fib_frontend.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * IPv4 Forwarding Information Base: FIB frontend.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/uaccess.h>
  17. #include <linux/bitops.h>
  18. #include <linux/capability.h>
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/string.h>
  23. #include <linux/socket.h>
  24. #include <linux/sockios.h>
  25. #include <linux/errno.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/inetdevice.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_addr.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/cache.h>
  34. #include <linux/init.h>
  35. #include <linux/list.h>
  36. #include <linux/slab.h>
  37. #include <net/ip.h>
  38. #include <net/protocol.h>
  39. #include <net/route.h>
  40. #include <net/tcp.h>
  41. #include <net/sock.h>
  42. #include <net/arp.h>
  43. #include <net/ip_fib.h>
  44. #include <net/rtnetlink.h>
  45. #include <net/xfrm.h>
  46. #include <net/l3mdev.h>
  47. #include <net/lwtunnel.h>
  48. #include <trace/events/fib.h>
  49. #ifndef CONFIG_IP_MULTIPLE_TABLES
  50. static int __net_init fib4_rules_init(struct net *net)
  51. {
  52. struct fib_table *local_table, *main_table;
  53. main_table = fib_trie_table(RT_TABLE_MAIN, NULL);
  54. if (!main_table)
  55. return -ENOMEM;
  56. local_table = fib_trie_table(RT_TABLE_LOCAL, main_table);
  57. if (!local_table)
  58. goto fail;
  59. hlist_add_head_rcu(&local_table->tb_hlist,
  60. &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
  61. hlist_add_head_rcu(&main_table->tb_hlist,
  62. &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
  63. return 0;
  64. fail:
  65. fib_free_table(main_table);
  66. return -ENOMEM;
  67. }
  68. #else
  69. struct fib_table *fib_new_table(struct net *net, u32 id)
  70. {
  71. struct fib_table *tb, *alias = NULL;
  72. unsigned int h;
  73. if (id == 0)
  74. id = RT_TABLE_MAIN;
  75. tb = fib_get_table(net, id);
  76. if (tb)
  77. return tb;
  78. if (id == RT_TABLE_LOCAL && !net->ipv4.fib_has_custom_rules)
  79. alias = fib_new_table(net, RT_TABLE_MAIN);
  80. tb = fib_trie_table(id, alias);
  81. if (!tb)
  82. return NULL;
  83. switch (id) {
  84. case RT_TABLE_MAIN:
  85. rcu_assign_pointer(net->ipv4.fib_main, tb);
  86. break;
  87. case RT_TABLE_DEFAULT:
  88. rcu_assign_pointer(net->ipv4.fib_default, tb);
  89. break;
  90. default:
  91. break;
  92. }
  93. h = id & (FIB_TABLE_HASHSZ - 1);
  94. hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
  95. return tb;
  96. }
  97. EXPORT_SYMBOL_GPL(fib_new_table);
  98. /* caller must hold either rtnl or rcu read lock */
  99. struct fib_table *fib_get_table(struct net *net, u32 id)
  100. {
  101. struct fib_table *tb;
  102. struct hlist_head *head;
  103. unsigned int h;
  104. if (id == 0)
  105. id = RT_TABLE_MAIN;
  106. h = id & (FIB_TABLE_HASHSZ - 1);
  107. head = &net->ipv4.fib_table_hash[h];
  108. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  109. if (tb->tb_id == id)
  110. return tb;
  111. }
  112. return NULL;
  113. }
  114. #endif /* CONFIG_IP_MULTIPLE_TABLES */
  115. static void fib_replace_table(struct net *net, struct fib_table *old,
  116. struct fib_table *new)
  117. {
  118. #ifdef CONFIG_IP_MULTIPLE_TABLES
  119. switch (new->tb_id) {
  120. case RT_TABLE_MAIN:
  121. rcu_assign_pointer(net->ipv4.fib_main, new);
  122. break;
  123. case RT_TABLE_DEFAULT:
  124. rcu_assign_pointer(net->ipv4.fib_default, new);
  125. break;
  126. default:
  127. break;
  128. }
  129. #endif
  130. /* replace the old table in the hlist */
  131. hlist_replace_rcu(&old->tb_hlist, &new->tb_hlist);
  132. }
  133. int fib_unmerge(struct net *net)
  134. {
  135. struct fib_table *old, *new, *main_table;
  136. /* attempt to fetch local table if it has been allocated */
  137. old = fib_get_table(net, RT_TABLE_LOCAL);
  138. if (!old)
  139. return 0;
  140. new = fib_trie_unmerge(old);
  141. if (!new)
  142. return -ENOMEM;
  143. /* table is already unmerged */
  144. if (new == old)
  145. return 0;
  146. /* replace merged table with clean table */
  147. fib_replace_table(net, old, new);
  148. fib_free_table(old);
  149. /* attempt to fetch main table if it has been allocated */
  150. main_table = fib_get_table(net, RT_TABLE_MAIN);
  151. if (!main_table)
  152. return 0;
  153. /* flush local entries from main table */
  154. fib_table_flush_external(main_table);
  155. return 0;
  156. }
  157. static void fib_flush(struct net *net)
  158. {
  159. int flushed = 0;
  160. unsigned int h;
  161. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  162. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  163. struct hlist_node *tmp;
  164. struct fib_table *tb;
  165. hlist_for_each_entry_safe(tb, tmp, head, tb_hlist)
  166. flushed += fib_table_flush(net, tb);
  167. }
  168. if (flushed)
  169. rt_cache_flush(net);
  170. }
  171. /*
  172. * Find address type as if only "dev" was present in the system. If
  173. * on_dev is NULL then all interfaces are taken into consideration.
