init.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <asm/set_memory.h>
  8. #include <asm/e820/api.h>
  9. #include <asm/init.h>
  10. #include <asm/page.h>
  11. #include <asm/page_types.h>
  12. #include <asm/sections.h>
  13. #include <asm/setup.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/tlb.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h> /* for MAX_DMA_PFN */
  18. #include <asm/microcode.h>
  19. #include <asm/kaslr.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/cpufeature.h>
  22. #include <asm/pti.h>
  23. /*
  24. * We need to define the tracepoints somewhere, and tlb.c
  25. * is only compied when SMP=y.
  26. */
  27. #define CREATE_TRACE_POINTS
  28. #include <trace/events/tlb.h>
  29. #include "mm_internal.h"
  30. /*
  31. * Tables translating between page_cache_type_t and pte encoding.
  32. *
  33. * The default values are defined statically as minimal supported mode;
  34. * WC and WT fall back to UC-. pat_init() updates these values to support
  35. * more cache modes, WC and WT, when it is safe to do so. See pat_init()
  36. * for the details. Note, __early_ioremap() used during early boot-time
  37. * takes pgprot_t (pte encoding) and does not use these tables.
  38. *
  39. * Index into __cachemode2pte_tbl[] is the cachemode.
  40. *
  41. * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  42. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  43. */
  44. uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  45. [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
  46. [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
  47. [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
  48. [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
  49. [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
  50. [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
  51. };
  52. EXPORT_SYMBOL(__cachemode2pte_tbl);
  53. uint8_t __pte2cachemode_tbl[8] = {
  54. [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
  55. [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  56. [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  57. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
  58. [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  59. [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  60. [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  61. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  62. };
  63. EXPORT_SYMBOL(__pte2cachemode_tbl);
  64. static unsigned long __initdata pgt_buf_start;
  65. static unsigned long __initdata pgt_buf_end;
  66. static unsigned long __initdata pgt_buf_top;
  67. static unsigned long min_pfn_mapped;
  68. static bool __initdata can_use_brk_pgt = true;
  69. /*
  70. * Pages returned are already directly mapped.
  71. *
  72. * Changing that is likely to break Xen, see commit:
  73. *
  74. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  75. *
  76. * for detailed information.
  77. */
  78. __ref void *alloc_low_pages(unsigned int num)
  79. {
  80. unsigned long pfn;
  81. int i;
  82. if (after_bootmem) {
  83. unsigned int order;
  84. order = get_order((unsigned long)num << PAGE_SHIFT);
  85. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
  86. }
  87. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  88. unsigned long ret;
  89. if (min_pfn_mapped >= max_pfn_mapped)
  90. panic("alloc_low_pages: ran out of memory");
  91. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  92. max_pfn_mapped << PAGE_SHIFT,
  93. PAGE_SIZE * num , PAGE_SIZE);
  94. if (!ret)
  95. panic("alloc_low_pages: can not alloc memory");
  96. memblock_reserve(ret, PAGE_SIZE * num);
  97. pfn = ret >> PAGE_SHIFT;
  98. } else {
  99. pfn = pgt_buf_end;
  100. pgt_buf_end += num;
  101. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  102. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  103. }
  104. for (i = 0; i < num; i++) {
  105. void *adr;
  106. adr = __va((pfn + i) << PAGE_SHIFT);
  107. clear_page(adr);
  108. }
  109. return __va(pfn << PAGE_SHIFT);
  110. }
  111. /*
  112. * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
  113. * With KASLR memory randomization, depending on the machine e820 memory
  114. * and the PUD alignment. We may need twice more pages when KASLR memory
  115. * randomization is enabled.
  116. */
  117. #ifndef CONFIG_RANDOMIZE_MEMORY
  118. #define INIT_PGD_PAGE_COUNT 6
  119. #else
  120. #define INIT_PGD_PAGE_COUNT 12
  121. #endif
  122. #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
  123. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  124. void __init early_alloc_pgt_buf(void)
  125. {
  126. unsigned long tables = INIT_PGT_BUF_SIZE;
  127. phys_addr_t base;
  128. base = __pa(extend_brk(tables, PAGE_SIZE));
  129. pgt_buf_start = base >> PAGE_SHIFT;
  130. pgt_buf_end = pgt_buf_start;
  131. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  132. }
  133. int after_bootmem;
  134. early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
  135. struct map_range {
  136. unsigned long start;
  137. unsigned long end;
  138. unsigned page_size_mask;
  139. };
  140. static int page_size_mask;
  141. static void __init probe_page_size_mask(void)
  142. {
  143. /*
  144. * For pagealloc debugging, identity mapping will use small pages.
