page_alloc.c 202 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <linux/memcontrol.h>
  66. #include <asm/sections.h>
  67. #include <asm/tlbflush.h>
  68. #include <asm/div64.h>
  69. #include "internal.h"
  70. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  71. static DEFINE_MUTEX(pcp_batch_high_lock);
  72. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  73. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  74. DEFINE_PER_CPU(int, numa_node);
  75. EXPORT_PER_CPU_SYMBOL(numa_node);
  76. #endif
  77. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  78. /*
  79. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  80. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  81. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  82. * defined in <linux/topology.h>.
  83. */
  84. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  85. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  86. int _node_numa_mem_[MAX_NUMNODES];
  87. #endif
  88. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  89. volatile unsigned long latent_entropy __latent_entropy;
  90. EXPORT_SYMBOL(latent_entropy);
  91. #endif
  92. /*
  93. * Array of node states.
  94. */
  95. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  96. [N_POSSIBLE] = NODE_MASK_ALL,
  97. [N_ONLINE] = { { [0] = 1UL } },
  98. #ifndef CONFIG_NUMA
  99. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  100. #ifdef CONFIG_HIGHMEM
  101. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  102. #endif
  103. #ifdef CONFIG_MOVABLE_NODE
  104. [N_MEMORY] = { { [0] = 1UL } },
  105. #endif
  106. [N_CPU] = { { [0] = 1UL } },
  107. #endif /* NUMA */
  108. };
  109. EXPORT_SYMBOL(node_states);
  110. /* Protect totalram_pages and zone->managed_pages */
  111. static DEFINE_SPINLOCK(managed_page_count_lock);
  112. unsigned long totalram_pages __read_mostly;
  113. unsigned long totalreserve_pages __read_mostly;
  114. unsigned long totalcma_pages __read_mostly;
  115. int percpu_pagelist_fraction;
  116. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  117. /*
  118. * A cached value of the page's pageblock's migratetype, used when the page is
  119. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  120. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  121. * Also the migratetype set in the page does not necessarily match the pcplist
  122. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  123. * other index - this ensures that it will be put on the correct CMA freelist.
  124. */
  125. static inline int get_pcppage_migratetype(struct page *page)
  126. {
  127. return page->index;
  128. }
  129. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  130. {
  131. page->index = migratetype;
  132. }
  133. #ifdef CONFIG_PM_SLEEP
  134. /*
  135. * The following functions are used by the suspend/hibernate code to temporarily
  136. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  137. * while devices are suspended. To avoid races with the suspend/hibernate code,
  138. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  139. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  140. * guaranteed not to run in parallel with that modification).
  141. */
  142. static gfp_t saved_gfp_mask;
  143. void pm_restore_gfp_mask(void)
  144. {
  145. WARN_ON(!mutex_is_locked(&pm_mutex));
  146. if (saved_gfp_mask) {
  147. gfp_allowed_mask = saved_gfp_mask;
  148. saved_gfp_mask = 0;
  149. }
  150. }
  151. void pm_restrict_gfp_mask(void)
  152. {
  153. WARN_ON(!mutex_is_locked(&pm_mutex));
  154. WARN_ON(saved_gfp_mask);
  155. saved_gfp_mask = gfp_allowed_mask;
  156. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  157. }
  158. bool pm_suspended_storage(void)
  159. {
  160. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  161. return false;
  162. return true;
  163. }
  164. #endif /* CONFIG_PM_SLEEP */
  165. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  166. unsigned int pageblock_order __read_mostly;
  167. #endif
  168. static void __free_pages_ok(struct page *page, unsigned int order);
  169. /*
  170. * results with 256, 32 in the lowmem_reserve sysctl:
  171. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  172. * 1G machine -> (16M dma, 784M normal, 224M high)
  173. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  174. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  175. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  176. *
  177. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  178. * don't need any ZONE_NORMAL reservation
  179. */
  180. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  181. #ifdef CONFIG_ZONE_DMA
  182. 256,
  183. #endif
  184. #ifdef CONFIG_ZONE_DMA32
  185. 256,
  186. #endif
  187. #ifdef CONFIG_HIGHMEM
  188. 32,
  189. #endif
  190. 32,
  191. };
  192. EXPORT_SYMBOL(totalram_pages);
  193. static char * const zone_names[MAX_NR_ZONES] = {
  194. #ifdef CONFIG_ZONE_DMA
  195. "DMA",
  196. #endif
  197. #ifdef CONFIG_ZONE_DMA32
  198. "DMA32",
  199. #endif
  200. "Normal",
  201. #ifdef CONFIG_HIGHMEM
  202. "HighMem",
  203. #endif
  204. "Movable",
  205. #ifdef CONFIG_ZONE_DEVICE
  206. "Device",
  207. #endif
  208. };
  209. char * const migratetype_names[MIGRATE_TYPES] = {
  210. "Unmovable",
  211. "Movable",
  212. "Reclaimable",
  213. "HighAtomic",
  214. #ifdef CONFIG_CMA
  215. "CMA",
  216. #endif
  217. #ifdef CONFIG_MEMORY_ISOLATION
  218. "Isolate",
  219. #endif
  220. };
  221. compound_page_dtor * const compound_page_dtors[] = {
  222. NULL,
  223. free_compound_page,
  224. #ifdef CONFIG_HUGETLB_PAGE
  225. free_huge_page,
  226. #endif
  227. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  228. free_transhuge_page,
  229. #endif
  230. };
  231. int min_free_kbytes = 1024;
  232. int user_min_free_kbytes = -1;
  233. int watermark_scale_factor = 10;
  234. static unsigned long __meminitdata nr_kernel_pages;
  235. static unsigned long __meminitdata nr_all_pages;
  236. static unsigned long __meminitdata dma_reserve;
  237. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  238. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  239. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  240. static unsigned long __initdata required_kernelcore;
  241. static unsigned long __initdata required_movablecore;
  242. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  243. static bool mirrored_kernelcore;
  244. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  245. int movable_zone;
  246. EXPORT_SYMBOL(movable_zone);
  247. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  248. #if MAX_NUMNODES > 1
  249. int nr_node_ids __read_mostly = MAX_NUMNODES;
  250. int nr_online_nodes __read_mostly = 1;
  251. EXPORT_SYMBOL(nr_node_ids);
  252. EXPORT_SYMBOL(nr_online_nodes);
  253. #endif
  254. int page_group_by_mobility_disabled __read_mostly;
  255. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  256. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  257. {
  258. pgdat->first_deferred_pfn = ULONG_MAX;
  259. }
  260. /* Returns true if the struct page for the pfn is uninitialised */
  261. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  262. {
  263. int nid = early_pfn_to_nid(pfn);
  264. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  265. return true;
  266. return false;
  267. }
  268. /*
  269. * Returns false when the remaining initialisation should be deferred until
  270. * later in the boot cycle when it can be parallelised.
  271. */
  272. static inline bool update_defer_init(pg_data_t *pgdat,
  273. unsigned long pfn, unsigned long zone_end,
  274. unsigned long *nr_initialised)
  275. {
  276. unsigned long max_initialise;
  277. /* Always populate low zones for address-contrained allocations */
  278. if (zone_end < pgdat_end_pfn(pgdat))
  279. return true;
  280. /*
  281. * Initialise at least 2G of a node but also take into account that
  282. * two large system hashes that can take up 1GB for 0.25TB/node.
  283. */
  284. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  285. (pgdat->node_spanned_pages >> 8));
  286. (*nr_initialised)++;
  287. if ((*nr_initialised > max_initialise) &&
  288. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  289. pgdat->first_deferred_pfn = pfn;
  290. return false;
  291. }
  292. return true;
  293. }
  294. #else
  295. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  296. {
  297. }
  298. static inline bool early_page_uninitialised(unsigned long pfn)
  299. {
  300. return false;
  301. }
  302. static inline bool update_defer_init(pg_data_t *pgdat,
  303. unsigned long pfn, unsigned long zone_end,
  304. unsigned long *nr_initialised)
  305. {
  306. return true;
  307. }
  308. #endif
  309. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  310. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  311. unsigned long pfn)
  312. {
  313. #ifdef CONFIG_SPARSEMEM
  314. return __pfn_to_section(pfn)->pageblock_flags;
  315. #else
  316. return page_zone(page)->pageblock_flags;
  317. #endif /* CONFIG_SPARSEMEM */
  318. }
  319. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  320. {
  321. #ifdef CONFIG_SPARSEMEM
  322. pfn &= (PAGES_PER_SECTION-1);
  323. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  324. #else
  325. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  326. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  327. #endif /* CONFIG_SPARSEMEM */
  328. }
  329. /**
  330. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  331. * @page: The page within the block of interest
  332. * @pfn: The target page frame number
  333. * @end_bitidx: The last bit of interest to retrieve
  334. * @mask: mask of bits that the caller is interested in
  335. *
  336. * Return: pageblock_bits flags
  337. */
  338. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  339. unsigned long pfn,
  340. unsigned long end_bitidx,
  341. unsigned long mask)
  342. {
  343. unsigned long *bitmap;
  344. unsigned long bitidx, word_bitidx;
  345. unsigned long word;
  346. bitmap = get_pageblock_bitmap(page, pfn);
  347. bitidx = pfn_to_bitidx(page, pfn);
  348. word_bitidx = bitidx / BITS_PER_LONG;
  349. bitidx &= (BITS_PER_LONG-1);
  350. word = bitmap[word_bitidx];
  351. bitidx += end_bitidx;
  352. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  353. }
  354. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  355. unsigned long end_bitidx,
  356. unsigned long mask)
  357. {
  358. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  359. }
  360. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  361. {
  362. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  363. }
  364. /**
  365. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  366. * @page: The page within the block of interest
  367. * @flags: The flags to set
  368. * @pfn: The target page frame number
  369. * @end_bitidx: The last bit of interest
  370. * @mask: mask of bits that the caller is interested in
  371. */
  372. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  373. unsigned long pfn,
  374. unsigned long end_bitidx,
  375. unsigned long mask)
  376. {
  377. unsigned long *bitmap;
  378. unsigned long bitidx, word_bitidx;
  379. unsigned long old_word, word;
  380. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  381. bitmap = get_pageblock_bitmap(page, pfn);
  382. bitidx = pfn_to_bitidx(page, pfn);
  383. word_bitidx = bitidx / BITS_PER_LONG;
  384. bitidx &= (BITS_PER_LONG-1);
  385. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  386. bitidx += end_bitidx;
  387. mask <<= (BITS_PER_LONG - bitidx - 1);
  388. flags <<= (BITS_PER_LONG - bitidx - 1);
  389. word = READ_ONCE(bitmap[word_bitidx]);
  390. for (;;) {
  391. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  392. if (word == old_word)
  393. break;
  394. word = old_word;
  395. }
  396. }
  397. void set_pageblock_migratetype(struct page *page, int migratetype)
  398. {
  399. if (unlikely(page_group_by_mobility_disabled &&
  400. migratetype < MIGRATE_PCPTYPES))
  401. migratetype = MIGRATE_UNMOVABLE;
  402. set_pageblock_flags_group(page, (unsigned long)migratetype,
  403. PB_migrate, PB_migrate_end);
  404. }
  405. #ifdef CONFIG_DEBUG_VM
  406. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  407. {
  408. int ret = 0;
  409. unsigned seq;
  410. unsigned long pfn = page_to_pfn(page);
  411. unsigned long sp, start_pfn;
  412. do {
  413. seq = zone_span_seqbegin(zone);
  414. start_pfn = zone->zone_start_pfn;
  415. sp = zone->spanned_pages;
  416. if (!zone_spans_pfn(zone, pfn))
  417. ret = 1;
  418. } while (zone_span_seqretry(zone, seq));
  419. if (ret)
  420. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  421. pfn, zone_to_nid(zone), zone->name,
  422. start_pfn, start_pfn + sp);
  423. return ret;
  424. }
  425. static int page_is_consistent(struct zone *zone, struct page *page)
  426. {
  427. if (!pfn_valid_within(page_to_pfn(page)))
  428. return 0;
  429. if (zone != page_zone(page))
  430. return 0;
  431. return 1;
  432. }
  433. /*
  434. * Temporary debugging check for pages not lying within a given zone.