  174. */
  175. static inline unsigned int __inet_dev_addr_type(struct net *net,
  176. const struct net_device *dev,
  177. __be32 addr, u32 tb_id)
  178. {
  179. struct flowi4 fl4 = { .daddr = addr };
  180. struct fib_result res;
  181. unsigned int ret = RTN_BROADCAST;
  182. struct fib_table *table;
  183. if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
  184. return RTN_BROADCAST;
  185. if (ipv4_is_multicast(addr))
  186. return RTN_MULTICAST;
  187. rcu_read_lock();
  188. table = fib_get_table(net, tb_id);
  189. if (table) {
  190. ret = RTN_UNICAST;
  191. if (!fib_table_lookup(table, &fl4, &res, FIB_LOOKUP_NOREF)) {
  192. if (!dev || dev == res.fi->fib_dev)
  193. ret = res.type;
  194. }
  195. }
  196. rcu_read_unlock();
  197. return ret;
  198. }
  199. unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id)
  200. {
  201. return __inet_dev_addr_type(net, NULL, addr, tb_id);
  202. }
  203. EXPORT_SYMBOL(inet_addr_type_table);
  204. unsigned int inet_addr_type(struct net *net, __be32 addr)
  205. {
  206. return __inet_dev_addr_type(net, NULL, addr, RT_TABLE_LOCAL);
  207. }
  208. EXPORT_SYMBOL(inet_addr_type);
  209. unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
  210. __be32 addr)
  211. {
  212. u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
  213. return __inet_dev_addr_type(net, dev, addr, rt_table);
  214. }
  215. EXPORT_SYMBOL(inet_dev_addr_type);
  216. /* inet_addr_type with dev == NULL but using the table from a dev
  217. * if one is associated
  218. */
  219. unsigned int inet_addr_type_dev_table(struct net *net,
  220. const struct net_device *dev,
  221. __be32 addr)
  222. {
  223. u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
  224. return __inet_dev_addr_type(net, NULL, addr, rt_table);
  225. }
  226. EXPORT_SYMBOL(inet_addr_type_dev_table);
  227. __be32 fib_compute_spec_dst(struct sk_buff *skb)
  228. {
  229. struct net_device *dev = skb->dev;
  230. struct in_device *in_dev;
  231. struct fib_result res;
  232. struct rtable *rt;
  233. struct net *net;
  234. int scope;
  235. rt = skb_rtable(skb);
  236. if ((rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL)) ==
  237. RTCF_LOCAL)
  238. return ip_hdr(skb)->daddr;
  239. in_dev = __in_dev_get_rcu(dev);
  240. BUG_ON(!in_dev);
  241. net = dev_net(dev);
  242. scope = RT_SCOPE_UNIVERSE;
  243. if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) {
  244. struct flowi4 fl4 = {
  245. .flowi4_iif = LOOPBACK_IFINDEX,
  246. .daddr = ip_hdr(skb)->saddr,
  247. .flowi4_tos = RT_TOS(ip_hdr(skb)->tos),
  248. .flowi4_scope = scope,
  249. .flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0,
  250. };
  251. if (!fib_lookup(net, &fl4, &res, 0))
  252. return FIB_RES_PREFSRC(net, res);
  253. } else {
  254. scope = RT_SCOPE_LINK;
  255. }
  256. return inet_select_addr(dev, ip_hdr(skb)->saddr, scope);
  257. }
  258. /* Given (packet source, input interface) and optional (dst, oif, tos):
  259. * - (main) check, that source is valid i.e. not broadcast or our local
  260. * address.
  261. * - figure out what "logical" interface this packet arrived
  262. * and calculate "specific destination" address.
  263. * - check, that packet arrived from expected physical interface.
