elevator.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/blktrace_api.h>
  35. #include <linux/hash.h>
  36. #include <linux/uaccess.h>
  37. #include <linux/pm_runtime.h>
  38. #include <trace/events/block.h>
  39. #include "blk.h"
  40. #include "blk-cgroup.h"
  41. static DEFINE_SPINLOCK(elv_list_lock);
  42. static LIST_HEAD(elv_list);
  43. /*
  44. * Merge hash stuff.
  45. */
  46. #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
  47. /*
  48. * Query io scheduler to see if the current process issuing bio may be
  49. * merged with rq.
  50. */
  51. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  52. {
  53. struct request_queue *q = rq->q;
  54. struct elevator_queue *e = q->elevator;
  55. if (e->type->ops.elevator_allow_merge_fn)
  56. return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
  57. return 1;
  58. }
  59. /*
  60. * can we safely merge with this request?
  61. */
  62. bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
  63. {
  64. if (!blk_rq_merge_ok(rq, bio))
  65. return 0;
  66. if (!elv_iosched_allow_merge(rq, bio))
  67. return 0;
  68. return 1;
  69. }
  70. EXPORT_SYMBOL(elv_rq_merge_ok);
  71. static struct elevator_type *elevator_find(const char *name)
  72. {
  73. struct elevator_type *e;
  74. list_for_each_entry(e, &elv_list, list) {
  75. if (!strcmp(e->elevator_name, name))
  76. return e;
  77. }
  78. return NULL;
  79. }
  80. static void elevator_put(struct elevator_type *e)
  81. {
  82. module_put(e->elevator_owner);
  83. }
  84. static struct elevator_type *elevator_get(const char *name, bool try_loading)
  85. {
  86. struct elevator_type *e;
  87. spin_lock(&elv_list_lock);
  88. e = elevator_find(name);
  89. if (!e && try_loading) {
  90. spin_unlock(&elv_list_lock);
  91. request_module("%s-iosched", name);
  92. spin_lock(&elv_list_lock);
  93. e = elevator_find(name);
  94. }
  95. if (e && !try_module_get(e->elevator_owner))
  96. e = NULL;
  97. spin_unlock(&elv_list_lock);
  98. return e;
  99. }
  100. static char chosen_elevator[ELV_NAME_MAX];
  101. static int __init elevator_setup(char *str)
  102. {
  103. /*
  104. * Be backwards-compatible with previous kernels, so users
  105. * won't get the wrong elevator.
  106. */
  107. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  108. return 1;
  109. }
  110. __setup("elevator=", elevator_setup);
  111. /* called during boot to load the elevator chosen by the elevator param */
  112. void __init load_default_elevator_module(void)
  113. {
  114. struct elevator_type *e;
  115. if (!chosen_elevator[0])
  116. return;
  117. spin_lock(&elv_list_lock);
  118. e = elevator_find(chosen_elevator);
  119. spin_unlock(&elv_list_lock);
  120. if (!e)
  121. request_module("%s-iosched", chosen_elevator);
  122. }
  123. static struct kobj_type elv_ktype;
  124. struct elevator_queue *elevator_alloc(struct request_queue *q,
  125. struct elevator_type *e)
  126. {
  127. struct elevator_queue *eq;
  128. eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node);
  129. if (unlikely(!eq))
  130. goto err;
  131. eq->type = e;
  132. kobject_init(&eq->kobj, &elv_ktype);
  133. mutex_init(&eq->sysfs_lock);
  134. hash_init(eq->hash);
  135. return eq;
  136. err:
  137. kfree(eq);
  138. elevator_put(e);
  139. return NULL;
  140. }
  141. EXPORT_SYMBOL(elevator_alloc);
  142. static void elevator_release(struct kobject *kobj)
  143. {
  144. struct elevator_queue *e;
  145. e = container_of(kobj, struct elevator_queue, kobj);
  146. elevator_put(e->type);
  147. kfree(e);
  148. }
  149. int elevator_init(struct request_queue *q, char *name)
  150. {
  151. struct elevator_type *e = NULL;
  152. int err;
  153. /*
  154. * q->sysfs_lock must be held to provide mutual exclusion between
  155. * elevator_switch() and here.