  435. */
  436. static int bad_range(struct zone *zone, struct page *page)
  437. {
  438. if (page_outside_zone_boundaries(zone, page))
  439. return 1;
  440. if (!page_is_consistent(zone, page))
  441. return 1;
  442. return 0;
  443. }
  444. #else
  445. static inline int bad_range(struct zone *zone, struct page *page)
  446. {
  447. return 0;
  448. }
  449. #endif
  450. static void bad_page(struct page *page, const char *reason,
  451. unsigned long bad_flags)
  452. {
  453. static unsigned long resume;
  454. static unsigned long nr_shown;
  455. static unsigned long nr_unshown;
  456. /*
  457. * Allow a burst of 60 reports, then keep quiet for that minute;
  458. * or allow a steady drip of one report per second.
  459. */
  460. if (nr_shown == 60) {
  461. if (time_before(jiffies, resume)) {
  462. nr_unshown++;
  463. goto out;
  464. }
  465. if (nr_unshown) {
  466. pr_alert(
  467. "BUG: Bad page state: %lu messages suppressed\n",
  468. nr_unshown);
  469. nr_unshown = 0;
  470. }
  471. nr_shown = 0;
  472. }
  473. if (nr_shown++ == 0)
  474. resume = jiffies + 60 * HZ;
  475. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  476. current->comm, page_to_pfn(page));
  477. __dump_page(page, reason);
  478. bad_flags &= page->flags;
  479. if (bad_flags)
  480. pr_alert("bad because of flags: %#lx(%pGp)\n",
  481. bad_flags, &bad_flags);
  482. dump_page_owner(page);
  483. print_modules();
  484. dump_stack();
  485. out:
  486. /* Leave bad fields for debug, except PageBuddy could make trouble */
  487. page_mapcount_reset(page); /* remove PageBuddy */
  488. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  489. }
  490. /*
  491. * Higher-order pages are called "compound pages". They are structured thusly:
  492. *
  493. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  494. *
  495. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  496. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  497. *
  498. * The first tail page's ->compound_dtor holds the offset in array of compound
  499. * page destructors. See compound_page_dtors.
  500. *
  501. * The first tail page's ->compound_order holds the order of allocation.
  502. * This usage means that zero-order pages may not be compound.
  503. */
  504. void free_compound_page(struct page *page)
  505. {
  506. __free_pages_ok(page, compound_order(page));
  507. }
  508. void prep_compound_page(struct page *page, unsigned int order)
  509. {
  510. int i;
  511. int nr_pages = 1 << order;
  512. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  513. set_compound_order(page, order);
  514. __SetPageHead(page);
  515. for (i = 1; i < nr_pages; i++) {
  516. struct page *p = page + i;
  517. set_page_count(p, 0);
  518. p->mapping = TAIL_MAPPING;
  519. set_compound_head(p, page);
  520. }
  521. atomic_set(compound_mapcount_ptr(page), -1);
  522. }
  523. #ifdef CONFIG_DEBUG_PAGEALLOC
  524. unsigned int _debug_guardpage_minorder;
  525. bool _debug_pagealloc_enabled __read_mostly
  526. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  527. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  528. bool _debug_guardpage_enabled __read_mostly;
  529. static int __init early_debug_pagealloc(char *buf)
  530. {
  531. if (!buf)
  532. return -EINVAL;
  533. return kstrtobool(buf, &_debug_pagealloc_enabled);
  534. }
  535. early_param("debug_pagealloc", early_debug_pagealloc);
  536. static bool need_debug_guardpage(void)
  537. {
  538. /* If we don't use debug_pagealloc, we don't need guard page */
  539. if (!debug_pagealloc_enabled())
  540. return false;
  541. if (!debug_guardpage_minorder())
  542. return false;
  543. return true;
  544. }
  545. static void init_debug_guardpage(void)
  546. {
  547. if (!debug_pagealloc_enabled())
  548. return;
  549. if (!debug_guardpage_minorder())
  550. return;
  551. _debug_guardpage_enabled = true;
  552. }
  553. struct page_ext_operations debug_guardpage_ops = {
  554. .need = need_debug_guardpage,
  555. .init = init_debug_guardpage,
  556. };
  557. static int __init debug_guardpage_minorder_setup(char *buf)
  558. {
  559. unsigned long res;
  560. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  561. pr_err("Bad debug_guardpage_minorder value\n");
  562. return 0;
  563. }
  564. _debug_guardpage_minorder = res;
  565. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  566. return 0;
  567. }
  568. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  569. static inline bool set_page_guard(struct zone *zone, struct page *page,
  570. unsigned int order, int migratetype)
  571. {
  572. struct page_ext *page_ext;
  573. if (!debug_guardpage_enabled())
  574. return false;
  575. if (order >= debug_guardpage_minorder())
  576. return false;
  577. page_ext = lookup_page_ext(page);
  578. if (unlikely(!page_ext))
  579. return false;
  580. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  581. INIT_LIST_HEAD(&page->lru);
  582. set_page_private(page, order);
  583. /* Guard pages are not available for any usage */
  584. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  585. return true;
  586. }
  587. static inline void clear_page_guard(struct zone *zone, struct page *page,
  588. unsigned int order, int migratetype)
  589. {
  590. struct page_ext *page_ext;
  591. if (!debug_guardpage_enabled())
  592. return;
  593. page_ext = lookup_page_ext(page);
  594. if (unlikely(!page_ext))
  595. return;
  596. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  597. set_page_private(page, 0);
  598. if (!is_migrate_isolate(migratetype))
  599. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  600. }
  601. #else
  602. struct page_ext_operations debug_guardpage_ops;
  603. static inline bool set_page_guard(struct zone *zone, struct page *page,
  604. unsigned int order, int migratetype) { return false; }
  605. static inline void clear_page_guard(struct zone *zone, struct page *page,
  606. unsigned int order, int migratetype) {}
  607. #endif
  608. static inline void set_page_order(struct page *page, unsigned int order)
  609. {
  610. set_page_private(page, order);
  611. __SetPageBuddy(page);
  612. }
  613. static inline void rmv_page_order(struct page *page)
  614. {
  615. __ClearPageBuddy(page);
  616. set_page_private(page, 0);
  617. }
  618. /*
  619. * This function checks whether a page is free && is the buddy
  620. * we can do coalesce a page and its buddy if
  621. * (a) the buddy is not in a hole &&
  622. * (b) the buddy is in the buddy system &&
  623. * (c) a page and its buddy have the same order &&
  624. * (d) a page and its buddy are in the same zone.
  625. *
  626. * For recording whether a page is in the buddy system, we set ->_mapcount
  627. * PAGE_BUDDY_MAPCOUNT_VALUE.
  628. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  629. * serialized by zone->lock.
  630. *
  631. * For recording page's order, we use page_private(page).
  632. */
  633. static inline int page_is_buddy(struct page *page, struct page *buddy,
  634. unsigned int order)
  635. {
  636. if (!pfn_valid_within(page_to_pfn(buddy)))
  637. return 0;
  638. if (page_is_guard(buddy) && page_order(buddy) == order) {
  639. if (page_zone_id(page) != page_zone_id(buddy))
  640. return 0;
  641. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  642. return 1;
  643. }
  644. if (PageBuddy(buddy) && page_order(buddy) == order) {
  645. /*
  646. * zone check is done late to avoid uselessly
  647. * calculating zone/node ids for pages that could
  648. * never merge.
  649. */
  650. if (page_zone_id(page) != page_zone_id(buddy))
  651. return 0;
  652. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  653. return 1;
  654. }
  655. return 0;
  656. }
  657. /*
  658. * Freeing function for a buddy system allocator.
  659. *
  660. * The concept of a buddy system is to maintain direct-mapped table
  661. * (containing bit values) for memory blocks of various "orders".
  662. * The bottom level table contains the map for the smallest allocatable
  663. * units of memory (here, pages), and each level above it describes
  664. * pairs of units from the levels below, hence, "buddies".
  665. * At a high level, all that happens here is marking the table entry
  666. * at the bottom level available, and propagating the changes upward
  667. * as necessary, plus some accounting needed to play nicely with other
  668. * parts of the VM system.
  669. * At each level, we keep a list of pages, which are heads of continuous
  670. * free pages of length of (1 << order) and marked with _mapcount
  671. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  672. * field.
  673. * So when we are allocating or freeing one, we can derive the state of the
  674. * other. That is, if we allocate a small block, and both were
  675. * free, the remainder of the region must be split into blocks.
  676. * If a block is freed, and its buddy is also free, then this
  677. * triggers coalescing into a block of larger size.
  678. *
  679. * -- nyc
  680. */
  681. static inline void __free_one_page(struct page *page,
  682. unsigned long pfn,
  683. struct zone *zone, unsigned int order,
  684. int migratetype)
  685. {
  686. unsigned long page_idx;
  687. unsigned long combined_idx;
  688. unsigned long uninitialized_var(buddy_idx);
  689. struct page *buddy;
  690. unsigned int max_order;
  691. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  692. VM_BUG_ON(!zone_is_initialized(zone));
  693. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  694. VM_BUG_ON(migratetype == -1);
  695. if (likely(!is_migrate_isolate(migratetype)))
  696. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  697. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  698. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  699. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  700. continue_merging:
  701. while (order < max_order - 1) {
  702. buddy_idx = __find_buddy_index(page_idx, order);
  703. buddy = page + (buddy_idx - page_idx);
  704. if (!page_is_buddy(page, buddy, order))
  705. goto done_merging;
  706. /*
  707. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  708. * merge with it and move up one order.
  709. */
  710. if (page_is_guard(buddy)) {
  711. clear_page_guard(zone, buddy, order, migratetype);
  712. } else {
  713. list_del(&buddy->lru);
  714. zone->free_area[order].nr_free--;
  715. rmv_page_order(buddy);
  716. }
  717. combined_idx = buddy_idx & page_idx;
  718. page = page + (combined_idx - page_idx);
  719. page_idx = combined_idx;
  720. order++;
  721. }
  722. if (max_order < MAX_ORDER) {
  723. /* If we are here, it means order is >= pageblock_order.
  724. * We want to prevent merge between freepages on isolate
  725. * pageblock and normal pageblock. Without this, pageblock
  726. * isolation could cause incorrect freepage or CMA accounting.
  727. *
  728. * We don't want to hit this code for the more frequent
  729. * low-order merging.
  730. */
  731. if (unlikely(has_isolate_pageblock(zone))) {
  732. int buddy_mt;
  733. buddy_idx = __find_buddy_index(page_idx, order);
  734. buddy = page + (buddy_idx - page_idx);
  735. buddy_mt = get_pageblock_migratetype(buddy);
  736. if (migratetype != buddy_mt
  737. && (is_migrate_isolate(migratetype) ||
  738. is_migrate_isolate(buddy_mt)))
  739. goto done_merging;
  740. }
  741. max_order++;
  742. goto continue_merging;
  743. }
  744. done_merging:
  745. set_page_order(page, order);
  746. /*
  747. * If this is not the largest possible page, check if the buddy
  748. * of the next-highest order is free. If it is, it's possible
  749. * that pages are being freed that will coalesce soon. In case,
  750. * that is happening, add the free page to the tail of the list
  751. * so it's less likely to be used soon and more likely to be merged
  752. * as a higher order page
  753. */
  754. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  755. struct page *higher_page, *higher_buddy;
  756. combined_idx = buddy_idx & page_idx;
  757. higher_page = page + (combined_idx - page_idx);
  758. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  759. higher_buddy = higher_page + (buddy_idx - combined_idx);
  760. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  761. list_add_tail(&page->lru,
  762. &zone->free_area[order].free_list[migratetype]);
  763. goto out;
  764. }
  765. }
  766. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  767. out:
  768. zone->free_area[order].nr_free++;
  769. }
  770. /*
  771. * A bad page could be due to a number of fields. Instead of multiple branches,
  772. * try and check multiple fields with one check. The caller must do a detailed
  773. * check if necessary.