  264. * called with rcu_read_lock()
  265. */
  266. static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  267. u8 tos, int oif, struct net_device *dev,
  268. int rpf, struct in_device *idev, u32 *itag)
  269. {
  270. int ret, no_addr;
  271. struct fib_result res;
  272. struct flowi4 fl4;
  273. struct net *net = dev_net(dev);
  274. bool dev_match;
  275. fl4.flowi4_oif = 0;
  276. fl4.flowi4_iif = l3mdev_master_ifindex_rcu(dev);
  277. if (!fl4.flowi4_iif)
  278. fl4.flowi4_iif = oif ? : LOOPBACK_IFINDEX;
  279. fl4.daddr = src;
  280. fl4.saddr = dst;
  281. fl4.flowi4_tos = tos;
  282. fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
  283. fl4.flowi4_tun_key.tun_id = 0;
  284. fl4.flowi4_flags = 0;
  285. fl4.flowi4_uid = sock_net_uid(net, NULL);
  286. no_addr = idev->ifa_list == NULL;
  287. fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0;
  288. trace_fib_validate_source(dev, &fl4);
  289. if (fib_lookup(net, &fl4, &res, 0))
  290. goto last_resort;
  291. if (res.type != RTN_UNICAST &&
  292. (res.type != RTN_LOCAL || !IN_DEV_ACCEPT_LOCAL(idev)))
  293. goto e_inval;
  294. if (!rpf && !fib_num_tclassid_users(net) &&
  295. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev)))
  296. goto last_resort;
  297. fib_combine_itag(itag, &res);
  298. dev_match = false;
  299. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  300. for (ret = 0; ret < res.fi->fib_nhs; ret++) {
  301. struct fib_nh *nh = &res.fi->fib_nh[ret];
  302. if (nh->nh_dev == dev) {
  303. dev_match = true;
  304. break;
  305. } else if (l3mdev_master_ifindex_rcu(nh->nh_dev) == dev->ifindex) {
  306. dev_match = true;
  307. break;
  308. }
  309. }
  310. #else
  311. if (FIB_RES_DEV(res) == dev)
  312. dev_match = true;
  313. #endif
  314. if (dev_match) {
  315. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  316. return ret;
  317. }
  318. if (no_addr)
  319. goto last_resort;
  320. if (rpf == 1)
  321. goto e_rpf;
  322. fl4.flowi4_oif = dev->ifindex;
  323. ret = 0;
  324. if (fib_lookup(net, &fl4, &res, FIB_LOOKUP_IGNORE_LINKSTATE) == 0) {
  325. if (res.type == RTN_UNICAST)
  326. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  327. }
  328. return ret;
  329. last_resort:
  330. if (rpf)
  331. goto e_rpf;
  332. *itag = 0;
  333. return 0;
  334. e_inval:
  335. return -EINVAL;
  336. e_rpf:
  337. return -EXDEV;
  338. }
  339. /* Ignore rp_filter for packets protected by IPsec. */
  340. int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  341. u8 tos, int oif, struct net_device *dev,
  342. struct in_device *idev, u32 *itag)
  343. {
  344. int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev);
  345. if (!r && !fib_num_tclassid_users(dev_net(dev)) &&
  346. IN_DEV_ACCEPT_LOCAL(idev) &&
  347. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) {
  348. *itag = 0;
  349. return 0;
  350. }
  351. return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag);
  352. }
  353. static inline __be32 sk_extract_addr(struct sockaddr *addr)
  354. {
  355. return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
  356. }
  357. static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
  358. {
  359. struct nlattr *nla;
  360. nla = (struct nlattr *) ((char *) mx + len);
  361. nla->nla_type = type;
  362. nla->nla_len = nla_attr_size(4);
  363. *(u32 *) nla_data(nla) = value;
  364. return len + nla_total_size(4);
  365. }
  366. static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
  367. struct fib_config *cfg)
  368. {
  369. __be32 addr;
  370. int plen;
  371. memset(cfg, 0, sizeof(*cfg));
  372. cfg->fc_nlinfo.nl_net = net;
  373. if (rt->rt_dst.sa_family != AF_INET)
  374. return -EAFNOSUPPORT;
  375. /*
  376. * Check mask for validity:
  377. * a) it must be contiguous.
  378. * b) destination must have all host bits clear.
  379. * c) if application forgot to set correct family (AF_INET),
  380. * reject request unless it is absolutely clear i.e.
  381. * both family and mask are zero.
  382. */
  383. plen = 32;
  384. addr = sk_extract_addr(&rt->rt_dst);
  385. if (!(rt->rt_flags & RTF_HOST)) {
  386. __be32 mask = sk_extract_addr(&rt->rt_genmask);
  387. if (rt->rt_genmask.sa_family != AF_INET) {
  388. if (mask || rt->rt_genmask.sa_family)
  389. return -EAFNOSUPPORT;
  390. }
  391. if (bad_mask(mask, addr))
  392. return -EINVAL;
  393. plen = inet_mask_len(mask);
  394. }
  395. cfg->fc_dst_len = plen;
  396. cfg->fc_dst = addr;
  397. if (cmd != SIOCDELRT) {
  398. cfg->fc_nlflags = NLM_F_CREATE;
  399. cfg->fc_protocol = RTPROT_BOOT;
  400. }
  401. if (rt->rt_metric)
  402. cfg->fc_priority = rt->rt_metric - 1;
  403. if (rt->rt_flags & RTF_REJECT) {
  404. cfg->fc_scope = RT_SCOPE_HOST;
  405. cfg->fc_type = RTN_UNREACHABLE;
  406. return 0;
  407. }
  408. cfg->fc_scope = RT_SCOPE_NOWHERE;
  409. cfg->fc_type = RTN_UNICAST;
  410. if (rt->rt_dev) {
  411. char *colon;
  412. struct net_device *dev;
  413. char devname[IFNAMSIZ];
  414. if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
  415. return -EFAULT;
  416. devname[IFNAMSIZ-1] = 0;
  417. colon = strchr(devname, ':');
  418. if (colon)
  419. *colon = 0;
  420. dev = __dev_get_by_name(net, devname);
  421. if (!dev)
  422. return -ENODEV;
  423. cfg->fc_oif = dev->ifindex;
  424. cfg->fc_table = l3mdev_fib_table(dev);
  425. if (colon) {
  426. struct in_ifaddr *ifa;
  427. struct in_device *in_dev = __in_dev_get_rtnl(dev);
  428. if (!in_dev)
  429. return -ENODEV;
  430. *colon = ':';
  431. for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
  432. if (strcmp(ifa->ifa_label, devname) == 0)
  433. break;
  434. if (!ifa)
  435. return -ENODEV;
  436. cfg->fc_prefsrc = ifa->ifa_local;
  437. }
  438. }
  439. addr = sk_extract_addr(&rt->rt_gateway);
  440. if (rt->rt_gateway.sa_family == AF_INET && addr) {
  441. unsigned int addr_type;
  442. cfg->fc_gw = addr;
  443. addr_type = inet_addr_type_table(net, addr, cfg->fc_table);
  444. if (rt->rt_flags & RTF_GATEWAY &&
  445. addr_type == RTN_UNICAST)
  446. cfg->fc_scope = RT_SCOPE_UNIVERSE;
  447. }
  448. if (cmd == SIOCDELRT)
  449. return 0;
  450. if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
  451. return -EINVAL;
  452. if (cfg->fc_scope == RT_SCOPE_NOWHERE)
  453. cfg->fc_scope = RT_SCOPE_LINK;
  454. if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
  455. struct nlattr *mx;
  456. int len = 0;
  457. mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
  458. if (!mx)
  459. return -ENOMEM;
  460. if (rt->rt_flags & RTF_MTU)
  461. len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
  462. if (rt->rt_flags & RTF_WINDOW)
  463. len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
  464. if (rt->rt_flags & RTF_IRTT)
  465. len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
  466. cfg->fc_mx = mx;
  467. cfg->fc_mx_len = len;
  468. }
  469. return 0;
  470. }
  471. /*
  472. * Handle IP routing ioctl calls.
