memory.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <linux/dma-debug.h>
  58. #include <linux/debugfs.h>
  59. #include <asm/io.h>
  60. #include <asm/pgalloc.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/tlb.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/pgtable.h>
  65. #include "internal.h"
  66. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  67. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  68. #endif
  69. #ifndef CONFIG_NEED_MULTIPLE_NODES
  70. /* use the per-pgdat data instead for discontigmem - mbligh */
  71. unsigned long max_mapnr;
  72. struct page *mem_map;
  73. EXPORT_SYMBOL(max_mapnr);
  74. EXPORT_SYMBOL(mem_map);
  75. #endif
  76. /*
  77. * A number of key systems in x86 including ioremap() rely on the assumption
  78. * that high_memory defines the upper bound on direct map memory, then end
  79. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  80. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  81. * and ZONE_HIGHMEM.
  82. */
  83. void * high_memory;
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. EXPORT_SYMBOL(zero_pfn);
  106. /*
  107. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  108. */
  109. static int __init init_zero_pfn(void)
  110. {
  111. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  112. return 0;
  113. }
  114. core_initcall(init_zero_pfn);
  115. #if defined(SPLIT_RSS_COUNTING)
  116. void sync_mm_rss(struct mm_struct *mm)
  117. {
  118. int i;
  119. for (i = 0; i < NR_MM_COUNTERS; i++) {
  120. if (current->rss_stat.count[i]) {
  121. add_mm_counter(mm, i, current->rss_stat.count[i]);
  122. current->rss_stat.count[i] = 0;
  123. }
  124. }
  125. current->rss_stat.events = 0;
  126. }
  127. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  128. {
  129. struct task_struct *task = current;
  130. if (likely(task->mm == mm))
  131. task->rss_stat.count[member] += val;
  132. else
  133. add_mm_counter(mm, member, val);
  134. }
  135. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  136. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  137. /* sync counter once per 64 page faults */
  138. #define TASK_RSS_EVENTS_THRESH (64)
  139. static void check_sync_rss_stat(struct task_struct *task)
  140. {
  141. if (unlikely(task != current))
  142. return;
  143. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  144. sync_mm_rss(task->mm);
  145. }
  146. #else /* SPLIT_RSS_COUNTING */
  147. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  148. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  149. static void check_sync_rss_stat(struct task_struct *task)
  150. {
  151. }
  152. #endif /* SPLIT_RSS_COUNTING */
  153. #ifdef HAVE_GENERIC_MMU_GATHER
  154. static int tlb_next_batch(struct mmu_gather *tlb)
  155. {
  156. struct mmu_gather_batch *batch;
  157. batch = tlb->active;
  158. if (batch->next) {
  159. tlb->active = batch->next;
  160. return 1;
  161. }
  162. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  163. return 0;
  164. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  165. if (!batch)
  166. return 0;
  167. tlb->batch_count++;
  168. batch->next = NULL;
  169. batch->nr = 0;
  170. batch->max = MAX_GATHER_BATCH;
  171. tlb->active->next = batch;
  172. tlb->active = batch;
  173. return 1;
  174. }
  175. /* tlb_gather_mmu
  176. * Called to initialize an (on-stack) mmu_gather structure for page-table
  177. * tear-down from @mm. The @fullmm argument is used when @mm is without
  178. * users and we're going to destroy the full address space (exit/execve).
  179. */
  180. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  181. {
  182. tlb->mm = mm;
  183. /* Is it from 0 to ~0? */
  184. tlb->fullmm = !(start | (end+1));
  185. tlb->need_flush_all = 0;
  186. tlb->start = start;
  187. tlb->end = end;
  188. tlb->need_flush = 0;
  189. tlb->local.next = NULL;
  190. tlb->local.nr = 0;
  191. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  192. tlb->active = &tlb->local;
  193. tlb->batch_count = 0;
  194. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  195. tlb->batch = NULL;
  196. #endif
  197. }
  198. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  199. {
  200. tlb->need_flush = 0;
  201. tlb_flush(tlb);
  202. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  203. tlb_table_flush(tlb);
  204. #endif
  205. }
  206. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  207. {
  208. struct mmu_gather_batch *batch;
  209. for (batch = &tlb->local; batch; batch = batch->next) {
  210. free_pages_and_swap_cache(batch->pages, batch->nr);
  211. batch->nr = 0;
  212. }
  213. tlb->active = &tlb->local;
  214. }
  215. void tlb_flush_mmu(struct mmu_gather *tlb)
  216. {
  217. if (!tlb->need_flush)
  218. return;
  219. tlb_flush_mmu_tlbonly(tlb);
  220. tlb_flush_mmu_free(tlb);
  221. }
  222. /* tlb_finish_mmu
  223. * Called at the end of the shootdown operation to free up any resources
  224. * that were required.
  225. */
  226. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  227. {
  228. struct mmu_gather_batch *batch, *next;
  229. tlb_flush_mmu(tlb);
  230. /* keep the page table cache within bounds */
  231. check_pgt_cache();
  232. for (batch = tlb->local.next; batch; batch = next) {
  233. next = batch->next;
  234. free_pages((unsigned long)batch, 0);
  235. }
  236. tlb->local.next = NULL;
  237. }
  238. /* __tlb_remove_page
  239. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  240. * handling the additional races in SMP caused by other CPUs caching valid
  241. * mappings in their TLBs. Returns the number of free page slots left.
  242. * When out of page slots we must call tlb_flush_mmu().
  243. */
  244. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  245. {
  246. struct mmu_gather_batch *batch;
  247. VM_BUG_ON(!tlb->need_flush);
  248. batch = tlb->active;
  249. batch->pages[batch->nr++] = page;
  250. if (batch->nr == batch->max) {
  251. if (!tlb_next_batch(tlb))
  252. return 0;
  253. batch = tlb->active;
  254. }
  255. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  256. return batch->max - batch->nr;
  257. }
  258. #endif /* HAVE_GENERIC_MMU_GATHER */
  259. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  260. /*
  261. * See the comment near struct mmu_table_batch.
  262. */
  263. static void tlb_remove_table_smp_sync(void *arg)
  264. {
  265. /* Simply deliver the interrupt */
  266. }
  267. static void tlb_remove_table_one(void *table)
  268. {
  269. /*
  270. * This isn't an RCU grace period and hence the page-tables cannot be
  271. * assumed to be actually RCU-freed.
  272. *
  273. * It is however sufficient for software page-table walkers that rely on
  274. * IRQ disabling. See the comment near struct mmu_table_batch.
  275. */
  276. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  277. __tlb_remove_table(table);
  278. }
  279. static void tlb_remove_table_rcu(struct rcu_head *head)
  280. {
  281. struct mmu_table_batch *batch;
  282. int i;
  283. batch = container_of(head, struct mmu_table_batch, rcu);
  284. for (i = 0; i < batch->nr; i++)
  285. __tlb_remove_table(batch->tables[i]);
  286. free_page((unsigned long)batch);
  287. }
  288. void tlb_table_flush(struct mmu_gather *tlb)
  289. {
  290. struct mmu_table_batch **batch = &tlb->batch;
  291. if (*batch) {
  292. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  293. *batch = NULL;
  294. }
  295. }
  296. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  297. {
  298. struct mmu_table_batch **batch = &tlb->batch;
  299. tlb->need_flush = 1;
  300. /*
  301. * When there's less then two users of this mm there cannot be a
  302. * concurrent page-table walk.
  303. */
  304. if (atomic_read(&tlb->mm->mm_users) < 2) {
  305. __tlb_remove_table(table);
  306. return;
  307. }
  308. if (*batch == NULL) {
  309. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  310. if (*batch == NULL) {
  311. tlb_remove_table_one(table);
  312. return;
  313. }
  314. (*batch)->nr = 0;
  315. }
  316. (*batch)->tables[(*batch)->nr++] = table;
  317. if ((*batch)->nr == MAX_TABLE_BATCH)
  318. tlb_table_flush(tlb);
  319. }
  320. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  321. /*
  322. * Note: this doesn't free the actual pages themselves. That
  323. * has been handled earlier when unmapping all the memory regions.
  324. */
  325. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  326. unsigned long addr)
  327. {
  328. pgtable_t token = pmd_pgtable(*pmd);
  329. pmd_clear(pmd);
  330. pte_free_tlb(tlb, token, addr);
  331. atomic_long_dec(&tlb->mm->nr_ptes);
  332. }
  333. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  334. unsigned long addr, unsigned long end,
  335. unsigned long floor, unsigned long ceiling)
  336. {
  337. pmd_t *pmd;
  338. unsigned long next;
  339. unsigned long start;
  340. start = addr;
  341. pmd = pmd_offset(pud, addr);
  342. do {
  343. next = pmd_addr_end(addr, end);
  344. if (pmd_none_or_clear_bad(pmd))
  345. continue;
  346. free_pte_range(tlb, pmd, addr);
  347. } while (pmd++, addr = next, addr != end);
  348. start &= PUD_MASK;
  349. if (start < floor)
  350. return;
  351. if (ceiling) {
  352. ceiling &= PUD_MASK;
  353. if (!ceiling)
  354. return;
  355. }
  356. if (end - 1 > ceiling - 1)
  357. return;
  358. pmd = pmd_offset(pud, start);
  359. pud_clear(pud);
  360. pmd_free_tlb(tlb, pmd, start);
  361. }
  362. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  363. unsigned long addr, unsigned long end,
  364. unsigned long floor, unsigned long ceiling)
  365. {
  366. pud_t *pud;
  367. unsigned long next;
  368. unsigned long start;
  369. start = addr;
  370. pud = pud_offset(pgd, addr);
  371. do {
  372. next = pud_addr_end(addr, end);
  373. if (pud_none_or_clear_bad(pud))
  374. continue;
  375. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  376. } while (pud++, addr = next, addr != end);
  377. start &= PGDIR_MASK;
  378. if (start < floor)
  379. return;
  380. if (ceiling) {
  381. ceiling &= PGDIR_MASK;
  382. if (!ceiling)
  383. return;
  384. }
  385. if (end - 1 > ceiling - 1)
  386. return;
  387. pud = pud_offset(pgd, start);
  388. pgd_clear(pgd);
  389. pud_free_tlb(tlb, pud, start);
  390. }
  391. /*
  392. * This function frees user-level page tables of a process.
  393. */
  394. void free_pgd_range(struct mmu_gather *tlb,
  395. unsigned long addr, unsigned long end,
  396. unsigned long floor, unsigned long ceiling)
  397. {
  398. pgd_t *pgd;
  399. unsigned long next;
  400. /*
  401. * The next few lines have given us lots of grief...
  402. *
  403. * Why are we testing PMD* at this top level? Because often
  404. * there will be no work to do at all, and we'd prefer not to
  405. * go all the way down to the bottom just to discover that.
  406. *
  407. * Why all these "- 1"s? Because 0 represents both the bottom
  408. * of the address space and the top of it (using -1 for the
  409. * top wouldn't help much: the masks would do the wrong thing).
  410. * The rule is that addr 0 and floor 0 refer to the bottom of
  411. * the address space, but end 0 and ceiling 0 refer to the top
  412. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  413. * that end 0 case should be mythical).
  414. *
  415. * Wherever addr is brought up or ceiling brought down, we must
  416. * be careful to reject "the opposite 0" before it confuses the
  417. * subsequent tests. But what about where end is brought down
  418. * by PMD_SIZE below? no, end can't go down to 0 there.
  419. *
  420. * Whereas we round start (addr) and ceiling down, by different
  421. * masks at different levels, in order to test whether a table
  422. * now has no other vmas using it, so can be freed, we don't
  423. * bother to round floor or end up - the tests don't need that.
  424. */
  425. addr &= PMD_MASK;
  426. if (addr < floor) {
  427. addr += PMD_SIZE;
  428. if (!addr)
  429. return;
  430. }
  431. if (ceiling) {
  432. ceiling &= PMD_MASK;
  433. if (!ceiling)
  434. return;
  435. }
  436. if (end - 1 > ceiling - 1)
  437. end -= PMD_SIZE;
  438. if (addr > end - 1)
  439. return;
  440. pgd = pgd_offset(tlb->mm, addr);
  441. do {
  442. next = pgd_addr_end(addr, end);
  443. if (pgd_none_or_clear_bad(pgd))
  444. continue;
  445. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  446. } while (pgd++, addr = next, addr != end);
  447. }
  448. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  449. unsigned long floor, unsigned long ceiling)
  450. {
  451. while (vma) {
  452. struct vm_area_struct *next = vma->vm_next;
  453. unsigned long addr = vma->vm_start;
  454. /*
  455. * Hide vma from rmap and truncate_pagecache before freeing
  456. * pgtables
  457. */
  458. unlink_anon_vmas(vma);
  459. unlink_file_vma(vma);
  460. if (is_vm_hugetlb_page(vma)) {
  461. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  462. floor, next? next->vm_start: ceiling);
  463. } else {
  464. /*
  465. * Optimization: gather nearby vmas into one call down
  466. */
  467. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  468. && !is_vm_hugetlb_page(next)) {
  469. vma = next;
  470. next = vma->vm_next;
  471. unlink_anon_vmas(vma);
  472. unlink_file_vma(vma);
  473. }
  474. free_pgd_range(tlb, addr, vma->vm_end,
  475. floor, next? next->vm_start: ceiling);
  476. }
  477. vma = next;
  478. }
  479. }
  480. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  481. pmd_t *pmd, unsigned long address)
  482. {
  483. spinlock_t *ptl;
  484. pgtable_t new = pte_alloc_one(mm, address);
  485. int wait_split_huge_page;
  486. if (!new)
  487. return -ENOMEM;
  488. /*
  489. * Ensure all pte setup (eg. pte page lock and page clearing) are
  490. * visible before the pte is made visible to other CPUs by being
  491. * put into page tables.
  492. *
  493. * The other side of the story is the pointer chasing in the page
  494. * table walking code (when walking the page table without locking;
  495. * ie. most of the time). Fortunately, these data accesses consist
  496. * of a chain of data-dependent loads, meaning most CPUs (alpha
  497. * being the notable exception) will already guarantee loads are
  498. * seen in-order. See the alpha page table accessors for the
  499. * smp_read_barrier_depends() barriers in page table walking code.
