fib_trie.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <linux/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <linux/notifier.h>
  75. #include <net/net_namespace.h>
  76. #include <net/ip.h>
  77. #include <net/protocol.h>
  78. #include <net/route.h>
  79. #include <net/tcp.h>
  80. #include <net/sock.h>
  81. #include <net/ip_fib.h>
  82. #include <trace/events/fib.h>
  83. #include "fib_lookup.h"
  84. static unsigned int fib_seq_sum(void)
  85. {
  86. unsigned int fib_seq = 0;
  87. struct net *net;
  88. rtnl_lock();
  89. for_each_net(net)
  90. fib_seq += net->ipv4.fib_seq;
  91. rtnl_unlock();
  92. return fib_seq;
  93. }
  94. static ATOMIC_NOTIFIER_HEAD(fib_chain);
  95. static int call_fib_notifier(struct notifier_block *nb, struct net *net,
  96. enum fib_event_type event_type,
  97. struct fib_notifier_info *info)
  98. {
  99. info->net = net;
  100. return nb->notifier_call(nb, event_type, info);
  101. }
  102. static void fib_rules_notify(struct net *net, struct notifier_block *nb,
  103. enum fib_event_type event_type)
  104. {
  105. #ifdef CONFIG_IP_MULTIPLE_TABLES
  106. struct fib_notifier_info info;
  107. if (net->ipv4.fib_has_custom_rules)
  108. call_fib_notifier(nb, net, event_type, &info);
  109. #endif
  110. }
  111. static void fib_notify(struct net *net, struct notifier_block *nb,
  112. enum fib_event_type event_type);
  113. static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  114. enum fib_event_type event_type, u32 dst,
  115. int dst_len, struct fib_info *fi,
  116. u8 tos, u8 type, u32 tb_id)
  117. {
  118. struct fib_entry_notifier_info info = {
  119. .dst = dst,
  120. .dst_len = dst_len,
  121. .fi = fi,
  122. .tos = tos,
  123. .type = type,
  124. .tb_id = tb_id,
  125. };
  126. return call_fib_notifier(nb, net, event_type, &info.info);
  127. }
  128. static bool fib_dump_is_consistent(struct notifier_block *nb,
  129. void (*cb)(struct notifier_block *nb),
  130. unsigned int fib_seq)
  131. {
  132. atomic_notifier_chain_register(&fib_chain, nb);
  133. if (fib_seq == fib_seq_sum())
  134. return true;
  135. atomic_notifier_chain_unregister(&fib_chain, nb);
  136. if (cb)
  137. cb(nb);
  138. return false;
  139. }
  140. #define FIB_DUMP_MAX_RETRIES 5
  141. int register_fib_notifier(struct notifier_block *nb,
  142. void (*cb)(struct notifier_block *nb))
  143. {
  144. int retries = 0;
  145. do {
  146. unsigned int fib_seq = fib_seq_sum();
  147. struct net *net;
  148. /* Mutex semantics guarantee that every change done to
  149. * FIB tries before we read the change sequence counter
  150. * is now visible to us.
  151. */
  152. rcu_read_lock();
  153. for_each_net_rcu(net) {
  154. fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
  155. fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
  156. }
  157. rcu_read_unlock();
  158. if (fib_dump_is_consistent(nb, cb, fib_seq))
  159. return 0;
  160. } while (++retries < FIB_DUMP_MAX_RETRIES);
  161. return -EBUSY;
  162. }
  163. EXPORT_SYMBOL(register_fib_notifier);
  164. int unregister_fib_notifier(struct notifier_block *nb)
  165. {
  166. return atomic_notifier_chain_unregister(&fib_chain, nb);
  167. }
  168. EXPORT_SYMBOL(unregister_fib_notifier);
  169. int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
  170. struct fib_notifier_info *info)
  171. {
  172. net->ipv4.fib_seq++;
  173. info->net = net;
  174. return atomic_notifier_call_chain(&fib_chain, event_type, info);
  175. }
  176. static int call_fib_entry_notifiers(struct net *net,
  177. enum fib_event_type event_type, u32 dst,
  178. int dst_len, struct fib_info *fi,
  179. u8 tos, u8 type, u32 tb_id)
  180. {
  181. struct fib_entry_notifier_info info = {
  182. .dst = dst,
  183. .dst_len = dst_len,
  184. .fi = fi,
  185. .tos = tos,
  186. .type = type,
  187. .tb_id = tb_id,
  188. };
  189. return call_fib_notifiers(net, event_type, &info.info);
  190. }
  191. #define MAX_STAT_DEPTH 32
  192. #define KEYLENGTH (8*sizeof(t_key))
  193. #define KEY_MAX ((t_key)~0)
  194. typedef unsigned int t_key;
  195. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  196. #define IS_TNODE(n) ((n)->bits)
  197. #define IS_LEAF(n) (!(n)->bits)
  198. struct key_vector {
  199. t_key key;
  200. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  201. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  202. unsigned char slen;
  203. union {
  204. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  205. struct hlist_head leaf;
  206. /* This array is valid if (pos | bits) > 0 (TNODE) */
  207. struct key_vector __rcu *tnode[0];
  208. };
  209. };
  210. struct tnode {
  211. struct rcu_head rcu;
  212. t_key empty_children; /* KEYLENGTH bits needed */
  213. t_key full_children; /* KEYLENGTH bits needed */
  214. struct key_vector __rcu *parent;
  215. struct key_vector kv[1];
  216. #define tn_bits kv[0].bits
  217. };
  218. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  219. #define LEAF_SIZE TNODE_SIZE(1)
  220. #ifdef CONFIG_IP_FIB_TRIE_STATS
  221. struct trie_use_stats {
  222. unsigned int gets;
  223. unsigned int backtrack;
  224. unsigned int semantic_match_passed;
  225. unsigned int semantic_match_miss;
  226. unsigned int null_node_hit;
  227. unsigned int resize_node_skipped;
  228. };
  229. #endif
  230. struct trie_stat {
  231. unsigned int totdepth;
  232. unsigned int maxdepth;
  233. unsigned int tnodes;
  234. unsigned int leaves;
  235. unsigned int nullpointers;
  236. unsigned int prefixes;
  237. unsigned int nodesizes[MAX_STAT_DEPTH];
  238. };
  239. struct trie {
  240. struct key_vector kv[1];
  241. #ifdef CONFIG_IP_FIB_TRIE_STATS
  242. struct trie_use_stats __percpu *stats;
  243. #endif
  244. };
  245. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  246. static size_t tnode_free_size;
  247. /*
  248. * synchronize_rcu after call_rcu for that many pages; it should be especially
  249. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  250. * obtained experimentally, aiming to avoid visible slowdown.
  251. */
  252. static const int sync_pages = 128;
  253. static struct kmem_cache *fn_alias_kmem __read_mostly;
  254. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  255. static inline struct tnode *tn_info(struct key_vector *kv)
  256. {
  257. return container_of(kv, struct tnode, kv[0]);
  258. }
  259. /* caller must hold RTNL */
  260. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  261. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  262. /* caller must hold RCU read lock or RTNL */
  263. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  264. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  265. /* wrapper for rcu_assign_pointer */
  266. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  267. {
  268. if (n)
  269. rcu_assign_pointer(tn_info(n)->parent, tp);
  270. }
  271. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  272. /* This provides us with the number of children in this node, in the case of a
  273. * leaf this will return 0 meaning none of the children are accessible.
  274. */
  275. static inline unsigned long child_length(const struct key_vector *tn)
  276. {
  277. return (1ul << tn->bits) & ~(1ul);
  278. }
  279. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  280. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  281. {
  282. unsigned long index = key ^ kv->key;
  283. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  284. return 0;
  285. return index >> kv->pos;
  286. }
  287. /* To understand this stuff, an understanding of keys and all their bits is
  288. * necessary. Every node in the trie has a key associated with it, but not
  289. * all of the bits in that key are significant.
  290. *
  291. * Consider a node 'n' and its parent 'tp'.
  292. *
  293. * If n is a leaf, every bit in its key is significant. Its presence is
  294. * necessitated by path compression, since during a tree traversal (when
  295. * searching for a leaf - unless we are doing an insertion) we will completely
  296. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  297. * a potentially successful search, that we have indeed been walking the
  298. * correct key path.
  299. *
  300. * Note that we can never "miss" the correct key in the tree if present by
  301. * following the wrong path. Path compression ensures that segments of the key
  302. * that are the same for all keys with a given prefix are skipped, but the
  303. * skipped part *is* identical for each node in the subtrie below the skipped
  304. * bit! trie_insert() in this implementation takes care of that.
  305. *
  306. * if n is an internal node - a 'tnode' here, the various parts of its key
  307. * have many different meanings.
  308. *
  309. * Example:
  310. * _________________________________________________________________
  311. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  312. * -----------------------------------------------------------------
  313. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  314. *
  315. * _________________________________________________________________
  316. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  317. * -----------------------------------------------------------------
  318. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  319. *
  320. * tp->pos = 22
  321. * tp->bits = 3
  322. * n->pos = 13
  323. * n->bits = 4
  324. *
  325. * First, let's just ignore the bits that come before the parent tp, that is
  326. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  327. * point we do not use them for anything.
  328. *
  329. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  330. * index into the parent's child array. That is, they will be used to find
  331. * 'n' among tp's children.
  332. *
  333. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  334. * for the node n.
  335. *
  336. * All the bits we have seen so far are significant to the node n. The rest
  337. * of the bits are really not needed or indeed known in n->key.
  338. *
  339. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  340. * n's child array, and will of course be different for each child.
  341. *
  342. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  343. * at this point.