  774. */
  775. static inline bool page_expected_state(struct page *page,
  776. unsigned long check_flags)
  777. {
  778. if (unlikely(atomic_read(&page->_mapcount) != -1))
  779. return false;
  780. if (unlikely((unsigned long)page->mapping |
  781. page_ref_count(page) |
  782. #ifdef CONFIG_MEMCG
  783. (unsigned long)page->mem_cgroup |
  784. #endif
  785. (page->flags & check_flags)))
  786. return false;
  787. return true;
  788. }
  789. static void free_pages_check_bad(struct page *page)
  790. {
  791. const char *bad_reason;
  792. unsigned long bad_flags;
  793. bad_reason = NULL;
  794. bad_flags = 0;
  795. if (unlikely(atomic_read(&page->_mapcount) != -1))
  796. bad_reason = "nonzero mapcount";
  797. if (unlikely(page->mapping != NULL))
  798. bad_reason = "non-NULL mapping";
  799. if (unlikely(page_ref_count(page) != 0))
  800. bad_reason = "nonzero _refcount";
  801. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  802. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  803. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  804. }
  805. #ifdef CONFIG_MEMCG
  806. if (unlikely(page->mem_cgroup))
  807. bad_reason = "page still charged to cgroup";
  808. #endif
  809. bad_page(page, bad_reason, bad_flags);
  810. }
  811. static inline int free_pages_check(struct page *page)
  812. {
  813. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  814. return 0;
  815. /* Something has gone sideways, find it */
  816. free_pages_check_bad(page);
  817. return 1;
  818. }
  819. static int free_tail_pages_check(struct page *head_page, struct page *page)
  820. {
  821. int ret = 1;
  822. /*
  823. * We rely page->lru.next never has bit 0 set, unless the page
  824. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  825. */
  826. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  827. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  828. ret = 0;
  829. goto out;
  830. }
  831. switch (page - head_page) {
  832. case 1:
  833. /* the first tail page: ->mapping is compound_mapcount() */
  834. if (unlikely(compound_mapcount(page))) {
  835. bad_page(page, "nonzero compound_mapcount", 0);
  836. goto out;
  837. }
  838. break;
  839. case 2:
  840. /*
  841. * the second tail page: ->mapping is
  842. * page_deferred_list().next -- ignore value.
  843. */
  844. break;
  845. default:
  846. if (page->mapping != TAIL_MAPPING) {
  847. bad_page(page, "corrupted mapping in tail page", 0);
  848. goto out;
  849. }
  850. break;
  851. }
  852. if (unlikely(!PageTail(page))) {
  853. bad_page(page, "PageTail not set", 0);
  854. goto out;
  855. }
  856. if (unlikely(compound_head(page) != head_page)) {
  857. bad_page(page, "compound_head not consistent", 0);
  858. goto out;
  859. }
  860. ret = 0;
  861. out:
  862. page->mapping = NULL;
  863. clear_compound_head(page);
  864. return ret;
  865. }
  866. static __always_inline bool free_pages_prepare(struct page *page,
  867. unsigned int order, bool check_free)
  868. {
  869. int bad = 0;
  870. VM_BUG_ON_PAGE(PageTail(page), page);
  871. trace_mm_page_free(page, order);
  872. kmemcheck_free_shadow(page, order);
  873. /*
  874. * Check tail pages before head page information is cleared to
  875. * avoid checking PageCompound for order-0 pages.
  876. */
  877. if (unlikely(order)) {
  878. bool compound = PageCompound(page);
  879. int i;
  880. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  881. if (compound)
  882. ClearPageDoubleMap(page);
  883. for (i = 1; i < (1 << order); i++) {
  884. if (compound)
  885. bad += free_tail_pages_check(page, page + i);
  886. if (unlikely(free_pages_check(page + i))) {
  887. bad++;
  888. continue;
  889. }
  890. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  891. }
  892. }
  893. if (PageMappingFlags(page))
  894. page->mapping = NULL;
  895. if (memcg_kmem_enabled() && PageKmemcg(page))
  896. memcg_kmem_uncharge(page, order);
  897. if (check_free)
  898. bad += free_pages_check(page);
  899. if (bad)
  900. return false;
  901. page_cpupid_reset_last(page);
  902. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  903. reset_page_owner(page, order);
  904. if (!PageHighMem(page)) {
  905. debug_check_no_locks_freed(page_address(page),
  906. PAGE_SIZE << order);
  907. debug_check_no_obj_freed(page_address(page),
  908. PAGE_SIZE << order);
  909. }
  910. arch_free_page(page, order);
  911. kernel_poison_pages(page, 1 << order, 0);
  912. kernel_map_pages(page, 1 << order, 0);
  913. kasan_free_pages(page, order);
  914. return true;
  915. }
  916. #ifdef CONFIG_DEBUG_VM
  917. static inline bool free_pcp_prepare(struct page *page)
  918. {
  919. return free_pages_prepare(page, 0, true);
  920. }
  921. static inline bool bulkfree_pcp_prepare(struct page *page)
  922. {
  923. return false;
  924. }
  925. #else
  926. static bool free_pcp_prepare(struct page *page)
  927. {
  928. return free_pages_prepare(page, 0, false);
  929. }
  930. static bool bulkfree_pcp_prepare(struct page *page)
  931. {
  932. return free_pages_check(page);
  933. }
  934. #endif /* CONFIG_DEBUG_VM */
  935. /*
  936. * Frees a number of pages from the PCP lists
  937. * Assumes all pages on list are in same zone, and of same order.
  938. * count is the number of pages to free.
  939. *
  940. * If the zone was previously in an "all pages pinned" state then look to
  941. * see if this freeing clears that state.
  942. *
  943. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  944. * pinned" detection logic.
  945. */
  946. static void free_pcppages_bulk(struct zone *zone, int count,
  947. struct per_cpu_pages *pcp)
  948. {
  949. int migratetype = 0;
  950. int batch_free = 0;
  951. unsigned long nr_scanned;
  952. bool isolated_pageblocks;
  953. spin_lock(&zone->lock);
  954. isolated_pageblocks = has_isolate_pageblock(zone);
  955. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  956. if (nr_scanned)
  957. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  958. while (count) {
  959. struct page *page;
  960. struct list_head *list;
  961. /*
  962. * Remove pages from lists in a round-robin fashion. A
  963. * batch_free count is maintained that is incremented when an
  964. * empty list is encountered. This is so more pages are freed
  965. * off fuller lists instead of spinning excessively around empty
  966. * lists
  967. */
  968. do {
  969. batch_free++;
  970. if (++migratetype == MIGRATE_PCPTYPES)
  971. migratetype = 0;
  972. list = &pcp->lists[migratetype];
  973. } while (list_empty(list));
  974. /* This is the only non-empty list. Free them all. */
  975. if (batch_free == MIGRATE_PCPTYPES)
  976. batch_free = count;
  977. do {
  978. int mt; /* migratetype of the to-be-freed page */
  979. page = list_last_entry(list, struct page, lru);
  980. /* must delete as __free_one_page list manipulates */
  981. list_del(&page->lru);
  982. mt = get_pcppage_migratetype(page);
  983. /* MIGRATE_ISOLATE page should not go to pcplists */
  984. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  985. /* Pageblock could have been isolated meanwhile */
  986. if (unlikely(isolated_pageblocks))
  987. mt = get_pageblock_migratetype(page);
  988. if (bulkfree_pcp_prepare(page))
  989. continue;
  990. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  991. trace_mm_page_pcpu_drain(page, 0, mt);
  992. } while (--count && --batch_free && !list_empty(list));
  993. }
  994. spin_unlock(&zone->lock);
  995. }
  996. static void free_one_page(struct zone *zone,
  997. struct page *page, unsigned long pfn,
  998. unsigned int order,
  999. int migratetype)
  1000. {
  1001. unsigned long nr_scanned;
  1002. spin_lock(&zone->lock);
  1003. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  1004. if (nr_scanned)
  1005. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  1006. if (unlikely(has_isolate_pageblock(zone) ||
  1007. is_migrate_isolate(migratetype))) {
  1008. migratetype = get_pfnblock_migratetype(page, pfn);
  1009. }
  1010. __free_one_page(page, pfn, zone, order, migratetype);
  1011. spin_unlock(&zone->lock);
  1012. }
  1013. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1014. unsigned long zone, int nid)
  1015. {
  1016. set_page_links(page, zone, nid, pfn);
  1017. init_page_count(page);
  1018. page_mapcount_reset(page);
  1019. page_cpupid_reset_last(page);
  1020. INIT_LIST_HEAD(&page->lru);
  1021. #ifdef WANT_PAGE_VIRTUAL
  1022. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1023. if (!is_highmem_idx(zone))
  1024. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1025. #endif
  1026. }
  1027. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1028. int nid)
  1029. {
  1030. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1031. }
  1032. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1033. static void init_reserved_page(unsigned long pfn)
  1034. {
  1035. pg_data_t *pgdat;
  1036. int nid, zid;
  1037. if (!early_page_uninitialised(pfn))
  1038. return;
  1039. nid = early_pfn_to_nid(pfn);
  1040. pgdat = NODE_DATA(nid);
  1041. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1042. struct zone *zone = &pgdat->node_zones[zid];
  1043. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1044. break;
  1045. }
  1046. __init_single_pfn(pfn, zid, nid);
  1047. }
  1048. #else
  1049. static inline void init_reserved_page(unsigned long pfn)
  1050. {
  1051. }
  1052. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1053. /*
  1054. * Initialised pages do not have PageReserved set. This function is
  1055. * called for each range allocated by the bootmem allocator and
  1056. * marks the pages PageReserved. The remaining valid pages are later
  1057. * sent to the buddy page allocator.
  1058. */
  1059. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1060. {
  1061. unsigned long start_pfn = PFN_DOWN(start);
  1062. unsigned long end_pfn = PFN_UP(end);
  1063. for (; start_pfn < end_pfn; start_pfn++) {
  1064. if (pfn_valid(start_pfn)) {
  1065. struct page *page = pfn_to_page(start_pfn);
  1066. init_reserved_page(start_pfn);
  1067. /* Avoid false-positive PageTail() */
  1068. INIT_LIST_HEAD(&page->lru);
  1069. SetPageReserved(page);
  1070. }
  1071. }
  1072. }
  1073. static void __free_pages_ok(struct page *page, unsigned int order)
  1074. {
  1075. unsigned long flags;
  1076. int migratetype;
  1077. unsigned long pfn = page_to_pfn(page);
  1078. if (!free_pages_prepare(page, order, true))
  1079. return;
  1080. migratetype = get_pfnblock_migratetype(page, pfn);
  1081. local_irq_save(flags);
  1082. __count_vm_events(PGFREE, 1 << order);
  1083. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1084. local_irq_restore(flags);
  1085. }
  1086. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1087. {
  1088. unsigned int nr_pages = 1 << order;
  1089. struct page *p = page;
  1090. unsigned int loop;
  1091. prefetchw(p);
  1092. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1093. prefetchw(p + 1);
  1094. __ClearPageReserved(p);
  1095. set_page_count(p, 0);
  1096. }
  1097. __ClearPageReserved(p);
  1098. set_page_count(p, 0);
  1099. page_zone(page)->managed_pages += nr_pages;
  1100. set_page_refcounted(page);
  1101. __free_pages(page, order);
  1102. }
  1103. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1104. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1105. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1106. int __meminit early_pfn_to_nid(unsigned long pfn)
  1107. {
  1108. static DEFINE_SPINLOCK(early_pfn_lock);
  1109. int nid;
  1110. spin_lock(&early_pfn_lock);
  1111. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1112. if (nid < 0)
  1113. nid = first_online_node;
  1114. spin_unlock(&early_pfn_lock);
  1115. return nid;
  1116. }
  1117. #endif
  1118. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1119. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1120. struct mminit_pfnnid_cache *state)
  1121. {
  1122. int nid;
  1123. nid = __early_pfn_to_nid(pfn, state);
  1124. if (nid >= 0 && nid != node)
  1125. return false;
  1126. return true;
  1127. }
  1128. /* Only safe to use early in boot when initialisation is single-threaded */
  1129. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1130. {
  1131. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1132. }
  1133. #else
  1134. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1135. {
  1136. return true;
  1137. }
  1138. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1139. struct mminit_pfnnid_cache *state)
  1140. {
  1141. return true;
  1142. }
  1143. #endif
  1144. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1145. unsigned int order)
  1146. {
  1147. if (early_page_uninitialised(pfn))
  1148. return;
  1149. return __free_pages_boot_core(page, order);
  1150. }
  1151. /*
  1152. * Check that the whole (or subset of) a pageblock given by the interval of
  1153. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1154. * with the migration of free compaction scanner. The scanners then need to
  1155. * use only pfn_valid_within() check for arches that allow holes within
  1156. * pageblocks.
