(&mrt->cache_resolve_queue_len);
  950. list_add(&c->list, &mrt->mfc_unres_queue);
  951. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  952. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  953. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  954. }
  955. /* See if we can append the packet */
  956. if (c->mfc_un.unres.unresolved.qlen > 3) {
  957. kfree_skb(skb);
  958. err = -ENOBUFS;
  959. } else {
  960. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  961. err = 0;
  962. }
  963. spin_unlock_bh(&mfc_unres_lock);
  964. return err;
  965. }
  966. /* MFC cache manipulation by user space mroute daemon */
  967. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  968. {
  969. struct mfc_cache *c;
  970. /* The entries are added/deleted only under RTNL */
  971. rcu_read_lock();
  972. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  973. mfc->mfcc_mcastgrp.s_addr, parent);
  974. rcu_read_unlock();
  975. if (!c)
  976. return -ENOENT;
  977. rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
  978. list_del_rcu(&c->list);
  979. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  980. ipmr_cache_free(c);
  981. return 0;
  982. }
  983. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  984. struct mfcctl *mfc, int mrtsock, int parent)
  985. {
  986. struct mfc_cache *uc, *c;
  987. bool found;
  988. int ret;
  989. if (mfc->mfcc_parent >= MAXVIFS)
  990. return -ENFILE;
  991. /* The entries are added/deleted only under RTNL */
  992. rcu_read_lock();
  993. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  994. mfc->mfcc_mcastgrp.s_addr, parent);
  995. rcu_read_unlock();
  996. if (c) {
  997. write_lock_bh(&mrt_lock);
  998. c->mfc_parent = mfc->mfcc_parent;
  999. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  1000. if (!mrtsock)
  1001. c->mfc_flags |= MFC_STATIC;
  1002. write_unlock_bh(&mrt_lock);
  1003. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1004. return 0;
  1005. }
  1006. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  1007. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  1008. return -EINVAL;
  1009. c = ipmr_cache_alloc();
  1010. if (!c)
  1011. return -ENOMEM;
  1012. c->mfc_origin = mfc->mfcc_origin.s_addr;
  1013. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  1014. c->mfc_parent = mfc->mfcc_parent;
  1015. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  1016. if (!mrtsock)
  1017. c->mfc_flags |= MFC_STATIC;
  1018. ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
  1019. ipmr_rht_params);
  1020. if (ret) {
  1021. pr_err("ipmr: rhtable insert error %d\n", ret);
  1022. ipmr_cache_free(c);
  1023. return ret;
  1024. }
  1025. list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
  1026. /* Check to see if we resolved a queued list. If so we
  1027. * need to send on the frames and tidy up.
  1028. */
  1029. found = false;
  1030. spin_lock_bh(&mfc_unres_lock);
  1031. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  1032. if (uc->mfc_origin == c->mfc_origin &&
  1033. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  1034. list_del(&uc->list);
  1035. atomic_dec(&mrt->cache_resolve_queue_len);
  1036. found = true;
  1037. break;
  1038. }
  1039. }
  1040. if (list_empty(&mrt->mfc_unres_queue))
  1041. del_timer(&mrt->ipmr_expire_timer);
  1042. spin_unlock_bh(&mfc_unres_lock);
  1043. if (found) {
  1044. ipmr_cache_resolve(net, mrt, uc, c);
  1045. ipmr_cache_free(uc);
  1046. }
  1047. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1048. return 0;
  1049. }
  1050. /* Close the multicast socket, and clear the vif tables etc */
  1051. static void mroute_clean_tables(struct mr_table *mrt, bool all)
  1052. {
  1053. struct mfc_cache *c, *tmp;
  1054. LIST_HEAD(list);
  1055. int i;
  1056. /* Shut down all active vif entries */
  1057. for (i = 0; i < mrt->maxvif; i++) {
  1058. if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
  1059. continue;
  1060. vif_delete(mrt, i, 0, &list);
  1061. }
  1062. unregister_netdevice_many(&list);
  1063. /* Wipe the cache */
  1064. list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
  1065. if (!all && (c->mfc_flags & MFC_STATIC))
  1066. continue;
  1067. rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
  1068. list_del_rcu(&c->list);
  1069. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1070. ipmr_cache_free(c);
  1071. }
  1072. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1073. spin_lock_bh(&mfc_unres_lock);
  1074. list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
  1075. list_del(&c->list);
  1076. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1077. ipmr_destroy_unres(mrt, c);
  1078. }
  1079. spin_unlock_bh(&mfc_unres_lock);
  1080. }
  1081. }
  1082. /* called from ip_ra_control(), before an RCU grace period,
  1083. * we dont need to call synchronize_rcu() here
  1084. */
  1085. static void mrtsock_destruct(struct sock *sk)
  1086. {
  1087. struct net *net = sock_net(sk);
  1088. struct mr_table *mrt;
  1089. rtnl_lock();
  1090. ipmr_for_each_table(mrt, net) {
  1091. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1092. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1093. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1094. NETCONFA_IFINDEX_ALL,
  1095. net->ipv4.devconf_all);
  1096. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1097. mroute_clean_tables(mrt, false);
  1098. }
  1099. }
  1100. rtnl_unlock();
  1101. }
  1102. /* Socket options and virtual interface manipulation. The whole
  1103. * virtual interface system is a complete heap, but unfortunately
  1104. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1105. * MOSPF/PIM router set up we can clean this up.
  1106. */
  1107. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
  1108. unsigned int optlen)
  1109. {
  1110. struct net *net = sock_net(sk);
  1111. int val, ret = 0, parent = 0;
  1112. struct mr_table *mrt;
  1113. struct vifctl vif;
  1114. struct mfcctl mfc;
  1115. u32 uval;
  1116. /* There's one exception to the lock - MRT_DONE which needs to unlock */
  1117. rtnl_lock();
  1118. if (sk->sk_type != SOCK_RAW ||
  1119. inet_sk(sk)->inet_num != IPPROTO_IGMP) {
  1120. ret = -EOPNOTSUPP;
  1121. goto out_unlock;
  1122. }
  1123. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1124. if (!mrt) {
  1125. ret = -ENOENT;
  1126. goto out_unlock;
  1127. }
  1128. if (optname != MRT_INIT) {
  1129. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1130. !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
  1131. ret = -EACCES;
  1132. goto out_unlock;
  1133. }
  1134. }
  1135. switch (optname) {
  1136. case MRT_INIT:
  1137. if (optlen != sizeof(int)) {
  1138. ret = -EINVAL;
  1139. break;
  1140. }
  1141. if (rtnl_dereference(mrt->mroute_sk)) {
  1142. ret = -EADDRINUSE;
  1143. break;
  1144. }
  1145. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1146. if (ret == 0) {
  1147. rcu_assign_pointer(mrt->mroute_sk, sk);
  1148. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1149. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1150. NETCONFA_IFINDEX_ALL,
  1151. net->ipv4.devconf_all);
  1152. }
  1153. break;
  1154. case MRT_DONE:
  1155. if (sk != rcu_access_pointer(mrt->mroute_sk)) {
  1156. ret = -EACCES;
  1157. } else {
  1158. /* We need to unlock here because mrtsock_destruct takes
  1159. * care of rtnl itself and we can't change that due to
  1160. * the IP_ROUTER_ALERT setsockopt which runs without it.