  500. */
  501. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  502. ptl = pmd_lock(mm, pmd);
  503. wait_split_huge_page = 0;
  504. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  505. atomic_long_inc(&mm->nr_ptes);
  506. pmd_populate(mm, pmd, new);
  507. new = NULL;
  508. } else if (unlikely(pmd_trans_splitting(*pmd)))
  509. wait_split_huge_page = 1;
  510. spin_unlock(ptl);
  511. if (new)
  512. pte_free(mm, new);
  513. if (wait_split_huge_page)
  514. wait_split_huge_page(vma->anon_vma, pmd);
  515. return 0;
  516. }
  517. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  518. {
  519. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  520. if (!new)
  521. return -ENOMEM;
  522. smp_wmb(); /* See comment in __pte_alloc */
  523. spin_lock(&init_mm.page_table_lock);
  524. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  525. pmd_populate_kernel(&init_mm, pmd, new);
  526. new = NULL;
  527. } else
  528. VM_BUG_ON(pmd_trans_splitting(*pmd));
  529. spin_unlock(&init_mm.page_table_lock);
  530. if (new)
  531. pte_free_kernel(&init_mm, new);
  532. return 0;
  533. }
  534. static inline void init_rss_vec(int *rss)
  535. {
  536. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  537. }
  538. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  539. {
  540. int i;
  541. if (current->mm == mm)
  542. sync_mm_rss(mm);
  543. for (i = 0; i < NR_MM_COUNTERS; i++)
  544. if (rss[i])
  545. add_mm_counter(mm, i, rss[i]);
  546. }
  547. /*
  548. * This function is called to print an error when a bad pte
  549. * is found. For example, we might have a PFN-mapped pte in
  550. * a region that doesn't allow it.
  551. *
  552. * The calling function must still handle the error.
  553. */
  554. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  555. pte_t pte, struct page *page)
  556. {
  557. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  558. pud_t *pud = pud_offset(pgd, addr);
  559. pmd_t *pmd = pmd_offset(pud, addr);
  560. struct address_space *mapping;
  561. pgoff_t index;
  562. static unsigned long resume;
  563. static unsigned long nr_shown;
  564. static unsigned long nr_unshown;
  565. /*
  566. * Allow a burst of 60 reports, then keep quiet for that minute;
  567. * or allow a steady drip of one report per second.
  568. */
  569. if (nr_shown == 60) {
  570. if (time_before(jiffies, resume)) {
  571. nr_unshown++;
  572. return;
  573. }
  574. if (nr_unshown) {
  575. printk(KERN_ALERT
  576. "BUG: Bad page map: %lu messages suppressed\n",
  577. nr_unshown);
  578. nr_unshown = 0;
  579. }
  580. nr_shown = 0;
  581. }
  582. if (nr_shown++ == 0)
  583. resume = jiffies + 60 * HZ;
  584. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  585. index = linear_page_index(vma, addr);
  586. printk(KERN_ALERT
  587. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  588. current->comm,
  589. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  590. if (page)
  591. dump_page(page, "bad pte");
  592. printk(KERN_ALERT
  593. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  594. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  595. /*
  596. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  597. */
  598. if (vma->vm_ops)
  599. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  600. vma->vm_ops->fault);
  601. if (vma->vm_file)
  602. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  603. vma->vm_file->f_op->mmap);
  604. dump_stack();
  605. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  606. }
  607. /*
  608. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  609. *
  610. * "Special" mappings do not wish to be associated with a "struct page" (either
  611. * it doesn't exist, or it exists but they don't want to touch it). In this
  612. * case, NULL is returned here. "Normal" mappings do have a struct page.
  613. *
  614. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  615. * pte bit, in which case this function is trivial. Secondly, an architecture
  616. * may not have a spare pte bit, which requires a more complicated scheme,
  617. * described below.
  618. *
  619. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  620. * special mapping (even if there are underlying and valid "struct pages").
  621. * COWed pages of a VM_PFNMAP are always normal.
  622. *
  623. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  624. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  625. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  626. * mapping will always honor the rule
  627. *
  628. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  629. *
  630. * And for normal mappings this is false.
  631. *
  632. * This restricts such mappings to be a linear translation from virtual address
  633. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  634. * as the vma is not a COW mapping; in that case, we know that all ptes are
  635. * special (because none can have been COWed).
  636. *
  637. *
  638. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  639. *
  640. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  641. * page" backing, however the difference is that _all_ pages with a struct
  642. * page (that is, those where pfn_valid is true) are refcounted and considered
  643. * normal pages by the VM. The disadvantage is that pages are refcounted
  644. * (which can be slower and simply not an option for some PFNMAP users). The
  645. * advantage is that we don't have to follow the strict linearity rule of
  646. * PFNMAP mappings in order to support COWable mappings.
  647. *
  648. */
  649. #ifdef __HAVE_ARCH_PTE_SPECIAL
  650. # define HAVE_PTE_SPECIAL 1
  651. #else
  652. # define HAVE_PTE_SPECIAL 0
  653. #endif
  654. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  655. pte_t pte)
  656. {
  657. unsigned long pfn = pte_pfn(pte);
  658. if (HAVE_PTE_SPECIAL) {
  659. if (likely(!pte_special(pte)))
  660. goto check_pfn;
  661. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  662. return NULL;
  663. if (!is_zero_pfn(pfn))
  664. print_bad_pte(vma, addr, pte, NULL);
  665. return NULL;
  666. }
  667. /* !HAVE_PTE_SPECIAL case follows: */
  668. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  669. if (vma->vm_flags & VM_MIXEDMAP) {
  670. if (!pfn_valid(pfn))
  671. return NULL;
  672. goto out;
  673. } else {
  674. unsigned long off;
  675. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  676. if (pfn == vma->vm_pgoff + off)
  677. return NULL;
  678. if (!is_cow_mapping(vma->vm_flags))
  679. return NULL;
  680. }
  681. }
  682. if (is_zero_pfn(pfn))
  683. return NULL;
  684. check_pfn:
  685. if (unlikely(pfn > highest_memmap_pfn)) {
  686. print_bad_pte(vma, addr, pte, NULL);
  687. return NULL;
  688. }
  689. /*
  690. * NOTE! We still have PageReserved() pages in the page tables.
  691. * eg. VDSO mappings can cause them to exist.
  692. */
  693. out:
  694. return pfn_to_page(pfn);
  695. }
  696. /*
  697. * copy one vm_area from one task to the other. Assumes the page tables
  698. * already present in the new task to be cleared in the whole range
  699. * covered by this vma.
  700. */
  701. static inline unsigned long
  702. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  703. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  704. unsigned long addr, int *rss)
  705. {
  706. unsigned long vm_flags = vma->vm_flags;
  707. pte_t pte = *src_pte;
  708. struct page *page;
  709. /* pte contains position in swap or file, so copy. */
  710. if (unlikely(!pte_present(pte))) {
  711. if (!pte_file(pte)) {
  712. swp_entry_t entry = pte_to_swp_entry(pte);
  713. if (swap_duplicate(entry) < 0)
  714. return entry.val;
  715. /* make sure dst_mm is on swapoff's mmlist. */
  716. if (unlikely(list_empty(&dst_mm->mmlist))) {
  717. spin_lock(&mmlist_lock);
  718. if (list_empty(&dst_mm->mmlist))
  719. list_add(&dst_mm->mmlist,
  720. &src_mm->mmlist);
  721. spin_unlock(&mmlist_lock);
  722. }
  723. if (likely(!non_swap_entry(entry)))
  724. rss[MM_SWAPENTS]++;
  725. else if (is_migration_entry(entry)) {
  726. page = migration_entry_to_page(entry);
  727. if (PageAnon(page))
  728. rss[MM_ANONPAGES]++;
  729. else
  730. rss[MM_FILEPAGES]++;
  731. if (is_write_migration_entry(entry) &&
  732. is_cow_mapping(vm_flags)) {
  733. /*
  734. * COW mappings require pages in both
  735. * parent and child to be set to read.
  736. */
  737. make_migration_entry_read(&entry);
  738. pte = swp_entry_to_pte(entry);
  739. if (pte_swp_soft_dirty(*src_pte))
  740. pte = pte_swp_mksoft_dirty(pte);
  741. set_pte_at(src_mm, addr, src_pte, pte);
  742. }
  743. }
  744. }
  745. goto out_set_pte;
  746. }
  747. /*
  748. * If it's a COW mapping, write protect it both
  749. * in the parent and the child
  750. */
  751. if (is_cow_mapping(vm_flags)) {
  752. ptep_set_wrprotect(src_mm, addr, src_pte);
  753. pte = pte_wrprotect(pte);
  754. }
  755. /*
  756. * If it's a shared mapping, mark it clean in
  757. * the child
  758. */
  759. if (vm_flags & VM_SHARED)
  760. pte = pte_mkclean(pte);
  761. pte = pte_mkold(pte);
  762. page = vm_normal_page(vma, addr, pte);
  763. if (page) {
  764. get_page(page);
  765. page_dup_rmap(page);
  766. if (PageAnon(page))
  767. rss[MM_ANONPAGES]++;
  768. else
  769. rss[MM_FILEPAGES]++;
  770. }
  771. out_set_pte:
  772. set_pte_at(dst_mm, addr, dst_pte, pte);
  773. return 0;
  774. }
  775. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  776. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  777. unsigned long addr, unsigned long end)
  778. {
  779. pte_t *orig_src_pte, *orig_dst_pte;
  780. pte_t *src_pte, *dst_pte;
  781. spinlock_t *src_ptl, *dst_ptl;
  782. int progress = 0;
  783. int rss[NR_MM_COUNTERS];
  784. swp_entry_t entry = (swp_entry_t){0};
  785. again:
  786. init_rss_vec(rss);
  787. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  788. if (!dst_pte)
  789. return -ENOMEM;
  790. src_pte = pte_offset_map(src_pmd, addr);
  791. src_ptl = pte_lockptr(src_mm, src_pmd);
  792. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  793. orig_src_pte = src_pte;
  794. orig_dst_pte = dst_pte;
  795. arch_enter_lazy_mmu_mode();
  796. do {
  797. /*
  798. * We are holding two locks at this point - either of them
  799. * could generate latencies in another task on another CPU.
  800. */
  801. if (progress >= 32) {
  802. progress = 0;
  803. if (need_resched() ||
  804. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  805. break;
  806. }
  807. if (pte_none(*src_pte)) {
  808. progress++;
  809. continue;
  810. }
  811. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  812. vma, addr, rss);
  813. if (entry.val)
  814. break;
  815. progress += 8;
  816. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  817. arch_leave_lazy_mmu_mode();
  818. spin_unlock(src_ptl);
  819. pte_unmap(orig_src_pte);
  820. add_mm_rss_vec(dst_mm, rss);
  821. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  822. cond_resched();
  823. if (entry.val) {
  824. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  825. return -ENOMEM;
  826. progress = 0;
  827. }
  828. if (addr != end)
  829. goto again;
  830. return 0;
  831. }
  832. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  833. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  834. unsigned long addr, unsigned long end)
  835. {
  836. pmd_t *src_pmd, *dst_pmd;
  837. unsigned long next;
  838. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  839. if (!dst_pmd)
  840. return -ENOMEM;
  841. src_pmd = pmd_offset(src_pud, addr);
  842. do {
  843. next = pmd_addr_end(addr, end);
  844. if (pmd_trans_huge(*src_pmd)) {
  845. int err;
  846. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  847. err = copy_huge_pmd(dst_mm, src_mm,
  848. dst_pmd, src_pmd, addr, vma);
  849. if (err == -ENOMEM)
  850. return -ENOMEM;
  851. if (!err)
  852. continue;
  853. /* fall through */
  854. }
  855. if (pmd_none_or_clear_bad(src_pmd))
  856. continue;
  857. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  858. vma, addr, next))
  859. return -ENOMEM;
  860. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  861. return 0;
  862. }
  863. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  864. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  865. unsigned long addr, unsigned long end)
  866. {
  867. pud_t *src_pud, *dst_pud;
  868. unsigned long next;
  869. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  870. if (!dst_pud)
  871. return -ENOMEM;
  872. src_pud = pud_offset(src_pgd, addr);
  873. do {
  874. next = pud_addr_end(addr, end);
  875. if (pud_none_or_clear_bad(src_pud))
  876. continue;
  877. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  878. vma, addr, next))
  879. return -ENOMEM;
  880. } while (dst_pud++, src_pud++, addr = next, addr != end);
  881. return 0;
  882. }
  883. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  884. struct vm_area_struct *vma)
  885. {
  886. pgd_t *src_pgd, *dst_pgd;
  887. unsigned long next;
  888. unsigned long addr = vma->vm_start;
  889. unsigned long end = vma->vm_end;
  890. unsigned long mmun_start; /* For mmu_notifiers */
  891. unsigned long mmun_end; /* For mmu_notifiers */
  892. bool is_cow;
  893. int ret;
  894. /*
  895. * Don't copy ptes where a page fault will fill them correctly.
  896. * Fork becomes much lighter when there are big shared or private
  897. * readonly mappings. The tradeoff is that copy_page_range is more
  898. * efficient than faulting.
  899. */
  900. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  901. VM_PFNMAP | VM_MIXEDMAP))) {
  902. if (!vma->anon_vma)
  903. return 0;
  904. }
  905. if (is_vm_hugetlb_page(vma))
  906. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  907. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  908. /*
  909. * We do not free on error cases below as remove_vma
  910. * gets called on error from higher level routine
  911. */
  912. ret = track_pfn_copy(vma);
  913. if (ret)
  914. return ret;
  915. }
  916. /*
  917. * We need to invalidate the secondary MMU mappings only when
  918. * there could be a permission downgrade on the ptes of the
  919. * parent mm. And a permission downgrade will only happen if
  920. * is_cow_mapping() returns true.
  921. */
  922. is_cow = is_cow_mapping(vma->vm_flags);
  923. mmun_start = addr;
  924. mmun_end = end;
  925. if (is_cow)
  926. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  927. mmun_end);
  928. ret = 0;
  929. dst_pgd = pgd_offset(dst_mm, addr);
  930. src_pgd = pgd_offset(src_mm, addr);
  931. do {
  932. next = pgd_addr_end(addr, end);
  933. if (pgd_none_or_clear_bad(src_pgd))
  934. continue;
  935. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  936. vma, addr, next))) {
  937. ret = -ENOMEM;
  938. break;
  939. }
  940. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  941. if (is_cow)
  942. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  943. return ret;
  944. }
  945. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  946. struct vm_area_struct *vma, pmd_t *pmd,
  947. unsigned long addr, unsigned long end,
  948. struct zap_details *details)
  949. {
  950. struct mm_struct *mm = tlb->mm;
  951. int force_flush = 0;
  952. int rss[NR_MM_COUNTERS];
  953. spinlock_t *ptl;
  954. pte_t *start_pte;
  955. pte_t *pte;
  956. again:
  957. init_rss_vec(rss);
  958. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  959. pte = start_pte;
  960. arch_enter_lazy_mmu_mode();
  961. do {
  962. pte_t ptent = *pte;
  963. if (pte_none(ptent)) {
  964. continue;
  965. }
  966. if (pte_present(ptent)) {
  967. struct page *page;
  968. page = vm_normal_page(vma, addr, ptent);
  969. if (unlikely(details) && page) {
  970. /*
  971. * unmap_shared_mapping_pages() wants to
  972. * invalidate cache without truncating:
  973. * unmap shared but keep private pages.