  1157. *
  1158. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1159. *
  1160. * It's possible on some configurations to have a setup like node0 node1 node0
  1161. * i.e. it's possible that all pages within a zones range of pages do not
  1162. * belong to a single zone. We assume that a border between node0 and node1
  1163. * can occur within a single pageblock, but not a node0 node1 node0
  1164. * interleaving within a single pageblock. It is therefore sufficient to check
  1165. * the first and last page of a pageblock and avoid checking each individual
  1166. * page in a pageblock.
  1167. */
  1168. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1169. unsigned long end_pfn, struct zone *zone)
  1170. {
  1171. struct page *start_page;
  1172. struct page *end_page;
  1173. /* end_pfn is one past the range we are checking */
  1174. end_pfn--;
  1175. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1176. return NULL;
  1177. start_page = pfn_to_page(start_pfn);
  1178. if (page_zone(start_page) != zone)
  1179. return NULL;
  1180. end_page = pfn_to_page(end_pfn);
  1181. /* This gives a shorter code than deriving page_zone(end_page) */
  1182. if (page_zone_id(start_page) != page_zone_id(end_page))
  1183. return NULL;
  1184. return start_page;
  1185. }
  1186. void set_zone_contiguous(struct zone *zone)
  1187. {
  1188. unsigned long block_start_pfn = zone->zone_start_pfn;
  1189. unsigned long block_end_pfn;
  1190. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1191. for (; block_start_pfn < zone_end_pfn(zone);
  1192. block_start_pfn = block_end_pfn,
  1193. block_end_pfn += pageblock_nr_pages) {
  1194. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1195. if (!__pageblock_pfn_to_page(block_start_pfn,
  1196. block_end_pfn, zone))
  1197. return;
  1198. }
  1199. /* We confirm that there is no hole */
  1200. zone->contiguous = true;
  1201. }
  1202. void clear_zone_contiguous(struct zone *zone)
  1203. {
  1204. zone->contiguous = false;
  1205. }
  1206. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1207. static void __init deferred_free_range(struct page *page,
  1208. unsigned long pfn, int nr_pages)
  1209. {
  1210. int i;
  1211. if (!page)
  1212. return;
  1213. /* Free a large naturally-aligned chunk if possible */
  1214. if (nr_pages == pageblock_nr_pages &&
  1215. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1216. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1217. __free_pages_boot_core(page, pageblock_order);
  1218. return;
  1219. }
  1220. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1221. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1222. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1223. __free_pages_boot_core(page, 0);
  1224. }
  1225. }
  1226. /* Completion tracking for deferred_init_memmap() threads */
  1227. static atomic_t pgdat_init_n_undone __initdata;
  1228. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1229. static inline void __init pgdat_init_report_one_done(void)
  1230. {
  1231. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1232. complete(&pgdat_init_all_done_comp);
  1233. }
  1234. /* Initialise remaining memory on a node */
  1235. static int __init deferred_init_memmap(void *data)
  1236. {
  1237. pg_data_t *pgdat = data;
  1238. int nid = pgdat->node_id;
  1239. struct mminit_pfnnid_cache nid_init_state = { };
  1240. unsigned long start = jiffies;
  1241. unsigned long nr_pages = 0;
  1242. unsigned long walk_start, walk_end;
  1243. int i, zid;
  1244. struct zone *zone;
  1245. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1246. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1247. if (first_init_pfn == ULONG_MAX) {
  1248. pgdat_init_report_one_done();
  1249. return 0;
  1250. }
  1251. /* Bind memory initialisation thread to a local node if possible */
  1252. if (!cpumask_empty(cpumask))
  1253. set_cpus_allowed_ptr(current, cpumask);
  1254. /* Sanity check boundaries */
  1255. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1256. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1257. pgdat->first_deferred_pfn = ULONG_MAX;
  1258. /* Only the highest zone is deferred so find it */
  1259. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1260. zone = pgdat->node_zones + zid;
  1261. if (first_init_pfn < zone_end_pfn(zone))
  1262. break;
  1263. }
  1264. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1265. unsigned long pfn, end_pfn;
  1266. struct page *page = NULL;
  1267. struct page *free_base_page = NULL;
  1268. unsigned long free_base_pfn = 0;
  1269. int nr_to_free = 0;
  1270. end_pfn = min(walk_end, zone_end_pfn(zone));
  1271. pfn = first_init_pfn;
  1272. if (pfn < walk_start)
  1273. pfn = walk_start;
  1274. if (pfn < zone->zone_start_pfn)
  1275. pfn = zone->zone_start_pfn;
  1276. for (; pfn < end_pfn; pfn++) {
  1277. if (!pfn_valid_within(pfn))
  1278. goto free_range;
  1279. /*
  1280. * Ensure pfn_valid is checked every
  1281. * pageblock_nr_pages for memory holes
  1282. */
  1283. if ((pfn & (pageblock_nr_pages - 1)) == 0) {
  1284. if (!pfn_valid(pfn)) {
  1285. page = NULL;
  1286. goto free_range;
  1287. }
  1288. }
  1289. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1290. page = NULL;
  1291. goto free_range;
  1292. }
  1293. /* Minimise pfn page lookups and scheduler checks */
  1294. if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
  1295. page++;
  1296. } else {
  1297. nr_pages += nr_to_free;
  1298. deferred_free_range(free_base_page,
  1299. free_base_pfn, nr_to_free);
  1300. free_base_page = NULL;
  1301. free_base_pfn = nr_to_free = 0;
  1302. page = pfn_to_page(pfn);
  1303. cond_resched();
  1304. }
  1305. if (page->flags) {
  1306. VM_BUG_ON(page_zone(page) != zone);
  1307. goto free_range;
  1308. }
  1309. __init_single_page(page, pfn, zid, nid);
  1310. if (!free_base_page) {
  1311. free_base_page = page;
  1312. free_base_pfn = pfn;
  1313. nr_to_free = 0;
  1314. }
  1315. nr_to_free++;
  1316. /* Where possible, batch up pages for a single free */
  1317. continue;
  1318. free_range:
  1319. /* Free the current block of pages to allocator */
  1320. nr_pages += nr_to_free;
  1321. deferred_free_range(free_base_page, free_base_pfn,
  1322. nr_to_free);
  1323. free_base_page = NULL;
  1324. free_base_pfn = nr_to_free = 0;
  1325. }
  1326. /* Free the last block of pages to allocator */
  1327. nr_pages += nr_to_free;
  1328. deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
  1329. first_init_pfn = max(end_pfn, first_init_pfn);
  1330. }
  1331. /* Sanity check that the next zone really is unpopulated */
  1332. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1333. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1334. jiffies_to_msecs(jiffies - start));
  1335. pgdat_init_report_one_done();
  1336. return 0;
  1337. }
  1338. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1339. void __init page_alloc_init_late(void)
  1340. {
  1341. struct zone *zone;
  1342. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1343. int nid;
  1344. /* There will be num_node_state(N_MEMORY) threads */
  1345. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1346. for_each_node_state(nid, N_MEMORY) {
  1347. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1348. }
  1349. /* Block until all are initialised */
  1350. wait_for_completion(&pgdat_init_all_done_comp);
  1351. /* Reinit limits that are based on free pages after the kernel is up */
  1352. files_maxfiles_init();
  1353. #endif
  1354. for_each_populated_zone(zone)
  1355. set_zone_contiguous(zone);
  1356. }
  1357. #ifdef CONFIG_CMA
  1358. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1359. void __init init_cma_reserved_pageblock(struct page *page)
  1360. {
  1361. unsigned i = pageblock_nr_pages;
  1362. struct page *p = page;
  1363. do {
  1364. __ClearPageReserved(p);
  1365. set_page_count(p, 0);
  1366. } while (++p, --i);
  1367. set_pageblock_migratetype(page, MIGRATE_CMA);
  1368. if (pageblock_order >= MAX_ORDER) {
  1369. i = pageblock_nr_pages;
  1370. p = page;
  1371. do {
  1372. set_page_refcounted(p);
  1373. __free_pages(p, MAX_ORDER - 1);
  1374. p += MAX_ORDER_NR_PAGES;
  1375. } while (i -= MAX_ORDER_NR_PAGES);
  1376. } else {
  1377. set_page_refcounted(page);
  1378. __free_pages(page, pageblock_order);
  1379. }
  1380. adjust_managed_page_count(page, pageblock_nr_pages);
  1381. }
  1382. #endif
  1383. /*
  1384. * The order of subdivision here is critical for the IO subsystem.
  1385. * Please do not alter this order without good reasons and regression
  1386. * testing. Specifically, as large blocks of memory are subdivided,
  1387. * the order in which smaller blocks are delivered depends on the order
  1388. * they're subdivided in this function. This is the primary factor
  1389. * influencing the order in which pages are delivered to the IO
  1390. * subsystem according to empirical testing, and this is also justified
  1391. * by considering the behavior of a buddy system containing a single
  1392. * large block of memory acted on by a series of small allocations.
  1393. * This behavior is a critical factor in sglist merging's success.
  1394. *
  1395. * -- nyc
  1396. */
  1397. static inline void expand(struct zone *zone, struct page *page,
  1398. int low, int high, struct free_area *area,
  1399. int migratetype)
  1400. {
  1401. unsigned long size = 1 << high;
  1402. while (high > low) {
  1403. area--;
  1404. high--;
  1405. size >>= 1;
  1406. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1407. /*
  1408. * Mark as guard pages (or page), that will allow to
  1409. * merge back to allocator when buddy will be freed.
  1410. * Corresponding page table entries will not be touched,
  1411. * pages will stay not present in virtual address space
  1412. */
  1413. if (set_page_guard(zone, &page[size], high, migratetype))
  1414. continue;
  1415. list_add(&page[size].lru, &area->free_list[migratetype]);
  1416. area->nr_free++;
  1417. set_page_order(&page[size], high);
  1418. }
  1419. }
  1420. static void check_new_page_bad(struct page *page)
  1421. {
  1422. const char *bad_reason = NULL;
  1423. unsigned long bad_flags = 0;
  1424. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1425. bad_reason = "nonzero mapcount";
  1426. if (unlikely(page->mapping != NULL))
  1427. bad_reason = "non-NULL mapping";
  1428. if (unlikely(page_ref_count(page) != 0))
  1429. bad_reason = "nonzero _count";
  1430. if (unlikely(page->flags & __PG_HWPOISON)) {
  1431. bad_reason = "HWPoisoned (hardware-corrupted)";
  1432. bad_flags = __PG_HWPOISON;
  1433. /* Don't complain about hwpoisoned pages */
  1434. page_mapcount_reset(page); /* remove PageBuddy */
  1435. return;
  1436. }
  1437. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1438. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1439. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1440. }
  1441. #ifdef CONFIG_MEMCG
  1442. if (unlikely(page->mem_cgroup))
  1443. bad_reason = "page still charged to cgroup";
  1444. #endif
  1445. bad_page(page, bad_reason, bad_flags);
  1446. }
  1447. /*
  1448. * This page is about to be returned from the page allocator
  1449. */
  1450. static inline int check_new_page(struct page *page)
  1451. {
  1452. if (likely(page_expected_state(page,
  1453. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1454. return 0;
  1455. check_new_page_bad(page);
  1456. return 1;
  1457. }
  1458. static inline bool free_pages_prezeroed(bool poisoned)
  1459. {
  1460. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1461. page_poisoning_enabled() && poisoned;
  1462. }
  1463. #ifdef CONFIG_DEBUG_VM
  1464. static bool check_pcp_refill(struct page *page)
  1465. {
  1466. return false;
  1467. }
  1468. static bool check_new_pcp(struct page *page)
  1469. {
  1470. return check_new_page(page);
  1471. }
  1472. #else
  1473. static bool check_pcp_refill(struct page *page)
  1474. {
  1475. return check_new_page(page);
  1476. }
  1477. static bool check_new_pcp(struct page *page)
  1478. {
  1479. return false;
  1480. }
  1481. #endif /* CONFIG_DEBUG_VM */
  1482. static bool check_new_pages(struct page *page, unsigned int order)
  1483. {
  1484. int i;
  1485. for (i = 0; i < (1 << order); i++) {
  1486. struct page *p = page + i;
  1487. if (unlikely(check_new_page(p)))
  1488. return true;
  1489. }
  1490. return false;
  1491. }
  1492. inline void post_alloc_hook(struct page *page, unsigned int order,
  1493. gfp_t gfp_flags)
  1494. {
  1495. set_page_private(page, 0);
  1496. set_page_refcounted(page);
  1497. arch_alloc_page(page, order);
  1498. kernel_map_pages(page, 1 << order, 1);
  1499. kernel_poison_pages(page, 1 << order, 1);
  1500. kasan_alloc_pages(page, order);
  1501. set_page_owner(page, order, gfp_flags);
  1502. }
  1503. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1504. unsigned int alloc_flags)
  1505. {
  1506. int i;
  1507. bool poisoned = true;
  1508. for (i = 0; i < (1 << order); i++) {
  1509. struct page *p = page + i;
  1510. if (poisoned)
  1511. poisoned &= page_is_poisoned(p);
  1512. }
  1513. post_alloc_hook(page, order, gfp_flags);
  1514. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1515. for (i = 0; i < (1 << order); i++)
  1516. clear_highpage(page + i);
  1517. if (order && (gfp_flags & __GFP_COMP))
  1518. prep_compound_page(page, order);
  1519. /*
  1520. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1521. * allocate the page. The expectation is that the caller is taking
  1522. * steps that will free more memory. The caller should avoid the page
  1523. * being used for !PFMEMALLOC purposes.