  1161. */
  1162. rtnl_unlock();
  1163. ret = ip_ra_control(sk, 0, NULL);
  1164. goto out;
  1165. }
  1166. break;
  1167. case MRT_ADD_VIF:
  1168. case MRT_DEL_VIF:
  1169. if (optlen != sizeof(vif)) {
  1170. ret = -EINVAL;
  1171. break;
  1172. }
  1173. if (copy_from_user(&vif, optval, sizeof(vif))) {
  1174. ret = -EFAULT;
  1175. break;
  1176. }
  1177. if (vif.vifc_vifi >= MAXVIFS) {
  1178. ret = -ENFILE;
  1179. break;
  1180. }
  1181. if (optname == MRT_ADD_VIF) {
  1182. ret = vif_add(net, mrt, &vif,
  1183. sk == rtnl_dereference(mrt->mroute_sk));
  1184. } else {
  1185. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1186. }
  1187. break;
  1188. /* Manipulate the forwarding caches. These live
  1189. * in a sort of kernel/user symbiosis.
  1190. */
  1191. case MRT_ADD_MFC:
  1192. case MRT_DEL_MFC:
  1193. parent = -1;
  1194. case MRT_ADD_MFC_PROXY:
  1195. case MRT_DEL_MFC_PROXY:
  1196. if (optlen != sizeof(mfc)) {
  1197. ret = -EINVAL;
  1198. break;
  1199. }
  1200. if (copy_from_user(&mfc, optval, sizeof(mfc))) {
  1201. ret = -EFAULT;
  1202. break;
  1203. }
  1204. if (parent == 0)
  1205. parent = mfc.mfcc_parent;
  1206. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1207. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1208. else
  1209. ret = ipmr_mfc_add(net, mrt, &mfc,
  1210. sk == rtnl_dereference(mrt->mroute_sk),
  1211. parent);
  1212. break;
  1213. /* Control PIM assert. */
  1214. case MRT_ASSERT:
  1215. if (optlen != sizeof(val)) {
  1216. ret = -EINVAL;
  1217. break;
  1218. }
  1219. if (get_user(val, (int __user *)optval)) {
  1220. ret = -EFAULT;
  1221. break;
  1222. }
  1223. mrt->mroute_do_assert = val;
  1224. break;
  1225. case MRT_PIM:
  1226. if (!ipmr_pimsm_enabled()) {
  1227. ret = -ENOPROTOOPT;
  1228. break;
  1229. }
  1230. if (optlen != sizeof(val)) {
  1231. ret = -EINVAL;
  1232. break;
  1233. }
  1234. if (get_user(val, (int __user *)optval)) {
  1235. ret = -EFAULT;
  1236. break;
  1237. }
  1238. val = !!val;
  1239. if (val != mrt->mroute_do_pim) {
  1240. mrt->mroute_do_pim = val;
  1241. mrt->mroute_do_assert = val;
  1242. }
  1243. break;
  1244. case MRT_TABLE:
  1245. if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
  1246. ret = -ENOPROTOOPT;
  1247. break;
  1248. }
  1249. if (optlen != sizeof(uval)) {
  1250. ret = -EINVAL;
  1251. break;
  1252. }
  1253. if (get_user(uval, (u32 __user *)optval)) {
  1254. ret = -EFAULT;
  1255. break;
  1256. }
  1257. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1258. ret = -EBUSY;
  1259. } else {
  1260. mrt = ipmr_new_table(net, uval);
  1261. if (IS_ERR(mrt))
  1262. ret = PTR_ERR(mrt);
  1263. else
  1264. raw_sk(sk)->ipmr_table = uval;
  1265. }
  1266. break;
  1267. /* Spurious command, or MRT_VERSION which you cannot set. */
  1268. default:
  1269. ret = -ENOPROTOOPT;
  1270. }
  1271. out_unlock:
  1272. rtnl_unlock();
  1273. out:
  1274. return ret;
  1275. }
  1276. /* Getsock opt support for the multicast routing system. */
  1277. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1278. {
  1279. int olr;
  1280. int val;
  1281. struct net *net = sock_net(sk);
  1282. struct mr_table *mrt;
  1283. if (sk->sk_type != SOCK_RAW ||
  1284. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1285. return -EOPNOTSUPP;
  1286. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1287. if (!mrt)
  1288. return -ENOENT;
  1289. switch (optname) {
  1290. case MRT_VERSION:
  1291. val = 0x0305;
  1292. break;
  1293. case MRT_PIM:
  1294. if (!ipmr_pimsm_enabled())
  1295. return -ENOPROTOOPT;
  1296. val = mrt->mroute_do_pim;
  1297. break;
  1298. case MRT_ASSERT:
  1299. val = mrt->mroute_do_assert;
  1300. break;
  1301. default:
  1302. return -ENOPROTOOPT;
  1303. }
  1304. if (get_user(olr, optlen))
  1305. return -EFAULT;
  1306. olr = min_t(unsigned int, olr, sizeof(int));
  1307. if (olr < 0)
  1308. return -EINVAL;
  1309. if (put_user(olr, optlen))
  1310. return -EFAULT;
  1311. if (copy_to_user(optval, &val, olr))
  1312. return -EFAULT;
  1313. return 0;
  1314. }
  1315. /* The IP multicast ioctl support routines. */
  1316. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1317. {
  1318. struct sioc_sg_req sr;
  1319. struct sioc_vif_req vr;
  1320. struct vif_device *vif;
  1321. struct mfc_cache *c;
  1322. struct net *net = sock_net(sk);
  1323. struct mr_table *mrt;
  1324. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1325. if (!mrt)
  1326. return -ENOENT;
  1327. switch (cmd) {
  1328. case SIOCGETVIFCNT:
  1329. if (copy_from_user(&vr, arg, sizeof(vr)))
  1330. return -EFAULT;
  1331. if (vr.vifi >= mrt->maxvif)
  1332. return -EINVAL;
  1333. read_lock(&mrt_lock);
  1334. vif = &mrt->vif_table[vr.vifi];
  1335. if (VIF_EXISTS(mrt, vr.vifi)) {
  1336. vr.icount = vif->pkt_in;
  1337. vr.ocount = vif->pkt_out;
  1338. vr.ibytes = vif->bytes_in;
  1339. vr.obytes = vif->bytes_out;
  1340. read_unlock(&mrt_lock);
  1341. if (copy_to_user(arg, &vr, sizeof(vr)))
  1342. return -EFAULT;
  1343. return 0;
  1344. }
  1345. read_unlock(&mrt_lock);
  1346. return -EADDRNOTAVAIL;
  1347. case SIOCGETSGCNT:
  1348. if (copy_from_user(&sr, arg, sizeof(sr)))
  1349. return -EFAULT;
  1350. rcu_read_lock();
  1351. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1352. if (c) {
  1353. sr.pktcnt = c->mfc_un.res.pkt;
  1354. sr.bytecnt = c->mfc_un.res.bytes;
  1355. sr.wrong_if = c->mfc_un.res.wrong_if;
  1356. rcu_read_unlock();
  1357. if (copy_to_user(arg, &sr, sizeof(sr)))
  1358. return -EFAULT;
  1359. return 0;
  1360. }
  1361. rcu_read_unlock();