  145. * This will simplify cpa(), which otherwise needs to support splitting
  146. * large pages into small in interrupt context, etc.
  147. */
  148. if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
  149. page_size_mask |= 1 << PG_LEVEL_2M;
  150. else
  151. direct_gbpages = 0;
  152. /* Enable PSE if available */
  153. if (boot_cpu_has(X86_FEATURE_PSE))
  154. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  155. /* Enable PGE if available */
  156. __supported_pte_mask &= ~_PAGE_GLOBAL;
  157. if (boot_cpu_has(X86_FEATURE_PGE)) {
  158. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  159. __supported_pte_mask |= _PAGE_GLOBAL;
  160. }
  161. /* By the default is everything supported: */
  162. __default_kernel_pte_mask = __supported_pte_mask;
  163. /* Except when with PTI where the kernel is mostly non-Global: */
  164. if (cpu_feature_enabled(X86_FEATURE_PTI))
  165. __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
  166. /* Enable 1 GB linear kernel mappings if available: */
  167. if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
  168. printk(KERN_INFO "Using GB pages for direct mapping\n");
  169. page_size_mask |= 1 << PG_LEVEL_1G;
  170. } else {
  171. direct_gbpages = 0;
  172. }
  173. }
  174. static void setup_pcid(void)
  175. {
  176. if (!IS_ENABLED(CONFIG_X86_64))
  177. return;
  178. if (!boot_cpu_has(X86_FEATURE_PCID))
  179. return;
  180. if (boot_cpu_has(X86_FEATURE_PGE)) {
  181. /*
  182. * This can't be cr4_set_bits_and_update_boot() -- the
  183. * trampoline code can't handle CR4.PCIDE and it wouldn't
  184. * do any good anyway. Despite the name,
  185. * cr4_set_bits_and_update_boot() doesn't actually cause
  186. * the bits in question to remain set all the way through
  187. * the secondary boot asm.
  188. *
  189. * Instead, we brute-force it and set CR4.PCIDE manually in
  190. * start_secondary().
  191. */
  192. cr4_set_bits(X86_CR4_PCIDE);
  193. /*
  194. * INVPCID's single-context modes (2/3) only work if we set
  195. * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
  196. * on systems that have X86_CR4_PCIDE clear, or that have
  197. * no INVPCID support at all.
  198. */
  199. if (boot_cpu_has(X86_FEATURE_INVPCID))
  200. setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
  201. } else {
  202. /*
  203. * flush_tlb_all(), as currently implemented, won't work if
  204. * PCID is on but PGE is not. Since that combination
  205. * doesn't exist on real hardware, there's no reason to try
  206. * to fully support it, but it's polite to avoid corrupting
  207. * data if we're on an improperly configured VM.
  208. */
  209. setup_clear_cpu_cap(X86_FEATURE_PCID);
  210. }
  211. }
  212. #ifdef CONFIG_X86_32
  213. #define NR_RANGE_MR 3
  214. #else /* CONFIG_X86_64 */
  215. #define NR_RANGE_MR 5
  216. #endif
  217. static int __meminit save_mr(struct map_range *mr, int nr_range,
  218. unsigned long start_pfn, unsigned long end_pfn,
  219. unsigned long page_size_mask)
  220. {
  221. if (start_pfn < end_pfn) {
  222. if (nr_range >= NR_RANGE_MR)
  223. panic("run out of range for init_memory_mapping\n");
  224. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  225. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  226. mr[nr_range].page_size_mask = page_size_mask;
  227. nr_range++;
  228. }
  229. return nr_range;
  230. }
  231. /*
  232. * adjust the page_size_mask for small range to go with
  233. * big page size instead small one if nearby are ram too.
  234. */
  235. static void __ref adjust_range_page_size_mask(struct map_range *mr,
  236. int nr_range)
  237. {
  238. int i;
  239. for (i = 0; i < nr_range; i++) {
  240. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  241. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  242. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  243. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  244. #ifdef CONFIG_X86_32
  245. if ((end >> PAGE_SHIFT) > max_low_pfn)
  246. continue;
  247. #endif
  248. if (memblock_is_region_memory(start, end - start))
  249. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  250. }
  251. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  252. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  253. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  254. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  255. if (memblock_is_region_memory(start, end - start))
  256. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  257. }
  258. }
  259. }
  260. static const char *page_size_string(struct map_range *mr)
  261. {
  262. static const char str_1g[] = "1G";
  263. static const char str_2m[] = "2M";
  264. static const char str_4m[] = "4M";
  265. static const char str_4k[] = "4k";
  266. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  267. return str_1g;
  268. /*
  269. * 32-bit without PAE has a 4M large page size.