  156. */
  157. lockdep_assert_held(&q->sysfs_lock);
  158. if (unlikely(q->elevator))
  159. return 0;
  160. INIT_LIST_HEAD(&q->queue_head);
  161. q->last_merge = NULL;
  162. q->end_sector = 0;
  163. q->boundary_rq = NULL;
  164. if (name) {
  165. e = elevator_get(name, true);
  166. if (!e)
  167. return -EINVAL;
  168. }
  169. /*
  170. * Use the default elevator specified by config boot param or
  171. * config option. Don't try to load modules as we could be running
  172. * off async and request_module() isn't allowed from async.
  173. */
  174. if (!e && *chosen_elevator) {
  175. e = elevator_get(chosen_elevator, false);
  176. if (!e)
  177. printk(KERN_ERR "I/O scheduler %s not found\n",
  178. chosen_elevator);
  179. }
  180. if (!e) {
  181. e = elevator_get(CONFIG_DEFAULT_IOSCHED, false);
  182. if (!e) {
  183. printk(KERN_ERR
  184. "Default I/O scheduler not found. " \
  185. "Using noop.\n");
  186. e = elevator_get("noop", false);
  187. }
  188. }
  189. err = e->ops.elevator_init_fn(q, e);
  190. return 0;
  191. }
  192. EXPORT_SYMBOL(elevator_init);
  193. void elevator_exit(struct elevator_queue *e)
  194. {
  195. mutex_lock(&e->sysfs_lock);
  196. if (e->type->ops.elevator_exit_fn)
  197. e->type->ops.elevator_exit_fn(e);
  198. mutex_unlock(&e->sysfs_lock);
  199. kobject_put(&e->kobj);
  200. }
  201. EXPORT_SYMBOL(elevator_exit);
  202. static inline void __elv_rqhash_del(struct request *rq)
  203. {
  204. hash_del(&rq->hash);
  205. rq->cmd_flags &= ~REQ_HASHED;
  206. }
  207. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  208. {
  209. if (ELV_ON_HASH(rq))
  210. __elv_rqhash_del(rq);
  211. }
  212. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  213. {
  214. struct elevator_queue *e = q->elevator;
  215. BUG_ON(ELV_ON_HASH(rq));
  216. hash_add(e->hash, &rq->hash, rq_hash_key(rq));
  217. rq->cmd_flags |= REQ_HASHED;
  218. }
  219. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  220. {
  221. __elv_rqhash_del(rq);
  222. elv_rqhash_add(q, rq);
  223. }
  224. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  225. {
  226. struct elevator_queue *e = q->elevator;
  227. struct hlist_node *next;
  228. struct request *rq;
  229. hash_for_each_possible_safe(e->hash, rq, next, hash, offset) {
  230. BUG_ON(!ELV_ON_HASH(rq));
  231. if (unlikely(!rq_mergeable(rq))) {
  232. __elv_rqhash_del(rq);
  233. continue;
  234. }
  235. if (rq_hash_key(rq) == offset)
  236. return rq;
  237. }
  238. return NULL;
  239. }
  240. /*
  241. * RB-tree support functions for inserting/lookup/removal of requests
  242. * in a sorted RB tree.
  243. */
  244. void elv_rb_add(struct rb_root *root, struct request *rq)
  245. {
  246. struct rb_node **p = &root->rb_node;
  247. struct rb_node *parent = NULL;
  248. struct request *__rq;
  249. while (*p) {
  250. parent = *p;
  251. __rq = rb_entry(parent, struct request, rb_node);
  252. if (blk_rq_pos(rq) < blk_rq_pos(__rq))
  253. p = &(*p)->rb_left;
  254. else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
  255. p = &(*p)->rb_right;
  256. }
  257. rb_link_node(&rq->rb_node, parent, p);
  258. rb_insert_color(&rq->rb_node, root);
  259. }
  260. EXPORT_SYMBOL(elv_rb_add);
  261. void elv_rb_del(struct rb_root *root, struct request *rq)
  262. {
  263. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  264. rb_erase(&rq->rb_node, root);
  265. RB_CLEAR_NODE(&rq->rb_node);
  266. }
  267. EXPORT_SYMBOL(elv_rb_del);
  268. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  269. {
  270. struct rb_node *n = root->rb_node;
  271. struct request *rq;
  272. while (n) {
  273. rq = rb_entry(n, struct request, rb_node);
  274. if (sector < blk_rq_pos(rq))
  275. n = n->rb_left;
  276. else if (sector > blk_rq_pos(rq))
  277. n = n->rb_right;
  278. else
  279. return rq;
  280. }
  281. return NULL;
  282. }
  283. EXPORT_SYMBOL(elv_rb_find);
  284. /*
  285. * Insert rq into dispatch queue of q. Queue lock must be held on
  286. * entry. rq is sort instead into the dispatch queue. To be used by
  287. * specific elevators.