  344. */
  345. static const int halve_threshold = 25;
  346. static const int inflate_threshold = 50;
  347. static const int halve_threshold_root = 15;
  348. static const int inflate_threshold_root = 30;
  349. static void __alias_free_mem(struct rcu_head *head)
  350. {
  351. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  352. kmem_cache_free(fn_alias_kmem, fa);
  353. }
  354. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  355. {
  356. call_rcu(&fa->rcu, __alias_free_mem);
  357. }
  358. #define TNODE_KMALLOC_MAX \
  359. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  360. #define TNODE_VMALLOC_MAX \
  361. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  362. static void __node_free_rcu(struct rcu_head *head)
  363. {
  364. struct tnode *n = container_of(head, struct tnode, rcu);
  365. if (!n->tn_bits)
  366. kmem_cache_free(trie_leaf_kmem, n);
  367. else
  368. kvfree(n);
  369. }
  370. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  371. static struct tnode *tnode_alloc(int bits)
  372. {
  373. size_t size;
  374. /* verify bits is within bounds */
  375. if (bits > TNODE_VMALLOC_MAX)
  376. return NULL;
  377. /* determine size and verify it is non-zero and didn't overflow */
  378. size = TNODE_SIZE(1ul << bits);
  379. if (size <= PAGE_SIZE)
  380. return kzalloc(size, GFP_KERNEL);
  381. else
  382. return vzalloc(size);
  383. }
  384. static inline void empty_child_inc(struct key_vector *n)
  385. {
  386. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  387. }
  388. static inline void empty_child_dec(struct key_vector *n)
  389. {
  390. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  391. }
  392. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  393. {
  394. struct key_vector *l;
  395. struct tnode *kv;
  396. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  397. if (!kv)
  398. return NULL;
  399. /* initialize key vector */
  400. l = kv->kv;
  401. l->key = key;
  402. l->pos = 0;
  403. l->bits = 0;
  404. l->slen = fa->fa_slen;
  405. /* link leaf to fib alias */
  406. INIT_HLIST_HEAD(&l->leaf);
  407. hlist_add_head(&fa->fa_list, &l->leaf);
  408. return l;
  409. }
  410. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  411. {
  412. unsigned int shift = pos + bits;
  413. struct key_vector *tn;
  414. struct tnode *tnode;
  415. /* verify bits and pos their msb bits clear and values are valid */
  416. BUG_ON(!bits || (shift > KEYLENGTH));
  417. tnode = tnode_alloc(bits);
  418. if (!tnode)
  419. return NULL;
  420. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  421. sizeof(struct key_vector *) << bits);
  422. if (bits == KEYLENGTH)
  423. tnode->full_children = 1;
  424. else
  425. tnode->empty_children = 1ul << bits;
  426. tn = tnode->kv;
  427. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  428. tn->pos = pos;
  429. tn->bits = bits;
  430. tn->slen = pos;
  431. return tn;
  432. }
  433. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  434. * and no bits are skipped. See discussion in dyntree paper p. 6
  435. */
  436. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  437. {
  438. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  439. }
  440. /* Add a child at position i overwriting the old value.
  441. * Update the value of full_children and empty_children.
  442. */
  443. static void put_child(struct key_vector *tn, unsigned long i,
  444. struct key_vector *n)
  445. {
  446. struct key_vector *chi = get_child(tn, i);
  447. int isfull, wasfull;
  448. BUG_ON(i >= child_length(tn));
  449. /* update emptyChildren, overflow into fullChildren */
  450. if (!n && chi)
  451. empty_child_inc(tn);
  452. if (n && !chi)
  453. empty_child_dec(tn);
  454. /* update fullChildren */
  455. wasfull = tnode_full(tn, chi);
  456. isfull = tnode_full(tn, n);
  457. if (wasfull && !isfull)
  458. tn_info(tn)->full_children--;
  459. else if (!wasfull && isfull)
  460. tn_info(tn)->full_children++;
  461. if (n && (tn->slen < n->slen))
  462. tn->slen = n->slen;
  463. rcu_assign_pointer(tn->tnode[i], n);
  464. }
  465. static void update_children(struct key_vector *tn)
  466. {
  467. unsigned long i;
  468. /* update all of the child parent pointers */
  469. for (i = child_length(tn); i;) {
  470. struct key_vector *inode = get_child(tn, --i);
  471. if (!inode)
  472. continue;
  473. /* Either update the children of a tnode that
  474. * already belongs to us or update the child
  475. * to point to ourselves.
  476. */
  477. if (node_parent(inode) == tn)
  478. update_children(inode);
  479. else
  480. node_set_parent(inode, tn);
  481. }
  482. }
  483. static inline void put_child_root(struct key_vector *tp, t_key key,
  484. struct key_vector *n)
  485. {
  486. if (IS_TRIE(tp))
  487. rcu_assign_pointer(tp->tnode[0], n);
  488. else
  489. put_child(tp, get_index(key, tp), n);
  490. }
  491. static inline void tnode_free_init(struct key_vector *tn)
  492. {
  493. tn_info(tn)->rcu.next = NULL;
  494. }
  495. static inline void tnode_free_append(struct key_vector *tn,
  496. struct key_vector *n)
  497. {
  498. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  499. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  500. }
  501. static void tnode_free(struct key_vector *tn)
  502. {
  503. struct callback_head *head = &tn_info(tn)->rcu;
  504. while (head) {
  505. head = head->next;
  506. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  507. node_free(tn);
  508. tn = container_of(head, struct tnode, rcu)->kv;
  509. }
  510. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  511. tnode_free_size = 0;
  512. synchronize_rcu();
  513. }
  514. }
  515. static struct key_vector *replace(struct trie *t,
  516. struct key_vector *oldtnode,
  517. struct key_vector *tn)
  518. {
  519. struct key_vector *tp = node_parent(oldtnode);
  520. unsigned long i;
  521. /* setup the parent pointer out of and back into this node */
  522. NODE_INIT_PARENT(tn, tp);
  523. put_child_root(tp, tn->key, tn);
  524. /* update all of the child parent pointers */
  525. update_children(tn);
  526. /* all pointers should be clean so we are done */
  527. tnode_free(oldtnode);
  528. /* resize children now that oldtnode is freed */
  529. for (i = child_length(tn); i;) {
  530. struct key_vector *inode = get_child(tn, --i);
  531. /* resize child node */
  532. if (tnode_full(tn, inode))
  533. tn = resize(t, inode);
  534. }
  535. return tp;
  536. }
  537. static struct key_vector *inflate(struct trie *t,
  538. struct key_vector *oldtnode)
  539. {
  540. struct key_vector *tn;
  541. unsigned long i;
  542. t_key m;
  543. pr_debug("In inflate\n");
  544. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  545. if (!tn)
  546. goto notnode;
  547. /* prepare oldtnode to be freed */
  548. tnode_free_init(oldtnode);
  549. /* Assemble all of the pointers in our cluster, in this case that
  550. * represents all of the pointers out of our allocated nodes that
  551. * point to existing tnodes and the links between our allocated
  552. * nodes.
  553. */
  554. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  555. struct key_vector *inode = get_child(oldtnode, --i);
  556. struct key_vector *node0, *node1;
  557. unsigned long j, k;
  558. /* An empty child */
  559. if (!inode)
  560. continue;
  561. /* A leaf or an internal node with skipped bits */
  562. if (!tnode_full(oldtnode, inode)) {
  563. put_child(tn, get_index(inode->key, tn), inode);
  564. continue;
  565. }
  566. /* drop the node in the old tnode free list */
  567. tnode_free_append(oldtnode, inode);
  568. /* An internal node with two children */
  569. if (inode->bits == 1) {
  570. put_child(tn, 2 * i + 1, get_child(inode, 1));
  571. put_child(tn, 2 * i, get_child(inode, 0));
  572. continue;
  573. }
  574. /* We will replace this node 'inode' with two new
  575. * ones, 'node0' and 'node1', each with half of the
  576. * original children. The two new nodes will have
  577. * a position one bit further down the key and this
  578. * means that the "significant" part of their keys
  579. * (see the discussion near the top of this file)
  580. * will differ by one bit, which will be "0" in
  581. * node0's key and "1" in node1's key. Since we are
  582. * moving the key position by one step, the bit that
  583. * we are moving away from - the bit at position
  584. * (tn->pos) - is the one that will differ between
  585. * node0 and node1. So... we synthesize that bit in the
  586. * two new keys.
  587. */
  588. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  589. if (!node1)
  590. goto nomem;
  591. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  592. tnode_free_append(tn, node1);
  593. if (!node0)
  594. goto nomem;
  595. tnode_free_append(tn, node0);
  596. /* populate child pointers in new nodes */
  597. for (k = child_length(inode), j = k / 2; j;) {
  598. put_child(node1, --j, get_child(inode, --k));
  599. put_child(node0, j, get_child(inode, j));
  600. put_child(node1, --j, get_child(inode, --k));
  601. put_child(node0, j, get_child(inode, j));
  602. }
  603. /* link new nodes to parent */
  604. NODE_INIT_PARENT(node1, tn);
  605. NODE_INIT_PARENT(node0, tn);
  606. /* link parent to nodes */
  607. put_child(tn, 2 * i + 1, node1);
  608. put_child(tn, 2 * i, node0);
  609. }
  610. /* setup the parent pointers into and out of this node */
  611. return replace(t, oldtnode, tn);
  612. nomem:
  613. /* all pointers should be clean so we are done */
  614. tnode_free(tn);
  615. notnode:
  616. return NULL;
  617. }
  618. static struct key_vector *halve(struct trie *t,
  619. struct key_vector *oldtnode)
  620. {
  621. struct key_vector *tn;
  622. unsigned long i;
  623. pr_debug("In halve\n");
  624. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  625. if (!tn)
  626. goto notnode;
  627. /* prepare oldtnode to be freed */
  628. tnode_free_init(oldtnode);
  629. /* Assemble all of the pointers in our cluster, in this case that
  630. * represents all of the pointers out of our allocated nodes that
  631. * point to existing tnodes and the links between our allocated
  632. * nodes.