  1362. return -EADDRNOTAVAIL;
  1363. default:
  1364. return -ENOIOCTLCMD;
  1365. }
  1366. }
  1367. #ifdef CONFIG_COMPAT
  1368. struct compat_sioc_sg_req {
  1369. struct in_addr src;
  1370. struct in_addr grp;
  1371. compat_ulong_t pktcnt;
  1372. compat_ulong_t bytecnt;
  1373. compat_ulong_t wrong_if;
  1374. };
  1375. struct compat_sioc_vif_req {
  1376. vifi_t vifi; /* Which iface */
  1377. compat_ulong_t icount;
  1378. compat_ulong_t ocount;
  1379. compat_ulong_t ibytes;
  1380. compat_ulong_t obytes;
  1381. };
  1382. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1383. {
  1384. struct compat_sioc_sg_req sr;
  1385. struct compat_sioc_vif_req vr;
  1386. struct vif_device *vif;
  1387. struct mfc_cache *c;
  1388. struct net *net = sock_net(sk);
  1389. struct mr_table *mrt;
  1390. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1391. if (!mrt)
  1392. return -ENOENT;
  1393. switch (cmd) {
  1394. case SIOCGETVIFCNT:
  1395. if (copy_from_user(&vr, arg, sizeof(vr)))
  1396. return -EFAULT;
  1397. if (vr.vifi >= mrt->maxvif)
  1398. return -EINVAL;
  1399. read_lock(&mrt_lock);
  1400. vif = &mrt->vif_table[vr.vifi];
  1401. if (VIF_EXISTS(mrt, vr.vifi)) {
  1402. vr.icount = vif->pkt_in;
  1403. vr.ocount = vif->pkt_out;
  1404. vr.ibytes = vif->bytes_in;
  1405. vr.obytes = vif->bytes_out;
  1406. read_unlock(&mrt_lock);
  1407. if (copy_to_user(arg, &vr, sizeof(vr)))
  1408. return -EFAULT;
  1409. return 0;
  1410. }
  1411. read_unlock(&mrt_lock);
  1412. return -EADDRNOTAVAIL;
  1413. case SIOCGETSGCNT:
  1414. if (copy_from_user(&sr, arg, sizeof(sr)))
  1415. return -EFAULT;
  1416. rcu_read_lock();
  1417. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1418. if (c) {
  1419. sr.pktcnt = c->mfc_un.res.pkt;
  1420. sr.bytecnt = c->mfc_un.res.bytes;
  1421. sr.wrong_if = c->mfc_un.res.wrong_if;
  1422. rcu_read_unlock();
  1423. if (copy_to_user(arg, &sr, sizeof(sr)))
  1424. return -EFAULT;
  1425. return 0;
  1426. }
  1427. rcu_read_unlock();
  1428. return -EADDRNOTAVAIL;
  1429. default:
  1430. return -ENOIOCTLCMD;
  1431. }
  1432. }
  1433. #endif
  1434. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1435. {
  1436. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1437. struct net *net = dev_net(dev);
  1438. struct mr_table *mrt;
  1439. struct vif_device *v;
  1440. int ct;
  1441. if (event != NETDEV_UNREGISTER)
  1442. return NOTIFY_DONE;
  1443. ipmr_for_each_table(mrt, net) {
  1444. v = &mrt->vif_table[0];
  1445. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1446. if (v->dev == dev)
  1447. vif_delete(mrt, ct, 1, NULL);
  1448. }
  1449. }
  1450. return NOTIFY_DONE;
  1451. }
  1452. static struct notifier_block ip_mr_notifier = {
  1453. .notifier_call = ipmr_device_event,
  1454. };
  1455. /* Encapsulate a packet by attaching a valid IPIP header to it.
  1456. * This avoids tunnel drivers and other mess and gives us the speed so
  1457. * important for multicast video.
  1458. */
  1459. static void ip_encap(struct net *net, struct sk_buff *skb,
  1460. __be32 saddr, __be32 daddr)
  1461. {
  1462. struct iphdr *iph;
  1463. const struct iphdr *old_iph = ip_hdr(skb);
  1464. skb_push(skb, sizeof(struct iphdr));
  1465. skb->transport_header = skb->network_header;
  1466. skb_reset_network_header(skb);
  1467. iph = ip_hdr(skb);
  1468. iph->version = 4;
  1469. iph->tos = old_iph->tos;
  1470. iph->ttl = old_iph->ttl;
  1471. iph->frag_off = 0;
  1472. iph->daddr = daddr;
  1473. iph->saddr = saddr;
  1474. iph->protocol = IPPROTO_IPIP;
  1475. iph->ihl = 5;
  1476. iph->tot_len = htons(skb->len);
  1477. ip_select_ident(net, skb, NULL);
  1478. ip_send_check(iph);
  1479. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1480. nf_reset(skb);
  1481. }
  1482. static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
  1483. struct sk_buff *skb)
  1484. {
  1485. struct ip_options *opt = &(IPCB(skb)->opt);
  1486. IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
  1487. IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
  1488. if (unlikely(opt->optlen))
  1489. ip_forward_options(skb);
  1490. return dst_output(net, sk, skb);
  1491. }
  1492. /* Processing handlers for ipmr_forward */
  1493. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1494. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1495. {
  1496. const struct iphdr *iph = ip_hdr(skb);
  1497. struct vif_device *vif = &mrt->vif_table[vifi];
  1498. struct net_device *dev;
  1499. struct rtable *rt;
  1500. struct flowi4 fl4;
  1501. int encap = 0;
  1502. if (!vif->dev)
  1503. goto out_free;
  1504. if (vif->flags & VIFF_REGISTER) {
  1505. vif->pkt_out++;
  1506. vif->bytes_out += skb->len;
  1507. vif->dev->stats.tx_bytes += skb->len;
  1508. vif->dev->stats.tx_packets++;
  1509. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1510. goto out_free;
  1511. }
  1512. if (vif->flags & VIFF_TUNNEL) {
  1513. rt = ip_route_output_ports(net, &fl4, NULL,
  1514. vif->remote, vif->local,
  1515. 0, 0,
  1516. IPPROTO_IPIP,
  1517. RT_TOS(iph->tos), vif->link);
  1518. if (IS_ERR(rt))
  1519. goto out_free;
  1520. encap = sizeof(struct iphdr);
  1521. } else {
  1522. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1523. 0, 0,
  1524. IPPROTO_IPIP,
  1525. RT_TOS(iph->tos), vif->link);
  1526. if (IS_ERR(rt))
  1527. goto out_free;
  1528. }
  1529. dev = rt->dst.dev;
  1530. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1531. /* Do not fragment multicasts. Alas, IPv4 does not
  1532. * allow to send ICMP, so that packets will disappear
  1533. * to blackhole.