  1524. */
  1525. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1526. set_page_pfmemalloc(page);
  1527. else
  1528. clear_page_pfmemalloc(page);
  1529. }
  1530. /*
  1531. * Go through the free lists for the given migratetype and remove
  1532. * the smallest available page from the freelists
  1533. */
  1534. static inline
  1535. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1536. int migratetype)
  1537. {
  1538. unsigned int current_order;
  1539. struct free_area *area;
  1540. struct page *page;
  1541. /* Find a page of the appropriate size in the preferred list */
  1542. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1543. area = &(zone->free_area[current_order]);
  1544. page = list_first_entry_or_null(&area->free_list[migratetype],
  1545. struct page, lru);
  1546. if (!page)
  1547. continue;
  1548. list_del(&page->lru);
  1549. rmv_page_order(page);
  1550. area->nr_free--;
  1551. expand(zone, page, order, current_order, area, migratetype);
  1552. set_pcppage_migratetype(page, migratetype);
  1553. return page;
  1554. }
  1555. return NULL;
  1556. }
  1557. /*
  1558. * This array describes the order lists are fallen back to when
  1559. * the free lists for the desirable migrate type are depleted
  1560. */
  1561. static int fallbacks[MIGRATE_TYPES][4] = {
  1562. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1563. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1564. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1565. #ifdef CONFIG_CMA
  1566. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1567. #endif
  1568. #ifdef CONFIG_MEMORY_ISOLATION
  1569. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1570. #endif
  1571. };
  1572. #ifdef CONFIG_CMA
  1573. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1574. unsigned int order)
  1575. {
  1576. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1577. }
  1578. #else
  1579. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1580. unsigned int order) { return NULL; }
  1581. #endif
  1582. /*
  1583. * Move the free pages in a range to the free lists of the requested type.
  1584. * Note that start_page and end_pages are not aligned on a pageblock
  1585. * boundary. If alignment is required, use move_freepages_block()
  1586. */
  1587. int move_freepages(struct zone *zone,
  1588. struct page *start_page, struct page *end_page,
  1589. int migratetype)
  1590. {
  1591. struct page *page;
  1592. unsigned int order;
  1593. int pages_moved = 0;
  1594. #ifndef CONFIG_HOLES_IN_ZONE
  1595. /*
  1596. * page_zone is not safe to call in this context when
  1597. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1598. * anyway as we check zone boundaries in move_freepages_block().
  1599. * Remove at a later date when no bug reports exist related to
  1600. * grouping pages by mobility
  1601. */
  1602. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1603. #endif
  1604. for (page = start_page; page <= end_page;) {
  1605. /* Make sure we are not inadvertently changing nodes */
  1606. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1607. if (!pfn_valid_within(page_to_pfn(page))) {
  1608. page++;
  1609. continue;
  1610. }
  1611. if (!PageBuddy(page)) {
  1612. page++;
  1613. continue;
  1614. }
  1615. order = page_order(page);
  1616. list_move(&page->lru,
  1617. &zone->free_area[order].free_list[migratetype]);
  1618. page += 1 << order;
  1619. pages_moved += 1 << order;
  1620. }
  1621. return pages_moved;
  1622. }
  1623. int move_freepages_block(struct zone *zone, struct page *page,
  1624. int migratetype)
  1625. {
  1626. unsigned long start_pfn, end_pfn;
  1627. struct page *start_page, *end_page;
  1628. start_pfn = page_to_pfn(page);
  1629. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1630. start_page = pfn_to_page(start_pfn);
  1631. end_page = start_page + pageblock_nr_pages - 1;
  1632. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1633. /* Do not cross zone boundaries */
  1634. if (!zone_spans_pfn(zone, start_pfn))
  1635. start_page = page;
  1636. if (!zone_spans_pfn(zone, end_pfn))
  1637. return 0;
  1638. return move_freepages(zone, start_page, end_page, migratetype);
  1639. }
  1640. static void change_pageblock_range(struct page *pageblock_page,
  1641. int start_order, int migratetype)
  1642. {
  1643. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1644. while (nr_pageblocks--) {
  1645. set_pageblock_migratetype(pageblock_page, migratetype);
  1646. pageblock_page += pageblock_nr_pages;
  1647. }
  1648. }
  1649. /*
  1650. * When we are falling back to another migratetype during allocation, try to
  1651. * steal extra free pages from the same pageblocks to satisfy further
  1652. * allocations, instead of polluting multiple pageblocks.
  1653. *
  1654. * If we are stealing a relatively large buddy page, it is likely there will
  1655. * be more free pages in the pageblock, so try to steal them all. For
  1656. * reclaimable and unmovable allocations, we steal regardless of page size,
  1657. * as fragmentation caused by those allocations polluting movable pageblocks
  1658. * is worse than movable allocations stealing from unmovable and reclaimable
  1659. * pageblocks.
  1660. */
  1661. static bool can_steal_fallback(unsigned int order, int start_mt)
  1662. {
  1663. /*
  1664. * Leaving this order check is intended, although there is
  1665. * relaxed order check in next check. The reason is that
  1666. * we can actually steal whole pageblock if this condition met,
  1667. * but, below check doesn't guarantee it and that is just heuristic
  1668. * so could be changed anytime.
  1669. */
  1670. if (order >= pageblock_order)
  1671. return true;
  1672. if (order >= pageblock_order / 2 ||
  1673. start_mt == MIGRATE_RECLAIMABLE ||
  1674. start_mt == MIGRATE_UNMOVABLE ||
  1675. page_group_by_mobility_disabled)
  1676. return true;
  1677. return false;
  1678. }
  1679. /*
  1680. * This function implements actual steal behaviour. If order is large enough,
  1681. * we can steal whole pageblock. If not, we first move freepages in this
  1682. * pageblock and check whether half of pages are moved or not. If half of
  1683. * pages are moved, we can change migratetype of pageblock and permanently
  1684. * use it's pages as requested migratetype in the future.
  1685. */
  1686. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1687. int start_type)
  1688. {
  1689. unsigned int current_order = page_order(page);
  1690. int pages;
  1691. /* Take ownership for orders >= pageblock_order */
  1692. if (current_order >= pageblock_order) {
  1693. change_pageblock_range(page, current_order, start_type);
  1694. return;
  1695. }
  1696. pages = move_freepages_block(zone, page, start_type);
  1697. /* Claim the whole block if over half of it is free */
  1698. if (pages >= (1 << (pageblock_order-1)) ||
  1699. page_group_by_mobility_disabled)
  1700. set_pageblock_migratetype(page, start_type);
  1701. }
  1702. /*
  1703. * Check whether there is a suitable fallback freepage with requested order.
  1704. * If only_stealable is true, this function returns fallback_mt only if
  1705. * we can steal other freepages all together. This would help to reduce
  1706. * fragmentation due to mixed migratetype pages in one pageblock.
  1707. */
  1708. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1709. int migratetype, bool only_stealable, bool *can_steal)
  1710. {
  1711. int i;
  1712. int fallback_mt;
  1713. if (area->nr_free == 0)
  1714. return -1;
  1715. *can_steal = false;
  1716. for (i = 0;; i++) {
  1717. fallback_mt = fallbacks[migratetype][i];
  1718. if (fallback_mt == MIGRATE_TYPES)
  1719. break;
  1720. if (list_empty(&area->free_list[fallback_mt]))
  1721. continue;
  1722. if (can_steal_fallback(order, migratetype))
  1723. *can_steal = true;
  1724. if (!only_stealable)
  1725. return fallback_mt;
  1726. if (*can_steal)
  1727. return fallback_mt;
  1728. }
  1729. return -1;
  1730. }
  1731. /*
  1732. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1733. * there are no empty page blocks that contain a page with a suitable order
  1734. */
  1735. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1736. unsigned int alloc_order)
  1737. {
  1738. int mt;
  1739. unsigned long max_managed, flags;
  1740. /*
  1741. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1742. * Check is race-prone but harmless.
  1743. */
  1744. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1745. if (zone->nr_reserved_highatomic >= max_managed)
  1746. return;
  1747. spin_lock_irqsave(&zone->lock, flags);
  1748. /* Recheck the nr_reserved_highatomic limit under the lock */
  1749. if (zone->nr_reserved_highatomic >= max_managed)
  1750. goto out_unlock;
  1751. /* Yoink! */
  1752. mt = get_pageblock_migratetype(page);
  1753. if (mt != MIGRATE_HIGHATOMIC &&
  1754. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1755. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1756. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1757. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1758. }
  1759. out_unlock:
  1760. spin_unlock_irqrestore(&zone->lock, flags);
  1761. }
  1762. /*
  1763. * Used when an allocation is about to fail under memory pressure. This
  1764. * potentially hurts the reliability of high-order allocations when under
  1765. * intense memory pressure but failed atomic allocations should be easier
  1766. * to recover from than an OOM.
  1767. */
  1768. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1769. {
  1770. struct zonelist *zonelist = ac->zonelist;
  1771. unsigned long flags;
  1772. struct zoneref *z;
  1773. struct zone *zone;
  1774. struct page *page;
  1775. int order;
  1776. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1777. ac->nodemask) {
  1778. /* Preserve at least one pageblock */
  1779. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1780. continue;
  1781. spin_lock_irqsave(&zone->lock, flags);
  1782. for (order = 0; order < MAX_ORDER; order++) {
  1783. struct free_area *area = &(zone->free_area[order]);
  1784. page = list_first_entry_or_null(
  1785. &area->free_list[MIGRATE_HIGHATOMIC],
  1786. struct page, lru);
  1787. if (!page)
  1788. continue;
  1789. /*
  1790. * It should never happen but changes to locking could
  1791. * inadvertently allow a per-cpu drain to add pages
  1792. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1793. * and watch for underflows.
  1794. */
  1795. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1796. zone->nr_reserved_highatomic);
  1797. /*
  1798. * Convert to ac->migratetype and avoid the normal
  1799. * pageblock stealing heuristics. Minimally, the caller
  1800. * is doing the work and needs the pages. More
  1801. * importantly, if the block was always converted to
  1802. * MIGRATE_UNMOVABLE or another type then the number
  1803. * of pageblocks that cannot be completely freed
  1804. * may increase.