  974. */
  975. if (details->check_mapping &&
  976. details->check_mapping != page->mapping)
  977. continue;
  978. /*
  979. * Each page->index must be checked when
  980. * invalidating or truncating nonlinear.
  981. */
  982. if (details->nonlinear_vma &&
  983. (page->index < details->first_index ||
  984. page->index > details->last_index))
  985. continue;
  986. }
  987. ptent = ptep_get_and_clear_full(mm, addr, pte,
  988. tlb->fullmm);
  989. tlb_remove_tlb_entry(tlb, pte, addr);
  990. if (unlikely(!page))
  991. continue;
  992. if (unlikely(details) && details->nonlinear_vma
  993. && linear_page_index(details->nonlinear_vma,
  994. addr) != page->index) {
  995. pte_t ptfile = pgoff_to_pte(page->index);
  996. if (pte_soft_dirty(ptent))
  997. ptfile = pte_file_mksoft_dirty(ptfile);
  998. set_pte_at(mm, addr, pte, ptfile);
  999. }
  1000. if (PageAnon(page))
  1001. rss[MM_ANONPAGES]--;
  1002. else {
  1003. if (pte_dirty(ptent)) {
  1004. force_flush = 1;
  1005. set_page_dirty(page);
  1006. }
  1007. if (pte_young(ptent) &&
  1008. likely(!(vma->vm_flags & VM_SEQ_READ)))
  1009. mark_page_accessed(page);
  1010. rss[MM_FILEPAGES]--;
  1011. }
  1012. page_remove_rmap(page);
  1013. if (unlikely(page_mapcount(page) < 0))
  1014. print_bad_pte(vma, addr, ptent, page);
  1015. if (unlikely(!__tlb_remove_page(tlb, page))) {
  1016. force_flush = 1;
  1017. break;
  1018. }
  1019. continue;
  1020. }
  1021. /*
  1022. * If details->check_mapping, we leave swap entries;
  1023. * if details->nonlinear_vma, we leave file entries.
  1024. */
  1025. if (unlikely(details))
  1026. continue;
  1027. if (pte_file(ptent)) {
  1028. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1029. print_bad_pte(vma, addr, ptent, NULL);
  1030. } else {
  1031. swp_entry_t entry = pte_to_swp_entry(ptent);
  1032. if (!non_swap_entry(entry))
  1033. rss[MM_SWAPENTS]--;
  1034. else if (is_migration_entry(entry)) {
  1035. struct page *page;
  1036. page = migration_entry_to_page(entry);
  1037. if (PageAnon(page))
  1038. rss[MM_ANONPAGES]--;
  1039. else
  1040. rss[MM_FILEPAGES]--;
  1041. }
  1042. if (unlikely(!free_swap_and_cache(entry)))
  1043. print_bad_pte(vma, addr, ptent, NULL);
  1044. }
  1045. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1046. } while (pte++, addr += PAGE_SIZE, addr != end);
  1047. add_mm_rss_vec(mm, rss);
  1048. arch_leave_lazy_mmu_mode();
  1049. /* Do the actual TLB flush before dropping ptl */
  1050. if (force_flush) {
  1051. unsigned long old_end;
  1052. /*
  1053. * Flush the TLB just for the previous segment,
  1054. * then update the range to be the remaining
  1055. * TLB range.
  1056. */
  1057. old_end = tlb->end;
  1058. tlb->end = addr;
  1059. tlb_flush_mmu_tlbonly(tlb);
  1060. tlb->start = addr;
  1061. tlb->end = old_end;
  1062. }
  1063. pte_unmap_unlock(start_pte, ptl);
  1064. /*
  1065. * If we forced a TLB flush (either due to running out of
  1066. * batch buffers or because we needed to flush dirty TLB
  1067. * entries before releasing the ptl), free the batched
  1068. * memory too. Restart if we didn't do everything.
  1069. */
  1070. if (force_flush) {
  1071. force_flush = 0;
  1072. tlb_flush_mmu_free(tlb);
  1073. if (addr != end)
  1074. goto again;
  1075. }
  1076. return addr;
  1077. }
  1078. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1079. struct vm_area_struct *vma, pud_t *pud,
  1080. unsigned long addr, unsigned long end,
  1081. struct zap_details *details)
  1082. {
  1083. pmd_t *pmd;
  1084. unsigned long next;
  1085. pmd = pmd_offset(pud, addr);
  1086. do {
  1087. next = pmd_addr_end(addr, end);
  1088. if (pmd_trans_huge(*pmd)) {
  1089. if (next - addr != HPAGE_PMD_SIZE) {
  1090. #ifdef CONFIG_DEBUG_VM
  1091. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1092. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1093. __func__, addr, end,
  1094. vma->vm_start,
  1095. vma->vm_end);
  1096. BUG();
  1097. }
  1098. #endif
  1099. split_huge_page_pmd(vma, addr, pmd);
  1100. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1101. goto next;
  1102. /* fall through */
  1103. }
  1104. /*
  1105. * Here there can be other concurrent MADV_DONTNEED or
  1106. * trans huge page faults running, and if the pmd is
  1107. * none or trans huge it can change under us. This is
  1108. * because MADV_DONTNEED holds the mmap_sem in read
  1109. * mode.
  1110. */
  1111. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1112. goto next;
  1113. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1114. next:
  1115. cond_resched();
  1116. } while (pmd++, addr = next, addr != end);
  1117. return addr;
  1118. }
  1119. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1120. struct vm_area_struct *vma, pgd_t *pgd,
  1121. unsigned long addr, unsigned long end,
  1122. struct zap_details *details)
  1123. {
  1124. pud_t *pud;
  1125. unsigned long next;
  1126. pud = pud_offset(pgd, addr);
  1127. do {
  1128. next = pud_addr_end(addr, end);
  1129. if (pud_none_or_clear_bad(pud))
  1130. continue;
  1131. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1132. } while (pud++, addr = next, addr != end);
  1133. return addr;
  1134. }
  1135. static void unmap_page_range(struct mmu_gather *tlb,
  1136. struct vm_area_struct *vma,
  1137. unsigned long addr, unsigned long end,
  1138. struct zap_details *details)
  1139. {
  1140. pgd_t *pgd;
  1141. unsigned long next;
  1142. if (details && !details->check_mapping && !details->nonlinear_vma)
  1143. details = NULL;
  1144. BUG_ON(addr >= end);
  1145. tlb_start_vma(tlb, vma);
  1146. pgd = pgd_offset(vma->vm_mm, addr);
  1147. do {
  1148. next = pgd_addr_end(addr, end);
  1149. if (pgd_none_or_clear_bad(pgd))
  1150. continue;
  1151. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1152. } while (pgd++, addr = next, addr != end);
  1153. tlb_end_vma(tlb, vma);
  1154. }
  1155. static void unmap_single_vma(struct mmu_gather *tlb,
  1156. struct vm_area_struct *vma, unsigned long start_addr,
  1157. unsigned long end_addr,
  1158. struct zap_details *details)
  1159. {
  1160. unsigned long start = max(vma->vm_start, start_addr);
  1161. unsigned long end;
  1162. if (start >= vma->vm_end)
  1163. return;
  1164. end = min(vma->vm_end, end_addr);
  1165. if (end <= vma->vm_start)
  1166. return;
  1167. if (vma->vm_file)
  1168. uprobe_munmap(vma, start, end);
  1169. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1170. untrack_pfn(vma, 0, 0);
  1171. if (start != end) {
  1172. if (unlikely(is_vm_hugetlb_page(vma))) {
  1173. /*
  1174. * It is undesirable to test vma->vm_file as it
  1175. * should be non-null for valid hugetlb area.
  1176. * However, vm_file will be NULL in the error
  1177. * cleanup path of mmap_region. When
  1178. * hugetlbfs ->mmap method fails,
  1179. * mmap_region() nullifies vma->vm_file
  1180. * before calling this function to clean up.
  1181. * Since no pte has actually been setup, it is
  1182. * safe to do nothing in this case.
  1183. */
  1184. if (vma->vm_file) {
  1185. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1186. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1187. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1188. }
  1189. } else
  1190. unmap_page_range(tlb, vma, start, end, details);
  1191. }
  1192. }
  1193. /**
  1194. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1195. * @tlb: address of the caller's struct mmu_gather
  1196. * @vma: the starting vma
  1197. * @start_addr: virtual address at which to start unmapping
  1198. * @end_addr: virtual address at which to end unmapping
  1199. *
  1200. * Unmap all pages in the vma list.
  1201. *
  1202. * Only addresses between `start' and `end' will be unmapped.
  1203. *
  1204. * The VMA list must be sorted in ascending virtual address order.
  1205. *
  1206. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1207. * range after unmap_vmas() returns. So the only responsibility here is to
  1208. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1209. * drops the lock and schedules.
  1210. */
  1211. void unmap_vmas(struct mmu_gather *tlb,
  1212. struct vm_area_struct *vma, unsigned long start_addr,
  1213. unsigned long end_addr)
  1214. {
  1215. struct mm_struct *mm = vma->vm_mm;
  1216. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1217. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1218. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1219. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1220. }
  1221. /**
  1222. * zap_page_range - remove user pages in a given range
  1223. * @vma: vm_area_struct holding the applicable pages
  1224. * @start: starting address of pages to zap
  1225. * @size: number of bytes to zap
  1226. * @details: details of nonlinear truncation or shared cache invalidation
  1227. *
  1228. * Caller must protect the VMA list
  1229. */
  1230. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1231. unsigned long size, struct zap_details *details)
  1232. {
  1233. struct mm_struct *mm = vma->vm_mm;
  1234. struct mmu_gather tlb;
  1235. unsigned long end = start + size;
  1236. lru_add_drain();
  1237. tlb_gather_mmu(&tlb, mm, start, end);
  1238. update_hiwater_rss(mm);
  1239. mmu_notifier_invalidate_range_start(mm, start, end);
  1240. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1241. unmap_single_vma(&tlb, vma, start, end, details);
  1242. mmu_notifier_invalidate_range_end(mm, start, end);
  1243. tlb_finish_mmu(&tlb, start, end);
  1244. }
  1245. /**
  1246. * zap_page_range_single - remove user pages in a given range
  1247. * @vma: vm_area_struct holding the applicable pages
  1248. * @address: starting address of pages to zap
  1249. * @size: number of bytes to zap
  1250. * @details: details of nonlinear truncation or shared cache invalidation
  1251. *
  1252. * The range must fit into one VMA.
  1253. */
  1254. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1255. unsigned long size, struct zap_details *details)
  1256. {
  1257. struct mm_struct *mm = vma->vm_mm;
  1258. struct mmu_gather tlb;
  1259. unsigned long end = address + size;
  1260. lru_add_drain();
  1261. tlb_gather_mmu(&tlb, mm, address, end);
  1262. update_hiwater_rss(mm);
  1263. mmu_notifier_invalidate_range_start(mm, address, end);
  1264. unmap_single_vma(&tlb, vma, address, end, details);
  1265. mmu_notifier_invalidate_range_end(mm, address, end);
  1266. tlb_finish_mmu(&tlb, address, end);
  1267. }
  1268. /**
  1269. * zap_vma_ptes - remove ptes mapping the vma
  1270. * @vma: vm_area_struct holding ptes to be zapped
  1271. * @address: starting address of pages to zap
  1272. * @size: number of bytes to zap
  1273. *
  1274. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1275. *
  1276. * The entire address range must be fully contained within the vma.
  1277. *
  1278. * Returns 0 if successful.
  1279. */
  1280. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1281. unsigned long size)
  1282. {
  1283. if (address < vma->vm_start || address + size > vma->vm_end ||
  1284. !(vma->vm_flags & VM_PFNMAP))
  1285. return -1;
  1286. zap_page_range_single(vma, address, size, NULL);
  1287. return 0;
  1288. }
  1289. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1290. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1291. spinlock_t **ptl)
  1292. {
  1293. pgd_t * pgd = pgd_offset(mm, addr);
  1294. pud_t * pud = pud_alloc(mm, pgd, addr);
  1295. if (pud) {
  1296. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1297. if (pmd) {
  1298. VM_BUG_ON(pmd_trans_huge(*pmd));
  1299. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1300. }
  1301. }
  1302. return NULL;
  1303. }
  1304. /*
  1305. * This is the old fallback for page remapping.
  1306. *
  1307. * For historical reasons, it only allows reserved pages. Only
  1308. * old drivers should use this, and they needed to mark their
  1309. * pages reserved for the old functions anyway.
  1310. */
  1311. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1312. struct page *page, pgprot_t prot)
  1313. {
  1314. struct mm_struct *mm = vma->vm_mm;
  1315. int retval;
  1316. pte_t *pte;
  1317. spinlock_t *ptl;
  1318. retval = -EINVAL;
  1319. if (PageAnon(page))
  1320. goto out;
  1321. retval = -ENOMEM;
  1322. flush_dcache_page(page);
  1323. pte = get_locked_pte(mm, addr, &ptl);
  1324. if (!pte)
  1325. goto out;
  1326. retval = -EBUSY;
  1327. if (!pte_none(*pte))
  1328. goto out_unlock;
  1329. /* Ok, finally just insert the thing.. */
  1330. get_page(page);
  1331. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1332. page_add_file_rmap(page);
  1333. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1334. retval = 0;
  1335. pte_unmap_unlock(pte, ptl);
  1336. return retval;
  1337. out_unlock:
  1338. pte_unmap_unlock(pte, ptl);
  1339. out:
  1340. return retval;
  1341. }
  1342. /**
  1343. * vm_insert_page - insert single page into user vma
  1344. * @vma: user vma to map to
  1345. * @addr: target user address of this page
  1346. * @page: source kernel page
  1347. *
  1348. * This allows drivers to insert individual pages they've allocated
  1349. * into a user vma.
  1350. *
  1351. * The page has to be a nice clean _individual_ kernel allocation.
  1352. * If you allocate a compound page, you need to have marked it as
  1353. * such (__GFP_COMP), or manually just split the page up yourself
  1354. * (see split_page()).