  270. * PG_LEVEL_2M is misnamed, but we can at least
  271. * print out the right size in the string.
  272. */
  273. if (IS_ENABLED(CONFIG_X86_32) &&
  274. !IS_ENABLED(CONFIG_X86_PAE) &&
  275. mr->page_size_mask & (1<<PG_LEVEL_2M))
  276. return str_4m;
  277. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  278. return str_2m;
  279. return str_4k;
  280. }
  281. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  282. unsigned long start,
  283. unsigned long end)
  284. {
  285. unsigned long start_pfn, end_pfn, limit_pfn;
  286. unsigned long pfn;
  287. int i;
  288. limit_pfn = PFN_DOWN(end);
  289. /* head if not big page alignment ? */
  290. pfn = start_pfn = PFN_DOWN(start);
  291. #ifdef CONFIG_X86_32
  292. /*
  293. * Don't use a large page for the first 2/4MB of memory
  294. * because there are often fixed size MTRRs in there
  295. * and overlapping MTRRs into large pages can cause
  296. * slowdowns.
  297. */
  298. if (pfn == 0)
  299. end_pfn = PFN_DOWN(PMD_SIZE);
  300. else
  301. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  302. #else /* CONFIG_X86_64 */
  303. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  304. #endif
  305. if (end_pfn > limit_pfn)
  306. end_pfn = limit_pfn;
  307. if (start_pfn < end_pfn) {
  308. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  309. pfn = end_pfn;
  310. }
  311. /* big page (2M) range */
  312. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  313. #ifdef CONFIG_X86_32
  314. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  315. #else /* CONFIG_X86_64 */
  316. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  317. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  318. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  319. #endif
  320. if (start_pfn < end_pfn) {
  321. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  322. page_size_mask & (1<<PG_LEVEL_2M));
  323. pfn = end_pfn;
  324. }
  325. #ifdef CONFIG_X86_64
  326. /* big page (1G) range */
  327. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  328. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  329. if (start_pfn < end_pfn) {
  330. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  331. page_size_mask &
  332. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  333. pfn = end_pfn;
  334. }
  335. /* tail is not big page (1G) alignment */
  336. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  337. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  338. if (start_pfn < end_pfn) {
  339. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  340. page_size_mask & (1<<PG_LEVEL_2M));
  341. pfn = end_pfn;
  342. }
  343. #endif
  344. /* tail is not big page (2M) alignment */
  345. start_pfn = pfn;
  346. end_pfn = limit_pfn;
  347. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  348. if (!after_bootmem)
  349. adjust_range_page_size_mask(mr, nr_range);
  350. /* try to merge same page size and continuous */
  351. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  352. unsigned long old_start;
  353. if (mr[i].end != mr[i+1].start ||
  354. mr[i].page_size_mask != mr[i+1].page_size_mask)
  355. continue;
  356. /* move it */
  357. old_start = mr[i].start;
  358. memmove(&mr[i], &mr[i+1],
  359. (nr_range - 1 - i) * sizeof(struct map_range));
  360. mr[i--].start = old_start;
  361. nr_range--;
  362. }
  363. for (i = 0; i < nr_range; i++)
  364. pr_debug(" [mem %#010lx-%#010lx] page %s\n",
  365. mr[i].start, mr[i].end - 1,
  366. page_size_string(&mr[i]));
  367. return nr_range;
  368. }
  369. struct range pfn_mapped[E820_MAX_ENTRIES];
  370. int nr_pfn_mapped;
  371. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  372. {
  373. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
  374. nr_pfn_mapped, start_pfn, end_pfn);
  375. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
  376. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  377. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  378. max_low_pfn_mapped = max(max_low_pfn_mapped,
  379. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  380. }
  381. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  382. {
  383. int i;
  384. for (i = 0; i < nr_pfn_mapped; i++)
  385. if ((start_pfn >= pfn_mapped[i].start) &&
  386. (end_pfn <= pfn_mapped[i].end))
  387. return true;
  388. return false;
  389. }
  390. /*
  391. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  392. * This runs before bootmem is initialized and gets pages directly from
  393. * the physical memory. To access them they are temporarily mapped.