  288. */
  289. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  290. {
  291. sector_t boundary;
  292. struct list_head *entry;
  293. int stop_flags;
  294. if (q->last_merge == rq)
  295. q->last_merge = NULL;
  296. elv_rqhash_del(q, rq);
  297. q->nr_sorted--;
  298. boundary = q->end_sector;
  299. stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
  300. list_for_each_prev(entry, &q->queue_head) {
  301. struct request *pos = list_entry_rq(entry);
  302. if ((rq->cmd_flags & REQ_DISCARD) !=
  303. (pos->cmd_flags & REQ_DISCARD))
  304. break;
  305. if (rq_data_dir(rq) != rq_data_dir(pos))
  306. break;
  307. if (pos->cmd_flags & stop_flags)
  308. break;
  309. if (blk_rq_pos(rq) >= boundary) {
  310. if (blk_rq_pos(pos) < boundary)
  311. continue;
  312. } else {
  313. if (blk_rq_pos(pos) >= boundary)
  314. break;
  315. }
  316. if (blk_rq_pos(rq) >= blk_rq_pos(pos))
  317. break;
  318. }
  319. list_add(&rq->queuelist, entry);
  320. }
  321. EXPORT_SYMBOL(elv_dispatch_sort);
  322. /*
  323. * Insert rq into dispatch queue of q. Queue lock must be held on
  324. * entry. rq is added to the back of the dispatch queue. To be used by
  325. * specific elevators.
  326. */
  327. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  328. {
  329. if (q->last_merge == rq)
  330. q->last_merge = NULL;
  331. elv_rqhash_del(q, rq);
  332. q->nr_sorted--;
  333. q->end_sector = rq_end_sector(rq);
  334. q->boundary_rq = rq;
  335. list_add_tail(&rq->queuelist, &q->queue_head);
  336. }
  337. EXPORT_SYMBOL(elv_dispatch_add_tail);
  338. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  339. {
  340. struct elevator_queue *e = q->elevator;
  341. struct request *__rq;
  342. int ret;
  343. /*
  344. * Levels of merges:
  345. * nomerges: No merges at all attempted
  346. * noxmerges: Only simple one-hit cache try
  347. * merges: All merge tries attempted
  348. */
  349. if (blk_queue_nomerges(q))
  350. return ELEVATOR_NO_MERGE;
  351. /*
  352. * First try one-hit cache.
  353. */
  354. if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
  355. ret = blk_try_merge(q->last_merge, bio);
  356. if (ret != ELEVATOR_NO_MERGE) {
  357. *req = q->last_merge;
  358. return ret;
  359. }
  360. }
  361. if (blk_queue_noxmerges(q))
  362. return ELEVATOR_NO_MERGE;
  363. /*
  364. * See if our hash lookup can find a potential backmerge.
  365. */
  366. __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector);
  367. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  368. *req = __rq;
  369. return ELEVATOR_BACK_MERGE;
  370. }
  371. if (e->type->ops.elevator_merge_fn)
  372. return e->type->ops.elevator_merge_fn(q, req, bio);
  373. return ELEVATOR_NO_MERGE;
  374. }
  375. /*
  376. * Attempt to do an insertion back merge. Only check for the case where
  377. * we can append 'rq' to an existing request, so we can throw 'rq' away
  378. * afterwards.
  379. *
  380. * Returns true if we merged, false otherwise
  381. */
  382. static bool elv_attempt_insert_merge(struct request_queue *q,
  383. struct request *rq)
  384. {
  385. struct request *__rq;
  386. bool ret;
  387. if (blk_queue_nomerges(q))
  388. return false;
  389. /*
  390. * First try one-hit cache.
  391. */
  392. if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
  393. return true;
  394. if (blk_queue_noxmerges(q))
  395. return false;
  396. ret = false;
  397. /*
  398. * See if our hash lookup can find a potential backmerge.