  1355. *
  1356. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1357. * took an arbitrary page protection parameter. This doesn't allow
  1358. * that. Your vma protection will have to be set up correctly, which
  1359. * means that if you want a shared writable mapping, you'd better
  1360. * ask for a shared writable mapping!
  1361. *
  1362. * The page does not need to be reserved.
  1363. *
  1364. * Usually this function is called from f_op->mmap() handler
  1365. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1366. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1367. * function from other places, for example from page-fault handler.
  1368. */
  1369. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1370. struct page *page)
  1371. {
  1372. if (addr < vma->vm_start || addr >= vma->vm_end)
  1373. return -EFAULT;
  1374. if (!page_count(page))
  1375. return -EINVAL;
  1376. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1377. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1378. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1379. vma->vm_flags |= VM_MIXEDMAP;
  1380. }
  1381. return insert_page(vma, addr, page, vma->vm_page_prot);
  1382. }
  1383. EXPORT_SYMBOL(vm_insert_page);
  1384. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1385. unsigned long pfn, pgprot_t prot)
  1386. {
  1387. struct mm_struct *mm = vma->vm_mm;
  1388. int retval;
  1389. pte_t *pte, entry;
  1390. spinlock_t *ptl;
  1391. retval = -ENOMEM;
  1392. pte = get_locked_pte(mm, addr, &ptl);
  1393. if (!pte)
  1394. goto out;
  1395. retval = -EBUSY;
  1396. if (!pte_none(*pte))
  1397. goto out_unlock;
  1398. /* Ok, finally just insert the thing.. */
  1399. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1400. set_pte_at(mm, addr, pte, entry);
  1401. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1402. retval = 0;
  1403. out_unlock:
  1404. pte_unmap_unlock(pte, ptl);
  1405. out:
  1406. return retval;
  1407. }
  1408. /**
  1409. * vm_insert_pfn - insert single pfn into user vma
  1410. * @vma: user vma to map to
  1411. * @addr: target user address of this page
  1412. * @pfn: source kernel pfn
  1413. *
  1414. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1415. * they've allocated into a user vma. Same comments apply.
  1416. *
  1417. * This function should only be called from a vm_ops->fault handler, and
  1418. * in that case the handler should return NULL.
  1419. *
  1420. * vma cannot be a COW mapping.
  1421. *
  1422. * As this is called only for pages that do not currently exist, we
  1423. * do not need to flush old virtual caches or the TLB.
  1424. */
  1425. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1426. unsigned long pfn)
  1427. {
  1428. int ret;
  1429. pgprot_t pgprot = vma->vm_page_prot;
  1430. /*
  1431. * Technically, architectures with pte_special can avoid all these
  1432. * restrictions (same for remap_pfn_range). However we would like
  1433. * consistency in testing and feature parity among all, so we should
  1434. * try to keep these invariants in place for everybody.
  1435. */
  1436. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1437. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1438. (VM_PFNMAP|VM_MIXEDMAP));
  1439. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1440. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1441. if (addr < vma->vm_start || addr >= vma->vm_end)
  1442. return -EFAULT;
  1443. if (track_pfn_insert(vma, &pgprot, pfn))
  1444. return -EINVAL;
  1445. ret = insert_pfn(vma, addr, pfn, pgprot);
  1446. return ret;
  1447. }
  1448. EXPORT_SYMBOL(vm_insert_pfn);
  1449. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1450. unsigned long pfn)
  1451. {
  1452. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1453. if (addr < vma->vm_start || addr >= vma->vm_end)
  1454. return -EFAULT;
  1455. /*
  1456. * If we don't have pte special, then we have to use the pfn_valid()
  1457. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1458. * refcount the page if pfn_valid is true (hence insert_page rather
  1459. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1460. * without pte special, it would there be refcounted as a normal page.
  1461. */
  1462. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1463. struct page *page;
  1464. page = pfn_to_page(pfn);
  1465. return insert_page(vma, addr, page, vma->vm_page_prot);
  1466. }
  1467. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1468. }
  1469. EXPORT_SYMBOL(vm_insert_mixed);
  1470. /*
  1471. * maps a range of physical memory into the requested pages. the old
  1472. * mappings are removed. any references to nonexistent pages results
  1473. * in null mappings (currently treated as "copy-on-access")
  1474. */
  1475. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1476. unsigned long addr, unsigned long end,
  1477. unsigned long pfn, pgprot_t prot)
  1478. {
  1479. pte_t *pte;
  1480. spinlock_t *ptl;
  1481. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1482. if (!pte)
  1483. return -ENOMEM;
  1484. arch_enter_lazy_mmu_mode();
  1485. do {
  1486. BUG_ON(!pte_none(*pte));
  1487. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1488. pfn++;
  1489. } while (pte++, addr += PAGE_SIZE, addr != end);
  1490. arch_leave_lazy_mmu_mode();
  1491. pte_unmap_unlock(pte - 1, ptl);
  1492. return 0;
  1493. }
  1494. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1495. unsigned long addr, unsigned long end,
  1496. unsigned long pfn, pgprot_t prot)
  1497. {
  1498. pmd_t *pmd;
  1499. unsigned long next;
  1500. pfn -= addr >> PAGE_SHIFT;
  1501. pmd = pmd_alloc(mm, pud, addr);
  1502. if (!pmd)
  1503. return -ENOMEM;
  1504. VM_BUG_ON(pmd_trans_huge(*pmd));
  1505. do {
  1506. next = pmd_addr_end(addr, end);
  1507. if (remap_pte_range(mm, pmd, addr, next,
  1508. pfn + (addr >> PAGE_SHIFT), prot))
  1509. return -ENOMEM;
  1510. } while (pmd++, addr = next, addr != end);
  1511. return 0;
  1512. }
  1513. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1514. unsigned long addr, unsigned long end,
  1515. unsigned long pfn, pgprot_t prot)
  1516. {
  1517. pud_t *pud;
  1518. unsigned long next;
  1519. pfn -= addr >> PAGE_SHIFT;
  1520. pud = pud_alloc(mm, pgd, addr);
  1521. if (!pud)
  1522. return -ENOMEM;
  1523. do {
  1524. next = pud_addr_end(addr, end);
  1525. if (remap_pmd_range(mm, pud, addr, next,
  1526. pfn + (addr >> PAGE_SHIFT), prot))
  1527. return -ENOMEM;
  1528. } while (pud++, addr = next, addr != end);
  1529. return 0;
  1530. }
  1531. /**
  1532. * remap_pfn_range - remap kernel memory to userspace
  1533. * @vma: user vma to map to
  1534. * @addr: target user address to start at
  1535. * @pfn: physical address of kernel memory
  1536. * @size: size of map area
  1537. * @prot: page protection flags for this mapping
  1538. *
  1539. * Note: this is only safe if the mm semaphore is held when called.
  1540. */
  1541. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1542. unsigned long pfn, unsigned long size, pgprot_t prot)
  1543. {
  1544. pgd_t *pgd;
  1545. unsigned long next;
  1546. unsigned long end = addr + PAGE_ALIGN(size);
  1547. struct mm_struct *mm = vma->vm_mm;
  1548. int err;
  1549. /*
  1550. * Physically remapped pages are special. Tell the
  1551. * rest of the world about it:
  1552. * VM_IO tells people not to look at these pages
  1553. * (accesses can have side effects).
  1554. * VM_PFNMAP tells the core MM that the base pages are just
  1555. * raw PFN mappings, and do not have a "struct page" associated
  1556. * with them.
  1557. * VM_DONTEXPAND
  1558. * Disable vma merging and expanding with mremap().
  1559. * VM_DONTDUMP
  1560. * Omit vma from core dump, even when VM_IO turned off.
  1561. *
  1562. * There's a horrible special case to handle copy-on-write
  1563. * behaviour that some programs depend on. We mark the "original"
  1564. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1565. * See vm_normal_page() for details.
  1566. */
  1567. if (is_cow_mapping(vma->vm_flags)) {
  1568. if (addr != vma->vm_start || end != vma->vm_end)
  1569. return -EINVAL;
  1570. vma->vm_pgoff = pfn;
  1571. }
  1572. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1573. if (err)
  1574. return -EINVAL;
  1575. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1576. BUG_ON(addr >= end);
  1577. pfn -= addr >> PAGE_SHIFT;
  1578. pgd = pgd_offset(mm, addr);
  1579. flush_cache_range(vma, addr, end);
  1580. do {
  1581. next = pgd_addr_end(addr, end);
  1582. err = remap_pud_range(mm, pgd, addr, next,
  1583. pfn + (addr >> PAGE_SHIFT), prot);
  1584. if (err)
  1585. break;
  1586. } while (pgd++, addr = next, addr != end);
  1587. if (err)
  1588. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1589. return err;
  1590. }
  1591. EXPORT_SYMBOL(remap_pfn_range);
  1592. /**
  1593. * vm_iomap_memory - remap memory to userspace
  1594. * @vma: user vma to map to
  1595. * @start: start of area
  1596. * @len: size of area
  1597. *
  1598. * This is a simplified io_remap_pfn_range() for common driver use. The
  1599. * driver just needs to give us the physical memory range to be mapped,
  1600. * we'll figure out the rest from the vma information.
  1601. *
  1602. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1603. * whatever write-combining details or similar.
  1604. */
  1605. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1606. {
  1607. unsigned long vm_len, pfn, pages;
  1608. /* Check that the physical memory area passed in looks valid */
  1609. if (start + len < start)
  1610. return -EINVAL;
  1611. /*
  1612. * You *really* shouldn't map things that aren't page-aligned,
  1613. * but we've historically allowed it because IO memory might
  1614. * just have smaller alignment.
  1615. */
  1616. len += start & ~PAGE_MASK;
  1617. pfn = start >> PAGE_SHIFT;
  1618. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1619. if (pfn + pages < pfn)
  1620. return -EINVAL;
  1621. /* We start the mapping 'vm_pgoff' pages into the area */
  1622. if (vma->vm_pgoff > pages)
  1623. return -EINVAL;
  1624. pfn += vma->vm_pgoff;
  1625. pages -= vma->vm_pgoff;
  1626. /* Can we fit all of the mapping? */
  1627. vm_len = vma->vm_end - vma->vm_start;
  1628. if (vm_len >> PAGE_SHIFT > pages)
  1629. return -EINVAL;
  1630. /* Ok, let it rip */
  1631. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1632. }
  1633. EXPORT_SYMBOL(vm_iomap_memory);
  1634. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1635. unsigned long addr, unsigned long end,
  1636. pte_fn_t fn, void *data)
  1637. {
  1638. pte_t *pte;
  1639. int err;
  1640. pgtable_t token;
  1641. spinlock_t *uninitialized_var(ptl);
  1642. pte = (mm == &init_mm) ?
  1643. pte_alloc_kernel(pmd, addr) :
  1644. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1645. if (!pte)
  1646. return -ENOMEM;
  1647. BUG_ON(pmd_huge(*pmd));
  1648. arch_enter_lazy_mmu_mode();
  1649. token = pmd_pgtable(*pmd);
  1650. do {
  1651. err = fn(pte++, token, addr, data);
  1652. if (err)
  1653. break;
  1654. } while (addr += PAGE_SIZE, addr != end);
  1655. arch_leave_lazy_mmu_mode();
  1656. if (mm != &init_mm)
  1657. pte_unmap_unlock(pte-1, ptl);
  1658. return err;
  1659. }
  1660. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1661. unsigned long addr, unsigned long end,
  1662. pte_fn_t fn, void *data)
  1663. {
  1664. pmd_t *pmd;
  1665. unsigned long next;
  1666. int err;
  1667. BUG_ON(pud_huge(*pud));
  1668. pmd = pmd_alloc(mm, pud, addr);
  1669. if (!pmd)
  1670. return -ENOMEM;
  1671. do {
  1672. next = pmd_addr_end(addr, end);
  1673. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1674. if (err)
  1675. break;
  1676. } while (pmd++, addr = next, addr != end);
  1677. return err;
  1678. }
  1679. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1680. unsigned long addr, unsigned long end,
  1681. pte_fn_t fn, void *data)
  1682. {
  1683. pud_t *pud;
  1684. unsigned long next;
  1685. int err;
  1686. pud = pud_alloc(mm, pgd, addr);
  1687. if (!pud)
  1688. return -ENOMEM;
  1689. do {
  1690. next = pud_addr_end(addr, end);
  1691. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1692. if (err)
  1693. break;
  1694. } while (pud++, addr = next, addr != end);
  1695. return err;
  1696. }
  1697. /*
  1698. * Scan a region of virtual memory, filling in page tables as necessary
  1699. * and calling a provided function on each leaf page table.
  1700. */
  1701. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1702. unsigned long size, pte_fn_t fn, void *data)
  1703. {
  1704. pgd_t *pgd;
  1705. unsigned long next;
  1706. unsigned long end = addr + size;
  1707. int err;
  1708. BUG_ON(addr >= end);
  1709. pgd = pgd_offset(mm, addr);
  1710. do {
  1711. next = pgd_addr_end(addr, end);
  1712. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1713. if (err)
  1714. break;
  1715. } while (pgd++, addr = next, addr != end);
  1716. return err;
  1717. }
  1718. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1719. /*
  1720. * handle_pte_fault chooses page fault handler according to an entry
  1721. * which was read non-atomically. Before making any commitment, on
  1722. * those architectures or configurations (e.g. i386 with PAE) which
  1723. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  1724. * must check under lock before unmapping the pte and proceeding
  1725. * (but do_wp_page is only called after already making such a check;
  1726. * and do_anonymous_page can safely check later on).
  1727. */
  1728. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1729. pte_t *page_table, pte_t orig_pte)
  1730. {
  1731. int same = 1;
  1732. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1733. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1734. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1735. spin_lock(ptl);
  1736. same = pte_same(*page_table, orig_pte);
  1737. spin_unlock(ptl);
  1738. }
  1739. #endif
  1740. pte_unmap(page_table);
  1741. return same;
  1742. }
  1743. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1744. {
  1745. debug_dma_assert_idle(src);
  1746. /*
  1747. * If the source page was a PFN mapping, we don't have
  1748. * a "struct page" for it. We do a best-effort copy by
  1749. * just copying from the original user address. If that
  1750. * fails, we just zero-fill it. Live with it.
  1751. */
  1752. if (unlikely(!src)) {
  1753. void *kaddr = kmap_atomic(dst);
  1754. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1755. /*
  1756. * This really shouldn't fail, because the page is there
  1757. * in the page tables. But it might just be unreadable,
  1758. * in which case we just give up and fill the result with
  1759. * zeroes.