  633. */
  634. for (i = child_length(oldtnode); i;) {
  635. struct key_vector *node1 = get_child(oldtnode, --i);
  636. struct key_vector *node0 = get_child(oldtnode, --i);
  637. struct key_vector *inode;
  638. /* At least one of the children is empty */
  639. if (!node1 || !node0) {
  640. put_child(tn, i / 2, node1 ? : node0);
  641. continue;
  642. }
  643. /* Two nonempty children */
  644. inode = tnode_new(node0->key, oldtnode->pos, 1);
  645. if (!inode)
  646. goto nomem;
  647. tnode_free_append(tn, inode);
  648. /* initialize pointers out of node */
  649. put_child(inode, 1, node1);
  650. put_child(inode, 0, node0);
  651. NODE_INIT_PARENT(inode, tn);
  652. /* link parent to node */
  653. put_child(tn, i / 2, inode);
  654. }
  655. /* setup the parent pointers into and out of this node */
  656. return replace(t, oldtnode, tn);
  657. nomem:
  658. /* all pointers should be clean so we are done */
  659. tnode_free(tn);
  660. notnode:
  661. return NULL;
  662. }
  663. static struct key_vector *collapse(struct trie *t,
  664. struct key_vector *oldtnode)
  665. {
  666. struct key_vector *n, *tp;
  667. unsigned long i;
  668. /* scan the tnode looking for that one child that might still exist */
  669. for (n = NULL, i = child_length(oldtnode); !n && i;)
  670. n = get_child(oldtnode, --i);
  671. /* compress one level */
  672. tp = node_parent(oldtnode);
  673. put_child_root(tp, oldtnode->key, n);
  674. node_set_parent(n, tp);
  675. /* drop dead node */
  676. node_free(oldtnode);
  677. return tp;
  678. }
  679. static unsigned char update_suffix(struct key_vector *tn)
  680. {
  681. unsigned char slen = tn->pos;
  682. unsigned long stride, i;
  683. unsigned char slen_max;
  684. /* only vector 0 can have a suffix length greater than or equal to
  685. * tn->pos + tn->bits, the second highest node will have a suffix
  686. * length at most of tn->pos + tn->bits - 1
  687. */
  688. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  689. /* search though the list of children looking for nodes that might
  690. * have a suffix greater than the one we currently have. This is
  691. * why we start with a stride of 2 since a stride of 1 would
  692. * represent the nodes with suffix length equal to tn->pos
  693. */
  694. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  695. struct key_vector *n = get_child(tn, i);
  696. if (!n || (n->slen <= slen))
  697. continue;
  698. /* update stride and slen based on new value */
  699. stride <<= (n->slen - slen);
  700. slen = n->slen;
  701. i &= ~(stride - 1);
  702. /* stop searching if we have hit the maximum possible value */
  703. if (slen >= slen_max)
  704. break;
  705. }
  706. tn->slen = slen;
  707. return slen;
  708. }
  709. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  710. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  711. * Telecommunications, page 6:
  712. * "A node is doubled if the ratio of non-empty children to all
  713. * children in the *doubled* node is at least 'high'."
  714. *
  715. * 'high' in this instance is the variable 'inflate_threshold'. It
  716. * is expressed as a percentage, so we multiply it with
  717. * child_length() and instead of multiplying by 2 (since the
  718. * child array will be doubled by inflate()) and multiplying
  719. * the left-hand side by 100 (to handle the percentage thing) we
  720. * multiply the left-hand side by 50.
  721. *
  722. * The left-hand side may look a bit weird: child_length(tn)
  723. * - tn->empty_children is of course the number of non-null children
  724. * in the current node. tn->full_children is the number of "full"
  725. * children, that is non-null tnodes with a skip value of 0.
  726. * All of those will be doubled in the resulting inflated tnode, so
  727. * we just count them one extra time here.
  728. *
  729. * A clearer way to write this would be:
  730. *
  731. * to_be_doubled = tn->full_children;
  732. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  733. * tn->full_children;
  734. *
  735. * new_child_length = child_length(tn) * 2;
  736. *
  737. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  738. * new_child_length;
  739. * if (new_fill_factor >= inflate_threshold)
  740. *
  741. * ...and so on, tho it would mess up the while () loop.
  742. *
  743. * anyway,
  744. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  745. * inflate_threshold
  746. *
  747. * avoid a division:
  748. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  749. * inflate_threshold * new_child_length
  750. *
  751. * expand not_to_be_doubled and to_be_doubled, and shorten:
  752. * 100 * (child_length(tn) - tn->empty_children +
  753. * tn->full_children) >= inflate_threshold * new_child_length
  754. *
  755. * expand new_child_length:
  756. * 100 * (child_length(tn) - tn->empty_children +
  757. * tn->full_children) >=
  758. * inflate_threshold * child_length(tn) * 2
  759. *
  760. * shorten again:
  761. * 50 * (tn->full_children + child_length(tn) -
  762. * tn->empty_children) >= inflate_threshold *
  763. * child_length(tn)
  764. *
  765. */
  766. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  767. {
  768. unsigned long used = child_length(tn);
  769. unsigned long threshold = used;
  770. /* Keep root node larger */
  771. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  772. used -= tn_info(tn)->empty_children;
  773. used += tn_info(tn)->full_children;
  774. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  775. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  776. }
  777. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  778. {
  779. unsigned long used = child_length(tn);
  780. unsigned long threshold = used;
  781. /* Keep root node larger */
  782. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  783. used -= tn_info(tn)->empty_children;
  784. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  785. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  786. }
  787. static inline bool should_collapse(struct key_vector *tn)
  788. {
  789. unsigned long used = child_length(tn);
  790. used -= tn_info(tn)->empty_children;
  791. /* account for bits == KEYLENGTH case */
  792. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  793. used -= KEY_MAX;
  794. /* One child or none, time to drop us from the trie */
  795. return used < 2;
  796. }
  797. #define MAX_WORK 10
  798. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  799. {
  800. #ifdef CONFIG_IP_FIB_TRIE_STATS
  801. struct trie_use_stats __percpu *stats = t->stats;
  802. #endif
  803. struct key_vector *tp = node_parent(tn);
  804. unsigned long cindex = get_index(tn->key, tp);
  805. int max_work = MAX_WORK;
  806. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  807. tn, inflate_threshold, halve_threshold);
  808. /* track the tnode via the pointer from the parent instead of
  809. * doing it ourselves. This way we can let RCU fully do its
  810. * thing without us interfering
  811. */
  812. BUG_ON(tn != get_child(tp, cindex));
  813. /* Double as long as the resulting node has a number of
  814. * nonempty nodes that are above the threshold.
  815. */
  816. while (should_inflate(tp, tn) && max_work) {
  817. tp = inflate(t, tn);
  818. if (!tp) {
  819. #ifdef CONFIG_IP_FIB_TRIE_STATS
  820. this_cpu_inc(stats->resize_node_skipped);
  821. #endif
  822. break;
  823. }
  824. max_work--;
  825. tn = get_child(tp, cindex);
  826. }
  827. /* update parent in case inflate failed */
  828. tp = node_parent(tn);
  829. /* Return if at least one inflate is run */
  830. if (max_work != MAX_WORK)
  831. return tp;
  832. /* Halve as long as the number of empty children in this
  833. * node is above threshold.
  834. */
  835. while (should_halve(tp, tn) && max_work) {
  836. tp = halve(t, tn);
  837. if (!tp) {
  838. #ifdef CONFIG_IP_FIB_TRIE_STATS
  839. this_cpu_inc(stats->resize_node_skipped);
  840. #endif
  841. break;
  842. }
  843. max_work--;
  844. tn = get_child(tp, cindex);
  845. }
  846. /* Only one child remains */
  847. if (should_collapse(tn))
  848. return collapse(t, tn);
  849. /* update parent in case halve failed */
  850. return node_parent(tn);
  851. }
  852. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  853. {
  854. unsigned char node_slen = tn->slen;
  855. while ((node_slen > tn->pos) && (node_slen > slen)) {
  856. slen = update_suffix(tn);
  857. if (node_slen == slen)
  858. break;
  859. tn = node_parent(tn);
  860. node_slen = tn->slen;
  861. }
  862. }
  863. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  864. {
  865. while (tn->slen < slen) {
  866. tn->slen = slen;
  867. tn = node_parent(tn);
  868. }
  869. }
  870. /* rcu_read_lock needs to be hold by caller from readside */
  871. static struct key_vector *fib_find_node(struct trie *t,
  872. struct key_vector **tp, u32 key)
  873. {
  874. struct key_vector *pn, *n = t->kv;
  875. unsigned long index = 0;
  876. do {
  877. pn = n;
  878. n = get_child_rcu(n, index);
  879. if (!n)
  880. break;
  881. index = get_cindex(key, n);
  882. /* This bit of code is a bit tricky but it combines multiple
  883. * checks into a single check. The prefix consists of the
  884. * prefix plus zeros for the bits in the cindex. The index
  885. * is the difference between the key and this value. From
  886. * this we can actually derive several pieces of data.
  887. * if (index >= (1ul << bits))
  888. * we have a mismatch in skip bits and failed
  889. * else
  890. * we know the value is cindex
  891. *
  892. * This check is safe even if bits == KEYLENGTH due to the
  893. * fact that we can only allocate a node with 32 bits if a
  894. * long is greater than 32 bits.
  895. */
  896. if (index >= (1ul << n->bits)) {
  897. n = NULL;
  898. break;
  899. }
  900. /* keep searching until we find a perfect match leaf or NULL */
  901. } while (IS_TNODE(n));
  902. *tp = pn;
  903. return n;
  904. }
  905. /* Return the first fib alias matching TOS with
  906. * priority less than or equal to PRIO.