  394. */
  395. unsigned long __ref init_memory_mapping(unsigned long start,
  396. unsigned long end)
  397. {
  398. struct map_range mr[NR_RANGE_MR];
  399. unsigned long ret = 0;
  400. int nr_range, i;
  401. pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  402. start, end - 1);
  403. memset(mr, 0, sizeof(mr));
  404. nr_range = split_mem_range(mr, 0, start, end);
  405. for (i = 0; i < nr_range; i++)
  406. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  407. mr[i].page_size_mask);
  408. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  409. return ret >> PAGE_SHIFT;
  410. }
  411. /*
  412. * We need to iterate through the E820 memory map and create direct mappings
  413. * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
  414. * create direct mappings for all pfns from [0 to max_low_pfn) and
  415. * [4GB to max_pfn) because of possible memory holes in high addresses
  416. * that cannot be marked as UC by fixed/variable range MTRRs.
  417. * Depending on the alignment of E820 ranges, this may possibly result
  418. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  419. *
  420. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  421. * That range would have hole in the middle or ends, and only ram parts
  422. * will be mapped in init_range_memory_mapping().
  423. */
  424. static unsigned long __init init_range_memory_mapping(
  425. unsigned long r_start,
  426. unsigned long r_end)
  427. {
  428. unsigned long start_pfn, end_pfn;
  429. unsigned long mapped_ram_size = 0;
  430. int i;
  431. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  432. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  433. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  434. if (start >= end)
  435. continue;
  436. /*
  437. * if it is overlapping with brk pgt, we need to
  438. * alloc pgt buf from memblock instead.
  439. */
  440. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  441. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  442. init_memory_mapping(start, end);
  443. mapped_ram_size += end - start;
  444. can_use_brk_pgt = true;
  445. }
  446. return mapped_ram_size;
  447. }
  448. static unsigned long __init get_new_step_size(unsigned long step_size)
  449. {
  450. /*
  451. * Initial mapped size is PMD_SIZE (2M).
  452. * We can not set step_size to be PUD_SIZE (1G) yet.
  453. * In worse case, when we cross the 1G boundary, and
  454. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  455. * to map 1G range with PTE. Hence we use one less than the
  456. * difference of page table level shifts.
  457. *
  458. * Don't need to worry about overflow in the top-down case, on 32bit,
  459. * when step_size is 0, round_down() returns 0 for start, and that
  460. * turns it into 0x100000000ULL.
  461. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  462. * needs to be taken into consideration by the code below.
  463. */
  464. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  465. }
  466. /**
  467. * memory_map_top_down - Map [map_start, map_end) top down
  468. * @map_start: start address of the target memory range
  469. * @map_end: end address of the target memory range
  470. *
  471. * This function will setup direct mapping for memory range
  472. * [map_start, map_end) in top-down. That said, the page tables
  473. * will be allocated at the end of the memory, and we map the
  474. * memory in top-down.
  475. */
  476. static void __init memory_map_top_down(unsigned long map_start,
  477. unsigned long map_end)
  478. {
  479. unsigned long real_end, start, last_start;
  480. unsigned long step_size;
  481. unsigned long addr;
  482. unsigned long mapped_ram_size = 0;
  483. /* xen has big range in reserved near end of ram, skip it at first.*/
  484. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  485. real_end = addr + PMD_SIZE;
  486. /* step_size need to be small so pgt_buf from BRK could cover it */
  487. step_size = PMD_SIZE;
  488. max_pfn_mapped = 0; /* will get exact value next */
  489. min_pfn_mapped = real_end >> PAGE_SHIFT;
  490. last_start = start = real_end;
  491. /*
  492. * We start from the top (end of memory) and go to the bottom.
  493. * The memblock_find_in_range() gets us a block of RAM from the
  494. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  495. * for page table.
  496. */
  497. while (last_start > map_start) {
  498. if (last_start > step_size) {
  499. start = round_down(last_start - 1, step_size);
  500. if (start < map_start)
  501. start = map_start;
  502. } else
  503. start = map_start;
  504. mapped_ram_size += init_range_memory_mapping(start,
  505. last_start);
  506. last_start = start;
  507. min_pfn_mapped = last_start >> PAGE_SHIFT;
  508. if (mapped_ram_size >= step_size)
  509. step_size = get_new_step_size(step_size);
  510. }
  511. if (real_end < map_end)
  512. init_range_memory_mapping(real_end, map_end);
  513. }
  514. /**
  515. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  516. * @map_start: start address of the target memory range
  517. * @map_end: end address of the target memory range
  518. *
  519. * This function will setup direct mapping for memory range
  520. * [map_start, map_end) in bottom-up. Since we have limited the
  521. * bottom-up allocation above the kernel, the page tables will
  522. * be allocated just above the kernel and we map the memory
  523. * in [map_start, map_end) in bottom-up.