  1760. */
  1761. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1762. clear_page(kaddr);
  1763. kunmap_atomic(kaddr);
  1764. flush_dcache_page(dst);
  1765. } else
  1766. copy_user_highpage(dst, src, va, vma);
  1767. }
  1768. /*
  1769. * Notify the address space that the page is about to become writable so that
  1770. * it can prohibit this or wait for the page to get into an appropriate state.
  1771. *
  1772. * We do this without the lock held, so that it can sleep if it needs to.
  1773. */
  1774. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1775. unsigned long address)
  1776. {
  1777. struct vm_fault vmf;
  1778. int ret;
  1779. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1780. vmf.pgoff = page->index;
  1781. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1782. vmf.page = page;
  1783. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1784. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1785. return ret;
  1786. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1787. lock_page(page);
  1788. if (!page->mapping) {
  1789. unlock_page(page);
  1790. return 0; /* retry */
  1791. }
  1792. ret |= VM_FAULT_LOCKED;
  1793. } else
  1794. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1795. return ret;
  1796. }
  1797. /*
  1798. * This routine handles present pages, when users try to write
  1799. * to a shared page. It is done by copying the page to a new address
  1800. * and decrementing the shared-page counter for the old page.
  1801. *
  1802. * Note that this routine assumes that the protection checks have been
  1803. * done by the caller (the low-level page fault routine in most cases).
  1804. * Thus we can safely just mark it writable once we've done any necessary
  1805. * COW.
  1806. *
  1807. * We also mark the page dirty at this point even though the page will
  1808. * change only once the write actually happens. This avoids a few races,
  1809. * and potentially makes it more efficient.
  1810. *
  1811. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1812. * but allow concurrent faults), with pte both mapped and locked.
  1813. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1814. */
  1815. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1816. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1817. spinlock_t *ptl, pte_t orig_pte)
  1818. __releases(ptl)
  1819. {
  1820. struct page *old_page, *new_page = NULL;
  1821. pte_t entry;
  1822. int ret = 0;
  1823. int page_mkwrite = 0;
  1824. struct page *dirty_page = NULL;
  1825. unsigned long mmun_start = 0; /* For mmu_notifiers */
  1826. unsigned long mmun_end = 0; /* For mmu_notifiers */
  1827. struct mem_cgroup *memcg;
  1828. old_page = vm_normal_page(vma, address, orig_pte);
  1829. if (!old_page) {
  1830. /*
  1831. * VM_MIXEDMAP !pfn_valid() case
  1832. *
  1833. * We should not cow pages in a shared writeable mapping.
  1834. * Just mark the pages writable as we can't do any dirty
  1835. * accounting on raw pfn maps.
  1836. */
  1837. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1838. (VM_WRITE|VM_SHARED))
  1839. goto reuse;
  1840. goto gotten;
  1841. }
  1842. /*
  1843. * Take out anonymous pages first, anonymous shared vmas are
  1844. * not dirty accountable.
  1845. */
  1846. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1847. if (!trylock_page(old_page)) {
  1848. page_cache_get(old_page);
  1849. pte_unmap_unlock(page_table, ptl);
  1850. lock_page(old_page);
  1851. page_table = pte_offset_map_lock(mm, pmd, address,
  1852. &ptl);
  1853. if (!pte_same(*page_table, orig_pte)) {
  1854. unlock_page(old_page);
  1855. goto unlock;
  1856. }
  1857. page_cache_release(old_page);
  1858. }
  1859. if (reuse_swap_page(old_page)) {
  1860. /*
  1861. * The page is all ours. Move it to our anon_vma so
  1862. * the rmap code will not search our parent or siblings.
  1863. * Protected against the rmap code by the page lock.
  1864. */
  1865. page_move_anon_rmap(old_page, vma, address);
  1866. unlock_page(old_page);
  1867. goto reuse;
  1868. }
  1869. unlock_page(old_page);
  1870. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1871. (VM_WRITE|VM_SHARED))) {
  1872. /*
  1873. * Only catch write-faults on shared writable pages,
  1874. * read-only shared pages can get COWed by
  1875. * get_user_pages(.write=1, .force=1).
  1876. */
  1877. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1878. int tmp;
  1879. page_cache_get(old_page);
  1880. pte_unmap_unlock(page_table, ptl);
  1881. tmp = do_page_mkwrite(vma, old_page, address);
  1882. if (unlikely(!tmp || (tmp &
  1883. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  1884. page_cache_release(old_page);
  1885. return tmp;
  1886. }
  1887. /*
  1888. * Since we dropped the lock we need to revalidate
  1889. * the PTE as someone else may have changed it. If
  1890. * they did, we just return, as we can count on the
  1891. * MMU to tell us if they didn't also make it writable.
  1892. */
  1893. page_table = pte_offset_map_lock(mm, pmd, address,
  1894. &ptl);
  1895. if (!pte_same(*page_table, orig_pte)) {
  1896. unlock_page(old_page);
  1897. goto unlock;
  1898. }
  1899. page_mkwrite = 1;
  1900. }
  1901. dirty_page = old_page;
  1902. get_page(dirty_page);
  1903. reuse:
  1904. /*
  1905. * Clear the pages cpupid information as the existing
  1906. * information potentially belongs to a now completely
  1907. * unrelated process.
  1908. */
  1909. if (old_page)
  1910. page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
  1911. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1912. entry = pte_mkyoung(orig_pte);
  1913. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1914. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1915. update_mmu_cache(vma, address, page_table);
  1916. pte_unmap_unlock(page_table, ptl);
  1917. ret |= VM_FAULT_WRITE;
  1918. if (!dirty_page)
  1919. return ret;
  1920. /*
  1921. * Yes, Virginia, this is actually required to prevent a race
  1922. * with clear_page_dirty_for_io() from clearing the page dirty
  1923. * bit after it clear all dirty ptes, but before a racing
  1924. * do_wp_page installs a dirty pte.
  1925. *
  1926. * do_shared_fault is protected similarly.
  1927. */
  1928. if (!page_mkwrite) {
  1929. wait_on_page_locked(dirty_page);
  1930. set_page_dirty_balance(dirty_page);
  1931. /* file_update_time outside page_lock */
  1932. if (vma->vm_file)
  1933. file_update_time(vma->vm_file);
  1934. }
  1935. put_page(dirty_page);
  1936. if (page_mkwrite) {
  1937. struct address_space *mapping = dirty_page->mapping;
  1938. set_page_dirty(dirty_page);
  1939. unlock_page(dirty_page);
  1940. page_cache_release(dirty_page);
  1941. if (mapping) {
  1942. /*
  1943. * Some device drivers do not set page.mapping
  1944. * but still dirty their pages
  1945. */
  1946. balance_dirty_pages_ratelimited(mapping);
  1947. }
  1948. }
  1949. return ret;
  1950. }
  1951. /*
  1952. * Ok, we need to copy. Oh, well..
  1953. */
  1954. page_cache_get(old_page);
  1955. gotten:
  1956. pte_unmap_unlock(page_table, ptl);
  1957. if (unlikely(anon_vma_prepare(vma)))
  1958. goto oom;
  1959. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1960. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1961. if (!new_page)
  1962. goto oom;
  1963. } else {
  1964. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1965. if (!new_page)
  1966. goto oom;
  1967. cow_user_page(new_page, old_page, address, vma);
  1968. }
  1969. __SetPageUptodate(new_page);
  1970. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
  1971. goto oom_free_new;
  1972. mmun_start = address & PAGE_MASK;
  1973. mmun_end = mmun_start + PAGE_SIZE;
  1974. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1975. /*
  1976. * Re-check the pte - we dropped the lock
  1977. */
  1978. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1979. if (likely(pte_same(*page_table, orig_pte))) {
  1980. if (old_page) {
  1981. if (!PageAnon(old_page)) {
  1982. dec_mm_counter_fast(mm, MM_FILEPAGES);
  1983. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1984. }
  1985. } else
  1986. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1987. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1988. entry = mk_pte(new_page, vma->vm_page_prot);
  1989. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1990. /*
  1991. * Clear the pte entry and flush it first, before updating the
  1992. * pte with the new entry. This will avoid a race condition
  1993. * seen in the presence of one thread doing SMC and another
  1994. * thread doing COW.
  1995. */
  1996. ptep_clear_flush(vma, address, page_table);
  1997. page_add_new_anon_rmap(new_page, vma, address);
  1998. mem_cgroup_commit_charge(new_page, memcg, false);
  1999. lru_cache_add_active_or_unevictable(new_page, vma);
  2000. /*
  2001. * We call the notify macro here because, when using secondary
  2002. * mmu page tables (such as kvm shadow page tables), we want the
  2003. * new page to be mapped directly into the secondary page table.
  2004. */
  2005. set_pte_at_notify(mm, address, page_table, entry);
  2006. update_mmu_cache(vma, address, page_table);
  2007. if (old_page) {
  2008. /*
  2009. * Only after switching the pte to the new page may
  2010. * we remove the mapcount here. Otherwise another
  2011. * process may come and find the rmap count decremented
  2012. * before the pte is switched to the new page, and
  2013. * "reuse" the old page writing into it while our pte
  2014. * here still points into it and can be read by other
  2015. * threads.
  2016. *
  2017. * The critical issue is to order this
  2018. * page_remove_rmap with the ptp_clear_flush above.
  2019. * Those stores are ordered by (if nothing else,)
  2020. * the barrier present in the atomic_add_negative
  2021. * in page_remove_rmap.
  2022. *
  2023. * Then the TLB flush in ptep_clear_flush ensures that
  2024. * no process can access the old page before the
  2025. * decremented mapcount is visible. And the old page
  2026. * cannot be reused until after the decremented
  2027. * mapcount is visible. So transitively, TLBs to
  2028. * old page will be flushed before it can be reused.
  2029. */
  2030. page_remove_rmap(old_page);
  2031. }
  2032. /* Free the old page.. */
  2033. new_page = old_page;
  2034. ret |= VM_FAULT_WRITE;
  2035. } else
  2036. mem_cgroup_cancel_charge(new_page, memcg);
  2037. if (new_page)
  2038. page_cache_release(new_page);
  2039. unlock:
  2040. pte_unmap_unlock(page_table, ptl);
  2041. if (mmun_end > mmun_start)
  2042. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2043. if (old_page) {
  2044. /*
  2045. * Don't let another task, with possibly unlocked vma,
  2046. * keep the mlocked page.
  2047. */
  2048. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2049. lock_page(old_page); /* LRU manipulation */
  2050. munlock_vma_page(old_page);
  2051. unlock_page(old_page);
  2052. }
  2053. page_cache_release(old_page);
  2054. }
  2055. return ret;
  2056. oom_free_new:
  2057. page_cache_release(new_page);
  2058. oom:
  2059. if (old_page)
  2060. page_cache_release(old_page);
  2061. return VM_FAULT_OOM;
  2062. }
  2063. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2064. unsigned long start_addr, unsigned long end_addr,
  2065. struct zap_details *details)
  2066. {
  2067. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2068. }
  2069. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2070. struct zap_details *details)
  2071. {
  2072. struct vm_area_struct *vma;
  2073. pgoff_t vba, vea, zba, zea;
  2074. vma_interval_tree_foreach(vma, root,
  2075. details->first_index, details->last_index) {
  2076. vba = vma->vm_pgoff;
  2077. vea = vba + vma_pages(vma) - 1;
  2078. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2079. zba = details->first_index;
  2080. if (zba < vba)
  2081. zba = vba;
  2082. zea = details->last_index;
  2083. if (zea > vea)
  2084. zea = vea;
  2085. unmap_mapping_range_vma(vma,
  2086. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2087. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2088. details);
  2089. }
  2090. }
  2091. static inline void unmap_mapping_range_list(struct list_head *head,
  2092. struct zap_details *details)
  2093. {
  2094. struct vm_area_struct *vma;
  2095. /*
  2096. * In nonlinear VMAs there is no correspondence between virtual address
  2097. * offset and file offset. So we must perform an exhaustive search
  2098. * across *all* the pages in each nonlinear VMA, not just the pages
  2099. * whose virtual address lies outside the file truncation point.
  2100. */
  2101. list_for_each_entry(vma, head, shared.nonlinear) {
  2102. details->nonlinear_vma = vma;
  2103. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2104. }
  2105. }
  2106. /**
  2107. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2108. * @mapping: the address space containing mmaps to be unmapped.
  2109. * @holebegin: byte in first page to unmap, relative to the start of
  2110. * the underlying file. This will be rounded down to a PAGE_SIZE
  2111. * boundary. Note that this is different from truncate_pagecache(), which
  2112. * must keep the partial page. In contrast, we must get rid of
  2113. * partial pages.
  2114. * @holelen: size of prospective hole in bytes. This will be rounded
  2115. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2116. * end of the file.
  2117. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2118. * but 0 when invalidating pagecache, don't throw away private data.
  2119. */
  2120. void unmap_mapping_range(struct address_space *mapping,
  2121. loff_t const holebegin, loff_t const holelen, int even_cows)
  2122. {
  2123. struct zap_details details;
  2124. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2125. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2126. /* Check for overflow. */
  2127. if (sizeof(holelen) > sizeof(hlen)) {
  2128. long long holeend =
  2129. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2130. if (holeend & ~(long long)ULONG_MAX)
  2131. hlen = ULONG_MAX - hba + 1;
  2132. }
  2133. details.check_mapping = even_cows? NULL: mapping;
  2134. details.nonlinear_vma = NULL;
  2135. details.first_index = hba;
  2136. details.last_index = hba + hlen - 1;
  2137. if (details.last_index < details.first_index)
  2138. details.last_index = ULONG_MAX;
  2139. mutex_lock(&mapping->i_mmap_mutex);
  2140. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2141. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2142. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2143. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2144. mutex_unlock(&mapping->i_mmap_mutex);
  2145. }
  2146. EXPORT_SYMBOL(unmap_mapping_range);
  2147. /*
  2148. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2149. * but allow concurrent faults), and pte mapped but not yet locked.
  2150. * We return with pte unmapped and unlocked.
  2151. *
  2152. * We return with the mmap_sem locked or unlocked in the same cases
  2153. * as does filemap_fault().