  907. */
  908. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  909. u8 tos, u32 prio, u32 tb_id)
  910. {
  911. struct fib_alias *fa;
  912. if (!fah)
  913. return NULL;
  914. hlist_for_each_entry(fa, fah, fa_list) {
  915. if (fa->fa_slen < slen)
  916. continue;
  917. if (fa->fa_slen != slen)
  918. break;
  919. if (fa->tb_id > tb_id)
  920. continue;
  921. if (fa->tb_id != tb_id)
  922. break;
  923. if (fa->fa_tos > tos)
  924. continue;
  925. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  926. return fa;
  927. }
  928. return NULL;
  929. }
  930. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  931. {
  932. while (!IS_TRIE(tn))
  933. tn = resize(t, tn);
  934. }
  935. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  936. struct fib_alias *new, t_key key)
  937. {
  938. struct key_vector *n, *l;
  939. l = leaf_new(key, new);
  940. if (!l)
  941. goto noleaf;
  942. /* retrieve child from parent node */
  943. n = get_child(tp, get_index(key, tp));
  944. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  945. *
  946. * Add a new tnode here
  947. * first tnode need some special handling
  948. * leaves us in position for handling as case 3
  949. */
  950. if (n) {
  951. struct key_vector *tn;
  952. tn = tnode_new(key, __fls(key ^ n->key), 1);
  953. if (!tn)
  954. goto notnode;
  955. /* initialize routes out of node */
  956. NODE_INIT_PARENT(tn, tp);
  957. put_child(tn, get_index(key, tn) ^ 1, n);
  958. /* start adding routes into the node */
  959. put_child_root(tp, key, tn);
  960. node_set_parent(n, tn);
  961. /* parent now has a NULL spot where the leaf can go */
  962. tp = tn;
  963. }
  964. /* Case 3: n is NULL, and will just insert a new leaf */
  965. node_push_suffix(tp, new->fa_slen);
  966. NODE_INIT_PARENT(l, tp);
  967. put_child_root(tp, key, l);
  968. trie_rebalance(t, tp);
  969. return 0;
  970. notnode:
  971. node_free(l);
  972. noleaf:
  973. return -ENOMEM;
  974. }
  975. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  976. struct key_vector *l, struct fib_alias *new,
  977. struct fib_alias *fa, t_key key)
  978. {
  979. if (!l)
  980. return fib_insert_node(t, tp, new, key);
  981. if (fa) {
  982. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  983. } else {
  984. struct fib_alias *last;
  985. hlist_for_each_entry(last, &l->leaf, fa_list) {
  986. if (new->fa_slen < last->fa_slen)
  987. break;
  988. if ((new->fa_slen == last->fa_slen) &&
  989. (new->tb_id > last->tb_id))
  990. break;
  991. fa = last;
  992. }
  993. if (fa)
  994. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  995. else
  996. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  997. }
  998. /* if we added to the tail node then we need to update slen */
  999. if (l->slen < new->fa_slen) {
  1000. l->slen = new->fa_slen;
  1001. node_push_suffix(tp, new->fa_slen);
  1002. }
  1003. return 0;
  1004. }
  1005. /* Caller must hold RTNL. */
  1006. int fib_table_insert(struct net *net, struct fib_table *tb,
  1007. struct fib_config *cfg)
  1008. {
  1009. enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
  1010. struct trie *t = (struct trie *)tb->tb_data;
  1011. struct fib_alias *fa, *new_fa;
  1012. struct key_vector *l, *tp;
  1013. u16 nlflags = NLM_F_EXCL;
  1014. struct fib_info *fi;
  1015. u8 plen = cfg->fc_dst_len;
  1016. u8 slen = KEYLENGTH - plen;
  1017. u8 tos = cfg->fc_tos;
  1018. u32 key;
  1019. int err;
  1020. if (plen > KEYLENGTH)
  1021. return -EINVAL;
  1022. key = ntohl(cfg->fc_dst);
  1023. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  1024. if ((plen < KEYLENGTH) && (key << plen))
  1025. return -EINVAL;
  1026. fi = fib_create_info(cfg);
  1027. if (IS_ERR(fi)) {
  1028. err = PTR_ERR(fi);
  1029. goto err;
  1030. }
  1031. l = fib_find_node(t, &tp, key);
  1032. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  1033. tb->tb_id) : NULL;
  1034. /* Now fa, if non-NULL, points to the first fib alias
  1035. * with the same keys [prefix,tos,priority], if such key already
  1036. * exists or to the node before which we will insert new one.
  1037. *
  1038. * If fa is NULL, we will need to allocate a new one and
  1039. * insert to the tail of the section matching the suffix length
  1040. * of the new alias.
  1041. */
  1042. if (fa && fa->fa_tos == tos &&
  1043. fa->fa_info->fib_priority == fi->fib_priority) {
  1044. struct fib_alias *fa_first, *fa_match;
  1045. err = -EEXIST;
  1046. if (cfg->fc_nlflags & NLM_F_EXCL)
  1047. goto out;
  1048. nlflags &= ~NLM_F_EXCL;
  1049. /* We have 2 goals:
  1050. * 1. Find exact match for type, scope, fib_info to avoid
  1051. * duplicate routes
  1052. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  1053. */
  1054. fa_match = NULL;
  1055. fa_first = fa;
  1056. hlist_for_each_entry_from(fa, fa_list) {
  1057. if ((fa->fa_slen != slen) ||
  1058. (fa->tb_id != tb->tb_id) ||
  1059. (fa->fa_tos != tos))
  1060. break;
  1061. if (fa->fa_info->fib_priority != fi->fib_priority)
  1062. break;
  1063. if (fa->fa_type == cfg->fc_type &&
  1064. fa->fa_info == fi) {
  1065. fa_match = fa;
  1066. break;
  1067. }
  1068. }
  1069. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  1070. struct fib_info *fi_drop;
  1071. u8 state;
  1072. nlflags |= NLM_F_REPLACE;
  1073. fa = fa_first;
  1074. if (fa_match) {
  1075. if (fa == fa_match)
  1076. err = 0;
  1077. goto out;
  1078. }
  1079. err = -ENOBUFS;
  1080. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1081. if (!new_fa)
  1082. goto out;
  1083. fi_drop = fa->fa_info;
  1084. new_fa->fa_tos = fa->fa_tos;
  1085. new_fa->fa_info = fi;
  1086. new_fa->fa_type = cfg->fc_type;
  1087. state = fa->fa_state;
  1088. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1089. new_fa->fa_slen = fa->fa_slen;
  1090. new_fa->tb_id = tb->tb_id;
  1091. new_fa->fa_default = -1;
  1092. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
  1093. key, plen, fi,
  1094. new_fa->fa_tos, cfg->fc_type,
  1095. tb->tb_id);
  1096. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1097. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1098. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1099. alias_free_mem_rcu(fa);
  1100. fib_release_info(fi_drop);
  1101. if (state & FA_S_ACCESSED)
  1102. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1103. goto succeeded;
  1104. }
  1105. /* Error if we find a perfect match which
  1106. * uses the same scope, type, and nexthop
  1107. * information.
  1108. */
  1109. if (fa_match)
  1110. goto out;
  1111. if (cfg->fc_nlflags & NLM_F_APPEND) {
  1112. event = FIB_EVENT_ENTRY_APPEND;
  1113. nlflags |= NLM_F_APPEND;
  1114. } else {
  1115. fa = fa_first;
  1116. }
  1117. }
  1118. err = -ENOENT;
  1119. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1120. goto out;
  1121. nlflags |= NLM_F_CREATE;
  1122. err = -ENOBUFS;
  1123. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1124. if (!new_fa)
  1125. goto out;
  1126. new_fa->fa_info = fi;
  1127. new_fa->fa_tos = tos;
  1128. new_fa->fa_type = cfg->fc_type;
  1129. new_fa->fa_state = 0;
  1130. new_fa->fa_slen = slen;
  1131. new_fa->tb_id = tb->tb_id;
  1132. new_fa->fa_default = -1;
  1133. /* Insert new entry to the list. */
  1134. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1135. if (err)
  1136. goto out_free_new_fa;
  1137. if (!plen)
  1138. tb->tb_num_default++;
  1139. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1140. call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
  1141. tb->tb_id);
  1142. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1143. &cfg->fc_nlinfo, nlflags);
  1144. succeeded:
  1145. return 0;
  1146. out_free_new_fa:
  1147. kmem_cache_free(fn_alias_kmem, new_fa);
  1148. out:
  1149. fib_release_info(fi);
  1150. err:
  1151. return err;
  1152. }
  1153. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1154. {
  1155. t_key prefix = n->key;
  1156. return (key ^ prefix) & (prefix | -prefix);
  1157. }
  1158. /* should be called with rcu_read_lock */
  1159. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1160. struct fib_result *res, int fib_flags)
  1161. {
  1162. struct trie *t = (struct trie *) tb->tb_data;
  1163. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1164. struct trie_use_stats __percpu *stats = t->stats;
  1165. #endif
  1166. const t_key key = ntohl(flp->daddr);
  1167. struct key_vector *n, *pn;
  1168. struct fib_alias *fa;
  1169. unsigned long index;
  1170. t_key cindex;
  1171. trace_fib_table_lookup(tb->tb_id, flp);
  1172. pn = t->kv;
  1173. cindex = 0;
  1174. n = get_child_rcu(pn, cindex);
  1175. if (!n)
  1176. return -EAGAIN;
  1177. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1178. this_cpu_inc(stats->gets);
  1179. #endif
  1180. /* Step 1: Travel to the longest prefix match in the trie */
  1181. for (;;) {
  1182. index = get_cindex(key, n);
  1183. /* This bit of code is a bit tricky but it combines multiple
  1184. * checks into a single check. The prefix consists of the
  1185. * prefix plus zeros for the "bits" in the prefix. The index
  1186. * is the difference between the key and this value. From
  1187. * this we can actually derive several pieces of data.
  1188. * if (index >= (1ul << bits))
  1189. * we have a mismatch in skip bits and failed
  1190. * else
  1191. * we know the value is cindex
  1192. *
  1193. * This check is safe even if bits == KEYLENGTH due to the
  1194. * fact that we can only allocate a node with 32 bits if a
  1195. * long is greater than 32 bits.
  1196. */
  1197. if (index >= (1ul << n->bits))
  1198. break;
  1199. /* we have found a leaf. Prefixes have already been compared */
  1200. if (IS_LEAF(n))
  1201. goto found;
  1202. /* only record pn and cindex if we are going to be chopping
  1203. * bits later. Otherwise we are just wasting cycles.