  524. */
  525. static void __init memory_map_bottom_up(unsigned long map_start,
  526. unsigned long map_end)
  527. {
  528. unsigned long next, start;
  529. unsigned long mapped_ram_size = 0;
  530. /* step_size need to be small so pgt_buf from BRK could cover it */
  531. unsigned long step_size = PMD_SIZE;
  532. start = map_start;
  533. min_pfn_mapped = start >> PAGE_SHIFT;
  534. /*
  535. * We start from the bottom (@map_start) and go to the top (@map_end).
  536. * The memblock_find_in_range() gets us a block of RAM from the
  537. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  538. * for page table.
  539. */
  540. while (start < map_end) {
  541. if (step_size && map_end - start > step_size) {
  542. next = round_up(start + 1, step_size);
  543. if (next > map_end)
  544. next = map_end;
  545. } else {
  546. next = map_end;
  547. }
  548. mapped_ram_size += init_range_memory_mapping(start, next);
  549. start = next;
  550. if (mapped_ram_size >= step_size)
  551. step_size = get_new_step_size(step_size);
  552. }
  553. }
  554. void __init init_mem_mapping(void)
  555. {
  556. unsigned long end;
  557. pti_check_boottime_disable();
  558. probe_page_size_mask();
  559. setup_pcid();
  560. #ifdef CONFIG_X86_64
  561. end = max_pfn << PAGE_SHIFT;
  562. #else
  563. end = max_low_pfn << PAGE_SHIFT;
  564. #endif
  565. /* the ISA range is always mapped regardless of memory holes */
  566. init_memory_mapping(0, ISA_END_ADDRESS);
  567. /* Init the trampoline, possibly with KASLR memory offset */
  568. init_trampoline();
  569. /*
  570. * If the allocation is in bottom-up direction, we setup direct mapping
  571. * in bottom-up, otherwise we setup direct mapping in top-down.
  572. */
  573. if (memblock_bottom_up()) {
  574. unsigned long kernel_end = __pa_symbol(_end);
  575. /*
  576. * we need two separate calls here. This is because we want to
  577. * allocate page tables above the kernel. So we first map
  578. * [kernel_end, end) to make memory above the kernel be mapped
  579. * as soon as possible. And then use page tables allocated above
  580. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  581. */
  582. memory_map_bottom_up(kernel_end, end);
  583. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  584. } else {
  585. memory_map_top_down(ISA_END_ADDRESS, end);
  586. }
  587. #ifdef CONFIG_X86_64
  588. if (max_pfn > max_low_pfn) {
  589. /* can we preseve max_low_pfn ?*/
  590. max_low_pfn = max_pfn;
  591. }
  592. #else
  593. early_ioremap_page_table_range_init();
  594. #endif
  595. load_cr3(swapper_pg_dir);
  596. __flush_tlb_all();
  597. x86_init.hyper.init_mem_mapping();
  598. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  599. }
  600. /*
  601. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  602. * is valid. The argument is a physical page number.
  603. *
  604. * On x86, access has to be given to the first megabyte of RAM because that
  605. * area traditionally contains BIOS code and data regions used by X, dosemu,
  606. * and similar apps. Since they map the entire memory range, the whole range
  607. * must be allowed (for mapping), but any areas that would otherwise be
  608. * disallowed are flagged as being "zero filled" instead of rejected.
  609. * Access has to be given to non-kernel-ram areas as well, these contain the
  610. * PCI mmio resources as well as potential bios/acpi data regions.
  611. */
  612. int devmem_is_allowed(unsigned long pagenr)
  613. {
  614. if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
  615. IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
  616. != REGION_DISJOINT) {
  617. /*
  618. * For disallowed memory regions in the low 1MB range,
  619. * request that the page be shown as all zeros.
  620. */
  621. if (pagenr < 256)
  622. return 2;
  623. return 0;
  624. }
  625. /*
  626. * This must follow RAM test, since System RAM is considered a
  627. * restricted resource under CONFIG_STRICT_IOMEM.