  2154. */
  2155. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2156. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2157. unsigned int flags, pte_t orig_pte)
  2158. {
  2159. spinlock_t *ptl;
  2160. struct page *page, *swapcache;
  2161. struct mem_cgroup *memcg;
  2162. swp_entry_t entry;
  2163. pte_t pte;
  2164. int locked;
  2165. int exclusive = 0;
  2166. int ret = 0;
  2167. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2168. goto out;
  2169. entry = pte_to_swp_entry(orig_pte);
  2170. if (unlikely(non_swap_entry(entry))) {
  2171. if (is_migration_entry(entry)) {
  2172. migration_entry_wait(mm, pmd, address);
  2173. } else if (is_hwpoison_entry(entry)) {
  2174. ret = VM_FAULT_HWPOISON;
  2175. } else {
  2176. print_bad_pte(vma, address, orig_pte, NULL);
  2177. ret = VM_FAULT_SIGBUS;
  2178. }
  2179. goto out;
  2180. }
  2181. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2182. page = lookup_swap_cache(entry);
  2183. if (!page) {
  2184. page = swapin_readahead(entry,
  2185. GFP_HIGHUSER_MOVABLE, vma, address);
  2186. if (!page) {
  2187. /*
  2188. * Back out if somebody else faulted in this pte
  2189. * while we released the pte lock.
  2190. */
  2191. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2192. if (likely(pte_same(*page_table, orig_pte)))
  2193. ret = VM_FAULT_OOM;
  2194. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2195. goto unlock;
  2196. }
  2197. /* Had to read the page from swap area: Major fault */
  2198. ret = VM_FAULT_MAJOR;
  2199. count_vm_event(PGMAJFAULT);
  2200. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2201. } else if (PageHWPoison(page)) {
  2202. /*
  2203. * hwpoisoned dirty swapcache pages are kept for killing
  2204. * owner processes (which may be unknown at hwpoison time)
  2205. */
  2206. ret = VM_FAULT_HWPOISON;
  2207. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2208. swapcache = page;
  2209. goto out_release;
  2210. }
  2211. swapcache = page;
  2212. locked = lock_page_or_retry(page, mm, flags);
  2213. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2214. if (!locked) {
  2215. ret |= VM_FAULT_RETRY;
  2216. goto out_release;
  2217. }
  2218. /*
  2219. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2220. * release the swapcache from under us. The page pin, and pte_same
  2221. * test below, are not enough to exclude that. Even if it is still
  2222. * swapcache, we need to check that the page's swap has not changed.
  2223. */
  2224. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2225. goto out_page;
  2226. page = ksm_might_need_to_copy(page, vma, address);
  2227. if (unlikely(!page)) {
  2228. ret = VM_FAULT_OOM;
  2229. page = swapcache;
  2230. goto out_page;
  2231. }
  2232. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
  2233. ret = VM_FAULT_OOM;
  2234. goto out_page;
  2235. }
  2236. /*
  2237. * Back out if somebody else already faulted in this pte.
  2238. */
  2239. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2240. if (unlikely(!pte_same(*page_table, orig_pte)))
  2241. goto out_nomap;
  2242. if (unlikely(!PageUptodate(page))) {
  2243. ret = VM_FAULT_SIGBUS;
  2244. goto out_nomap;
  2245. }
  2246. /*
  2247. * The page isn't present yet, go ahead with the fault.
  2248. *
  2249. * Be careful about the sequence of operations here.
  2250. * To get its accounting right, reuse_swap_page() must be called
  2251. * while the page is counted on swap but not yet in mapcount i.e.
  2252. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2253. * must be called after the swap_free(), or it will never succeed.
  2254. */
  2255. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2256. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2257. pte = mk_pte(page, vma->vm_page_prot);
  2258. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2259. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2260. flags &= ~FAULT_FLAG_WRITE;
  2261. ret |= VM_FAULT_WRITE;
  2262. exclusive = 1;
  2263. }
  2264. flush_icache_page(vma, page);
  2265. if (pte_swp_soft_dirty(orig_pte))
  2266. pte = pte_mksoft_dirty(pte);
  2267. set_pte_at(mm, address, page_table, pte);
  2268. if (page == swapcache) {
  2269. do_page_add_anon_rmap(page, vma, address, exclusive);
  2270. mem_cgroup_commit_charge(page, memcg, true);
  2271. } else { /* ksm created a completely new copy */
  2272. page_add_new_anon_rmap(page, vma, address);
  2273. mem_cgroup_commit_charge(page, memcg, false);
  2274. lru_cache_add_active_or_unevictable(page, vma);
  2275. }
  2276. swap_free(entry);
  2277. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2278. try_to_free_swap(page);
  2279. unlock_page(page);
  2280. if (page != swapcache) {
  2281. /*
  2282. * Hold the lock to avoid the swap entry to be reused
  2283. * until we take the PT lock for the pte_same() check
  2284. * (to avoid false positives from pte_same). For
  2285. * further safety release the lock after the swap_free
  2286. * so that the swap count won't change under a
  2287. * parallel locked swapcache.
  2288. */
  2289. unlock_page(swapcache);
  2290. page_cache_release(swapcache);
  2291. }
  2292. if (flags & FAULT_FLAG_WRITE) {
  2293. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2294. if (ret & VM_FAULT_ERROR)
  2295. ret &= VM_FAULT_ERROR;
  2296. goto out;
  2297. }
  2298. /* No need to invalidate - it was non-present before */
  2299. update_mmu_cache(vma, address, page_table);
  2300. unlock:
  2301. pte_unmap_unlock(page_table, ptl);
  2302. out:
  2303. return ret;
  2304. out_nomap:
  2305. mem_cgroup_cancel_charge(page, memcg);
  2306. pte_unmap_unlock(page_table, ptl);
  2307. out_page:
  2308. unlock_page(page);
  2309. out_release:
  2310. page_cache_release(page);
  2311. if (page != swapcache) {
  2312. unlock_page(swapcache);
  2313. page_cache_release(swapcache);
  2314. }
  2315. return ret;
  2316. }
  2317. /*
  2318. * This is like a special single-page "expand_{down|up}wards()",
  2319. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2320. * doesn't hit another vma.
  2321. */
  2322. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2323. {
  2324. address &= PAGE_MASK;
  2325. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2326. struct vm_area_struct *prev = vma->vm_prev;
  2327. /*
  2328. * Is there a mapping abutting this one below?
  2329. *
  2330. * That's only ok if it's the same stack mapping
  2331. * that has gotten split..
  2332. */
  2333. if (prev && prev->vm_end == address)
  2334. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2335. expand_downwards(vma, address - PAGE_SIZE);
  2336. }
  2337. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2338. struct vm_area_struct *next = vma->vm_next;
  2339. /* As VM_GROWSDOWN but s/below/above/ */
  2340. if (next && next->vm_start == address + PAGE_SIZE)
  2341. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2342. expand_upwards(vma, address + PAGE_SIZE);
  2343. }
  2344. return 0;
  2345. }
  2346. /*
  2347. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2348. * but allow concurrent faults), and pte mapped but not yet locked.
  2349. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2350. */
  2351. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2352. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2353. unsigned int flags)
  2354. {
  2355. struct mem_cgroup *memcg;
  2356. struct page *page;
  2357. spinlock_t *ptl;
  2358. pte_t entry;
  2359. pte_unmap(page_table);
  2360. /* Check if we need to add a guard page to the stack */
  2361. if (check_stack_guard_page(vma, address) < 0)
  2362. return VM_FAULT_SIGBUS;
  2363. /* Use the zero-page for reads */
  2364. if (!(flags & FAULT_FLAG_WRITE)) {
  2365. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2366. vma->vm_page_prot));
  2367. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2368. if (!pte_none(*page_table))
  2369. goto unlock;
  2370. goto setpte;
  2371. }
  2372. /* Allocate our own private page. */
  2373. if (unlikely(anon_vma_prepare(vma)))
  2374. goto oom;
  2375. page = alloc_zeroed_user_highpage_movable(vma, address);
  2376. if (!page)
  2377. goto oom;
  2378. /*
  2379. * The memory barrier inside __SetPageUptodate makes sure that
  2380. * preceeding stores to the page contents become visible before
  2381. * the set_pte_at() write.
  2382. */
  2383. __SetPageUptodate(page);
  2384. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
  2385. goto oom_free_page;
  2386. entry = mk_pte(page, vma->vm_page_prot);
  2387. if (vma->vm_flags & VM_WRITE)
  2388. entry = pte_mkwrite(pte_mkdirty(entry));
  2389. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2390. if (!pte_none(*page_table))
  2391. goto release;
  2392. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2393. page_add_new_anon_rmap(page, vma, address);
  2394. mem_cgroup_commit_charge(page, memcg, false);
  2395. lru_cache_add_active_or_unevictable(page, vma);
  2396. setpte:
  2397. set_pte_at(mm, address, page_table, entry);
  2398. /* No need to invalidate - it was non-present before */
  2399. update_mmu_cache(vma, address, page_table);
  2400. unlock:
  2401. pte_unmap_unlock(page_table, ptl);
  2402. return 0;
  2403. release:
  2404. mem_cgroup_cancel_charge(page, memcg);
  2405. page_cache_release(page);
  2406. goto unlock;
  2407. oom_free_page:
  2408. page_cache_release(page);
  2409. oom:
  2410. return VM_FAULT_OOM;
  2411. }
  2412. /*
  2413. * The mmap_sem must have been held on entry, and may have been
  2414. * released depending on flags and vma->vm_ops->fault() return value.
  2415. * See filemap_fault() and __lock_page_retry().
  2416. */
  2417. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2418. pgoff_t pgoff, unsigned int flags, struct page **page)
  2419. {
  2420. struct vm_fault vmf;
  2421. int ret;
  2422. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2423. vmf.pgoff = pgoff;
  2424. vmf.flags = flags;
  2425. vmf.page = NULL;
  2426. ret = vma->vm_ops->fault(vma, &vmf);
  2427. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2428. return ret;
  2429. if (unlikely(PageHWPoison(vmf.page))) {
  2430. if (ret & VM_FAULT_LOCKED)
  2431. unlock_page(vmf.page);
  2432. page_cache_release(vmf.page);
  2433. return VM_FAULT_HWPOISON;
  2434. }
  2435. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2436. lock_page(vmf.page);
  2437. else
  2438. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2439. *page = vmf.page;
  2440. return ret;
  2441. }
  2442. /**
  2443. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2444. *
  2445. * @vma: virtual memory area
  2446. * @address: user virtual address
  2447. * @page: page to map
  2448. * @pte: pointer to target page table entry
  2449. * @write: true, if new entry is writable
  2450. * @anon: true, if it's anonymous page
  2451. *
  2452. * Caller must hold page table lock relevant for @pte.
  2453. *
  2454. * Target users are page handler itself and implementations of
  2455. * vm_ops->map_pages.
  2456. */
  2457. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2458. struct page *page, pte_t *pte, bool write, bool anon)
  2459. {
  2460. pte_t entry;
  2461. flush_icache_page(vma, page);
  2462. entry = mk_pte(page, vma->vm_page_prot);
  2463. if (write)
  2464. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2465. else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
  2466. entry = pte_mksoft_dirty(entry);
  2467. if (anon) {
  2468. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2469. page_add_new_anon_rmap(page, vma, address);
  2470. } else {
  2471. inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
  2472. page_add_file_rmap(page);
  2473. }
  2474. set_pte_at(vma->vm_mm, address, pte, entry);
  2475. /* no need to invalidate: a not-present page won't be cached */
  2476. update_mmu_cache(vma, address, pte);
  2477. }
  2478. static unsigned long fault_around_bytes __read_mostly =
  2479. rounddown_pow_of_two(65536);
  2480. #ifdef CONFIG_DEBUG_FS
  2481. static int fault_around_bytes_get(void *data, u64 *val)
  2482. {
  2483. *val = fault_around_bytes;
  2484. return 0;
  2485. }
  2486. /*
  2487. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2488. * rounded down to nearest page order. It's what do_fault_around() expects to
  2489. * see.
  2490. */
  2491. static int fault_around_bytes_set(void *data, u64 val)
  2492. {
  2493. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2494. return -EINVAL;
  2495. if (val > PAGE_SIZE)
  2496. fault_around_bytes = rounddown_pow_of_two(val);
  2497. else
  2498. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2499. return 0;
  2500. }
  2501. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2502. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2503. static int __init fault_around_debugfs(void)
  2504. {
  2505. void *ret;
  2506. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2507. &fault_around_bytes_fops);
  2508. if (!ret)
  2509. pr_warn("Failed to create fault_around_bytes in debugfs");
  2510. return 0;
  2511. }
  2512. late_initcall(fault_around_debugfs);
  2513. #endif
  2514. /*
  2515. * do_fault_around() tries to map few pages around the fault address. The hope
  2516. * is that the pages will be needed soon and this will lower the number of
  2517. * faults to handle.
  2518. *
  2519. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2520. * not ready to be mapped: not up-to-date, locked, etc.
  2521. *
  2522. * This function is called with the page table lock taken. In the split ptlock
  2523. * case the page table lock only protects only those entries which belong to
  2524. * the page table corresponding to the fault address.
  2525. *
  2526. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2527. * only once.
  2528. *
  2529. * fault_around_pages() defines how many pages we'll try to map.
  2530. * do_fault_around() expects it to return a power of two less than or equal to
  2531. * PTRS_PER_PTE.
  2532. *
  2533. * The virtual address of the area that we map is naturally aligned to the
  2534. * fault_around_pages() value (and therefore to page order). This way it's
  2535. * easier to guarantee that we don't cross page table boundaries.
  2536. */
  2537. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2538. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2539. {
  2540. unsigned long start_addr, nr_pages, mask;
  2541. pgoff_t max_pgoff;
  2542. struct vm_fault vmf;
  2543. int off;
  2544. nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2545. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2546. start_addr = max(address & mask, vma->vm_start);
  2547. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2548. pte -= off;
  2549. pgoff -= off;
  2550. /*
  2551. * max_pgoff is either end of page table or end of vma
  2552. * or fault_around_pages() from pgoff, depending what is nearest.
  2553. */
  2554. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2555. PTRS_PER_PTE - 1;
  2556. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2557. pgoff + nr_pages - 1);
  2558. /* Check if it makes any sense to call ->map_pages */
  2559. while (!pte_none(*pte)) {
  2560. if (++pgoff > max_pgoff)
  2561. return;
  2562. start_addr += PAGE_SIZE;
  2563. if (start_addr >= vma->vm_end)
  2564. return;
  2565. pte++;
  2566. }
  2567. vmf.virtual_address = (void __user *) start_addr;
  2568. vmf.pte = pte;
  2569. vmf.pgoff = pgoff;
  2570. vmf.max_pgoff = max_pgoff;
  2571. vmf.flags = flags;
  2572. vma->vm_ops->map_pages(vma, &vmf);
  2573. }
  2574. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2575. unsigned long address, pmd_t *pmd,
  2576. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2577. {
  2578. struct page *fault_page;
  2579. spinlock_t *ptl;
  2580. pte_t *pte;
  2581. int ret = 0;
  2582. /*
  2583. * Let's call ->map_pages() first and use ->fault() as fallback
  2584. * if page by the offset is not ready to be mapped (cold cache or
  2585. * something).