  473. * These are used to manipulate the routing tables
  474. */
  475. int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  476. {
  477. struct fib_config cfg;
  478. struct rtentry rt;
  479. int err;
  480. switch (cmd) {
  481. case SIOCADDRT: /* Add a route */
  482. case SIOCDELRT: /* Delete a route */
  483. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  484. return -EPERM;
  485. if (copy_from_user(&rt, arg, sizeof(rt)))
  486. return -EFAULT;
  487. rtnl_lock();
  488. err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
  489. if (err == 0) {
  490. struct fib_table *tb;
  491. if (cmd == SIOCDELRT) {
  492. tb = fib_get_table(net, cfg.fc_table);
  493. if (tb)
  494. err = fib_table_delete(net, tb, &cfg);
  495. else
  496. err = -ESRCH;
  497. } else {
  498. tb = fib_new_table(net, cfg.fc_table);
  499. if (tb)
  500. err = fib_table_insert(net, tb, &cfg);
  501. else
  502. err = -ENOBUFS;
  503. }
  504. /* allocated by rtentry_to_fib_config() */
  505. kfree(cfg.fc_mx);
  506. }
  507. rtnl_unlock();
  508. return err;
  509. }
  510. return -EINVAL;
  511. }
  512. const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
  513. [RTA_DST] = { .type = NLA_U32 },
  514. [RTA_SRC] = { .type = NLA_U32 },
  515. [RTA_IIF] = { .type = NLA_U32 },
  516. [RTA_OIF] = { .type = NLA_U32 },
  517. [RTA_GATEWAY] = { .type = NLA_U32 },
  518. [RTA_PRIORITY] = { .type = NLA_U32 },
  519. [RTA_PREFSRC] = { .type = NLA_U32 },
  520. [RTA_METRICS] = { .type = NLA_NESTED },
  521. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  522. [RTA_FLOW] = { .type = NLA_U32 },
  523. [RTA_ENCAP_TYPE] = { .type = NLA_U16 },
  524. [RTA_ENCAP] = { .type = NLA_NESTED },
  525. [RTA_UID] = { .type = NLA_U32 },
  526. [RTA_MARK] = { .type = NLA_U32 },
  527. };
  528. static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
  529. struct nlmsghdr *nlh, struct fib_config *cfg)
  530. {
  531. struct nlattr *attr;
  532. int err, remaining;
  533. struct rtmsg *rtm;
  534. err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
  535. if (err < 0)
  536. goto errout;
  537. memset(cfg, 0, sizeof(*cfg));
  538. rtm = nlmsg_data(nlh);
  539. cfg->fc_dst_len = rtm->rtm_dst_len;
  540. cfg->fc_tos = rtm->rtm_tos;
  541. cfg->fc_table = rtm->rtm_table;
  542. cfg->fc_protocol = rtm->rtm_protocol;
  543. cfg->fc_scope = rtm->rtm_scope;
  544. cfg->fc_type = rtm->rtm_type;
  545. cfg->fc_flags = rtm->rtm_flags;
  546. cfg->fc_nlflags = nlh->nlmsg_flags;
  547. cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
  548. cfg->fc_nlinfo.nlh = nlh;
  549. cfg->fc_nlinfo.nl_net = net;
  550. if (cfg->fc_type > RTN_MAX) {
  551. err = -EINVAL;
  552. goto errout;
  553. }
  554. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
  555. switch (nla_type(attr)) {
  556. case RTA_DST:
  557. cfg->fc_dst = nla_get_be32(attr);
  558. break;
  559. case RTA_OIF:
  560. cfg->fc_oif = nla_get_u32(attr);
  561. break;
  562. case RTA_GATEWAY:
  563. cfg->fc_gw = nla_get_be32(attr);
  564. break;
  565. case RTA_PRIORITY:
  566. cfg->fc_priority = nla_get_u32(attr);
  567. break;
  568. case RTA_PREFSRC:
  569. cfg->fc_prefsrc = nla_get_be32(attr);
  570. break;
  571. case RTA_METRICS:
  572. cfg->fc_mx = nla_data(attr);
  573. cfg->fc_mx_len = nla_len(attr);
  574. break;
  575. case RTA_MULTIPATH:
  576. err = lwtunnel_valid_encap_type_attr(nla_data(attr),
  577. nla_len(attr));
  578. if (err < 0)
  579. goto errout;
  580. cfg->fc_mp = nla_data(attr);
  581. cfg->fc_mp_len = nla_len(attr);
  582. break;
  583. case RTA_FLOW:
  584. cfg->fc_flow = nla_get_u32(attr);
  585. break;
  586. case RTA_TABLE:
  587. cfg->fc_table = nla_get_u32(attr);
  588. break;
  589. case RTA_ENCAP:
  590. cfg->fc_encap = attr;
  591. break;
  592. case RTA_ENCAP_TYPE:
  593. cfg->fc_encap_type = nla_get_u16(attr);
  594. err = lwtunnel_valid_encap_type(cfg->fc_encap_type);
  595. if (err < 0)
  596. goto errout;
  597. break;
  598. }
  599. }
  600. return 0;
  601. errout:
  602. return err;
  603. }
  604. static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  605. {
  606. struct net *net = sock_net(skb->sk);
  607. struct fib_config cfg;
  608. struct fib_table *tb;
  609. int err;
  610. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  611. if (err < 0)
  612. goto errout;
  613. tb = fib_get_table(net, cfg.fc_table);
  614. if (!tb) {
  615. err = -ESRCH;