  399. */
  400. while (1) {
  401. __rq = elv_rqhash_find(q, blk_rq_pos(rq));
  402. if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
  403. break;
  404. /* The merged request could be merged with others, try again */
  405. ret = true;
  406. rq = __rq;
  407. }
  408. return ret;
  409. }
  410. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  411. {
  412. struct elevator_queue *e = q->elevator;
  413. if (e->type->ops.elevator_merged_fn)
  414. e->type->ops.elevator_merged_fn(q, rq, type);
  415. if (type == ELEVATOR_BACK_MERGE)
  416. elv_rqhash_reposition(q, rq);
  417. q->last_merge = rq;
  418. }
  419. void elv_merge_requests(struct request_queue *q, struct request *rq,
  420. struct request *next)
  421. {
  422. struct elevator_queue *e = q->elevator;
  423. const int next_sorted = next->cmd_flags & REQ_SORTED;
  424. if (next_sorted && e->type->ops.elevator_merge_req_fn)
  425. e->type->ops.elevator_merge_req_fn(q, rq, next);
  426. elv_rqhash_reposition(q, rq);
  427. if (next_sorted) {
  428. elv_rqhash_del(q, next);
  429. q->nr_sorted--;
  430. }
  431. q->last_merge = rq;
  432. }
  433. void elv_bio_merged(struct request_queue *q, struct request *rq,
  434. struct bio *bio)
  435. {
  436. struct elevator_queue *e = q->elevator;
  437. if (e->type->ops.elevator_bio_merged_fn)
  438. e->type->ops.elevator_bio_merged_fn(q, rq, bio);
  439. }
  440. #ifdef CONFIG_PM_RUNTIME
  441. static void blk_pm_requeue_request(struct request *rq)
  442. {
  443. if (rq->q->dev && !(rq->cmd_flags & REQ_PM))
  444. rq->q->nr_pending--;
  445. }
  446. static void blk_pm_add_request(struct request_queue *q, struct request *rq)
  447. {
  448. if (q->dev && !(rq->cmd_flags & REQ_PM) && q->nr_pending++ == 0 &&
  449. (q->rpm_status == RPM_SUSPENDED || q->rpm_status == RPM_SUSPENDING))
  450. pm_request_resume(q->dev);
  451. }
  452. #else
  453. static inline void blk_pm_requeue_request(struct request *rq) {}
  454. static inline void blk_pm_add_request(struct request_queue *q,
  455. struct request *rq)
  456. {
  457. }
  458. #endif
  459. void elv_requeue_request(struct request_queue *q, struct request *rq)
  460. {
  461. /*
  462. * it already went through dequeue, we need to decrement the
  463. * in_flight count again
  464. */
  465. if (blk_account_rq(rq)) {
  466. q->in_flight[rq_is_sync(rq)]--;
  467. if (rq->cmd_flags & REQ_SORTED)
  468. elv_deactivate_rq(q, rq);
  469. }
  470. rq->cmd_flags &= ~REQ_STARTED;
  471. blk_pm_requeue_request(rq);
  472. __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
  473. }
  474. void elv_drain_elevator(struct request_queue *q)
  475. {
  476. static int printed;
  477. lockdep_assert_held(q->queue_lock);
  478. while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
  479. ;
  480. if (q->nr_sorted && printed++ < 10) {
  481. printk(KERN_ERR "%s: forced dispatching is broken "
  482. "(nr_sorted=%u), please report this\n",
  483. q->elevator->type->elevator_name, q->nr_sorted);
  484. }
  485. }
  486. void __elv_add_request(struct request_queue *q, struct request *rq, int where)
  487. {
  488. trace_block_rq_insert(q, rq);
  489. blk_pm_add_request(q, rq);
  490. rq->q = q;
  491. if (rq->cmd_flags & REQ_SOFTBARRIER) {
  492. /* barriers are scheduling boundary, update end_sector */
  493. if (rq->cmd_type == REQ_TYPE_FS) {
  494. q->end_sector = rq_end_sector(rq);
  495. q->boundary_rq = rq;
  496. }
  497. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  498. (where == ELEVATOR_INSERT_SORT ||
  499. where == ELEVATOR_INSERT_SORT_MERGE))
  500. where = ELEVATOR_INSERT_BACK;
  501. switch (where) {
  502. case ELEVATOR_INSERT_REQUEUE:
  503. case ELEVATOR_INSERT_FRONT:
  504. rq->cmd_flags |= REQ_SOFTBARRIER;
  505. list_add(&rq->queuelist, &q->queue_head);
  506. break;
  507. case ELEVATOR_INSERT_BACK:
  508. rq->cmd_flags |= REQ_SOFTBARRIER;
  509. elv_drain_elevator(q);
  510. list_add_tail(&rq->queuelist, &q->queue_head);
  511. /*
  512. * We kick the queue here for the following reasons.