  1204. */
  1205. if (n->slen > n->pos) {
  1206. pn = n;
  1207. cindex = index;
  1208. }
  1209. n = get_child_rcu(n, index);
  1210. if (unlikely(!n))
  1211. goto backtrace;
  1212. }
  1213. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1214. for (;;) {
  1215. /* record the pointer where our next node pointer is stored */
  1216. struct key_vector __rcu **cptr = n->tnode;
  1217. /* This test verifies that none of the bits that differ
  1218. * between the key and the prefix exist in the region of
  1219. * the lsb and higher in the prefix.
  1220. */
  1221. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1222. goto backtrace;
  1223. /* exit out and process leaf */
  1224. if (unlikely(IS_LEAF(n)))
  1225. break;
  1226. /* Don't bother recording parent info. Since we are in
  1227. * prefix match mode we will have to come back to wherever
  1228. * we started this traversal anyway
  1229. */
  1230. while ((n = rcu_dereference(*cptr)) == NULL) {
  1231. backtrace:
  1232. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1233. if (!n)
  1234. this_cpu_inc(stats->null_node_hit);
  1235. #endif
  1236. /* If we are at cindex 0 there are no more bits for
  1237. * us to strip at this level so we must ascend back
  1238. * up one level to see if there are any more bits to
  1239. * be stripped there.
  1240. */
  1241. while (!cindex) {
  1242. t_key pkey = pn->key;
  1243. /* If we don't have a parent then there is
  1244. * nothing for us to do as we do not have any
  1245. * further nodes to parse.
  1246. */
  1247. if (IS_TRIE(pn))
  1248. return -EAGAIN;
  1249. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1250. this_cpu_inc(stats->backtrack);
  1251. #endif
  1252. /* Get Child's index */
  1253. pn = node_parent_rcu(pn);
  1254. cindex = get_index(pkey, pn);
  1255. }
  1256. /* strip the least significant bit from the cindex */
  1257. cindex &= cindex - 1;
  1258. /* grab pointer for next child node */
  1259. cptr = &pn->tnode[cindex];
  1260. }
  1261. }
  1262. found:
  1263. /* this line carries forward the xor from earlier in the function */
  1264. index = key ^ n->key;
  1265. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1266. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1267. struct fib_info *fi = fa->fa_info;
  1268. int nhsel, err;
  1269. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1270. if (index >= (1ul << fa->fa_slen))
  1271. continue;
  1272. }
  1273. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1274. continue;
  1275. if (fi->fib_dead)
  1276. continue;
  1277. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1278. continue;
  1279. fib_alias_accessed(fa);
  1280. err = fib_props[fa->fa_type].error;
  1281. if (unlikely(err < 0)) {
  1282. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1283. this_cpu_inc(stats->semantic_match_passed);
  1284. #endif
  1285. return err;
  1286. }
  1287. if (fi->fib_flags & RTNH_F_DEAD)
  1288. continue;
  1289. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1290. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1291. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1292. if (nh->nh_flags & RTNH_F_DEAD)
  1293. continue;
  1294. if (in_dev &&
  1295. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1296. nh->nh_flags & RTNH_F_LINKDOWN &&
  1297. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1298. continue;
  1299. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1300. if (flp->flowi4_oif &&
  1301. flp->flowi4_oif != nh->nh_oif)
  1302. continue;
  1303. }
  1304. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1305. atomic_inc(&fi->fib_clntref);
  1306. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1307. res->nh_sel = nhsel;
  1308. res->type = fa->fa_type;
  1309. res->scope = fi->fib_scope;
  1310. res->fi = fi;
  1311. res->table = tb;
  1312. res->fa_head = &n->leaf;
  1313. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1314. this_cpu_inc(stats->semantic_match_passed);
  1315. #endif
  1316. trace_fib_table_lookup_nh(nh);
  1317. return err;
  1318. }
  1319. }
  1320. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1321. this_cpu_inc(stats->semantic_match_miss);
  1322. #endif
  1323. goto backtrace;
  1324. }
  1325. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1326. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1327. struct key_vector *l, struct fib_alias *old)
  1328. {
  1329. /* record the location of the previous list_info entry */
  1330. struct hlist_node **pprev = old->fa_list.pprev;
  1331. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1332. /* remove the fib_alias from the list */
  1333. hlist_del_rcu(&old->fa_list);
  1334. /* if we emptied the list this leaf will be freed and we can sort
  1335. * out parent suffix lengths as a part of trie_rebalance
  1336. */
  1337. if (hlist_empty(&l->leaf)) {
  1338. if (tp->slen == l->slen)
  1339. node_pull_suffix(tp, tp->pos);
  1340. put_child_root(tp, l->key, NULL);
  1341. node_free(l);
  1342. trie_rebalance(t, tp);
  1343. return;
  1344. }
  1345. /* only access fa if it is pointing at the last valid hlist_node */
  1346. if (*pprev)
  1347. return;
  1348. /* update the trie with the latest suffix length */
  1349. l->slen = fa->fa_slen;
  1350. node_pull_suffix(tp, fa->fa_slen);
  1351. }
  1352. /* Caller must hold RTNL. */
  1353. int fib_table_delete(struct net *net, struct fib_table *tb,
  1354. struct fib_config *cfg)
  1355. {
  1356. struct trie *t = (struct trie *) tb->tb_data;
  1357. struct fib_alias *fa, *fa_to_delete;
  1358. struct key_vector *l, *tp;
  1359. u8 plen = cfg->fc_dst_len;
  1360. u8 slen = KEYLENGTH - plen;
  1361. u8 tos = cfg->fc_tos;
  1362. u32 key;
  1363. if (plen > KEYLENGTH)
  1364. return -EINVAL;
  1365. key = ntohl(cfg->fc_dst);
  1366. if ((plen < KEYLENGTH) && (key << plen))
  1367. return -EINVAL;
  1368. l = fib_find_node(t, &tp, key);
  1369. if (!l)
  1370. return -ESRCH;
  1371. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1372. if (!fa)
  1373. return -ESRCH;
  1374. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1375. fa_to_delete = NULL;
  1376. hlist_for_each_entry_from(fa, fa_list) {
  1377. struct fib_info *fi = fa->fa_info;
  1378. if ((fa->fa_slen != slen) ||
  1379. (fa->tb_id != tb->tb_id) ||
  1380. (fa->fa_tos != tos))
  1381. break;
  1382. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1383. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1384. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1385. (!cfg->fc_prefsrc ||
  1386. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1387. (!cfg->fc_protocol ||
  1388. fi->fib_protocol == cfg->fc_protocol) &&
  1389. fib_nh_match(cfg, fi) == 0) {
  1390. fa_to_delete = fa;
  1391. break;
  1392. }
  1393. }
  1394. if (!fa_to_delete)
  1395. return -ESRCH;
  1396. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1397. fa_to_delete->fa_info, tos,
  1398. fa_to_delete->fa_type, tb->tb_id);
  1399. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1400. &cfg->fc_nlinfo, 0);
  1401. if (!plen)
  1402. tb->tb_num_default--;
  1403. fib_remove_alias(t, tp, l, fa_to_delete);
  1404. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1405. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1406. fib_release_info(fa_to_delete->fa_info);
  1407. alias_free_mem_rcu(fa_to_delete);
  1408. return 0;
  1409. }
  1410. /* Scan for the next leaf starting at the provided key value */
  1411. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1412. {
  1413. struct key_vector *pn, *n = *tn;
  1414. unsigned long cindex;
  1415. /* this loop is meant to try and find the key in the trie */
  1416. do {
  1417. /* record parent and next child index */
  1418. pn = n;
  1419. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1420. if (cindex >> pn->bits)
  1421. break;
  1422. /* descend into the next child */
  1423. n = get_child_rcu(pn, cindex++);
  1424. if (!n)
  1425. break;
  1426. /* guarantee forward progress on the keys */
  1427. if (IS_LEAF(n) && (n->key >= key))
  1428. goto found;
  1429. } while (IS_TNODE(n));
  1430. /* this loop will search for the next leaf with a greater key */
  1431. while (!IS_TRIE(pn)) {
  1432. /* if we exhausted the parent node we will need to climb */
  1433. if (cindex >= (1ul << pn->bits)) {
  1434. t_key pkey = pn->key;
  1435. pn = node_parent_rcu(pn);
  1436. cindex = get_index(pkey, pn) + 1;
  1437. continue;
  1438. }
  1439. /* grab the next available node */
  1440. n = get_child_rcu(pn, cindex++);
  1441. if (!n)
  1442. continue;
  1443. /* no need to compare keys since we bumped the index */
  1444. if (IS_LEAF(n))
  1445. goto found;
  1446. /* Rescan start scanning in new node */
  1447. pn = n;
  1448. cindex = 0;
  1449. }
  1450. *tn = pn;
  1451. return NULL; /* Root of trie */
  1452. found:
  1453. /* if we are at the limit for keys just return NULL for the tnode */
  1454. *tn = pn;
  1455. return n;
  1456. }
  1457. static void fib_trie_free(struct fib_table *tb)
  1458. {
  1459. struct trie *t = (struct trie *)tb->tb_data;
  1460. struct key_vector *pn = t->kv;
  1461. unsigned long cindex = 1;
  1462. struct hlist_node *tmp;
  1463. struct fib_alias *fa;
  1464. /* walk trie in reverse order and free everything */
  1465. for (;;) {