  616. goto errout;
  617. }
  618. err = fib_table_delete(net, tb, &cfg);
  619. errout:
  620. return err;
  621. }
  622. static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  623. {
  624. struct net *net = sock_net(skb->sk);
  625. struct fib_config cfg;
  626. struct fib_table *tb;
  627. int err;
  628. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  629. if (err < 0)
  630. goto errout;
  631. tb = fib_new_table(net, cfg.fc_table);
  632. if (!tb) {
  633. err = -ENOBUFS;
  634. goto errout;
  635. }
  636. err = fib_table_insert(net, tb, &cfg);
  637. errout:
  638. return err;
  639. }
  640. static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
  641. {
  642. struct net *net = sock_net(skb->sk);
  643. unsigned int h, s_h;
  644. unsigned int e = 0, s_e;
  645. struct fib_table *tb;
  646. struct hlist_head *head;
  647. int dumped = 0;
  648. if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
  649. ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
  650. return skb->len;
  651. s_h = cb->args[0];
  652. s_e = cb->args[1];
  653. rcu_read_lock();
  654. for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
  655. e = 0;
  656. head = &net->ipv4.fib_table_hash[h];
  657. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  658. if (e < s_e)
  659. goto next;
  660. if (dumped)
  661. memset(&cb->args[2], 0, sizeof(cb->args) -
  662. 2 * sizeof(cb->args[0]));
  663. if (fib_table_dump(tb, skb, cb) < 0)
  664. goto out;
  665. dumped = 1;
  666. next:
  667. e++;
  668. }
  669. }
  670. out:
  671. rcu_read_unlock();
  672. cb->args[1] = e;
  673. cb->args[0] = h;
  674. return skb->len;
  675. }
  676. /* Prepare and feed intra-kernel routing request.
  677. * Really, it should be netlink message, but :-( netlink
  678. * can be not configured, so that we feed it directly
  679. * to fib engine. It is legal, because all events occur
  680. * only when netlink is already locked.
  681. */
  682. static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
  683. {
  684. struct net *net = dev_net(ifa->ifa_dev->dev);
  685. u32 tb_id = l3mdev_fib_table(ifa->ifa_dev->dev);
  686. struct fib_table *tb;
  687. struct fib_config cfg = {
  688. .fc_protocol = RTPROT_KERNEL,
  689. .fc_type = type,
  690. .fc_dst = dst,
  691. .fc_dst_len = dst_len,
  692. .fc_prefsrc = ifa->ifa_local,
  693. .fc_oif = ifa->ifa_dev->dev->ifindex,
  694. .fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
  695. .fc_nlinfo = {
  696. .nl_net = net,
  697. },
  698. };
  699. if (!tb_id)
  700. tb_id = (type == RTN_UNICAST) ? RT_TABLE_MAIN : RT_TABLE_LOCAL;
  701. tb = fib_new_table(net, tb_id);
  702. if (!tb)
  703. return;
  704. cfg.fc_table = tb->tb_id;
  705. if (type != RTN_LOCAL)
  706. cfg.fc_scope = RT_SCOPE_LINK;
  707. else
  708. cfg.fc_scope = RT_SCOPE_HOST;
  709. if (cmd == RTM_NEWROUTE)
  710. fib_table_insert(net, tb, &cfg);
  711. else
  712. fib_table_delete(net, tb, &cfg);
  713. }
  714. void fib_add_ifaddr(struct in_ifaddr *ifa)
  715. {
  716. struct in_device *in_dev = ifa->ifa_dev;
  717. struct net_device *dev = in_dev->dev;
  718. struct in_ifaddr *prim = ifa;
  719. __be32 mask = ifa->ifa_mask;
  720. __be32 addr = ifa->ifa_local;
  721. __be32 prefix = ifa->ifa_address & mask;
  722. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  723. prim = inet_ifa_byprefix(in_dev, prefix, mask);
  724. if (!prim) {
  725. pr_warn("%s: bug: prim == NULL\n", __func__);
  726. return;
  727. }
  728. }
  729. fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
  730. if (!(dev->flags & IFF_UP))
  731. return;
  732. /* Add broadcast address, if it is explicitly assigned. */
  733. if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
  734. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  735. if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
  736. (prefix != addr || ifa->ifa_prefixlen < 32)) {
  737. if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
  738. fib_magic(RTM_NEWROUTE,
  739. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  740. prefix, ifa->ifa_prefixlen, prim);
  741. /* Add network specific broadcasts, when it takes a sense */
  742. if (ifa->ifa_prefixlen < 31) {
  743. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
  744. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
  745. 32, prim);
  746. }
  747. }
  748. }
  749. /* Delete primary or secondary address.