  1534. */
  1535. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  1536. ip_rt_put(rt);
  1537. goto out_free;
  1538. }
  1539. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1540. if (skb_cow(skb, encap)) {
  1541. ip_rt_put(rt);
  1542. goto out_free;
  1543. }
  1544. vif->pkt_out++;
  1545. vif->bytes_out += skb->len;
  1546. skb_dst_drop(skb);
  1547. skb_dst_set(skb, &rt->dst);
  1548. ip_decrease_ttl(ip_hdr(skb));
  1549. /* FIXME: forward and output firewalls used to be called here.
  1550. * What do we do with netfilter? -- RR
  1551. */
  1552. if (vif->flags & VIFF_TUNNEL) {
  1553. ip_encap(net, skb, vif->local, vif->remote);
  1554. /* FIXME: extra output firewall step used to be here. --RR */
  1555. vif->dev->stats.tx_packets++;
  1556. vif->dev->stats.tx_bytes += skb->len;
  1557. }
  1558. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1559. /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1560. * not only before forwarding, but after forwarding on all output
  1561. * interfaces. It is clear, if mrouter runs a multicasting
  1562. * program, it should receive packets not depending to what interface
  1563. * program is joined.
  1564. * If we will not make it, the program will have to join on all
  1565. * interfaces. On the other hand, multihoming host (or router, but
  1566. * not mrouter) cannot join to more than one interface - it will
  1567. * result in receiving multiple packets.
  1568. */
  1569. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
  1570. net, NULL, skb, skb->dev, dev,
  1571. ipmr_forward_finish);
  1572. return;
  1573. out_free:
  1574. kfree_skb(skb);
  1575. }
  1576. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1577. {
  1578. int ct;
  1579. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1580. if (mrt->vif_table[ct].dev == dev)
  1581. break;
  1582. }
  1583. return ct;
  1584. }
  1585. /* "local" means that we should preserve one skb (for local delivery) */
  1586. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1587. struct sk_buff *skb, struct mfc_cache *cache,
  1588. int local)
  1589. {
  1590. int true_vifi = ipmr_find_vif(mrt, skb->dev);
  1591. int psend = -1;
  1592. int vif, ct;
  1593. vif = cache->mfc_parent;
  1594. cache->mfc_un.res.pkt++;
  1595. cache->mfc_un.res.bytes += skb->len;
  1596. cache->mfc_un.res.lastuse = jiffies;
  1597. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1598. struct mfc_cache *cache_proxy;
  1599. /* For an (*,G) entry, we only check that the incomming
  1600. * interface is part of the static tree.
  1601. */
  1602. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1603. if (cache_proxy &&
  1604. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1605. goto forward;
  1606. }
  1607. /* Wrong interface: drop packet and (maybe) send PIM assert. */
  1608. if (mrt->vif_table[vif].dev != skb->dev) {
  1609. struct net_device *mdev;
  1610. mdev = l3mdev_master_dev_rcu(mrt->vif_table[vif].dev);
  1611. if (mdev == skb->dev)
  1612. goto forward;
  1613. if (rt_is_output_route(skb_rtable(skb))) {
  1614. /* It is our own packet, looped back.
  1615. * Very complicated situation...
  1616. *
  1617. * The best workaround until routing daemons will be
  1618. * fixed is not to redistribute packet, if it was
  1619. * send through wrong interface. It means, that
  1620. * multicast applications WILL NOT work for
  1621. * (S,G), which have default multicast route pointing
  1622. * to wrong oif. In any case, it is not a good
  1623. * idea to use multicasting applications on router.
  1624. */
  1625. goto dont_forward;
  1626. }
  1627. cache->mfc_un.res.wrong_if++;
  1628. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1629. /* pimsm uses asserts, when switching from RPT to SPT,
  1630. * so that we cannot check that packet arrived on an oif.
  1631. * It is bad, but otherwise we would need to move pretty
  1632. * large chunk of pimd to kernel. Ough... --ANK
  1633. */
  1634. (mrt->mroute_do_pim ||
  1635. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1636. time_after(jiffies,
  1637. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1638. cache->mfc_un.res.last_assert = jiffies;
  1639. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1640. }
  1641. goto dont_forward;
  1642. }
  1643. forward:
  1644. mrt->vif_table[vif].pkt_in++;
  1645. mrt->vif_table[vif].bytes_in += skb->len;
  1646. /* Forward the frame */
  1647. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1648. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1649. if (true_vifi >= 0 &&
  1650. true_vifi != cache->mfc_parent &&
  1651. ip_hdr(skb)->ttl >
  1652. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1653. /* It's an (*,*) entry and the packet is not coming from
  1654. * the upstream: forward the packet to the upstream
  1655. * only.
  1656. */
  1657. psend = cache->mfc_parent;
  1658. goto last_forward;
  1659. }
  1660. goto dont_forward;
  1661. }
  1662. for (ct = cache->mfc_un.res.maxvif - 1;
  1663. ct >= cache->mfc_un.res.minvif; ct--) {
  1664. /* For (*,G) entry, don't forward to the incoming interface */
  1665. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1666. ct != true_vifi) &&
  1667. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1668. if (psend != -1) {
  1669. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1670. if (skb2)
  1671. ipmr_queue_xmit(net, mrt, skb2, cache,
  1672. psend);
  1673. }
  1674. psend = ct;
  1675. }
  1676. }
  1677. last_forward:
  1678. if (psend != -1) {
  1679. if (local) {
  1680. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1681. if (skb2)
  1682. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1683. } else {
  1684. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1685. return;
  1686. }
  1687. }
  1688. dont_forward:
  1689. if (!local)
  1690. kfree_skb(skb);
  1691. }
  1692. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1693. {
  1694. struct rtable *rt = skb_rtable(skb);
  1695. struct iphdr *iph = ip_hdr(skb);
  1696. struct flowi4 fl4 = {
  1697. .daddr = iph->daddr,
  1698. .saddr = iph->saddr,
  1699. .flowi4_tos = RT_TOS(iph->tos),
  1700. .flowi4_oif = (rt_is_output_route(rt) ?
  1701. skb->dev->ifindex : 0),
  1702. .flowi4_iif = (rt_is_output_route(rt) ?