  2586. */
  2587. if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
  2588. fault_around_bytes >> PAGE_SHIFT > 1) {
  2589. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2590. do_fault_around(vma, address, pte, pgoff, flags);
  2591. if (!pte_same(*pte, orig_pte))
  2592. goto unlock_out;
  2593. pte_unmap_unlock(pte, ptl);
  2594. }
  2595. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2596. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2597. return ret;
  2598. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2599. if (unlikely(!pte_same(*pte, orig_pte))) {
  2600. pte_unmap_unlock(pte, ptl);
  2601. unlock_page(fault_page);
  2602. page_cache_release(fault_page);
  2603. return ret;
  2604. }
  2605. do_set_pte(vma, address, fault_page, pte, false, false);
  2606. unlock_page(fault_page);
  2607. unlock_out:
  2608. pte_unmap_unlock(pte, ptl);
  2609. return ret;
  2610. }
  2611. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2612. unsigned long address, pmd_t *pmd,
  2613. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2614. {
  2615. struct page *fault_page, *new_page;
  2616. struct mem_cgroup *memcg;
  2617. spinlock_t *ptl;
  2618. pte_t *pte;
  2619. int ret;
  2620. if (unlikely(anon_vma_prepare(vma)))
  2621. return VM_FAULT_OOM;
  2622. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2623. if (!new_page)
  2624. return VM_FAULT_OOM;
  2625. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
  2626. page_cache_release(new_page);
  2627. return VM_FAULT_OOM;
  2628. }
  2629. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2630. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2631. goto uncharge_out;
  2632. copy_user_highpage(new_page, fault_page, address, vma);
  2633. __SetPageUptodate(new_page);
  2634. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2635. if (unlikely(!pte_same(*pte, orig_pte))) {
  2636. pte_unmap_unlock(pte, ptl);
  2637. unlock_page(fault_page);
  2638. page_cache_release(fault_page);
  2639. goto uncharge_out;
  2640. }
  2641. do_set_pte(vma, address, new_page, pte, true, true);
  2642. mem_cgroup_commit_charge(new_page, memcg, false);
  2643. lru_cache_add_active_or_unevictable(new_page, vma);
  2644. pte_unmap_unlock(pte, ptl);
  2645. unlock_page(fault_page);
  2646. page_cache_release(fault_page);
  2647. return ret;
  2648. uncharge_out:
  2649. mem_cgroup_cancel_charge(new_page, memcg);
  2650. page_cache_release(new_page);
  2651. return ret;
  2652. }
  2653. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2654. unsigned long address, pmd_t *pmd,
  2655. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2656. {
  2657. struct page *fault_page;
  2658. struct address_space *mapping;
  2659. spinlock_t *ptl;
  2660. pte_t *pte;
  2661. int dirtied = 0;
  2662. int ret, tmp;
  2663. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2664. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2665. return ret;
  2666. /*
  2667. * Check if the backing address space wants to know that the page is
  2668. * about to become writable
  2669. */
  2670. if (vma->vm_ops->page_mkwrite) {
  2671. unlock_page(fault_page);
  2672. tmp = do_page_mkwrite(vma, fault_page, address);
  2673. if (unlikely(!tmp ||
  2674. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2675. page_cache_release(fault_page);
  2676. return tmp;
  2677. }
  2678. }
  2679. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2680. if (unlikely(!pte_same(*pte, orig_pte))) {
  2681. pte_unmap_unlock(pte, ptl);
  2682. unlock_page(fault_page);
  2683. page_cache_release(fault_page);
  2684. return ret;
  2685. }
  2686. do_set_pte(vma, address, fault_page, pte, true, false);
  2687. pte_unmap_unlock(pte, ptl);
  2688. if (set_page_dirty(fault_page))
  2689. dirtied = 1;
  2690. mapping = fault_page->mapping;
  2691. unlock_page(fault_page);
  2692. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2693. /*
  2694. * Some device drivers do not set page.mapping but still
  2695. * dirty their pages
  2696. */
  2697. balance_dirty_pages_ratelimited(mapping);
  2698. }
  2699. /* file_update_time outside page_lock */
  2700. if (vma->vm_file && !vma->vm_ops->page_mkwrite)
  2701. file_update_time(vma->vm_file);
  2702. return ret;
  2703. }
  2704. /*
  2705. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2706. * but allow concurrent faults).
  2707. * The mmap_sem may have been released depending on flags and our
  2708. * return value. See filemap_fault() and __lock_page_or_retry().
  2709. */
  2710. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2711. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2712. unsigned int flags, pte_t orig_pte)
  2713. {
  2714. pgoff_t pgoff = (((address & PAGE_MASK)
  2715. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2716. pte_unmap(page_table);
  2717. if (!(flags & FAULT_FLAG_WRITE))
  2718. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2719. orig_pte);
  2720. if (!(vma->vm_flags & VM_SHARED))
  2721. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2722. orig_pte);
  2723. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2724. }
  2725. /*
  2726. * Fault of a previously existing named mapping. Repopulate the pte
  2727. * from the encoded file_pte if possible. This enables swappable
  2728. * nonlinear vmas.
  2729. *
  2730. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2731. * but allow concurrent faults), and pte mapped but not yet locked.
  2732. * We return with pte unmapped and unlocked.
  2733. * The mmap_sem may have been released depending on flags and our
  2734. * return value. See filemap_fault() and __lock_page_or_retry().
  2735. */
  2736. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2737. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2738. unsigned int flags, pte_t orig_pte)
  2739. {
  2740. pgoff_t pgoff;
  2741. flags |= FAULT_FLAG_NONLINEAR;
  2742. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2743. return 0;
  2744. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2745. /*
  2746. * Page table corrupted: show pte and kill process.
  2747. */
  2748. print_bad_pte(vma, address, orig_pte, NULL);
  2749. return VM_FAULT_SIGBUS;
  2750. }
  2751. pgoff = pte_to_pgoff(orig_pte);
  2752. if (!(flags & FAULT_FLAG_WRITE))
  2753. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2754. orig_pte);
  2755. if (!(vma->vm_flags & VM_SHARED))
  2756. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2757. orig_pte);
  2758. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2759. }
  2760. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2761. unsigned long addr, int page_nid,
  2762. int *flags)
  2763. {
  2764. get_page(page);
  2765. count_vm_numa_event(NUMA_HINT_FAULTS);
  2766. if (page_nid == numa_node_id()) {
  2767. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2768. *flags |= TNF_FAULT_LOCAL;
  2769. }
  2770. return mpol_misplaced(page, vma, addr);
  2771. }
  2772. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2773. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2774. {
  2775. struct page *page = NULL;
  2776. spinlock_t *ptl;
  2777. int page_nid = -1;
  2778. int last_cpupid;
  2779. int target_nid;
  2780. bool migrated = false;
  2781. int flags = 0;
  2782. /*
  2783. * The "pte" at this point cannot be used safely without
  2784. * validation through pte_unmap_same(). It's of NUMA type but
  2785. * the pfn may be screwed if the read is non atomic.
  2786. *
  2787. * ptep_modify_prot_start is not called as this is clearing
  2788. * the _PAGE_NUMA bit and it is not really expected that there
  2789. * would be concurrent hardware modifications to the PTE.
  2790. */
  2791. ptl = pte_lockptr(mm, pmd);
  2792. spin_lock(ptl);
  2793. if (unlikely(!pte_same(*ptep, pte))) {
  2794. pte_unmap_unlock(ptep, ptl);
  2795. goto out;
  2796. }
  2797. pte = pte_mknonnuma(pte);
  2798. set_pte_at(mm, addr, ptep, pte);
  2799. update_mmu_cache(vma, addr, ptep);
  2800. page = vm_normal_page(vma, addr, pte);
  2801. if (!page) {
  2802. pte_unmap_unlock(ptep, ptl);
  2803. return 0;
  2804. }
  2805. BUG_ON(is_zero_pfn(page_to_pfn(page)));
  2806. /*
  2807. * Avoid grouping on DSO/COW pages in specific and RO pages
  2808. * in general, RO pages shouldn't hurt as much anyway since
  2809. * they can be in shared cache state.
  2810. */
  2811. if (!pte_write(pte))
  2812. flags |= TNF_NO_GROUP;
  2813. /*
  2814. * Flag if the page is shared between multiple address spaces. This
  2815. * is later used when determining whether to group tasks together
  2816. */
  2817. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2818. flags |= TNF_SHARED;
  2819. last_cpupid = page_cpupid_last(page);
  2820. page_nid = page_to_nid(page);
  2821. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2822. pte_unmap_unlock(ptep, ptl);
  2823. if (target_nid == -1) {
  2824. put_page(page);
  2825. goto out;
  2826. }
  2827. /* Migrate to the requested node */
  2828. migrated = migrate_misplaced_page(page, vma, target_nid);
  2829. if (migrated) {
  2830. page_nid = target_nid;
  2831. flags |= TNF_MIGRATED;
  2832. }
  2833. out:
  2834. if (page_nid != -1)
  2835. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2836. return 0;
  2837. }
  2838. /*
  2839. * These routines also need to handle stuff like marking pages dirty
  2840. * and/or accessed for architectures that don't do it in hardware (most
  2841. * RISC architectures). The early dirtying is also good on the i386.
  2842. *
  2843. * There is also a hook called "update_mmu_cache()" that architectures
  2844. * with external mmu caches can use to update those (ie the Sparc or
  2845. * PowerPC hashed page tables that act as extended TLBs).
  2846. *
  2847. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2848. * but allow concurrent faults), and pte mapped but not yet locked.
  2849. * We return with pte unmapped and unlocked.
  2850. *
  2851. * The mmap_sem may have been released depending on flags and our
  2852. * return value. See filemap_fault() and __lock_page_or_retry().
  2853. */
  2854. static int handle_pte_fault(struct mm_struct *mm,
  2855. struct vm_area_struct *vma, unsigned long address,
  2856. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2857. {
  2858. pte_t entry;
  2859. spinlock_t *ptl;
  2860. entry = ACCESS_ONCE(*pte);
  2861. if (!pte_present(entry)) {
  2862. if (pte_none(entry)) {
  2863. if (vma->vm_ops) {
  2864. if (likely(vma->vm_ops->fault))
  2865. return do_linear_fault(mm, vma, address,
  2866. pte, pmd, flags, entry);
  2867. }
  2868. return do_anonymous_page(mm, vma, address,
  2869. pte, pmd, flags);
  2870. }
  2871. if (pte_file(entry))
  2872. return do_nonlinear_fault(mm, vma, address,
  2873. pte, pmd, flags, entry);
  2874. return do_swap_page(mm, vma, address,
  2875. pte, pmd, flags, entry);
  2876. }
  2877. if (pte_numa(entry))
  2878. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2879. ptl = pte_lockptr(mm, pmd);
  2880. spin_lock(ptl);
  2881. if (unlikely(!pte_same(*pte, entry)))
  2882. goto unlock;
  2883. if (flags & FAULT_FLAG_WRITE) {
  2884. if (!pte_write(entry))
  2885. return do_wp_page(mm, vma, address,
  2886. pte, pmd, ptl, entry);
  2887. entry = pte_mkdirty(entry);
  2888. }
  2889. entry = pte_mkyoung(entry);
  2890. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2891. update_mmu_cache(vma, address, pte);
  2892. } else {
  2893. /*
  2894. * This is needed only for protection faults but the arch code
  2895. * is not yet telling us if this is a protection fault or not.
  2896. * This still avoids useless tlb flushes for .text page faults
  2897. * with threads.
  2898. */
  2899. if (flags & FAULT_FLAG_WRITE)
  2900. flush_tlb_fix_spurious_fault(vma, address);
  2901. }
  2902. unlock:
  2903. pte_unmap_unlock(pte, ptl);
  2904. return 0;
  2905. }
  2906. /*
  2907. * By the time we get here, we already hold the mm semaphore
  2908. *
  2909. * The mmap_sem may have been released depending on flags and our
  2910. * return value. See filemap_fault() and __lock_page_or_retry().
  2911. */
  2912. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2913. unsigned long address, unsigned int flags)
  2914. {
  2915. pgd_t *pgd;
  2916. pud_t *pud;
  2917. pmd_t *pmd;
  2918. pte_t *pte;
  2919. if (unlikely(is_vm_hugetlb_page(vma)))
  2920. return hugetlb_fault(mm, vma, address, flags);
  2921. pgd = pgd_offset(mm, address);
  2922. pud = pud_alloc(mm, pgd, address);
  2923. if (!pud)
  2924. return VM_FAULT_OOM;
  2925. pmd = pmd_alloc(mm, pud, address);
  2926. if (!pmd)
  2927. return VM_FAULT_OOM;
  2928. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  2929. int ret = VM_FAULT_FALLBACK;
  2930. if (!vma->vm_ops)
  2931. ret = do_huge_pmd_anonymous_page(mm, vma, address,
  2932. pmd, flags);
  2933. if (!(ret & VM_FAULT_FALLBACK))
  2934. return ret;
  2935. } else {
  2936. pmd_t orig_pmd = *pmd;
  2937. int ret;
  2938. barrier();
  2939. if (pmd_trans_huge(orig_pmd)) {
  2940. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  2941. /*
  2942. * If the pmd is splitting, return and retry the
  2943. * the fault. Alternative: wait until the split
  2944. * is done, and goto retry.
  2945. */
  2946. if (pmd_trans_splitting(orig_pmd))
  2947. return 0;
  2948. if (pmd_numa(orig_pmd))
  2949. return do_huge_pmd_numa_page(mm, vma, address,
  2950. orig_pmd, pmd);
  2951. if (dirty && !pmd_write(orig_pmd)) {
  2952. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  2953. orig_pmd);
  2954. if (!(ret & VM_FAULT_FALLBACK))
  2955. return ret;
  2956. } else {
  2957. huge_pmd_set_accessed(mm, vma, address, pmd,
  2958. orig_pmd, dirty);
  2959. return 0;
  2960. }
  2961. }
  2962. }
  2963. /*
  2964. * Use __pte_alloc instead of pte_alloc_map, because we can't
  2965. * run pte_offset_map on the pmd, if an huge pmd could
  2966. * materialize from under us from a different thread.