  1805. */
  1806. set_pageblock_migratetype(page, ac->migratetype);
  1807. move_freepages_block(zone, page, ac->migratetype);
  1808. spin_unlock_irqrestore(&zone->lock, flags);
  1809. return;
  1810. }
  1811. spin_unlock_irqrestore(&zone->lock, flags);
  1812. }
  1813. }
  1814. /* Remove an element from the buddy allocator from the fallback list */
  1815. static inline struct page *
  1816. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1817. {
  1818. struct free_area *area;
  1819. unsigned int current_order;
  1820. struct page *page;
  1821. int fallback_mt;
  1822. bool can_steal;
  1823. /* Find the largest possible block of pages in the other list */
  1824. for (current_order = MAX_ORDER-1;
  1825. current_order >= order && current_order <= MAX_ORDER-1;
  1826. --current_order) {
  1827. area = &(zone->free_area[current_order]);
  1828. fallback_mt = find_suitable_fallback(area, current_order,
  1829. start_migratetype, false, &can_steal);
  1830. if (fallback_mt == -1)
  1831. continue;
  1832. page = list_first_entry(&area->free_list[fallback_mt],
  1833. struct page, lru);
  1834. if (can_steal)
  1835. steal_suitable_fallback(zone, page, start_migratetype);
  1836. /* Remove the page from the freelists */
  1837. area->nr_free--;
  1838. list_del(&page->lru);
  1839. rmv_page_order(page);
  1840. expand(zone, page, order, current_order, area,
  1841. start_migratetype);
  1842. /*
  1843. * The pcppage_migratetype may differ from pageblock's
  1844. * migratetype depending on the decisions in
  1845. * find_suitable_fallback(). This is OK as long as it does not
  1846. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1847. * fallback only via special __rmqueue_cma_fallback() function
  1848. */
  1849. set_pcppage_migratetype(page, start_migratetype);
  1850. trace_mm_page_alloc_extfrag(page, order, current_order,
  1851. start_migratetype, fallback_mt);
  1852. return page;
  1853. }
  1854. return NULL;
  1855. }
  1856. /*
  1857. * Do the hard work of removing an element from the buddy allocator.
  1858. * Call me with the zone->lock already held.
  1859. */
  1860. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1861. int migratetype)
  1862. {
  1863. struct page *page;
  1864. page = __rmqueue_smallest(zone, order, migratetype);
  1865. if (unlikely(!page)) {
  1866. if (migratetype == MIGRATE_MOVABLE)
  1867. page = __rmqueue_cma_fallback(zone, order);
  1868. if (!page)
  1869. page = __rmqueue_fallback(zone, order, migratetype);
  1870. }
  1871. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1872. return page;
  1873. }
  1874. /*
  1875. * Obtain a specified number of elements from the buddy allocator, all under
  1876. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1877. * Returns the number of new pages which were placed at *list.
  1878. */
  1879. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1880. unsigned long count, struct list_head *list,
  1881. int migratetype, bool cold)
  1882. {
  1883. int i;
  1884. spin_lock(&zone->lock);
  1885. for (i = 0; i < count; ++i) {
  1886. struct page *page = __rmqueue(zone, order, migratetype);
  1887. if (unlikely(page == NULL))
  1888. break;
  1889. if (unlikely(check_pcp_refill(page)))
  1890. continue;
  1891. /*
  1892. * Split buddy pages returned by expand() are received here
  1893. * in physical page order. The page is added to the callers and
  1894. * list and the list head then moves forward. From the callers
  1895. * perspective, the linked list is ordered by page number in
  1896. * some conditions. This is useful for IO devices that can
  1897. * merge IO requests if the physical pages are ordered
  1898. * properly.
  1899. */
  1900. if (likely(!cold))
  1901. list_add(&page->lru, list);
  1902. else
  1903. list_add_tail(&page->lru, list);
  1904. list = &page->lru;
  1905. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1906. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1907. -(1 << order));
  1908. }
  1909. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1910. spin_unlock(&zone->lock);
  1911. return i;
  1912. }
  1913. #ifdef CONFIG_NUMA
  1914. /*
  1915. * Called from the vmstat counter updater to drain pagesets of this
  1916. * currently executing processor on remote nodes after they have
  1917. * expired.
  1918. *
  1919. * Note that this function must be called with the thread pinned to
  1920. * a single processor.
  1921. */
  1922. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1923. {
  1924. unsigned long flags;
  1925. int to_drain, batch;
  1926. local_irq_save(flags);
  1927. batch = READ_ONCE(pcp->batch);
  1928. to_drain = min(pcp->count, batch);
  1929. if (to_drain > 0) {
  1930. free_pcppages_bulk(zone, to_drain, pcp);
  1931. pcp->count -= to_drain;
  1932. }
  1933. local_irq_restore(flags);
  1934. }
  1935. #endif
  1936. /*
  1937. * Drain pcplists of the indicated processor and zone.
  1938. *
  1939. * The processor must either be the current processor and the
  1940. * thread pinned to the current processor or a processor that
  1941. * is not online.
  1942. */
  1943. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1944. {
  1945. unsigned long flags;
  1946. struct per_cpu_pageset *pset;
  1947. struct per_cpu_pages *pcp;
  1948. local_irq_save(flags);
  1949. pset = per_cpu_ptr(zone->pageset, cpu);
  1950. pcp = &pset->pcp;
  1951. if (pcp->count) {
  1952. free_pcppages_bulk(zone, pcp->count, pcp);
  1953. pcp->count = 0;
  1954. }
  1955. local_irq_restore(flags);
  1956. }
  1957. /*
  1958. * Drain pcplists of all zones on the indicated processor.
  1959. *
  1960. * The processor must either be the current processor and the
  1961. * thread pinned to the current processor or a processor that
  1962. * is not online.
  1963. */
  1964. static void drain_pages(unsigned int cpu)
  1965. {
  1966. struct zone *zone;
  1967. for_each_populated_zone(zone) {
  1968. drain_pages_zone(cpu, zone);
  1969. }
  1970. }
  1971. /*
  1972. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1973. *
  1974. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1975. * the single zone's pages.
  1976. */
  1977. void drain_local_pages(struct zone *zone)
  1978. {
  1979. int cpu = smp_processor_id();
  1980. if (zone)
  1981. drain_pages_zone(cpu, zone);
  1982. else
  1983. drain_pages(cpu);
  1984. }
  1985. /*
  1986. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1987. *
  1988. * When zone parameter is non-NULL, spill just the single zone's pages.
  1989. *
  1990. * Note that this code is protected against sending an IPI to an offline
  1991. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1992. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1993. * nothing keeps CPUs from showing up after we populated the cpumask and
  1994. * before the call to on_each_cpu_mask().
  1995. */
  1996. void drain_all_pages(struct zone *zone)
  1997. {
  1998. int cpu;
  1999. /*
  2000. * Allocate in the BSS so we wont require allocation in
  2001. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2002. */
  2003. static cpumask_t cpus_with_pcps;
  2004. /*
  2005. * We don't care about racing with CPU hotplug event
  2006. * as offline notification will cause the notified
  2007. * cpu to drain that CPU pcps and on_each_cpu_mask
  2008. * disables preemption as part of its processing
  2009. */
  2010. for_each_online_cpu(cpu) {
  2011. struct per_cpu_pageset *pcp;
  2012. struct zone *z;
  2013. bool has_pcps = false;
  2014. if (zone) {
  2015. pcp = per_cpu_ptr(zone->pageset, cpu);
  2016. if (pcp->pcp.count)
  2017. has_pcps = true;
  2018. } else {
  2019. for_each_populated_zone(z) {
  2020. pcp = per_cpu_ptr(z->pageset, cpu);
  2021. if (pcp->pcp.count) {
  2022. has_pcps = true;
  2023. break;
  2024. }
  2025. }
  2026. }
  2027. if (has_pcps)
  2028. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2029. else
  2030. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2031. }
  2032. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2033. zone, 1);
  2034. }
  2035. #ifdef CONFIG_HIBERNATION
  2036. void mark_free_pages(struct zone *zone)
  2037. {
  2038. unsigned long pfn, max_zone_pfn;
  2039. unsigned long flags;
  2040. unsigned int order, t;
  2041. struct page *page;
  2042. if (zone_is_empty(zone))
  2043. return;
  2044. spin_lock_irqsave(&zone->lock, flags);
  2045. max_zone_pfn = zone_end_pfn(zone);
  2046. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2047. if (pfn_valid(pfn)) {
  2048. page = pfn_to_page(pfn);
  2049. if (page_zone(page) != zone)
  2050. continue;
  2051. if (!swsusp_page_is_forbidden(page))
  2052. swsusp_unset_page_free(page);
  2053. }
  2054. for_each_migratetype_order(order, t) {
  2055. list_for_each_entry(page,
  2056. &zone->free_area[order].free_list[t], lru) {
  2057. unsigned long i;
  2058. pfn = page_to_pfn(page);
  2059. for (i = 0; i < (1UL << order); i++)
  2060. swsusp_set_page_free(pfn_to_page(pfn + i));
  2061. }
  2062. }
  2063. spin_unlock_irqrestore(&zone->lock, flags);
  2064. }
  2065. #endif /* CONFIG_PM */
  2066. /*
  2067. * Free a 0-order page
  2068. * cold == true ? free a cold page : free a hot page
  2069. */
  2070. void free_hot_cold_page(struct page *page, bool cold)
  2071. {
  2072. struct zone *zone = page_zone(page);
  2073. struct per_cpu_pages *pcp;
  2074. unsigned long flags;
  2075. unsigned long pfn = page_to_pfn(page);
  2076. int migratetype;
  2077. if (!free_pcp_prepare(page))
  2078. return;
  2079. migratetype = get_pfnblock_migratetype(page, pfn);
  2080. set_pcppage_migratetype(page, migratetype);
  2081. local_irq_save(flags);
  2082. __count_vm_event(PGFREE);
  2083. /*
  2084. * We only track unmovable, reclaimable and movable on pcp lists.
  2085. * Free ISOLATE pages back to the allocator because they are being
  2086. * offlined but treat RESERVE as movable pages so we can get those
  2087. * areas back if necessary. Otherwise, we may have to free
  2088. * excessively into the page allocator
  2089. */
  2090. if (migratetype >= MIGRATE_PCPTYPES) {
  2091. if (unlikely(is_migrate_isolate(migratetype))) {
  2092. free_one_page(zone, page, pfn, 0, migratetype);
  2093. goto out;
  2094. }
  2095. migratetype = MIGRATE_MOVABLE;
  2096. }
  2097. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2098. if (!cold)
  2099. list_add(&page->lru, &pcp->lists[migratetype]);
  2100. else
  2101. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2102. pcp->count++;
  2103. if (pcp->count >= pcp->high) {
  2104. unsigned long batch = READ_ONCE(pcp->batch);
  2105. free_pcppages_bulk(zone, batch, pcp);
  2106. pcp->count -= batch;
  2107. }
  2108. out:
  2109. local_irq_restore(flags);
  2110. }
  2111. /*
  2112. * Free a list of 0-order pages
  2113. */
  2114. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2115. {
  2116. struct page *page, *next;
  2117. list_for_each_entry_safe(page, next, list, lru) {
  2118. trace_mm_page_free_batched(page, cold);
  2119. free_hot_cold_page(page, cold);
  2120. }
  2121. }
  2122. /*
  2123. * split_page takes a non-compound higher-order page, and splits it into
  2124. * n (1<<order) sub-pages: page[0..n]
  2125. * Each sub-page must be freed individually.
  2126. *
  2127. * Note: this is probably too low level an operation for use in drivers.
  2128. * Please consult with lkml before using this in your driver.
  2129. */
  2130. void split_page(struct page *page, unsigned int order)
  2131. {
  2132. int i;
  2133. VM_BUG_ON_PAGE(PageCompound(page), page);
  2134. VM_BUG_ON_PAGE(!page_count(page), page);
  2135. #ifdef CONFIG_KMEMCHECK
  2136. /*
  2137. * Split shadow pages too, because free(page[0]) would
  2138. * otherwise free the whole shadow.
  2139. */
  2140. if (kmemcheck_page_is_tracked(page))
  2141. split_page(virt_to_page(page[0].shadow), order);
  2142. #endif
  2143. for (i = 1; i < (1 << order); i++)
  2144. set_page_refcounted(page + i);
  2145. split_page_owner(page, order);
  2146. }
  2147. EXPORT_SYMBOL_GPL(split_page);
  2148. int __isolate_free_page(struct page *page, unsigned int order)
  2149. {
  2150. unsigned long watermark;
  2151. struct zone *zone;
  2152. int mt;
  2153. BUG_ON(!PageBuddy(page));
  2154. zone = page_zone(page);
  2155. mt = get_pageblock_migratetype(page);
  2156. if (!is_migrate_isolate(mt)) {
  2157. /*
  2158. * Obey watermarks as if the page was being allocated. We can
  2159. * emulate a high-order watermark check with a raised order-0
  2160. * watermark, because we already know our high-order page
  2161. * exists.