  1466. struct key_vector *n;
  1467. if (!(cindex--)) {
  1468. t_key pkey = pn->key;
  1469. if (IS_TRIE(pn))
  1470. break;
  1471. n = pn;
  1472. pn = node_parent(pn);
  1473. /* drop emptied tnode */
  1474. put_child_root(pn, n->key, NULL);
  1475. node_free(n);
  1476. cindex = get_index(pkey, pn);
  1477. continue;
  1478. }
  1479. /* grab the next available node */
  1480. n = get_child(pn, cindex);
  1481. if (!n)
  1482. continue;
  1483. if (IS_TNODE(n)) {
  1484. /* record pn and cindex for leaf walking */
  1485. pn = n;
  1486. cindex = 1ul << n->bits;
  1487. continue;
  1488. }
  1489. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1490. hlist_del_rcu(&fa->fa_list);
  1491. alias_free_mem_rcu(fa);
  1492. }
  1493. put_child_root(pn, n->key, NULL);
  1494. node_free(n);
  1495. }
  1496. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1497. free_percpu(t->stats);
  1498. #endif
  1499. kfree(tb);
  1500. }
  1501. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1502. {
  1503. struct trie *ot = (struct trie *)oldtb->tb_data;
  1504. struct key_vector *l, *tp = ot->kv;
  1505. struct fib_table *local_tb;
  1506. struct fib_alias *fa;
  1507. struct trie *lt;
  1508. t_key key = 0;
  1509. if (oldtb->tb_data == oldtb->__data)
  1510. return oldtb;
  1511. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1512. if (!local_tb)
  1513. return NULL;
  1514. lt = (struct trie *)local_tb->tb_data;
  1515. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1516. struct key_vector *local_l = NULL, *local_tp;
  1517. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1518. struct fib_alias *new_fa;
  1519. if (local_tb->tb_id != fa->tb_id)
  1520. continue;
  1521. /* clone fa for new local table */
  1522. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1523. if (!new_fa)
  1524. goto out;
  1525. memcpy(new_fa, fa, sizeof(*fa));
  1526. /* insert clone into table */
  1527. if (!local_l)
  1528. local_l = fib_find_node(lt, &local_tp, l->key);
  1529. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1530. NULL, l->key)) {
  1531. kmem_cache_free(fn_alias_kmem, new_fa);
  1532. goto out;
  1533. }
  1534. }
  1535. /* stop loop if key wrapped back to 0 */
  1536. key = l->key + 1;
  1537. if (key < l->key)
  1538. break;
  1539. }
  1540. return local_tb;
  1541. out:
  1542. fib_trie_free(local_tb);
  1543. return NULL;
  1544. }
  1545. /* Caller must hold RTNL */
  1546. void fib_table_flush_external(struct fib_table *tb)
  1547. {
  1548. struct trie *t = (struct trie *)tb->tb_data;
  1549. struct key_vector *pn = t->kv;
  1550. unsigned long cindex = 1;
  1551. struct hlist_node *tmp;
  1552. struct fib_alias *fa;
  1553. /* walk trie in reverse order */
  1554. for (;;) {
  1555. unsigned char slen = 0;
  1556. struct key_vector *n;
  1557. if (!(cindex--)) {
  1558. t_key pkey = pn->key;
  1559. /* cannot resize the trie vector */
  1560. if (IS_TRIE(pn))
  1561. break;
  1562. /* update the suffix to address pulled leaves */
  1563. if (pn->slen > pn->pos)
  1564. update_suffix(pn);
  1565. /* resize completed node */
  1566. pn = resize(t, pn);
  1567. cindex = get_index(pkey, pn);
  1568. continue;
  1569. }
  1570. /* grab the next available node */
  1571. n = get_child(pn, cindex);
  1572. if (!n)
  1573. continue;
  1574. if (IS_TNODE(n)) {
  1575. /* record pn and cindex for leaf walking */
  1576. pn = n;
  1577. cindex = 1ul << n->bits;
  1578. continue;
  1579. }
  1580. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1581. /* if alias was cloned to local then we just
  1582. * need to remove the local copy from main
  1583. */
  1584. if (tb->tb_id != fa->tb_id) {
  1585. hlist_del_rcu(&fa->fa_list);
  1586. alias_free_mem_rcu(fa);
  1587. continue;
  1588. }
  1589. /* record local slen */
  1590. slen = fa->fa_slen;
  1591. }
  1592. /* update leaf slen */
  1593. n->slen = slen;
  1594. if (hlist_empty(&n->leaf)) {
  1595. put_child_root(pn, n->key, NULL);
  1596. node_free(n);
  1597. }
  1598. }
  1599. }
  1600. /* Caller must hold RTNL. */
  1601. int fib_table_flush(struct net *net, struct fib_table *tb)
  1602. {
  1603. struct trie *t = (struct trie *)tb->tb_data;
  1604. struct key_vector *pn = t->kv;
  1605. unsigned long cindex = 1;
  1606. struct hlist_node *tmp;
  1607. struct fib_alias *fa;
  1608. int found = 0;
  1609. /* walk trie in reverse order */
  1610. for (;;) {
  1611. unsigned char slen = 0;
  1612. struct key_vector *n;
  1613. if (!(cindex--)) {
  1614. t_key pkey = pn->key;
  1615. /* cannot resize the trie vector */
  1616. if (IS_TRIE(pn))
  1617. break;
  1618. /* update the suffix to address pulled leaves */
  1619. if (pn->slen > pn->pos)
  1620. update_suffix(pn);
  1621. /* resize completed node */
  1622. pn = resize(t, pn);
  1623. cindex = get_index(pkey, pn);
  1624. continue;
  1625. }
  1626. /* grab the next available node */
  1627. n = get_child(pn, cindex);
  1628. if (!n)
  1629. continue;
  1630. if (IS_TNODE(n)) {
  1631. /* record pn and cindex for leaf walking */
  1632. pn = n;
  1633. cindex = 1ul << n->bits;
  1634. continue;
  1635. }
  1636. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1637. struct fib_info *fi = fa->fa_info;
  1638. if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
  1639. tb->tb_id != fa->tb_id) {
  1640. slen = fa->fa_slen;
  1641. continue;
  1642. }
  1643. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1644. n->key,
  1645. KEYLENGTH - fa->fa_slen,
  1646. fi, fa->fa_tos, fa->fa_type,
  1647. tb->tb_id);
  1648. hlist_del_rcu(&fa->fa_list);
  1649. fib_release_info(fa->fa_info);
  1650. alias_free_mem_rcu(fa);
  1651. found++;
  1652. }
  1653. /* update leaf slen */
  1654. n->slen = slen;
  1655. if (hlist_empty(&n->leaf)) {
  1656. put_child_root(pn, n->key, NULL);
  1657. node_free(n);
  1658. }
  1659. }
  1660. pr_debug("trie_flush found=%d\n", found);
  1661. return found;
  1662. }
  1663. static void fib_leaf_notify(struct net *net, struct key_vector *l,
  1664. struct fib_table *tb, struct notifier_block *nb,
  1665. enum fib_event_type event_type)
  1666. {
  1667. struct fib_alias *fa;
  1668. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1669. struct fib_info *fi = fa->fa_info;
  1670. if (!fi)
  1671. continue;
  1672. /* local and main table can share the same trie,
  1673. * so don't notify twice for the same entry.
  1674. */
  1675. if (tb->tb_id != fa->tb_id)
  1676. continue;
  1677. call_fib_entry_notifier(nb, net, event_type, l->key,
  1678. KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
  1679. fa->fa_type, fa->tb_id);
  1680. }
  1681. }
  1682. static void fib_table_notify(struct net *net, struct fib_table *tb,
  1683. struct notifier_block *nb,
  1684. enum fib_event_type event_type)
  1685. {
  1686. struct trie *t = (struct trie *)tb->tb_data;
  1687. struct key_vector *l, *tp = t->kv;
  1688. t_key key = 0;
  1689. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1690. fib_leaf_notify(net, l, tb, nb, event_type);
  1691. key = l->key + 1;
  1692. /* stop in case of wrap around */
  1693. if (key < l->key)
  1694. break;
  1695. }
  1696. }
  1697. static void fib_notify(struct net *net, struct notifier_block *nb,
  1698. enum fib_event_type event_type)
  1699. {
  1700. unsigned int h;
  1701. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1702. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1703. struct fib_table *tb;
  1704. hlist_for_each_entry_rcu(tb, head, tb_hlist)
  1705. fib_table_notify(net, tb, nb, event_type);
  1706. }
  1707. }
  1708. static void __trie_free_rcu(struct rcu_head *head)
  1709. {
  1710. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1711. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1712. struct trie *t = (struct trie *)tb->tb_data;
  1713. if (tb->tb_data == tb->__data)
  1714. free_percpu(t->stats);
  1715. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1716. kfree(tb);
  1717. }
  1718. void fib_free_table(struct fib_table *tb)
  1719. {
  1720. call_rcu(&tb->rcu, __trie_free_rcu);
  1721. }
  1722. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1723. struct sk_buff *skb, struct netlink_callback *cb)
  1724. {
  1725. __be32 xkey = htonl(l->key);
  1726. struct fib_alias *fa;
  1727. int i, s_i;
  1728. s_i = cb->args[4];
  1729. i = 0;
  1730. /* rcu_read_lock is hold by caller */
  1731. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1732. if (i < s_i) {
  1733. i++;
  1734. continue;
  1735. }
  1736. if (tb->tb_id != fa->tb_id) {
  1737. i++;
  1738. continue;
  1739. }
  1740. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1741. cb->nlh->nlmsg_seq,
  1742. RTM_NEWROUTE,
  1743. tb->tb_id,
  1744. fa->fa_type,
  1745. xkey,
  1746. KEYLENGTH - fa->fa_slen,
  1747. fa->fa_tos,
  1748. fa->fa_info, NLM_F_MULTI) < 0) {
  1749. cb->args[4] = i;
  1750. return -1;
  1751. }
  1752. i++;
  1753. }
  1754. cb->args[4] = i;
  1755. return skb->len;
  1756. }
  1757. /* rcu_read_lock needs to be hold by caller from readside */
  1758. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1759. struct netlink_callback *cb)
  1760. {
  1761. struct trie *t = (struct trie *)tb->tb_data;
  1762. struct key_vector *l, *tp = t->kv;
  1763. /* Dump starting at last key.
  1764. * Note: 0.0.0.0/0 (ie default) is first key.