  628. */
  629. if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
  630. /* Low 1MB bypasses iomem restrictions. */
  631. if (pagenr < 256)
  632. return 1;
  633. return 0;
  634. }
  635. return 1;
  636. }
  637. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  638. {
  639. unsigned long begin_aligned, end_aligned;
  640. /* Make sure boundaries are page aligned */
  641. begin_aligned = PAGE_ALIGN(begin);
  642. end_aligned = end & PAGE_MASK;
  643. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  644. begin = begin_aligned;
  645. end = end_aligned;
  646. }
  647. if (begin >= end)
  648. return;
  649. /*
  650. * If debugging page accesses then do not free this memory but
  651. * mark them not present - any buggy init-section access will
  652. * create a kernel page fault:
  653. */
  654. if (debug_pagealloc_enabled()) {
  655. pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
  656. begin, end - 1);
  657. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  658. } else {
  659. /*
  660. * We just marked the kernel text read only above, now that
  661. * we are going to free part of that, we need to make that
  662. * writeable and non-executable first.
  663. */
  664. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  665. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  666. free_reserved_area((void *)begin, (void *)end,
  667. POISON_FREE_INITMEM, what);
  668. }
  669. }
  670. void __ref free_initmem(void)
  671. {
  672. e820__reallocate_tables();
  673. free_init_pages("unused kernel",
  674. (unsigned long)(&__init_begin),
  675. (unsigned long)(&__init_end));
  676. }
  677. #ifdef CONFIG_BLK_DEV_INITRD
  678. void __init free_initrd_mem(unsigned long start, unsigned long end)
  679. {
  680. /*
  681. * end could be not aligned, and We can not align that,
  682. * decompresser could be confused by aligned initrd_end
  683. * We already reserve the end partial page before in
  684. * - i386_start_kernel()
  685. * - x86_64_start_kernel()
  686. * - relocate_initrd()
  687. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  688. */
  689. free_init_pages("initrd", start, PAGE_ALIGN(end));
  690. }
  691. #endif
  692. /*
  693. * Calculate the precise size of the DMA zone (first 16 MB of RAM),
  694. * and pass it to the MM layer - to help it set zone watermarks more
  695. * accurately.
  696. *
  697. * Done on 64-bit systems only for the time being, although 32-bit systems
  698. * might benefit from this as well.
  699. */
  700. void __init memblock_find_dma_reserve(void)
  701. {
  702. #ifdef CONFIG_X86_64
  703. u64 nr_pages = 0, nr_free_pages = 0;
  704. unsigned long start_pfn, end_pfn;
  705. phys_addr_t start_addr, end_addr;
  706. int i;
  707. u64 u;
  708. /*
  709. * Iterate over all memory ranges (free and reserved ones alike),
  710. * to calculate the total number of pages in the first 16 MB of RAM:
  711. */
  712. nr_pages = 0;
  713. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  714. start_pfn = min(start_pfn, MAX_DMA_PFN);
  715. end_pfn = min(end_pfn, MAX_DMA_PFN);
  716. nr_pages += end_pfn - start_pfn;
  717. }
  718. /*
  719. * Iterate over free memory ranges to calculate the number of free
  720. * pages in the DMA zone, while not counting potential partial
  721. * pages at the beginning or the end of the range:
  722. */
  723. nr_free_pages = 0;
  724. for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
  725. start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
  726. end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
  727. if (start_pfn < end_pfn)
  728. nr_free_pages += end_pfn - start_pfn;
  729. }
  730. set_dma_reserve(nr_pages - nr_free_pages);
  731. #endif
  732. }
  733. void __init zone_sizes_init(void)
  734. {
  735. unsigned long max_zone_pfns[MAX_NR_ZONES];
  736. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  737. #ifdef CONFIG_ZONE_DMA
  738. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  739. #endif
  740. #ifdef CONFIG_ZONE_DMA32
  741. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  742. #endif
  743. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  744. #ifdef CONFIG_HIGHMEM
  745. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  746. #endif
  747. free_area_init_nodes(max_zone_pfns);
  748. }
  749. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  750. .loaded_mm = &init_mm,
  751. .next_asid = 1,
  752. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  753. };
  754. EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
  755. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  756. {
  757. /* entry 0 MUST be WB (hardwired to speed up translations) */
  758. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  759. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  760. __pte2cachemode_tbl[entry] = cache;
  761. }