  750. * Optionally, on secondary address promotion consider the addresses
  751. * from subnet iprim as deleted, even if they are in device list.
  752. * In this case the secondary ifa can be in device list.
  753. */
  754. void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
  755. {
  756. struct in_device *in_dev = ifa->ifa_dev;
  757. struct net_device *dev = in_dev->dev;
  758. struct in_ifaddr *ifa1;
  759. struct in_ifaddr *prim = ifa, *prim1 = NULL;
  760. __be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
  761. __be32 any = ifa->ifa_address & ifa->ifa_mask;
  762. #define LOCAL_OK 1
  763. #define BRD_OK 2
  764. #define BRD0_OK 4
  765. #define BRD1_OK 8
  766. unsigned int ok = 0;
  767. int subnet = 0; /* Primary network */
  768. int gone = 1; /* Address is missing */
  769. int same_prefsrc = 0; /* Another primary with same IP */
  770. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  771. prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
  772. if (!prim) {
  773. /* if the device has been deleted, we don't perform
  774. * address promotion
  775. */
  776. if (!in_dev->dead)
  777. pr_warn("%s: bug: prim == NULL\n", __func__);
  778. return;
  779. }
  780. if (iprim && iprim != prim) {
  781. pr_warn("%s: bug: iprim != prim\n", __func__);
  782. return;
  783. }
  784. } else if (!ipv4_is_zeronet(any) &&
  785. (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
  786. if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
  787. fib_magic(RTM_DELROUTE,
  788. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  789. any, ifa->ifa_prefixlen, prim);
  790. subnet = 1;
  791. }
  792. if (in_dev->dead)
  793. goto no_promotions;
  794. /* Deletion is more complicated than add.
  795. * We should take care of not to delete too much :-)
  796. *
  797. * Scan address list to be sure that addresses are really gone.
  798. */
  799. for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  800. if (ifa1 == ifa) {
  801. /* promotion, keep the IP */
  802. gone = 0;
  803. continue;
  804. }
  805. /* Ignore IFAs from our subnet */
  806. if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
  807. inet_ifa_match(ifa1->ifa_address, iprim))
  808. continue;
  809. /* Ignore ifa1 if it uses different primary IP (prefsrc) */
  810. if (ifa1->ifa_flags & IFA_F_SECONDARY) {
  811. /* Another address from our subnet? */
  812. if (ifa1->ifa_mask == prim->ifa_mask &&
  813. inet_ifa_match(ifa1->ifa_address, prim))
  814. prim1 = prim;
  815. else {
  816. /* We reached the secondaries, so
  817. * same_prefsrc should be determined.
  818. */
  819. if (!same_prefsrc)
  820. continue;
  821. /* Search new prim1 if ifa1 is not
  822. * using the current prim1
  823. */
  824. if (!prim1 ||
  825. ifa1->ifa_mask != prim1->ifa_mask ||
  826. !inet_ifa_match(ifa1->ifa_address, prim1))
  827. prim1 = inet_ifa_byprefix(in_dev,
  828. ifa1->ifa_address,
  829. ifa1->ifa_mask);
  830. if (!prim1)
  831. continue;
  832. if (prim1->ifa_local != prim->ifa_local)
  833. continue;
  834. }
  835. } else {
  836. if (prim->ifa_local != ifa1->ifa_local)
  837. continue;
  838. prim1 = ifa1;
  839. if (prim != prim1)
  840. same_prefsrc = 1;
  841. }
  842. if (ifa->ifa_local == ifa1->ifa_local)
  843. ok |= LOCAL_OK;
  844. if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
  845. ok |= BRD_OK;
  846. if (brd == ifa1->ifa_broadcast)
  847. ok |= BRD1_OK;
  848. if (any == ifa1->ifa_broadcast)
  849. ok |= BRD0_OK;
  850. /* primary has network specific broadcasts */
  851. if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
  852. __be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
  853. __be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
  854. if (!ipv4_is_zeronet(any1)) {
  855. if (ifa->ifa_broadcast == brd1 ||
  856. ifa->ifa_broadcast == any1)
  857. ok |= BRD_OK;
  858. if (brd == brd1 || brd == any1)
  859. ok |= BRD1_OK;
  860. if (any == brd1 || any == any1)
  861. ok |= BRD0_OK;
  862. }
  863. }
  864. }
  865. no_promotions:
  866. if (!(ok & BRD_OK))
  867. fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  868. if (subnet && ifa->ifa_prefixlen < 31) {
  869. if (!(ok & BRD1_OK))
  870. fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
  871. if (!(ok & BRD0_OK))
  872. fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
  873. }
  874. if (!(ok & LOCAL_OK)) {
  875. unsigned int addr_type;
  876. fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
  877. /* Check, that this local address finally disappeared. */
  878. addr_type = inet_addr_type_dev_table(dev_net(dev), dev,
  879. ifa->ifa_local);
  880. if (gone && addr_type != RTN_LOCAL) {
  881. /* And the last, but not the least thing.