  1703. LOOPBACK_IFINDEX :
  1704. skb->dev->ifindex),
  1705. .flowi4_mark = skb->mark,
  1706. };
  1707. struct mr_table *mrt;
  1708. int err;
  1709. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1710. if (err)
  1711. return ERR_PTR(err);
  1712. return mrt;
  1713. }
  1714. /* Multicast packets for forwarding arrive here
  1715. * Called with rcu_read_lock();
  1716. */
  1717. int ip_mr_input(struct sk_buff *skb)
  1718. {
  1719. struct mfc_cache *cache;
  1720. struct net *net = dev_net(skb->dev);
  1721. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1722. struct mr_table *mrt;
  1723. /* Packet is looped back after forward, it should not be
  1724. * forwarded second time, but still can be delivered locally.
  1725. */
  1726. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1727. goto dont_forward;
  1728. mrt = ipmr_rt_fib_lookup(net, skb);
  1729. if (IS_ERR(mrt)) {
  1730. kfree_skb(skb);
  1731. return PTR_ERR(mrt);
  1732. }
  1733. if (!local) {
  1734. if (IPCB(skb)->opt.router_alert) {
  1735. if (ip_call_ra_chain(skb))
  1736. return 0;
  1737. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1738. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1739. * Cisco IOS <= 11.2(8)) do not put router alert
  1740. * option to IGMP packets destined to routable
  1741. * groups. It is very bad, because it means
  1742. * that we can forward NO IGMP messages.
  1743. */
  1744. struct sock *mroute_sk;
  1745. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1746. if (mroute_sk) {
  1747. nf_reset(skb);
  1748. raw_rcv(mroute_sk, skb);
  1749. return 0;
  1750. }
  1751. }
  1752. }
  1753. /* already under rcu_read_lock() */
  1754. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1755. if (!cache) {
  1756. int vif = ipmr_find_vif(mrt, skb->dev);
  1757. if (vif >= 0)
  1758. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1759. vif);
  1760. }
  1761. /* No usable cache entry */
  1762. if (!cache) {
  1763. int vif;
  1764. if (local) {
  1765. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1766. ip_local_deliver(skb);
  1767. if (!skb2)
  1768. return -ENOBUFS;
  1769. skb = skb2;
  1770. }
  1771. read_lock(&mrt_lock);
  1772. vif = ipmr_find_vif(mrt, skb->dev);
  1773. if (vif >= 0) {
  1774. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1775. read_unlock(&mrt_lock);
  1776. return err2;
  1777. }
  1778. read_unlock(&mrt_lock);
  1779. kfree_skb(skb);
  1780. return -ENODEV;
  1781. }
  1782. read_lock(&mrt_lock);
  1783. ip_mr_forward(net, mrt, skb, cache, local);
  1784. read_unlock(&mrt_lock);
  1785. if (local)
  1786. return ip_local_deliver(skb);
  1787. return 0;
  1788. dont_forward:
  1789. if (local)
  1790. return ip_local_deliver(skb);
  1791. kfree_skb(skb);
  1792. return 0;
  1793. }
  1794. #ifdef CONFIG_IP_PIMSM_V1
  1795. /* Handle IGMP messages of PIMv1 */
  1796. int pim_rcv_v1(struct sk_buff *skb)
  1797. {
  1798. struct igmphdr *pim;
  1799. struct net *net = dev_net(skb->dev);
  1800. struct mr_table *mrt;
  1801. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1802. goto drop;
  1803. pim = igmp_hdr(skb);
  1804. mrt = ipmr_rt_fib_lookup(net, skb);
  1805. if (IS_ERR(mrt))
  1806. goto drop;
  1807. if (!mrt->mroute_do_pim ||
  1808. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1809. goto drop;
  1810. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1811. drop:
  1812. kfree_skb(skb);
  1813. }
  1814. return 0;
  1815. }
  1816. #endif
  1817. #ifdef CONFIG_IP_PIMSM_V2
  1818. static int pim_rcv(struct sk_buff *skb)
  1819. {
  1820. struct pimreghdr *pim;
  1821. struct net *net = dev_net(skb->dev);
  1822. struct mr_table *mrt;
  1823. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1824. goto drop;
  1825. pim = (struct pimreghdr *)skb_transport_header(skb);
  1826. if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
  1827. (pim->flags & PIM_NULL_REGISTER) ||
  1828. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1829. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1830. goto drop;
  1831. mrt = ipmr_rt_fib_lookup(net, skb);
  1832. if (IS_ERR(mrt))
  1833. goto drop;
  1834. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1835. drop:
  1836. kfree_skb(skb);
  1837. }
  1838. return 0;
  1839. }
  1840. #endif
  1841. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1842. struct mfc_cache *c, struct rtmsg *rtm)
  1843. {
  1844. struct rta_mfc_stats mfcs;
  1845. struct nlattr *mp_attr;
  1846. struct rtnexthop *nhp;
  1847. unsigned long lastuse;
  1848. int ct;
  1849. /* If cache is unresolved, don't try to parse IIF and OIF */
  1850. if (c->mfc_parent >= MAXVIFS) {
  1851. rtm->rtm_flags |= RTNH_F_UNRESOLVED;
  1852. return -ENOENT;
  1853. }
  1854. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1855. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1856. return -EMSGSIZE;
  1857. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1858. return -EMSGSIZE;
  1859. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1860. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1861. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1862. nla_nest_cancel(skb, mp_attr);
  1863. return -EMSGSIZE;
  1864. }
  1865. nhp->rtnh_flags = 0;
  1866. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1867. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1868. nhp->rtnh_len = sizeof(*nhp);
  1869. }
  1870. }
  1871. nla_nest_end(skb, mp_attr);
  1872. lastuse = READ_ONCE(c->mfc_un.res.lastuse);
  1873. lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
  1874. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1875. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1876. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1877. if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
  1878. nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
  1879. RTA_PAD))
  1880. return -EMSGSIZE;
  1881. rtm->rtm_type = RTN_MULTICAST;
  1882. return 1;
  1883. }
  1884. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1885. __be32 saddr, __be32 daddr,
  1886. struct rtmsg *rtm, u32 portid)
  1887. {
  1888. struct mfc_cache *cache;
  1889. struct mr_table *mrt;
  1890. int err;
  1891. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1892. if (!mrt)