  2162. */
  2163. watermark = min_wmark_pages(zone) + (1UL << order);
  2164. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2165. return 0;
  2166. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2167. }
  2168. /* Remove page from free list */
  2169. list_del(&page->lru);
  2170. zone->free_area[order].nr_free--;
  2171. rmv_page_order(page);
  2172. /*
  2173. * Set the pageblock if the isolated page is at least half of a
  2174. * pageblock
  2175. */
  2176. if (order >= pageblock_order - 1) {
  2177. struct page *endpage = page + (1 << order) - 1;
  2178. for (; page < endpage; page += pageblock_nr_pages) {
  2179. int mt = get_pageblock_migratetype(page);
  2180. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2181. set_pageblock_migratetype(page,
  2182. MIGRATE_MOVABLE);
  2183. }
  2184. }
  2185. return 1UL << order;
  2186. }
  2187. /*
  2188. * Update NUMA hit/miss statistics
  2189. *
  2190. * Must be called with interrupts disabled.
  2191. *
  2192. * When __GFP_OTHER_NODE is set assume the node of the preferred
  2193. * zone is the local node. This is useful for daemons who allocate
  2194. * memory on behalf of other processes.
  2195. */
  2196. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2197. gfp_t flags)
  2198. {
  2199. #ifdef CONFIG_NUMA
  2200. int local_nid = numa_node_id();
  2201. enum zone_stat_item local_stat = NUMA_LOCAL;
  2202. if (unlikely(flags & __GFP_OTHER_NODE)) {
  2203. local_stat = NUMA_OTHER;
  2204. local_nid = preferred_zone->node;
  2205. }
  2206. if (z->node == local_nid) {
  2207. __inc_zone_state(z, NUMA_HIT);
  2208. __inc_zone_state(z, local_stat);
  2209. } else {
  2210. __inc_zone_state(z, NUMA_MISS);
  2211. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2212. }
  2213. #endif
  2214. }
  2215. /*
  2216. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2217. */
  2218. static inline
  2219. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2220. struct zone *zone, unsigned int order,
  2221. gfp_t gfp_flags, unsigned int alloc_flags,
  2222. int migratetype)
  2223. {
  2224. unsigned long flags;
  2225. struct page *page;
  2226. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2227. if (likely(order == 0)) {
  2228. struct per_cpu_pages *pcp;
  2229. struct list_head *list;
  2230. local_irq_save(flags);
  2231. do {
  2232. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2233. list = &pcp->lists[migratetype];
  2234. if (list_empty(list)) {
  2235. pcp->count += rmqueue_bulk(zone, 0,
  2236. pcp->batch, list,
  2237. migratetype, cold);
  2238. if (unlikely(list_empty(list)))
  2239. goto failed;
  2240. }
  2241. if (cold)
  2242. page = list_last_entry(list, struct page, lru);
  2243. else
  2244. page = list_first_entry(list, struct page, lru);
  2245. list_del(&page->lru);
  2246. pcp->count--;
  2247. } while (check_new_pcp(page));
  2248. } else {
  2249. /*
  2250. * We most definitely don't want callers attempting to
  2251. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2252. */
  2253. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2254. spin_lock_irqsave(&zone->lock, flags);
  2255. do {
  2256. page = NULL;
  2257. if (alloc_flags & ALLOC_HARDER) {
  2258. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2259. if (page)
  2260. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2261. }
  2262. if (!page)
  2263. page = __rmqueue(zone, order, migratetype);
  2264. } while (page && check_new_pages(page, order));
  2265. spin_unlock(&zone->lock);
  2266. if (!page)
  2267. goto failed;
  2268. __mod_zone_freepage_state(zone, -(1 << order),
  2269. get_pcppage_migratetype(page));
  2270. }
  2271. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2272. zone_statistics(preferred_zone, zone, gfp_flags);
  2273. local_irq_restore(flags);
  2274. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2275. return page;
  2276. failed:
  2277. local_irq_restore(flags);
  2278. return NULL;
  2279. }
  2280. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2281. static struct {
  2282. struct fault_attr attr;
  2283. bool ignore_gfp_highmem;
  2284. bool ignore_gfp_reclaim;
  2285. u32 min_order;
  2286. } fail_page_alloc = {
  2287. .attr = FAULT_ATTR_INITIALIZER,
  2288. .ignore_gfp_reclaim = true,
  2289. .ignore_gfp_highmem = true,
  2290. .min_order = 1,
  2291. };
  2292. static int __init setup_fail_page_alloc(char *str)
  2293. {
  2294. return setup_fault_attr(&fail_page_alloc.attr, str);
  2295. }
  2296. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2297. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2298. {
  2299. if (order < fail_page_alloc.min_order)
  2300. return false;
  2301. if (gfp_mask & __GFP_NOFAIL)
  2302. return false;
  2303. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2304. return false;
  2305. if (fail_page_alloc.ignore_gfp_reclaim &&
  2306. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2307. return false;
  2308. return should_fail(&fail_page_alloc.attr, 1 << order);
  2309. }
  2310. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2311. static int __init fail_page_alloc_debugfs(void)
  2312. {
  2313. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2314. struct dentry *dir;
  2315. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2316. &fail_page_alloc.attr);
  2317. if (IS_ERR(dir))
  2318. return PTR_ERR(dir);
  2319. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2320. &fail_page_alloc.ignore_gfp_reclaim))
  2321. goto fail;
  2322. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2323. &fail_page_alloc.ignore_gfp_highmem))
  2324. goto fail;
  2325. if (!debugfs_create_u32("min-order", mode, dir,
  2326. &fail_page_alloc.min_order))
  2327. goto fail;
  2328. return 0;
  2329. fail:
  2330. debugfs_remove_recursive(dir);
  2331. return -ENOMEM;
  2332. }
  2333. late_initcall(fail_page_alloc_debugfs);
  2334. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2335. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2336. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2337. {
  2338. return false;
  2339. }
  2340. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2341. /*
  2342. * Return true if free base pages are above 'mark'. For high-order checks it
  2343. * will return true of the order-0 watermark is reached and there is at least
  2344. * one free page of a suitable size. Checking now avoids taking the zone lock
  2345. * to check in the allocation paths if no pages are free.
  2346. */
  2347. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2348. int classzone_idx, unsigned int alloc_flags,
  2349. long free_pages)
  2350. {
  2351. long min = mark;
  2352. int o;
  2353. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2354. /* free_pages may go negative - that's OK */
  2355. free_pages -= (1 << order) - 1;
  2356. if (alloc_flags & ALLOC_HIGH)
  2357. min -= min / 2;
  2358. /*
  2359. * If the caller does not have rights to ALLOC_HARDER then subtract
  2360. * the high-atomic reserves. This will over-estimate the size of the
  2361. * atomic reserve but it avoids a search.
  2362. */
  2363. if (likely(!alloc_harder))
  2364. free_pages -= z->nr_reserved_highatomic;
  2365. else
  2366. min -= min / 4;
  2367. #ifdef CONFIG_CMA
  2368. /* If allocation can't use CMA areas don't use free CMA pages */
  2369. if (!(alloc_flags & ALLOC_CMA))
  2370. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2371. #endif
  2372. /*
  2373. * Check watermarks for an order-0 allocation request. If these
  2374. * are not met, then a high-order request also cannot go ahead
  2375. * even if a suitable page happened to be free.
  2376. */
  2377. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2378. return false;
  2379. /* If this is an order-0 request then the watermark is fine */
  2380. if (!order)
  2381. return true;
  2382. /* For a high-order request, check at least one suitable page is free */
  2383. for (o = order; o < MAX_ORDER; o++) {
  2384. struct free_area *area = &z->free_area[o];
  2385. int mt;
  2386. if (!area->nr_free)
  2387. continue;
  2388. if (alloc_harder)
  2389. return true;
  2390. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2391. if (!list_empty(&area->free_list[mt]))
  2392. return true;
  2393. }
  2394. #ifdef CONFIG_CMA
  2395. if ((alloc_flags & ALLOC_CMA) &&
  2396. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2397. return true;
  2398. }
  2399. #endif
  2400. }
  2401. return false;
  2402. }
  2403. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2404. int classzone_idx, unsigned int alloc_flags)
  2405. {
  2406. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2407. zone_page_state(z, NR_FREE_PAGES));
  2408. }
  2409. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2410. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2411. {
  2412. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2413. long cma_pages = 0;
  2414. #ifdef CONFIG_CMA
  2415. /* If allocation can't use CMA areas don't use free CMA pages */
  2416. if (!(alloc_flags & ALLOC_CMA))
  2417. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2418. #endif
  2419. /*
  2420. * Fast check for order-0 only. If this fails then the reserves
  2421. * need to be calculated. There is a corner case where the check
  2422. * passes but only the high-order atomic reserve are free. If
  2423. * the caller is !atomic then it'll uselessly search the free
  2424. * list. That corner case is then slower but it is harmless.
  2425. */
  2426. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2427. return true;
  2428. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2429. free_pages);
  2430. }
  2431. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2432. unsigned long mark, int classzone_idx)
  2433. {
  2434. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2435. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2436. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2437. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2438. free_pages);
  2439. }
  2440. #ifdef CONFIG_NUMA
  2441. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2442. {
  2443. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2444. RECLAIM_DISTANCE;
  2445. }
  2446. #else /* CONFIG_NUMA */
  2447. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2448. {
  2449. return true;
  2450. }
  2451. #endif /* CONFIG_NUMA */
  2452. /*
  2453. * get_page_from_freelist goes through the zonelist trying to allocate
  2454. * a page.
  2455. */
  2456. static struct page *
  2457. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2458. const struct alloc_context *ac)
  2459. {
  2460. struct zoneref *z = ac->preferred_zoneref;
  2461. struct zone *zone;
  2462. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2463. /*
  2464. * Scan zonelist, looking for a zone with enough free.
  2465. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2466. */
  2467. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2468. ac->nodemask) {
  2469. struct page *page;
  2470. unsigned long mark;
  2471. if (cpusets_enabled() &&
  2472. (alloc_flags & ALLOC_CPUSET) &&
  2473. !__cpuset_zone_allowed(zone, gfp_mask))
  2474. continue;
  2475. /*
  2476. * When allocating a page cache page for writing, we
  2477. * want to get it from a node that is within its dirty
  2478. * limit, such that no single node holds more than its
  2479. * proportional share of globally allowed dirty pages.
  2480. * The dirty limits take into account the node's
  2481. * lowmem reserves and high watermark so that kswapd
  2482. * should be able to balance it without having to
  2483. * write pages from its LRU list.
  2484. *
  2485. * XXX: For now, allow allocations to potentially
  2486. * exceed the per-node dirty limit in the slowpath
  2487. * (spread_dirty_pages unset) before going into reclaim,
  2488. * which is important when on a NUMA setup the allowed
  2489. * nodes are together not big enough to reach the
  2490. * global limit. The proper fix for these situations
  2491. * will require awareness of nodes in the
  2492. * dirty-throttling and the flusher threads.
  2493. */
  2494. if (ac->spread_dirty_pages) {
  2495. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2496. continue;
  2497. if (!node_dirty_ok(zone->zone_pgdat)) {
  2498. last_pgdat_dirty_limit = zone->zone_pgdat;
  2499. continue;
  2500. }
  2501. }
  2502. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2503. if (!zone_watermark_fast(zone, order, mark,
  2504. ac_classzone_idx(ac), alloc_flags)) {
  2505. int ret;
  2506. /* Checked here to keep the fast path fast */
  2507. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2508. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2509. goto try_this_zone;
  2510. if (node_reclaim_mode == 0 ||
  2511. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2512. continue;
  2513. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2514. switch (ret) {
  2515. case NODE_RECLAIM_NOSCAN:
  2516. /* did not scan */
  2517. continue;
  2518. case NODE_RECLAIM_FULL:
  2519. /* scanned but unreclaimable */
  2520. continue;
  2521. default:
  2522. /* did we reclaim enough */
  2523. if (zone_watermark_ok(zone, order, mark,
  2524. ac_classzone_idx(ac), alloc_flags))
  2525. goto try_this_zone;
  2526. continue;
  2527. }
  2528. }
  2529. try_this_zone:
  2530. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2531. gfp_mask, alloc_flags, ac->migratetype);
  2532. if (page) {
  2533. prep_new_page(page, order, gfp_mask, alloc_flags);
  2534. /*
  2535. * If this is a high-order atomic allocation then check
  2536. * if the pageblock should be reserved for the future
  2537. */
  2538. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2539. reserve_highatomic_pageblock(page, zone, order);
  2540. return page;
  2541. }
  2542. }
  2543. return NULL;
  2544. }
  2545. /*
  2546. * Large machines with many possible nodes should not always dump per-node
  2547. * meminfo in irq context.