  2967. */
  2968. if (unlikely(pmd_none(*pmd)) &&
  2969. unlikely(__pte_alloc(mm, vma, pmd, address)))
  2970. return VM_FAULT_OOM;
  2971. /* if an huge pmd materialized from under us just retry later */
  2972. if (unlikely(pmd_trans_huge(*pmd)))
  2973. return 0;
  2974. /*
  2975. * A regular pmd is established and it can't morph into a huge pmd
  2976. * from under us anymore at this point because we hold the mmap_sem
  2977. * read mode and khugepaged takes it in write mode. So now it's
  2978. * safe to run pte_offset_map().
  2979. */
  2980. pte = pte_offset_map(pmd, address);
  2981. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2982. }
  2983. /*
  2984. * By the time we get here, we already hold the mm semaphore
  2985. *
  2986. * The mmap_sem may have been released depending on flags and our
  2987. * return value. See filemap_fault() and __lock_page_or_retry().
  2988. */
  2989. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2990. unsigned long address, unsigned int flags)
  2991. {
  2992. int ret;
  2993. __set_current_state(TASK_RUNNING);
  2994. count_vm_event(PGFAULT);
  2995. mem_cgroup_count_vm_event(mm, PGFAULT);
  2996. /* do counter updates before entering really critical section. */
  2997. check_sync_rss_stat(current);
  2998. /*
  2999. * Enable the memcg OOM handling for faults triggered in user
  3000. * space. Kernel faults are handled more gracefully.
  3001. */
  3002. if (flags & FAULT_FLAG_USER)
  3003. mem_cgroup_oom_enable();
  3004. ret = __handle_mm_fault(mm, vma, address, flags);
  3005. if (flags & FAULT_FLAG_USER) {
  3006. mem_cgroup_oom_disable();
  3007. /*
  3008. * The task may have entered a memcg OOM situation but
  3009. * if the allocation error was handled gracefully (no
  3010. * VM_FAULT_OOM), there is no need to kill anything.
  3011. * Just clean up the OOM state peacefully.
  3012. */
  3013. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3014. mem_cgroup_oom_synchronize(false);
  3015. }
  3016. return ret;
  3017. }
  3018. #ifndef __PAGETABLE_PUD_FOLDED
  3019. /*
  3020. * Allocate page upper directory.
  3021. * We've already handled the fast-path in-line.
  3022. */
  3023. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3024. {
  3025. pud_t *new = pud_alloc_one(mm, address);
  3026. if (!new)
  3027. return -ENOMEM;
  3028. smp_wmb(); /* See comment in __pte_alloc */
  3029. spin_lock(&mm->page_table_lock);
  3030. if (pgd_present(*pgd)) /* Another has populated it */
  3031. pud_free(mm, new);
  3032. else
  3033. pgd_populate(mm, pgd, new);
  3034. spin_unlock(&mm->page_table_lock);
  3035. return 0;
  3036. }
  3037. #endif /* __PAGETABLE_PUD_FOLDED */
  3038. #ifndef __PAGETABLE_PMD_FOLDED
  3039. /*
  3040. * Allocate page middle directory.
  3041. * We've already handled the fast-path in-line.
  3042. */
  3043. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3044. {
  3045. pmd_t *new = pmd_alloc_one(mm, address);
  3046. if (!new)
  3047. return -ENOMEM;
  3048. smp_wmb(); /* See comment in __pte_alloc */
  3049. spin_lock(&mm->page_table_lock);
  3050. #ifndef __ARCH_HAS_4LEVEL_HACK
  3051. if (pud_present(*pud)) /* Another has populated it */
  3052. pmd_free(mm, new);
  3053. else
  3054. pud_populate(mm, pud, new);
  3055. #else
  3056. if (pgd_present(*pud)) /* Another has populated it */
  3057. pmd_free(mm, new);
  3058. else
  3059. pgd_populate(mm, pud, new);
  3060. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3061. spin_unlock(&mm->page_table_lock);
  3062. return 0;
  3063. }
  3064. #endif /* __PAGETABLE_PMD_FOLDED */
  3065. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3066. pte_t **ptepp, spinlock_t **ptlp)
  3067. {
  3068. pgd_t *pgd;
  3069. pud_t *pud;
  3070. pmd_t *pmd;
  3071. pte_t *ptep;
  3072. pgd = pgd_offset(mm, address);
  3073. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3074. goto out;
  3075. pud = pud_offset(pgd, address);
  3076. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3077. goto out;
  3078. pmd = pmd_offset(pud, address);
  3079. VM_BUG_ON(pmd_trans_huge(*pmd));
  3080. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3081. goto out;
  3082. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3083. if (pmd_huge(*pmd))
  3084. goto out;
  3085. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3086. if (!ptep)
  3087. goto out;
  3088. if (!pte_present(*ptep))
  3089. goto unlock;
  3090. *ptepp = ptep;
  3091. return 0;
  3092. unlock:
  3093. pte_unmap_unlock(ptep, *ptlp);
  3094. out:
  3095. return -EINVAL;
  3096. }
  3097. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3098. pte_t **ptepp, spinlock_t **ptlp)
  3099. {
  3100. int res;
  3101. /* (void) is needed to make gcc happy */
  3102. (void) __cond_lock(*ptlp,
  3103. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3104. return res;
  3105. }
  3106. /**
  3107. * follow_pfn - look up PFN at a user virtual address
  3108. * @vma: memory mapping
  3109. * @address: user virtual address
  3110. * @pfn: location to store found PFN
  3111. *
  3112. * Only IO mappings and raw PFN mappings are allowed.
  3113. *
  3114. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3115. */
  3116. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3117. unsigned long *pfn)
  3118. {
  3119. int ret = -EINVAL;
  3120. spinlock_t *ptl;
  3121. pte_t *ptep;
  3122. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3123. return ret;
  3124. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3125. if (ret)
  3126. return ret;
  3127. *pfn = pte_pfn(*ptep);
  3128. pte_unmap_unlock(ptep, ptl);
  3129. return 0;
  3130. }
  3131. EXPORT_SYMBOL(follow_pfn);
  3132. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3133. int follow_phys(struct vm_area_struct *vma,
  3134. unsigned long address, unsigned int flags,
  3135. unsigned long *prot, resource_size_t *phys)
  3136. {
  3137. int ret = -EINVAL;
  3138. pte_t *ptep, pte;
  3139. spinlock_t *ptl;
  3140. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3141. goto out;
  3142. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3143. goto out;
  3144. pte = *ptep;
  3145. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3146. goto unlock;
  3147. *prot = pgprot_val(pte_pgprot(pte));
  3148. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3149. ret = 0;
  3150. unlock:
  3151. pte_unmap_unlock(ptep, ptl);
  3152. out:
  3153. return ret;
  3154. }
  3155. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3156. void *buf, int len, int write)
  3157. {
  3158. resource_size_t phys_addr;
  3159. unsigned long prot = 0;
  3160. void __iomem *maddr;
  3161. int offset = addr & (PAGE_SIZE-1);
  3162. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3163. return -EINVAL;
  3164. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3165. if (write)
  3166. memcpy_toio(maddr + offset, buf, len);
  3167. else
  3168. memcpy_fromio(buf, maddr + offset, len);
  3169. iounmap(maddr);
  3170. return len;
  3171. }
  3172. EXPORT_SYMBOL_GPL(generic_access_phys);
  3173. #endif
  3174. /*
  3175. * Access another process' address space as given in mm. If non-NULL, use the
  3176. * given task for page fault accounting.
  3177. */
  3178. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3179. unsigned long addr, void *buf, int len, int write)
  3180. {
  3181. struct vm_area_struct *vma;
  3182. void *old_buf = buf;
  3183. down_read(&mm->mmap_sem);
  3184. /* ignore errors, just check how much was successfully transferred */
  3185. while (len) {
  3186. int bytes, ret, offset;
  3187. void *maddr;
  3188. struct page *page = NULL;
  3189. ret = get_user_pages(tsk, mm, addr, 1,
  3190. write, 1, &page, &vma);
  3191. if (ret <= 0) {
  3192. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3193. break;
  3194. #else
  3195. /*
  3196. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3197. * we can access using slightly different code.
  3198. */
  3199. vma = find_vma(mm, addr);
  3200. if (!vma || vma->vm_start > addr)
  3201. break;
  3202. if (vma->vm_ops && vma->vm_ops->access)
  3203. ret = vma->vm_ops->access(vma, addr, buf,
  3204. len, write);
  3205. if (ret <= 0)
  3206. break;
  3207. bytes = ret;
  3208. #endif
  3209. } else {
  3210. bytes = len;
  3211. offset = addr & (PAGE_SIZE-1);
  3212. if (bytes > PAGE_SIZE-offset)
  3213. bytes = PAGE_SIZE-offset;
  3214. maddr = kmap(page);
  3215. if (write) {
  3216. copy_to_user_page(vma, page, addr,
  3217. maddr + offset, buf, bytes);
  3218. set_page_dirty_lock(page);
  3219. } else {
  3220. copy_from_user_page(vma, page, addr,
  3221. buf, maddr + offset, bytes);
  3222. }
  3223. kunmap(page);
  3224. page_cache_release(page);
  3225. }
  3226. len -= bytes;
  3227. buf += bytes;
  3228. addr += bytes;
  3229. }
  3230. up_read(&mm->mmap_sem);
  3231. return buf - old_buf;
  3232. }
  3233. /**
  3234. * access_remote_vm - access another process' address space
  3235. * @mm: the mm_struct of the target address space
  3236. * @addr: start address to access
  3237. * @buf: source or destination buffer
  3238. * @len: number of bytes to transfer
  3239. * @write: whether the access is a write
  3240. *
  3241. * The caller must hold a reference on @mm.
  3242. */
  3243. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3244. void *buf, int len, int write)
  3245. {
  3246. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3247. }
  3248. /*
  3249. * Access another process' address space.
  3250. * Source/target buffer must be kernel space,
  3251. * Do not walk the page table directly, use get_user_pages
  3252. */
  3253. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3254. void *buf, int len, int write)
  3255. {
  3256. struct mm_struct *mm;
  3257. int ret;
  3258. mm = get_task_mm(tsk);
  3259. if (!mm)
  3260. return 0;
  3261. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3262. mmput(mm);
  3263. return ret;
  3264. }
  3265. /*
  3266. * Print the name of a VMA.
  3267. */
  3268. void print_vma_addr(char *prefix, unsigned long ip)
  3269. {
  3270. struct mm_struct *mm = current->mm;
  3271. struct vm_area_struct *vma;
  3272. /*
  3273. * Do not print if we are in atomic
  3274. * contexts (in exception stacks, etc.):
  3275. */
  3276. if (preempt_count())
  3277. return;
  3278. down_read(&mm->mmap_sem);
  3279. vma = find_vma(mm, ip);
  3280. if (vma && vma->vm_file) {
  3281. struct file *f = vma->vm_file;
  3282. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3283. if (buf) {
  3284. char *p;
  3285. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3286. if (IS_ERR(p))
  3287. p = "?";
  3288. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3289. vma->vm_start,
  3290. vma->vm_end - vma->vm_start);
  3291. free_page((unsigned long)buf);
  3292. }
  3293. }
  3294. up_read(&mm->mmap_sem);
  3295. }
  3296. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3297. void might_fault(void)
  3298. {
  3299. /*
  3300. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3301. * holding the mmap_sem, this is safe because kernel memory doesn't
  3302. * get paged out, therefore we'll never actually fault, and the
  3303. * below annotations will generate false positives.
  3304. */
  3305. if (segment_eq(get_fs(), KERNEL_DS))
  3306. return;
  3307. /*
  3308. * it would be nicer only to annotate paths which are not under
  3309. * pagefault_disable, however that requires a larger audit and
  3310. * providing helpers like get_user_atomic.
  3311. */
  3312. if (in_atomic())
  3313. return;
  3314. __might_sleep(__FILE__, __LINE__, 0);
  3315. if (current->mm)
  3316. might_lock_read(&current->mm->mmap_sem);
  3317. }
  3318. EXPORT_SYMBOL(might_fault);
  3319. #endif
  3320. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3321. static void clear_gigantic_page(struct page *page,
  3322. unsigned long addr,
  3323. unsigned int pages_per_huge_page)
  3324. {
  3325. int i;
  3326. struct page *p = page;
  3327. might_sleep();
  3328. for (i = 0; i < pages_per_huge_page;
  3329. i++, p = mem_map_next(p, page, i)) {
  3330. cond_resched();
  3331. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3332. }
  3333. }
  3334. void clear_huge_page(struct page *page,
  3335. unsigned long addr, unsigned int pages_per_huge_page)
  3336. {
  3337. int i;
  3338. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3339. clear_gigantic_page(page, addr, pages_per_huge_page);
  3340. return;
  3341. }
  3342. might_sleep();
  3343. for (i = 0; i < pages_per_huge_page; i++) {
  3344. cond_resched();
  3345. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3346. }
  3347. }
  3348. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3349. unsigned long addr,
  3350. struct vm_area_struct *vma,
  3351. unsigned int pages_per_huge_page)
  3352. {
  3353. int i;
  3354. struct page *dst_base = dst;
  3355. struct page *src_base = src;
  3356. for (i = 0; i < pages_per_huge_page; ) {
  3357. cond_resched();
  3358. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3359. i++;
  3360. dst = mem_map_next(dst, dst_base, i);
  3361. src = mem_map_next(src, src_base, i);
  3362. }
  3363. }
  3364. void copy_user_huge_page(struct page *dst, struct page *src,
  3365. unsigned long addr, struct vm_area_struct *vma,
  3366. unsigned int pages_per_huge_page)
  3367. {
  3368. int i;
  3369. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3370. copy_user_gigantic_page(dst, src, addr, vma,
  3371. pages_per_huge_page);
  3372. return;
  3373. }
  3374. might_sleep();
  3375. for (i = 0; i < pages_per_huge_page; i++) {
  3376. cond_resched();
  3377. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3378. }
  3379. }
  3380. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3381. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3382. static struct kmem_cache *page_ptl_cachep;
  3383. void __init ptlock_cache_init(void)
  3384. {
  3385. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3386. SLAB_PANIC, NULL);
  3387. }
  3388. bool ptlock_alloc(struct page *page)
  3389. {
  3390. spinlock_t *ptl;
  3391. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3392. if (!ptl)
  3393. return false;
  3394. page->ptl = ptl;
  3395. return true;
  3396. }
  3397. void ptlock_free(struct page *page)
  3398. {
  3399. kmem_cache_free(page_ptl_cachep, page->ptl);
  3400. }
  3401. #endif