  1893. return -ENOENT;
  1894. rcu_read_lock();
  1895. cache = ipmr_cache_find(mrt, saddr, daddr);
  1896. if (!cache && skb->dev) {
  1897. int vif = ipmr_find_vif(mrt, skb->dev);
  1898. if (vif >= 0)
  1899. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1900. }
  1901. if (!cache) {
  1902. struct sk_buff *skb2;
  1903. struct iphdr *iph;
  1904. struct net_device *dev;
  1905. int vif = -1;
  1906. dev = skb->dev;
  1907. read_lock(&mrt_lock);
  1908. if (dev)
  1909. vif = ipmr_find_vif(mrt, dev);
  1910. if (vif < 0) {
  1911. read_unlock(&mrt_lock);
  1912. rcu_read_unlock();
  1913. return -ENODEV;
  1914. }
  1915. skb2 = skb_clone(skb, GFP_ATOMIC);
  1916. if (!skb2) {
  1917. read_unlock(&mrt_lock);
  1918. rcu_read_unlock();
  1919. return -ENOMEM;
  1920. }
  1921. NETLINK_CB(skb2).portid = portid;
  1922. skb_push(skb2, sizeof(struct iphdr));
  1923. skb_reset_network_header(skb2);
  1924. iph = ip_hdr(skb2);
  1925. iph->ihl = sizeof(struct iphdr) >> 2;
  1926. iph->saddr = saddr;
  1927. iph->daddr = daddr;
  1928. iph->version = 0;
  1929. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1930. read_unlock(&mrt_lock);
  1931. rcu_read_unlock();
  1932. return err;
  1933. }
  1934. read_lock(&mrt_lock);
  1935. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1936. read_unlock(&mrt_lock);
  1937. rcu_read_unlock();
  1938. return err;
  1939. }
  1940. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1941. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1942. int flags)
  1943. {
  1944. struct nlmsghdr *nlh;
  1945. struct rtmsg *rtm;
  1946. int err;
  1947. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1948. if (!nlh)
  1949. return -EMSGSIZE;
  1950. rtm = nlmsg_data(nlh);
  1951. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1952. rtm->rtm_dst_len = 32;
  1953. rtm->rtm_src_len = 32;
  1954. rtm->rtm_tos = 0;
  1955. rtm->rtm_table = mrt->id;
  1956. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1957. goto nla_put_failure;
  1958. rtm->rtm_type = RTN_MULTICAST;
  1959. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1960. if (c->mfc_flags & MFC_STATIC)
  1961. rtm->rtm_protocol = RTPROT_STATIC;
  1962. else
  1963. rtm->rtm_protocol = RTPROT_MROUTED;
  1964. rtm->rtm_flags = 0;
  1965. if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
  1966. nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
  1967. goto nla_put_failure;
  1968. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1969. /* do not break the dump if cache is unresolved */
  1970. if (err < 0 && err != -ENOENT)
  1971. goto nla_put_failure;
  1972. nlmsg_end(skb, nlh);
  1973. return 0;
  1974. nla_put_failure:
  1975. nlmsg_cancel(skb, nlh);
  1976. return -EMSGSIZE;
  1977. }
  1978. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1979. {
  1980. size_t len =
  1981. NLMSG_ALIGN(sizeof(struct rtmsg))
  1982. + nla_total_size(4) /* RTA_TABLE */
  1983. + nla_total_size(4) /* RTA_SRC */
  1984. + nla_total_size(4) /* RTA_DST */
  1985. ;
  1986. if (!unresolved)
  1987. len = len
  1988. + nla_total_size(4) /* RTA_IIF */
  1989. + nla_total_size(0) /* RTA_MULTIPATH */
  1990. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  1991. /* RTA_MFC_STATS */
  1992. + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
  1993. ;
  1994. return len;
  1995. }
  1996. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  1997. int cmd)
  1998. {
  1999. struct net *net = read_pnet(&mrt->net);
  2000. struct sk_buff *skb;
  2001. int err = -ENOBUFS;
  2002. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  2003. GFP_ATOMIC);
  2004. if (!skb)
  2005. goto errout;
  2006. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  2007. if (err < 0)
  2008. goto errout;
  2009. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  2010. return;
  2011. errout:
  2012. kfree_skb(skb);
  2013. if (err < 0)
  2014. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  2015. }
  2016. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  2017. {
  2018. struct net *net = sock_net(skb->sk);
  2019. struct mr_table *mrt;
  2020. struct mfc_cache *mfc;
  2021. unsigned int t = 0, s_t;
  2022. unsigned int e = 0, s_e;
  2023. s_t = cb->args[0];
  2024. s_e = cb->args[1];
  2025. rcu_read_lock();
  2026. ipmr_for_each_table(mrt, net) {
  2027. if (t < s_t)
  2028. goto next_table;
  2029. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
  2030. if (e < s_e)
  2031. goto next_entry;
  2032. if (ipmr_fill_mroute(mrt, skb,
  2033. NETLINK_CB(cb->skb).portid,
  2034. cb->nlh->nlmsg_seq,
  2035. mfc, RTM_NEWROUTE,
  2036. NLM_F_MULTI) < 0)
  2037. goto done;
  2038. next_entry:
  2039. e++;
  2040. }
  2041. e = 0;
  2042. s_e = 0;
  2043. spin_lock_bh(&mfc_unres_lock);
  2044. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2045. if (e < s_e)
  2046. goto next_entry2;
  2047. if (ipmr_fill_mroute(mrt, skb,
  2048. NETLINK_CB(cb->skb).portid,
  2049. cb->nlh->nlmsg_seq,
  2050. mfc, RTM_NEWROUTE,
  2051. NLM_F_MULTI) < 0) {
  2052. spin_unlock_bh(&mfc_unres_lock);
  2053. goto done;
  2054. }
  2055. next_entry2:
  2056. e++;
  2057. }
  2058. spin_unlock_bh(&mfc_unres_lock);
  2059. e = 0;
  2060. s_e = 0;
  2061. next_table:
  2062. t++;
  2063. }
  2064. done:
  2065. rcu_read_unlock();
  2066. cb->args[1] = e;
  2067. cb->args[0] = t;
  2068. return skb->len;
  2069. }
  2070. static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
  2071. [RTA_SRC] = { .type = NLA_U32 },
  2072. [RTA_DST] = { .type = NLA_U32 },
  2073. [RTA_IIF] = { .type = NLA_U32 },
  2074. [RTA_TABLE] = { .type = NLA_U32 },
  2075. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  2076. };
  2077. static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
  2078. {
  2079. switch (rtm_protocol) {
  2080. case RTPROT_STATIC:
  2081. case RTPROT_MROUTED:
  2082. return true;
  2083. }
  2084. return false;
  2085. }
  2086. static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
  2087. {
  2088. struct rtnexthop *rtnh = nla_data(nla);
  2089. int remaining = nla_len(nla), vifi = 0;
  2090. while (rtnh_ok(rtnh, remaining)) {
  2091. mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
  2092. if (++vifi == MAXVIFS)
  2093. break;
  2094. rtnh = rtnh_next(rtnh, &remaining);