  882. * We must flush stray FIB entries.
  883. *
  884. * First of all, we scan fib_info list searching
  885. * for stray nexthop entries, then ignite fib_flush.
  886. */
  887. if (fib_sync_down_addr(dev, ifa->ifa_local))
  888. fib_flush(dev_net(dev));
  889. }
  890. }
  891. #undef LOCAL_OK
  892. #undef BRD_OK
  893. #undef BRD0_OK
  894. #undef BRD1_OK
  895. }
  896. static void nl_fib_lookup(struct net *net, struct fib_result_nl *frn)
  897. {
  898. struct fib_result res;
  899. struct flowi4 fl4 = {
  900. .flowi4_mark = frn->fl_mark,
  901. .daddr = frn->fl_addr,
  902. .flowi4_tos = frn->fl_tos,
  903. .flowi4_scope = frn->fl_scope,
  904. };
  905. struct fib_table *tb;
  906. rcu_read_lock();
  907. tb = fib_get_table(net, frn->tb_id_in);
  908. frn->err = -ENOENT;
  909. if (tb) {
  910. local_bh_disable();
  911. frn->tb_id = tb->tb_id;
  912. frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
  913. if (!frn->err) {
  914. frn->prefixlen = res.prefixlen;
  915. frn->nh_sel = res.nh_sel;
  916. frn->type = res.type;
  917. frn->scope = res.scope;
  918. }
  919. local_bh_enable();
  920. }
  921. rcu_read_unlock();
  922. }
  923. static void nl_fib_input(struct sk_buff *skb)
  924. {
  925. struct net *net;
  926. struct fib_result_nl *frn;
  927. struct nlmsghdr *nlh;
  928. u32 portid;
  929. net = sock_net(skb->sk);
  930. nlh = nlmsg_hdr(skb);
  931. if (skb->len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len ||
  932. nlmsg_len(nlh) < sizeof(*frn))
  933. return;
  934. skb = netlink_skb_clone(skb, GFP_KERNEL);
  935. if (!skb)
  936. return;
  937. nlh = nlmsg_hdr(skb);
  938. frn = (struct fib_result_nl *) nlmsg_data(nlh);
  939. nl_fib_lookup(net, frn);
  940. portid = NETLINK_CB(skb).portid; /* netlink portid */
  941. NETLINK_CB(skb).portid = 0; /* from kernel */
  942. NETLINK_CB(skb).dst_group = 0; /* unicast */
  943. netlink_unicast(net->ipv4.fibnl, skb, portid, MSG_DONTWAIT);
  944. }
  945. static int __net_init nl_fib_lookup_init(struct net *net)
  946. {
  947. struct sock *sk;
  948. struct netlink_kernel_cfg cfg = {
  949. .input = nl_fib_input,
  950. };
  951. sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, &cfg);
  952. if (!sk)
  953. return -EAFNOSUPPORT;
  954. net->ipv4.fibnl = sk;
  955. return 0;
  956. }
  957. static void nl_fib_lookup_exit(struct net *net)
  958. {
  959. netlink_kernel_release(net->ipv4.fibnl);
  960. net->ipv4.fibnl = NULL;
  961. }
  962. static void fib_disable_ip(struct net_device *dev, unsigned long event,
  963. bool force)
  964. {
  965. if (fib_sync_down_dev(dev, event, force))
  966. fib_flush(dev_net(dev));
  967. rt_cache_flush(dev_net(dev));
  968. arp_ifdown(dev);
  969. }
  970. static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
  971. {
  972. struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
  973. struct net_device *dev = ifa->ifa_dev->dev;
  974. struct net *net = dev_net(dev);
  975. switch (event) {
  976. case NETDEV_UP:
  977. fib_add_ifaddr(ifa);
  978. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  979. fib_sync_up(dev, RTNH_F_DEAD);
  980. #endif
  981. atomic_inc(&net->ipv4.dev_addr_genid);
  982. rt_cache_flush(dev_net(dev));
  983. break;
  984. case NETDEV_DOWN:
  985. fib_del_ifaddr(ifa, NULL);
  986. atomic_inc(&net->ipv4.dev_addr_genid);
  987. if (!ifa->ifa_dev->ifa_list) {
  988. /* Last address was deleted from this interface.
  989. * Disable IP.