  513. * - The elevator might have returned NULL previously
  514. * to delay requests and returned them now. As the
  515. * queue wasn't empty before this request, ll_rw_blk
  516. * won't run the queue on return, resulting in hang.
  517. * - Usually, back inserted requests won't be merged
  518. * with anything. There's no point in delaying queue
  519. * processing.
  520. */
  521. __blk_run_queue(q);
  522. break;
  523. case ELEVATOR_INSERT_SORT_MERGE:
  524. /*
  525. * If we succeed in merging this request with one in the
  526. * queue already, we are done - rq has now been freed,
  527. * so no need to do anything further.
  528. */
  529. if (elv_attempt_insert_merge(q, rq))
  530. break;
  531. case ELEVATOR_INSERT_SORT:
  532. BUG_ON(rq->cmd_type != REQ_TYPE_FS);
  533. rq->cmd_flags |= REQ_SORTED;
  534. q->nr_sorted++;
  535. if (rq_mergeable(rq)) {
  536. elv_rqhash_add(q, rq);
  537. if (!q->last_merge)
  538. q->last_merge = rq;
  539. }
  540. /*
  541. * Some ioscheds (cfq) run q->request_fn directly, so
  542. * rq cannot be accessed after calling
  543. * elevator_add_req_fn.
  544. */
  545. q->elevator->type->ops.elevator_add_req_fn(q, rq);
  546. break;
  547. case ELEVATOR_INSERT_FLUSH:
  548. rq->cmd_flags |= REQ_SOFTBARRIER;
  549. blk_insert_flush(rq);
  550. break;
  551. default:
  552. printk(KERN_ERR "%s: bad insertion point %d\n",
  553. __func__, where);
  554. BUG();
  555. }
  556. }
  557. EXPORT_SYMBOL(__elv_add_request);
  558. void elv_add_request(struct request_queue *q, struct request *rq, int where)
  559. {
  560. unsigned long flags;
  561. spin_lock_irqsave(q->queue_lock, flags);
  562. __elv_add_request(q, rq, where);
  563. spin_unlock_irqrestore(q->queue_lock, flags);
  564. }
  565. EXPORT_SYMBOL(elv_add_request);
  566. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  567. {
  568. struct elevator_queue *e = q->elevator;
  569. if (e->type->ops.elevator_latter_req_fn)
  570. return e->type->ops.elevator_latter_req_fn(q, rq);
  571. return NULL;
  572. }
  573. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  574. {
  575. struct elevator_queue *e = q->elevator;
  576. if (e->type->ops.elevator_former_req_fn)
  577. return e->type->ops.elevator_former_req_fn(q, rq);
  578. return NULL;
  579. }
  580. int elv_set_request(struct request_queue *q, struct request *rq,
  581. struct bio *bio, gfp_t gfp_mask)
  582. {
  583. struct elevator_queue *e = q->elevator;
  584. if (e->type->ops.elevator_set_req_fn)
  585. return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask);
  586. return 0;
  587. }
  588. void elv_put_request(struct request_queue *q, struct request *rq)
  589. {
  590. struct elevator_queue *e = q->elevator;
  591. if (e->type->ops.elevator_put_req_fn)
  592. e->type->ops.elevator_put_req_fn(rq);
  593. }
  594. int elv_may_queue(struct request_queue *q, int rw)
  595. {
  596. struct elevator_queue *e = q->elevator;
  597. if (e->type->ops.elevator_may_queue_fn)
  598. return e->type->ops.elevator_may_queue_fn(q, rw);
  599. return ELV_MQUEUE_MAY;
  600. }
  601. void elv_completed_request(struct request_queue *q, struct request *rq)
  602. {
  603. struct elevator_queue *e = q->elevator;
  604. /*
  605. * request is released from the driver, io must be done
  606. */
  607. if (blk_account_rq(rq)) {
  608. q->in_flight[rq_is_sync(rq)]--;
  609. if ((rq->cmd_flags & REQ_SORTED) &&
  610. e->type->ops.elevator_completed_req_fn)
  611. e->type->ops.elevator_completed_req_fn(q, rq);
  612. }
  613. }
  614. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  615. static ssize_t
  616. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  617. {
  618. struct elv_fs_entry *entry = to_elv(attr);
  619. struct elevator_queue *e;
  620. ssize_t error;
  621. if (!entry->show)
  622. return -EIO;