  1765. */
  1766. int count = cb->args[2];
  1767. t_key key = cb->args[3];
  1768. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1769. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1770. cb->args[3] = key;
  1771. cb->args[2] = count;
  1772. return -1;
  1773. }
  1774. ++count;
  1775. key = l->key + 1;
  1776. memset(&cb->args[4], 0,
  1777. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1778. /* stop loop if key wrapped back to 0 */
  1779. if (key < l->key)
  1780. break;
  1781. }
  1782. cb->args[3] = key;
  1783. cb->args[2] = count;
  1784. return skb->len;
  1785. }
  1786. void __init fib_trie_init(void)
  1787. {
  1788. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1789. sizeof(struct fib_alias),
  1790. 0, SLAB_PANIC, NULL);
  1791. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1792. LEAF_SIZE,
  1793. 0, SLAB_PANIC, NULL);
  1794. }
  1795. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1796. {
  1797. struct fib_table *tb;
  1798. struct trie *t;
  1799. size_t sz = sizeof(*tb);
  1800. if (!alias)
  1801. sz += sizeof(struct trie);
  1802. tb = kzalloc(sz, GFP_KERNEL);
  1803. if (!tb)
  1804. return NULL;
  1805. tb->tb_id = id;
  1806. tb->tb_num_default = 0;
  1807. tb->tb_data = (alias ? alias->__data : tb->__data);
  1808. if (alias)
  1809. return tb;
  1810. t = (struct trie *) tb->tb_data;
  1811. t->kv[0].pos = KEYLENGTH;
  1812. t->kv[0].slen = KEYLENGTH;
  1813. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1814. t->stats = alloc_percpu(struct trie_use_stats);
  1815. if (!t->stats) {
  1816. kfree(tb);
  1817. tb = NULL;
  1818. }
  1819. #endif
  1820. return tb;
  1821. }
  1822. #ifdef CONFIG_PROC_FS
  1823. /* Depth first Trie walk iterator */
  1824. struct fib_trie_iter {
  1825. struct seq_net_private p;
  1826. struct fib_table *tb;
  1827. struct key_vector *tnode;
  1828. unsigned int index;
  1829. unsigned int depth;
  1830. };
  1831. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1832. {
  1833. unsigned long cindex = iter->index;
  1834. struct key_vector *pn = iter->tnode;
  1835. t_key pkey;
  1836. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1837. iter->tnode, iter->index, iter->depth);
  1838. while (!IS_TRIE(pn)) {
  1839. while (cindex < child_length(pn)) {
  1840. struct key_vector *n = get_child_rcu(pn, cindex++);
  1841. if (!n)
  1842. continue;
  1843. if (IS_LEAF(n)) {
  1844. iter->tnode = pn;
  1845. iter->index = cindex;
  1846. } else {
  1847. /* push down one level */
  1848. iter->tnode = n;
  1849. iter->index = 0;
  1850. ++iter->depth;
  1851. }
  1852. return n;
  1853. }
  1854. /* Current node exhausted, pop back up */
  1855. pkey = pn->key;
  1856. pn = node_parent_rcu(pn);
  1857. cindex = get_index(pkey, pn) + 1;
  1858. --iter->depth;
  1859. }
  1860. /* record root node so further searches know we are done */
  1861. iter->tnode = pn;
  1862. iter->index = 0;
  1863. return NULL;
  1864. }
  1865. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1866. struct trie *t)
  1867. {
  1868. struct key_vector *n, *pn;
  1869. if (!t)
  1870. return NULL;
  1871. pn = t->kv;
  1872. n = rcu_dereference(pn->tnode[0]);
  1873. if (!n)
  1874. return NULL;
  1875. if (IS_TNODE(n)) {
  1876. iter->tnode = n;
  1877. iter->index = 0;
  1878. iter->depth = 1;
  1879. } else {
  1880. iter->tnode = pn;
  1881. iter->index = 0;
  1882. iter->depth = 0;
  1883. }
  1884. return n;
  1885. }
  1886. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1887. {
  1888. struct key_vector *n;
  1889. struct fib_trie_iter iter;
  1890. memset(s, 0, sizeof(*s));
  1891. rcu_read_lock();
  1892. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1893. if (IS_LEAF(n)) {
  1894. struct fib_alias *fa;
  1895. s->leaves++;
  1896. s->totdepth += iter.depth;
  1897. if (iter.depth > s->maxdepth)
  1898. s->maxdepth = iter.depth;
  1899. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1900. ++s->prefixes;
  1901. } else {
  1902. s->tnodes++;
  1903. if (n->bits < MAX_STAT_DEPTH)
  1904. s->nodesizes[n->bits]++;
  1905. s->nullpointers += tn_info(n)->empty_children;
  1906. }
  1907. }
  1908. rcu_read_unlock();
  1909. }
  1910. /*
  1911. * This outputs /proc/net/fib_triestats
  1912. */
  1913. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1914. {
  1915. unsigned int i, max, pointers, bytes, avdepth;
  1916. if (stat->leaves)
  1917. avdepth = stat->totdepth*100 / stat->leaves;
  1918. else
  1919. avdepth = 0;
  1920. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1921. avdepth / 100, avdepth % 100);
  1922. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1923. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1924. bytes = LEAF_SIZE * stat->leaves;
  1925. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1926. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1927. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1928. bytes += TNODE_SIZE(0) * stat->tnodes;
  1929. max = MAX_STAT_DEPTH;
  1930. while (max > 0 && stat->nodesizes[max-1] == 0)
  1931. max--;
  1932. pointers = 0;
  1933. for (i = 1; i < max; i++)
  1934. if (stat->nodesizes[i] != 0) {
  1935. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1936. pointers += (1<<i) * stat->nodesizes[i];
  1937. }
  1938. seq_putc(seq, '\n');
  1939. seq_printf(seq, "\tPointers: %u\n", pointers);
  1940. bytes += sizeof(struct key_vector *) * pointers;
  1941. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1942. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1943. }
  1944. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1945. static void trie_show_usage(struct seq_file *seq,
  1946. const struct trie_use_stats __percpu *stats)
  1947. {
  1948. struct trie_use_stats s = { 0 };
  1949. int cpu;
  1950. /* loop through all of the CPUs and gather up the stats */
  1951. for_each_possible_cpu(cpu) {
  1952. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1953. s.gets += pcpu->gets;
  1954. s.backtrack += pcpu->backtrack;
  1955. s.semantic_match_passed += pcpu->semantic_match_passed;
  1956. s.semantic_match_miss += pcpu->semantic_match_miss;
  1957. s.null_node_hit += pcpu->null_node_hit;
  1958. s.resize_node_skipped += pcpu->resize_node_skipped;
  1959. }
  1960. seq_printf(seq, "\nCounters:\n---------\n");
  1961. seq_printf(seq, "gets = %u\n", s.gets);
  1962. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1963. seq_printf(seq, "semantic match passed = %u\n",
  1964. s.semantic_match_passed);
  1965. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1966. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1967. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1968. }
  1969. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1970. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1971. {
  1972. if (tb->tb_id == RT_TABLE_LOCAL)
  1973. seq_puts(seq, "Local:\n");
  1974. else if (tb->tb_id == RT_TABLE_MAIN)
  1975. seq_puts(seq, "Main:\n");
  1976. else
  1977. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1978. }
  1979. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1980. {
  1981. struct net *net = (struct net *)seq->private;
  1982. unsigned int h;
  1983. seq_printf(seq,
  1984. "Basic info: size of leaf:"
  1985. " %zd bytes, size of tnode: %zd bytes.\n",
  1986. LEAF_SIZE, TNODE_SIZE(0));
  1987. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1988. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1989. struct fib_table *tb;
  1990. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1991. struct trie *t = (struct trie *) tb->tb_data;
  1992. struct trie_stat stat;
  1993. if (!t)
  1994. continue;
  1995. fib_table_print(seq, tb);
  1996. trie_collect_stats(t, &stat);
  1997. trie_show_stats(seq, &stat);
  1998. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1999. trie_show_usage(seq, t->stats);
  2000. #endif
  2001. }
  2002. }
  2003. return 0;
  2004. }
  2005. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  2006. {
  2007. return single_open_net(inode, file, fib_triestat_seq_show);
  2008. }
  2009. static const struct file_operations fib_triestat_fops = {
  2010. .owner = THIS_MODULE,
  2011. .open = fib_triestat_seq_open,
  2012. .read = seq_read,
  2013. .llseek = seq_lseek,
  2014. .release = single_release_net,
  2015. };
  2016. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  2017. {
  2018. struct fib_trie_iter *iter = seq->private;
  2019. struct net *net = seq_file_net(seq);
  2020. loff_t idx = 0;
  2021. unsigned int h;
  2022. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  2023. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  2024. struct fib_table *tb;
  2025. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  2026. struct key_vector *n;
  2027. for (n = fib_trie_get_first(iter,
  2028. (struct trie *) tb->tb_data);
  2029. n; n = fib_trie_get_next(iter))
  2030. if (pos == idx++) {
  2031. iter->tb = tb;
  2032. return n;
  2033. }
  2034. }
  2035. }
  2036. return NULL;
  2037. }
  2038. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  2039. __acquires(RCU)
  2040. {
  2041. rcu_read_lock();
  2042. return fib_trie_get_idx(seq, *pos);
  2043. }
  2044. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2045. {
  2046. struct fib_trie_iter *iter = seq->private;
  2047. struct net *net = seq_file_net(seq);
  2048. struct fib_table *tb = iter->tb;
  2049. struct hlist_node *tb_node;
  2050. unsigned int h;
  2051. struct key_vector *n;
  2052. ++*pos;
  2053. /* next node in same table */
  2054. n = fib_trie_get_next(iter);
  2055. if (n)
  2056. return n;