  2095. }
  2096. return remaining > 0 ? -EINVAL : vifi;
  2097. }
  2098. /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
  2099. static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
  2100. struct mfcctl *mfcc, int *mrtsock,
  2101. struct mr_table **mrtret)
  2102. {
  2103. struct net_device *dev = NULL;
  2104. u32 tblid = RT_TABLE_DEFAULT;
  2105. struct mr_table *mrt;
  2106. struct nlattr *attr;
  2107. struct rtmsg *rtm;
  2108. int ret, rem;
  2109. ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
  2110. if (ret < 0)
  2111. goto out;
  2112. rtm = nlmsg_data(nlh);
  2113. ret = -EINVAL;
  2114. if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
  2115. rtm->rtm_type != RTN_MULTICAST ||
  2116. rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
  2117. !ipmr_rtm_validate_proto(rtm->rtm_protocol))
  2118. goto out;
  2119. memset(mfcc, 0, sizeof(*mfcc));
  2120. mfcc->mfcc_parent = -1;
  2121. ret = 0;
  2122. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
  2123. switch (nla_type(attr)) {
  2124. case RTA_SRC:
  2125. mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
  2126. break;
  2127. case RTA_DST:
  2128. mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
  2129. break;
  2130. case RTA_IIF:
  2131. dev = __dev_get_by_index(net, nla_get_u32(attr));
  2132. if (!dev) {
  2133. ret = -ENODEV;
  2134. goto out;
  2135. }
  2136. break;
  2137. case RTA_MULTIPATH:
  2138. if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
  2139. ret = -EINVAL;
  2140. goto out;
  2141. }
  2142. break;
  2143. case RTA_PREFSRC:
  2144. ret = 1;
  2145. break;
  2146. case RTA_TABLE:
  2147. tblid = nla_get_u32(attr);
  2148. break;
  2149. }
  2150. }
  2151. mrt = ipmr_get_table(net, tblid);
  2152. if (!mrt) {
  2153. ret = -ENOENT;
  2154. goto out;
  2155. }
  2156. *mrtret = mrt;
  2157. *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
  2158. if (dev)
  2159. mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
  2160. out:
  2161. return ret;
  2162. }
  2163. /* takes care of both newroute and delroute */
  2164. static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
  2165. {
  2166. struct net *net = sock_net(skb->sk);
  2167. int ret, mrtsock, parent;
  2168. struct mr_table *tbl;
  2169. struct mfcctl mfcc;
  2170. mrtsock = 0;
  2171. tbl = NULL;
  2172. ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
  2173. if (ret < 0)
  2174. return ret;
  2175. parent = ret ? mfcc.mfcc_parent : -1;
  2176. if (nlh->nlmsg_type == RTM_NEWROUTE)
  2177. return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
  2178. else
  2179. return ipmr_mfc_delete(tbl, &mfcc, parent);
  2180. }
  2181. #ifdef CONFIG_PROC_FS
  2182. /* The /proc interfaces to multicast routing :
  2183. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2184. */
  2185. struct ipmr_vif_iter {
  2186. struct seq_net_private p;
  2187. struct mr_table *mrt;
  2188. int ct;
  2189. };
  2190. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2191. struct ipmr_vif_iter *iter,
  2192. loff_t pos)
  2193. {
  2194. struct mr_table *mrt = iter->mrt;
  2195. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2196. if (!VIF_EXISTS(mrt, iter->ct))
  2197. continue;
  2198. if (pos-- == 0)
  2199. return &mrt->vif_table[iter->ct];
  2200. }
  2201. return NULL;
  2202. }
  2203. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2204. __acquires(mrt_lock)
  2205. {
  2206. struct ipmr_vif_iter *iter = seq->private;
  2207. struct net *net = seq_file_net(seq);
  2208. struct mr_table *mrt;
  2209. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2210. if (!mrt)
  2211. return ERR_PTR(-ENOENT);
  2212. iter->mrt = mrt;
  2213. read_lock(&mrt_lock);
  2214. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2215. : SEQ_START_TOKEN;
  2216. }
  2217. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2218. {
  2219. struct ipmr_vif_iter *iter = seq->private;
  2220. struct net *net = seq_file_net(seq);
  2221. struct mr_table *mrt = iter->mrt;
  2222. ++*pos;
  2223. if (v == SEQ_START_TOKEN)
  2224. return ipmr_vif_seq_idx(net, iter, 0);
  2225. while (++iter->ct < mrt->maxvif) {
  2226. if (!VIF_EXISTS(mrt, iter->ct))
  2227. continue;
  2228. return &mrt->vif_table[iter->ct];
  2229. }
  2230. return NULL;
  2231. }
  2232. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2233. __releases(mrt_lock)
  2234. {
  2235. read_unlock(&mrt_lock);
  2236. }
  2237. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2238. {
  2239. struct ipmr_vif_iter *iter = seq->private;
  2240. struct mr_table *mrt = iter->mrt;
  2241. if (v == SEQ_START_TOKEN) {
  2242. seq_puts(seq,
  2243. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2244. } else {
  2245. const struct vif_device *vif = v;
  2246. const char *name = vif->dev ? vif->dev->name : "none";
  2247. seq_printf(seq,
  2248. "%2zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2249. vif - mrt->vif_table,
  2250. name, vif->bytes_in, vif->pkt_in,
  2251. vif->bytes_out, vif->pkt_out,
  2252. vif->flags, vif->local, vif->remote);
  2253. }
  2254. return 0;
  2255. }
  2256. static const struct seq_operations ipmr_vif_seq_ops = {
  2257. .start = ipmr_vif_seq_start,
  2258. .next = ipmr_vif_seq_next,
  2259. .stop = ipmr_vif_seq_stop,
  2260. .show = ipmr_vif_seq_show,
  2261. };
  2262. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2263. {
  2264. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2265. sizeof(struct ipmr_vif_iter));
  2266. }
  2267. static const struct file_operations ipmr_vif_fops = {
  2268. .owner = THIS_MODULE,
  2269. .open = ipmr_vif_open,
  2270. .read = seq_read,
  2271. .llseek = seq_lseek,
  2272. .release = seq_release_net,
  2273. };
  2274. struct ipmr_mfc_iter {
  2275. struct seq_net_private p;
  2276. struct mr_table *mrt;
  2277. struct list_head *cache;
  2278. };
  2279. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2280. struct ipmr_mfc_iter *it, loff_t pos)
  2281. {
  2282. struct mr_table *mrt = it->mrt;
  2283. struct mfc_cache *mfc;
  2284. rcu_read_lock();
  2285. it->cache = &mrt->mfc_cache_list;
  2286. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
  2287. if (pos-- == 0)
  2288. return mfc;
  2289. rcu_read_unlock();
  2290. spin_lock_bh(&mfc_unres_lock);