  623. e = container_of(kobj, struct elevator_queue, kobj);
  624. mutex_lock(&e->sysfs_lock);
  625. error = e->type ? entry->show(e, page) : -ENOENT;
  626. mutex_unlock(&e->sysfs_lock);
  627. return error;
  628. }
  629. static ssize_t
  630. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  631. const char *page, size_t length)
  632. {
  633. struct elv_fs_entry *entry = to_elv(attr);
  634. struct elevator_queue *e;
  635. ssize_t error;
  636. if (!entry->store)
  637. return -EIO;
  638. e = container_of(kobj, struct elevator_queue, kobj);
  639. mutex_lock(&e->sysfs_lock);
  640. error = e->type ? entry->store(e, page, length) : -ENOENT;
  641. mutex_unlock(&e->sysfs_lock);
  642. return error;
  643. }
  644. static const struct sysfs_ops elv_sysfs_ops = {
  645. .show = elv_attr_show,
  646. .store = elv_attr_store,
  647. };
  648. static struct kobj_type elv_ktype = {
  649. .sysfs_ops = &elv_sysfs_ops,
  650. .release = elevator_release,
  651. };
  652. int elv_register_queue(struct request_queue *q)
  653. {
  654. struct elevator_queue *e = q->elevator;
  655. int error;
  656. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  657. if (!error) {
  658. struct elv_fs_entry *attr = e->type->elevator_attrs;
  659. if (attr) {
  660. while (attr->attr.name) {
  661. if (sysfs_create_file(&e->kobj, &attr->attr))
  662. break;
  663. attr++;
  664. }
  665. }
  666. kobject_uevent(&e->kobj, KOBJ_ADD);
  667. e->registered = 1;
  668. }
  669. return error;
  670. }
  671. EXPORT_SYMBOL(elv_register_queue);
  672. void elv_unregister_queue(struct request_queue *q)
  673. {
  674. if (q) {
  675. struct elevator_queue *e = q->elevator;
  676. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  677. kobject_del(&e->kobj);
  678. e->registered = 0;
  679. }
  680. }
  681. EXPORT_SYMBOL(elv_unregister_queue);
  682. int elv_register(struct elevator_type *e)
  683. {
  684. char *def = "";
  685. /* create icq_cache if requested */
  686. if (e->icq_size) {
  687. if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
  688. WARN_ON(e->icq_align < __alignof__(struct io_cq)))
  689. return -EINVAL;
  690. snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
  691. "%s_io_cq", e->elevator_name);
  692. e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
  693. e->icq_align, 0, NULL);
  694. if (!e->icq_cache)
  695. return -ENOMEM;
  696. }
  697. /* register, don't allow duplicate names */
  698. spin_lock(&elv_list_lock);
  699. if (elevator_find(e->elevator_name)) {
  700. spin_unlock(&elv_list_lock);
  701. if (e->icq_cache)
  702. kmem_cache_destroy(e->icq_cache);
  703. return -EBUSY;
  704. }
  705. list_add_tail(&e->list, &elv_list);
  706. spin_unlock(&elv_list_lock);
  707. /* print pretty message */
  708. if (!strcmp(e->elevator_name, chosen_elevator) ||
  709. (!*chosen_elevator &&
  710. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  711. def = " (default)";
  712. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  713. def);
  714. return 0;
  715. }
  716. EXPORT_SYMBOL_GPL(elv_register);
  717. void elv_unregister(struct elevator_type *e)
  718. {
  719. /* unregister */
  720. spin_lock(&elv_list_lock);
  721. list_del_init(&e->list);
  722. spin_unlock(&elv_list_lock);
  723. /*
  724. * Destroy icq_cache if it exists. icq's are RCU managed. Make
  725. * sure all RCU operations are complete before proceeding.
  726. */
  727. if (e->icq_cache) {
  728. rcu_barrier();
  729. kmem_cache_destroy(e->icq_cache);
  730. e->icq_cache = NULL;
  731. }
  732. }
  733. EXPORT_SYMBOL_GPL(elv_unregister);
  734. /*
  735. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  736. * we don't free the old io scheduler, before we have allocated what we
  737. * need for the new one. this way we have a chance of going back to the old
  738. * one, if the new one fails init for some reason.