  990. */
  991. fib_disable_ip(dev, event, true);
  992. } else {
  993. rt_cache_flush(dev_net(dev));
  994. }
  995. break;
  996. }
  997. return NOTIFY_DONE;
  998. }
  999. static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
  1000. {
  1001. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1002. struct netdev_notifier_changeupper_info *info;
  1003. struct in_device *in_dev;
  1004. struct net *net = dev_net(dev);
  1005. unsigned int flags;
  1006. if (event == NETDEV_UNREGISTER) {
  1007. fib_disable_ip(dev, event, true);
  1008. rt_flush_dev(dev);
  1009. return NOTIFY_DONE;
  1010. }
  1011. in_dev = __in_dev_get_rtnl(dev);
  1012. if (!in_dev)
  1013. return NOTIFY_DONE;
  1014. switch (event) {
  1015. case NETDEV_UP:
  1016. for_ifa(in_dev) {
  1017. fib_add_ifaddr(ifa);
  1018. } endfor_ifa(in_dev);
  1019. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  1020. fib_sync_up(dev, RTNH_F_DEAD);
  1021. #endif
  1022. atomic_inc(&net->ipv4.dev_addr_genid);
  1023. rt_cache_flush(net);
  1024. break;
  1025. case NETDEV_DOWN:
  1026. fib_disable_ip(dev, event, false);
  1027. break;
  1028. case NETDEV_CHANGE:
  1029. flags = dev_get_flags(dev);
  1030. if (flags & (IFF_RUNNING | IFF_LOWER_UP))
  1031. fib_sync_up(dev, RTNH_F_LINKDOWN);
  1032. else
  1033. fib_sync_down_dev(dev, event, false);
  1034. /* fall through */
  1035. case NETDEV_CHANGEMTU:
  1036. rt_cache_flush(net);
  1037. break;
  1038. case NETDEV_CHANGEUPPER:
  1039. info = ptr;
  1040. /* flush all routes if dev is linked to or unlinked from
  1041. * an L3 master device (e.g., VRF)
  1042. */
  1043. if (info->upper_dev && netif_is_l3_master(info->upper_dev))
  1044. fib_disable_ip(dev, NETDEV_DOWN, true);
  1045. break;
  1046. }
  1047. return NOTIFY_DONE;
  1048. }
  1049. static struct notifier_block fib_inetaddr_notifier = {
  1050. .notifier_call = fib_inetaddr_event,
  1051. };
  1052. static struct notifier_block fib_netdev_notifier = {
  1053. .notifier_call = fib_netdev_event,
  1054. };
  1055. static int __net_init ip_fib_net_init(struct net *net)
  1056. {
  1057. int err;
  1058. size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
  1059. net->ipv4.fib_seq = 0;
  1060. /* Avoid false sharing : Use at least a full cache line */
  1061. size = max_t(size_t, size, L1_CACHE_BYTES);
  1062. net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
  1063. if (!net->ipv4.fib_table_hash)
  1064. return -ENOMEM;
  1065. err = fib4_rules_init(net);
  1066. if (err < 0)
  1067. goto fail;
  1068. return 0;
  1069. fail:
  1070. kfree(net->ipv4.fib_table_hash);
  1071. return err;
  1072. }
  1073. static void ip_fib_net_exit(struct net *net)
  1074. {
  1075. unsigned int i;
  1076. rtnl_lock();
  1077. #ifdef CONFIG_IP_MULTIPLE_TABLES
  1078. RCU_INIT_POINTER(net->ipv4.fib_main, NULL);
  1079. RCU_INIT_POINTER(net->ipv4.fib_default, NULL);
  1080. #endif
  1081. for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
  1082. struct hlist_head *head = &net->ipv4.fib_table_hash[i];
  1083. struct hlist_node *tmp;
  1084. struct fib_table *tb;
  1085. hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) {
  1086. hlist_del(&tb->tb_hlist);
  1087. fib_table_flush(net, tb);
  1088. fib_free_table(tb);
  1089. }
  1090. }
  1091. #ifdef CONFIG_IP_MULTIPLE_TABLES
  1092. fib4_rules_exit(net);
  1093. #endif
  1094. rtnl_unlock();
  1095. kfree(net->ipv4.fib_table_hash);
  1096. }
  1097. static int __net_init fib_net_init(struct net *net)
  1098. {
  1099. int error;
  1100. #ifdef CONFIG_IP_ROUTE_CLASSID
  1101. net->ipv4.fib_num_tclassid_users = 0;
  1102. #endif
  1103. error = ip_fib_net_init(net);
  1104. if (error < 0)
  1105. goto out;
  1106. error = nl_fib_lookup_init(net);
  1107. if (error < 0)
  1108. goto out_nlfl;
  1109. error = fib_proc_init(net);
  1110. if (error < 0)
  1111. goto out_proc;
  1112. out:
  1113. return error;
  1114. out_proc:
  1115. nl_fib_lookup_exit(net);
  1116. out_nlfl:
  1117. ip_fib_net_exit(net);
  1118. goto out;
  1119. }
  1120. static void __net_exit fib_net_exit(struct net *net)
  1121. {
  1122. fib_proc_exit(net);
  1123. nl_fib_lookup_exit(net);
  1124. ip_fib_net_exit(net);
  1125. }
  1126. static struct pernet_operations fib_net_ops = {
  1127. .init = fib_net_init,
  1128. .exit = fib_net_exit,
  1129. };
  1130. void __init ip_fib_init(void)
  1131. {
  1132. rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
  1133. rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
  1134. rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
  1135. register_pernet_subsys(&fib_net_ops);
  1136. register_netdevice_notifier(&fib_netdev_notifier);
  1137. register_inetaddr_notifier(&fib_inetaddr_notifier);
  1138. fib_trie_init();
  1139. }