  2291. it->cache = &mrt->mfc_unres_queue;
  2292. list_for_each_entry(mfc, it->cache, list)
  2293. if (pos-- == 0)
  2294. return mfc;
  2295. spin_unlock_bh(&mfc_unres_lock);
  2296. it->cache = NULL;
  2297. return NULL;
  2298. }
  2299. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2300. {
  2301. struct ipmr_mfc_iter *it = seq->private;
  2302. struct net *net = seq_file_net(seq);
  2303. struct mr_table *mrt;
  2304. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2305. if (!mrt)
  2306. return ERR_PTR(-ENOENT);
  2307. it->mrt = mrt;
  2308. it->cache = NULL;
  2309. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2310. : SEQ_START_TOKEN;
  2311. }
  2312. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2313. {
  2314. struct ipmr_mfc_iter *it = seq->private;
  2315. struct net *net = seq_file_net(seq);
  2316. struct mr_table *mrt = it->mrt;
  2317. struct mfc_cache *mfc = v;
  2318. ++*pos;
  2319. if (v == SEQ_START_TOKEN)
  2320. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2321. if (mfc->list.next != it->cache)
  2322. return list_entry(mfc->list.next, struct mfc_cache, list);
  2323. if (it->cache == &mrt->mfc_unres_queue)
  2324. goto end_of_list;
  2325. /* exhausted cache_array, show unresolved */
  2326. rcu_read_unlock();
  2327. it->cache = &mrt->mfc_unres_queue;
  2328. spin_lock_bh(&mfc_unres_lock);
  2329. if (!list_empty(it->cache))
  2330. return list_first_entry(it->cache, struct mfc_cache, list);
  2331. end_of_list:
  2332. spin_unlock_bh(&mfc_unres_lock);
  2333. it->cache = NULL;
  2334. return NULL;
  2335. }
  2336. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2337. {
  2338. struct ipmr_mfc_iter *it = seq->private;
  2339. struct mr_table *mrt = it->mrt;
  2340. if (it->cache == &mrt->mfc_unres_queue)
  2341. spin_unlock_bh(&mfc_unres_lock);
  2342. else if (it->cache == &mrt->mfc_cache_list)
  2343. rcu_read_unlock();
  2344. }
  2345. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2346. {
  2347. int n;
  2348. if (v == SEQ_START_TOKEN) {
  2349. seq_puts(seq,
  2350. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2351. } else {
  2352. const struct mfc_cache *mfc = v;
  2353. const struct ipmr_mfc_iter *it = seq->private;
  2354. const struct mr_table *mrt = it->mrt;
  2355. seq_printf(seq, "%08X %08X %-3hd",
  2356. (__force u32) mfc->mfc_mcastgrp,
  2357. (__force u32) mfc->mfc_origin,
  2358. mfc->mfc_parent);
  2359. if (it->cache != &mrt->mfc_unres_queue) {
  2360. seq_printf(seq, " %8lu %8lu %8lu",
  2361. mfc->mfc_un.res.pkt,
  2362. mfc->mfc_un.res.bytes,
  2363. mfc->mfc_un.res.wrong_if);
  2364. for (n = mfc->mfc_un.res.minvif;
  2365. n < mfc->mfc_un.res.maxvif; n++) {
  2366. if (VIF_EXISTS(mrt, n) &&
  2367. mfc->mfc_un.res.ttls[n] < 255)
  2368. seq_printf(seq,
  2369. " %2d:%-3d",
  2370. n, mfc->mfc_un.res.ttls[n]);
  2371. }
  2372. } else {
  2373. /* unresolved mfc_caches don't contain
  2374. * pkt, bytes and wrong_if values
  2375. */
  2376. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2377. }
  2378. seq_putc(seq, '\n');
  2379. }
  2380. return 0;
  2381. }
  2382. static const struct seq_operations ipmr_mfc_seq_ops = {
  2383. .start = ipmr_mfc_seq_start,
  2384. .next = ipmr_mfc_seq_next,
  2385. .stop = ipmr_mfc_seq_stop,
  2386. .show = ipmr_mfc_seq_show,
  2387. };
  2388. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2389. {
  2390. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2391. sizeof(struct ipmr_mfc_iter));
  2392. }
  2393. static const struct file_operations ipmr_mfc_fops = {
  2394. .owner = THIS_MODULE,
  2395. .open = ipmr_mfc_open,
  2396. .read = seq_read,
  2397. .llseek = seq_lseek,
  2398. .release = seq_release_net,
  2399. };
  2400. #endif
  2401. #ifdef CONFIG_IP_PIMSM_V2
  2402. static const struct net_protocol pim_protocol = {
  2403. .handler = pim_rcv,
  2404. .netns_ok = 1,
  2405. };
  2406. #endif
  2407. /* Setup for IP multicast routing */
  2408. static int __net_init ipmr_net_init(struct net *net)
  2409. {
  2410. int err;
  2411. err = ipmr_rules_init(net);
  2412. if (err < 0)
  2413. goto fail;
  2414. #ifdef CONFIG_PROC_FS
  2415. err = -ENOMEM;
  2416. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2417. goto proc_vif_fail;
  2418. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2419. goto proc_cache_fail;
  2420. #endif
  2421. return 0;
  2422. #ifdef CONFIG_PROC_FS
  2423. proc_cache_fail:
  2424. remove_proc_entry("ip_mr_vif", net->proc_net);
  2425. proc_vif_fail:
  2426. ipmr_rules_exit(net);
  2427. #endif
  2428. fail:
  2429. return err;
  2430. }
  2431. static void __net_exit ipmr_net_exit(struct net *net)
  2432. {
  2433. #ifdef CONFIG_PROC_FS
  2434. remove_proc_entry("ip_mr_cache", net->proc_net);
  2435. remove_proc_entry("ip_mr_vif", net->proc_net);
  2436. #endif
  2437. ipmr_rules_exit(net);
  2438. }
  2439. static struct pernet_operations ipmr_net_ops = {
  2440. .init = ipmr_net_init,
  2441. .exit = ipmr_net_exit,
  2442. };
  2443. int __init ip_mr_init(void)
  2444. {
  2445. int err;
  2446. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2447. sizeof(struct mfc_cache),
  2448. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2449. NULL);
  2450. err = register_pernet_subsys(&ipmr_net_ops);
  2451. if (err)
  2452. goto reg_pernet_fail;
  2453. err = register_netdevice_notifier(&ip_mr_notifier);
  2454. if (err)
  2455. goto reg_notif_fail;
  2456. #ifdef CONFIG_IP_PIMSM_V2
  2457. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2458. pr_err("%s: can't add PIM protocol\n", __func__);
  2459. err = -EAGAIN;
  2460. goto add_proto_fail;
  2461. }
  2462. #endif
  2463. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2464. NULL, ipmr_rtm_dumproute, NULL);
  2465. rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
  2466. ipmr_rtm_route, NULL, NULL);
  2467. rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
  2468. ipmr_rtm_route, NULL, NULL);
  2469. return 0;
  2470. #ifdef CONFIG_IP_PIMSM_V2
  2471. add_proto_fail:
  2472. unregister_netdevice_notifier(&ip_mr_notifier);
  2473. #endif
  2474. reg_notif_fail:
  2475. unregister_pernet_subsys(&ipmr_net_ops);
  2476. reg_pernet_fail:
  2477. kmem_cache_destroy(mrt_cachep);
  2478. return err;
  2479. }