  739. */
  740. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  741. {
  742. struct elevator_queue *old = q->elevator;
  743. bool registered = old->registered;
  744. int err;
  745. /*
  746. * Turn on BYPASS and drain all requests w/ elevator private data.
  747. * Block layer doesn't call into a quiesced elevator - all requests
  748. * are directly put on the dispatch list without elevator data
  749. * using INSERT_BACK. All requests have SOFTBARRIER set and no
  750. * merge happens either.
  751. */
  752. blk_queue_bypass_start(q);
  753. /* unregister and clear all auxiliary data of the old elevator */
  754. if (registered)
  755. elv_unregister_queue(q);
  756. spin_lock_irq(q->queue_lock);
  757. ioc_clear_queue(q);
  758. spin_unlock_irq(q->queue_lock);
  759. /* allocate, init and register new elevator */
  760. err = new_e->ops.elevator_init_fn(q, new_e);
  761. if (err)
  762. goto fail_init;
  763. if (registered) {
  764. err = elv_register_queue(q);
  765. if (err)
  766. goto fail_register;
  767. }
  768. /* done, kill the old one and finish */
  769. elevator_exit(old);
  770. blk_queue_bypass_end(q);
  771. blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
  772. return 0;
  773. fail_register:
  774. elevator_exit(q->elevator);
  775. fail_init:
  776. /* switch failed, restore and re-register old elevator */
  777. q->elevator = old;
  778. elv_register_queue(q);
  779. blk_queue_bypass_end(q);
  780. return err;
  781. }
  782. /*
  783. * Switch this queue to the given IO scheduler.
  784. */
  785. static int __elevator_change(struct request_queue *q, const char *name)
  786. {
  787. char elevator_name[ELV_NAME_MAX];
  788. struct elevator_type *e;
  789. if (!q->elevator)
  790. return -ENXIO;
  791. strlcpy(elevator_name, name, sizeof(elevator_name));
  792. e = elevator_get(strstrip(elevator_name), true);
  793. if (!e) {
  794. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  795. return -EINVAL;
  796. }
  797. if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
  798. elevator_put(e);
  799. return 0;
  800. }
  801. return elevator_switch(q, e);
  802. }
  803. int elevator_change(struct request_queue *q, const char *name)
  804. {
  805. int ret;
  806. /* Protect q->elevator from elevator_init() */
  807. mutex_lock(&q->sysfs_lock);
  808. ret = __elevator_change(q, name);
  809. mutex_unlock(&q->sysfs_lock);
  810. return ret;
  811. }
  812. EXPORT_SYMBOL(elevator_change);
  813. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  814. size_t count)
  815. {
  816. int ret;
  817. if (!q->elevator)
  818. return count;
  819. ret = __elevator_change(q, name);
  820. if (!ret)
  821. return count;
  822. printk(KERN_ERR "elevator: switch to %s failed\n", name);
  823. return ret;
  824. }
  825. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  826. {
  827. struct elevator_queue *e = q->elevator;
  828. struct elevator_type *elv;
  829. struct elevator_type *__e;
  830. int len = 0;
  831. if (!q->elevator || !blk_queue_stackable(q))
  832. return sprintf(name, "none\n");
  833. elv = e->type;
  834. spin_lock(&elv_list_lock);
  835. list_for_each_entry(__e, &elv_list, list) {
  836. if (!strcmp(elv->elevator_name, __e->elevator_name))
  837. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  838. else
  839. len += sprintf(name+len, "%s ", __e->elevator_name);
  840. }
  841. spin_unlock(&elv_list_lock);
  842. len += sprintf(len+name, "\n");
  843. return len;
  844. }
  845. struct request *elv_rb_former_request(struct request_queue *q,
  846. struct request *rq)
  847. {
  848. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  849. if (rbprev)
  850. return rb_entry_rq(rbprev);
  851. return NULL;
  852. }
  853. EXPORT_SYMBOL(elv_rb_former_request);
  854. struct request *elv_rb_latter_request(struct request_queue *q,
  855. struct request *rq)
  856. {
  857. struct rb_node *rbnext = rb_next(&rq->rb_node);
  858. if (rbnext)
  859. return rb_entry_rq(rbnext);
  860. return NULL;
  861. }
  862. EXPORT_SYMBOL(elv_rb_latter_request);