  2057. /* walk rest of this hash chain */
  2058. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  2059. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  2060. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  2061. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2062. if (n)
  2063. goto found;
  2064. }
  2065. /* new hash chain */
  2066. while (++h < FIB_TABLE_HASHSZ) {
  2067. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  2068. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  2069. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2070. if (n)
  2071. goto found;
  2072. }
  2073. }
  2074. return NULL;
  2075. found:
  2076. iter->tb = tb;
  2077. return n;
  2078. }
  2079. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  2080. __releases(RCU)
  2081. {
  2082. rcu_read_unlock();
  2083. }
  2084. static void seq_indent(struct seq_file *seq, int n)
  2085. {
  2086. while (n-- > 0)
  2087. seq_puts(seq, " ");
  2088. }
  2089. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  2090. {
  2091. switch (s) {
  2092. case RT_SCOPE_UNIVERSE: return "universe";
  2093. case RT_SCOPE_SITE: return "site";
  2094. case RT_SCOPE_LINK: return "link";
  2095. case RT_SCOPE_HOST: return "host";
  2096. case RT_SCOPE_NOWHERE: return "nowhere";
  2097. default:
  2098. snprintf(buf, len, "scope=%d", s);
  2099. return buf;
  2100. }
  2101. }
  2102. static const char *const rtn_type_names[__RTN_MAX] = {
  2103. [RTN_UNSPEC] = "UNSPEC",
  2104. [RTN_UNICAST] = "UNICAST",
  2105. [RTN_LOCAL] = "LOCAL",
  2106. [RTN_BROADCAST] = "BROADCAST",
  2107. [RTN_ANYCAST] = "ANYCAST",
  2108. [RTN_MULTICAST] = "MULTICAST",
  2109. [RTN_BLACKHOLE] = "BLACKHOLE",
  2110. [RTN_UNREACHABLE] = "UNREACHABLE",
  2111. [RTN_PROHIBIT] = "PROHIBIT",
  2112. [RTN_THROW] = "THROW",
  2113. [RTN_NAT] = "NAT",
  2114. [RTN_XRESOLVE] = "XRESOLVE",
  2115. };
  2116. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  2117. {
  2118. if (t < __RTN_MAX && rtn_type_names[t])
  2119. return rtn_type_names[t];
  2120. snprintf(buf, len, "type %u", t);
  2121. return buf;
  2122. }
  2123. /* Pretty print the trie */
  2124. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2125. {
  2126. const struct fib_trie_iter *iter = seq->private;
  2127. struct key_vector *n = v;
  2128. if (IS_TRIE(node_parent_rcu(n)))
  2129. fib_table_print(seq, iter->tb);
  2130. if (IS_TNODE(n)) {
  2131. __be32 prf = htonl(n->key);
  2132. seq_indent(seq, iter->depth-1);
  2133. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2134. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2135. tn_info(n)->full_children,
  2136. tn_info(n)->empty_children);
  2137. } else {
  2138. __be32 val = htonl(n->key);
  2139. struct fib_alias *fa;
  2140. seq_indent(seq, iter->depth);
  2141. seq_printf(seq, " |-- %pI4\n", &val);
  2142. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2143. char buf1[32], buf2[32];
  2144. seq_indent(seq, iter->depth + 1);
  2145. seq_printf(seq, " /%zu %s %s",
  2146. KEYLENGTH - fa->fa_slen,
  2147. rtn_scope(buf1, sizeof(buf1),
  2148. fa->fa_info->fib_scope),
  2149. rtn_type(buf2, sizeof(buf2),
  2150. fa->fa_type));
  2151. if (fa->fa_tos)
  2152. seq_printf(seq, " tos=%d", fa->fa_tos);
  2153. seq_putc(seq, '\n');
  2154. }
  2155. }
  2156. return 0;
  2157. }
  2158. static const struct seq_operations fib_trie_seq_ops = {
  2159. .start = fib_trie_seq_start,
  2160. .next = fib_trie_seq_next,
  2161. .stop = fib_trie_seq_stop,
  2162. .show = fib_trie_seq_show,
  2163. };
  2164. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2165. {
  2166. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2167. sizeof(struct fib_trie_iter));
  2168. }
  2169. static const struct file_operations fib_trie_fops = {
  2170. .owner = THIS_MODULE,
  2171. .open = fib_trie_seq_open,
  2172. .read = seq_read,
  2173. .llseek = seq_lseek,
  2174. .release = seq_release_net,
  2175. };
  2176. struct fib_route_iter {
  2177. struct seq_net_private p;
  2178. struct fib_table *main_tb;
  2179. struct key_vector *tnode;
  2180. loff_t pos;
  2181. t_key key;
  2182. };
  2183. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2184. loff_t pos)
  2185. {
  2186. struct key_vector *l, **tp = &iter->tnode;
  2187. t_key key;
  2188. /* use cached location of previously found key */
  2189. if (iter->pos > 0 && pos >= iter->pos) {
  2190. key = iter->key;
  2191. } else {
  2192. iter->pos = 1;
  2193. key = 0;
  2194. }
  2195. pos -= iter->pos;
  2196. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2197. key = l->key + 1;
  2198. iter->pos++;
  2199. l = NULL;
  2200. /* handle unlikely case of a key wrap */
  2201. if (!key)
  2202. break;
  2203. }
  2204. if (l)
  2205. iter->key = l->key; /* remember it */
  2206. else
  2207. iter->pos = 0; /* forget it */
  2208. return l;
  2209. }
  2210. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2211. __acquires(RCU)
  2212. {
  2213. struct fib_route_iter *iter = seq->private;
  2214. struct fib_table *tb;
  2215. struct trie *t;
  2216. rcu_read_lock();
  2217. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2218. if (!tb)
  2219. return NULL;
  2220. iter->main_tb = tb;
  2221. t = (struct trie *)tb->tb_data;
  2222. iter->tnode = t->kv;
  2223. if (*pos != 0)
  2224. return fib_route_get_idx(iter, *pos);
  2225. iter->pos = 0;
  2226. iter->key = KEY_MAX;
  2227. return SEQ_START_TOKEN;
  2228. }
  2229. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2230. {
  2231. struct fib_route_iter *iter = seq->private;
  2232. struct key_vector *l = NULL;
  2233. t_key key = iter->key + 1;
  2234. ++*pos;
  2235. /* only allow key of 0 for start of sequence */
  2236. if ((v == SEQ_START_TOKEN) || key)
  2237. l = leaf_walk_rcu(&iter->tnode, key);
  2238. if (l) {
  2239. iter->key = l->key;
  2240. iter->pos++;
  2241. } else {
  2242. iter->pos = 0;
  2243. }
  2244. return l;
  2245. }
  2246. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2247. __releases(RCU)
  2248. {
  2249. rcu_read_unlock();
  2250. }
  2251. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2252. {
  2253. unsigned int flags = 0;
  2254. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2255. flags = RTF_REJECT;
  2256. if (fi && fi->fib_nh->nh_gw)
  2257. flags |= RTF_GATEWAY;
  2258. if (mask == htonl(0xFFFFFFFF))
  2259. flags |= RTF_HOST;
  2260. flags |= RTF_UP;
  2261. return flags;
  2262. }
  2263. /*
  2264. * This outputs /proc/net/route.
  2265. * The format of the file is not supposed to be changed
  2266. * and needs to be same as fib_hash output to avoid breaking
  2267. * legacy utilities
  2268. */
  2269. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2270. {
  2271. struct fib_route_iter *iter = seq->private;
  2272. struct fib_table *tb = iter->main_tb;
  2273. struct fib_alias *fa;
  2274. struct key_vector *l = v;
  2275. __be32 prefix;
  2276. if (v == SEQ_START_TOKEN) {
  2277. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2278. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2279. "\tWindow\tIRTT");
  2280. return 0;
  2281. }
  2282. prefix = htonl(l->key);
  2283. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2284. const struct fib_info *fi = fa->fa_info;
  2285. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2286. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2287. if ((fa->fa_type == RTN_BROADCAST) ||
  2288. (fa->fa_type == RTN_MULTICAST))
  2289. continue;
  2290. if (fa->tb_id != tb->tb_id)
  2291. continue;
  2292. seq_setwidth(seq, 127);
  2293. if (fi)
  2294. seq_printf(seq,
  2295. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2296. "%d\t%08X\t%d\t%u\t%u",
  2297. fi->fib_dev ? fi->fib_dev->name : "*",
  2298. prefix,
  2299. fi->fib_nh->nh_gw, flags, 0, 0,
  2300. fi->fib_priority,
  2301. mask,
  2302. (fi->fib_advmss ?
  2303. fi->fib_advmss + 40 : 0),
  2304. fi->fib_window,
  2305. fi->fib_rtt >> 3);
  2306. else
  2307. seq_printf(seq,
  2308. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2309. "%d\t%08X\t%d\t%u\t%u",
  2310. prefix, 0, flags, 0, 0, 0,
  2311. mask, 0, 0, 0);
  2312. seq_pad(seq, '\n');
  2313. }
  2314. return 0;
  2315. }
  2316. static const struct seq_operations fib_route_seq_ops = {
  2317. .start = fib_route_seq_start,
  2318. .next = fib_route_seq_next,
  2319. .stop = fib_route_seq_stop,
  2320. .show = fib_route_seq_show,
  2321. };
  2322. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2323. {
  2324. return seq_open_net(inode, file, &fib_route_seq_ops,
  2325. sizeof(struct fib_route_iter));
  2326. }
  2327. static const struct file_operations fib_route_fops = {
  2328. .owner = THIS_MODULE,
  2329. .open = fib_route_seq_open,
  2330. .read = seq_read,
  2331. .llseek = seq_lseek,
  2332. .release = seq_release_net,
  2333. };
  2334. int __net_init fib_proc_init(struct net *net)
  2335. {
  2336. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2337. goto out1;
  2338. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2339. &fib_triestat_fops))
  2340. goto out2;
  2341. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2342. goto out3;
  2343. return 0;
  2344. out3:
  2345. remove_proc_entry("fib_triestat", net->proc_net);
  2346. out2:
  2347. remove_proc_entry("fib_trie", net->proc_net);
  2348. out1:
  2349. return -ENOMEM;
  2350. }
  2351. void __net_exit fib_proc_exit(struct net *net)
  2352. {
  2353. remove_proc_entry("fib_trie", net->proc_net);
  2354. remove_proc_entry("fib_triestat", net->proc_net);
  2355. remove_proc_entry("route", net->proc_net);
  2356. }
  2357. #endif /* CONFIG_PROC_FS */