  2548. */
  2549. static inline bool should_suppress_show_mem(void)
  2550. {
  2551. bool ret = false;
  2552. #if NODES_SHIFT > 8
  2553. ret = in_interrupt();
  2554. #endif
  2555. return ret;
  2556. }
  2557. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2558. DEFAULT_RATELIMIT_INTERVAL,
  2559. DEFAULT_RATELIMIT_BURST);
  2560. void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
  2561. {
  2562. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2563. struct va_format vaf;
  2564. va_list args;
  2565. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2566. debug_guardpage_minorder() > 0)
  2567. return;
  2568. /*
  2569. * This documents exceptions given to allocations in certain
  2570. * contexts that are allowed to allocate outside current's set
  2571. * of allowed nodes.
  2572. */
  2573. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2574. if (test_thread_flag(TIF_MEMDIE) ||
  2575. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2576. filter &= ~SHOW_MEM_FILTER_NODES;
  2577. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2578. filter &= ~SHOW_MEM_FILTER_NODES;
  2579. pr_warn("%s: ", current->comm);
  2580. va_start(args, fmt);
  2581. vaf.fmt = fmt;
  2582. vaf.va = &args;
  2583. pr_cont("%pV", &vaf);
  2584. va_end(args);
  2585. pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
  2586. dump_stack();
  2587. if (!should_suppress_show_mem())
  2588. show_mem(filter);
  2589. }
  2590. static inline struct page *
  2591. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2592. const struct alloc_context *ac, unsigned long *did_some_progress)
  2593. {
  2594. struct oom_control oc = {
  2595. .zonelist = ac->zonelist,
  2596. .nodemask = ac->nodemask,
  2597. .memcg = NULL,
  2598. .gfp_mask = gfp_mask,
  2599. .order = order,
  2600. };
  2601. struct page *page;
  2602. *did_some_progress = 0;
  2603. /*
  2604. * Acquire the oom lock. If that fails, somebody else is
  2605. * making progress for us.
  2606. */
  2607. if (!mutex_trylock(&oom_lock)) {
  2608. *did_some_progress = 1;
  2609. schedule_timeout_uninterruptible(1);
  2610. return NULL;
  2611. }
  2612. /*
  2613. * Go through the zonelist yet one more time, keep very high watermark
  2614. * here, this is only to catch a parallel oom killing, we must fail if
  2615. * we're still under heavy pressure.
  2616. */
  2617. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2618. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2619. if (page)
  2620. goto out;
  2621. if (!(gfp_mask & __GFP_NOFAIL)) {
  2622. /* Coredumps can quickly deplete all memory reserves */
  2623. if (current->flags & PF_DUMPCORE)
  2624. goto out;
  2625. /* The OOM killer will not help higher order allocs */
  2626. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2627. goto out;
  2628. /* The OOM killer does not needlessly kill tasks for lowmem */
  2629. if (ac->high_zoneidx < ZONE_NORMAL)
  2630. goto out;
  2631. if (pm_suspended_storage())
  2632. goto out;
  2633. /*
  2634. * XXX: GFP_NOFS allocations should rather fail than rely on
  2635. * other request to make a forward progress.
  2636. * We are in an unfortunate situation where out_of_memory cannot
  2637. * do much for this context but let's try it to at least get
  2638. * access to memory reserved if the current task is killed (see
  2639. * out_of_memory). Once filesystems are ready to handle allocation
  2640. * failures more gracefully we should just bail out here.
  2641. */
  2642. /* The OOM killer may not free memory on a specific node */
  2643. if (gfp_mask & __GFP_THISNODE)
  2644. goto out;
  2645. }
  2646. /* Exhausted what can be done so it's blamo time */
  2647. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2648. *did_some_progress = 1;
  2649. if (gfp_mask & __GFP_NOFAIL) {
  2650. page = get_page_from_freelist(gfp_mask, order,
  2651. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2652. /*
  2653. * fallback to ignore cpuset restriction if our nodes
  2654. * are depleted
  2655. */
  2656. if (!page)
  2657. page = get_page_from_freelist(gfp_mask, order,
  2658. ALLOC_NO_WATERMARKS, ac);
  2659. }
  2660. }
  2661. out:
  2662. mutex_unlock(&oom_lock);
  2663. return page;
  2664. }
  2665. /*
  2666. * Maximum number of compaction retries wit a progress before OOM
  2667. * killer is consider as the only way to move forward.
  2668. */
  2669. #define MAX_COMPACT_RETRIES 16
  2670. #ifdef CONFIG_COMPACTION
  2671. /* Try memory compaction for high-order allocations before reclaim */
  2672. static struct page *
  2673. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2674. unsigned int alloc_flags, const struct alloc_context *ac,
  2675. enum compact_priority prio, enum compact_result *compact_result)
  2676. {
  2677. struct page *page;
  2678. if (!order)
  2679. return NULL;
  2680. current->flags |= PF_MEMALLOC;
  2681. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2682. prio);
  2683. current->flags &= ~PF_MEMALLOC;
  2684. if (*compact_result <= COMPACT_INACTIVE)
  2685. return NULL;
  2686. /*
  2687. * At least in one zone compaction wasn't deferred or skipped, so let's
  2688. * count a compaction stall
  2689. */
  2690. count_vm_event(COMPACTSTALL);
  2691. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2692. if (page) {
  2693. struct zone *zone = page_zone(page);
  2694. zone->compact_blockskip_flush = false;
  2695. compaction_defer_reset(zone, order, true);
  2696. count_vm_event(COMPACTSUCCESS);
  2697. return page;
  2698. }
  2699. /*
  2700. * It's bad if compaction run occurs and fails. The most likely reason
  2701. * is that pages exist, but not enough to satisfy watermarks.
  2702. */
  2703. count_vm_event(COMPACTFAIL);
  2704. cond_resched();
  2705. return NULL;
  2706. }
  2707. static inline bool
  2708. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2709. enum compact_result compact_result,
  2710. enum compact_priority *compact_priority,
  2711. int *compaction_retries)
  2712. {
  2713. int max_retries = MAX_COMPACT_RETRIES;
  2714. int min_priority;
  2715. if (!order)
  2716. return false;
  2717. if (compaction_made_progress(compact_result))
  2718. (*compaction_retries)++;
  2719. /*
  2720. * compaction considers all the zone as desperately out of memory
  2721. * so it doesn't really make much sense to retry except when the
  2722. * failure could be caused by insufficient priority
  2723. */
  2724. if (compaction_failed(compact_result))
  2725. goto check_priority;
  2726. /*
  2727. * make sure the compaction wasn't deferred or didn't bail out early
  2728. * due to locks contention before we declare that we should give up.
  2729. * But do not retry if the given zonelist is not suitable for
  2730. * compaction.
  2731. */
  2732. if (compaction_withdrawn(compact_result))
  2733. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2734. /*
  2735. * !costly requests are much more important than __GFP_REPEAT
  2736. * costly ones because they are de facto nofail and invoke OOM
  2737. * killer to move on while costly can fail and users are ready
  2738. * to cope with that. 1/4 retries is rather arbitrary but we
  2739. * would need much more detailed feedback from compaction to
  2740. * make a better decision.
  2741. */
  2742. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2743. max_retries /= 4;
  2744. if (*compaction_retries <= max_retries)
  2745. return true;
  2746. /*
  2747. * Make sure there are attempts at the highest priority if we exhausted
  2748. * all retries or failed at the lower priorities.
  2749. */
  2750. check_priority:
  2751. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  2752. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  2753. if (*compact_priority > min_priority) {
  2754. (*compact_priority)--;
  2755. *compaction_retries = 0;
  2756. return true;
  2757. }
  2758. return false;
  2759. }
  2760. #else
  2761. static inline struct page *
  2762. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2763. unsigned int alloc_flags, const struct alloc_context *ac,
  2764. enum compact_priority prio, enum compact_result *compact_result)
  2765. {
  2766. *compact_result = COMPACT_SKIPPED;
  2767. return NULL;
  2768. }
  2769. static inline bool
  2770. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2771. enum compact_result compact_result,
  2772. enum compact_priority *compact_priority,
  2773. int *compaction_retries)
  2774. {
  2775. struct zone *zone;
  2776. struct zoneref *z;
  2777. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2778. return false;
  2779. /*
  2780. * There are setups with compaction disabled which would prefer to loop
  2781. * inside the allocator rather than hit the oom killer prematurely.
  2782. * Let's give them a good hope and keep retrying while the order-0
  2783. * watermarks are OK.
  2784. */
  2785. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2786. ac->nodemask) {
  2787. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2788. ac_classzone_idx(ac), alloc_flags))
  2789. return true;
  2790. }
  2791. return false;
  2792. }
  2793. #endif /* CONFIG_COMPACTION */
  2794. /* Perform direct synchronous page reclaim */
  2795. static int
  2796. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2797. const struct alloc_context *ac)
  2798. {
  2799. struct reclaim_state reclaim_state;
  2800. int progress;
  2801. cond_resched();
  2802. /* We now go into synchronous reclaim */
  2803. cpuset_memory_pressure_bump();
  2804. current->flags |= PF_MEMALLOC;
  2805. lockdep_set_current_reclaim_state(gfp_mask);
  2806. reclaim_state.reclaimed_slab = 0;
  2807. current->reclaim_state = &reclaim_state;
  2808. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2809. ac->nodemask);
  2810. current->reclaim_state = NULL;
  2811. lockdep_clear_current_reclaim_state();
  2812. current->flags &= ~PF_MEMALLOC;
  2813. cond_resched();
  2814. return progress;
  2815. }
  2816. /* The really slow allocator path where we enter direct reclaim */
  2817. static inline struct page *
  2818. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2819. unsigned int alloc_flags, const struct alloc_context *ac,
  2820. unsigned long *did_some_progress)
  2821. {
  2822. struct page *page = NULL;
  2823. bool drained = false;
  2824. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2825. if (unlikely(!(*did_some_progress)))
  2826. return NULL;
  2827. retry:
  2828. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2829. /*
  2830. * If an allocation failed after direct reclaim, it could be because
  2831. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2832. * Shrink them them and try again
  2833. */
  2834. if (!page && !drained) {
  2835. unreserve_highatomic_pageblock(ac);
  2836. drain_all_pages(NULL);
  2837. drained = true;
  2838. goto retry;
  2839. }
  2840. return page;
  2841. }
  2842. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2843. {
  2844. struct zoneref *z;
  2845. struct zone *zone;
  2846. pg_data_t *last_pgdat = NULL;
  2847. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2848. ac->high_zoneidx, ac->nodemask) {
  2849. if (last_pgdat != zone->zone_pgdat)
  2850. wakeup_kswapd(zone, order, ac->high_zoneidx);
  2851. last_pgdat = zone->zone_pgdat;
  2852. }
  2853. }
  2854. static inline unsigned int
  2855. gfp_to_alloc_flags(gfp_t gfp_mask)
  2856. {
  2857. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2858. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2859. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2860. /*
  2861. * The caller may dip into page reserves a bit more if the caller
  2862. * cannot run direct reclaim, or if the caller has realtime scheduling
  2863. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2864. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2865. */
  2866. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2867. if (gfp_mask & __GFP_ATOMIC) {
  2868. /*
  2869. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2870. * if it can't schedule.
  2871. */
  2872. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2873. alloc_flags |= ALLOC_HARDER;
  2874. /*
  2875. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2876. * comment for __cpuset_node_allowed().
  2877. */
  2878. alloc_flags &= ~ALLOC_CPUSET;
  2879. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2880. alloc_flags |= ALLOC_HARDER;
  2881. #ifdef CONFIG_CMA
  2882. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2883. alloc_flags |= ALLOC_CMA;
  2884. #endif
  2885. return alloc_flags;
  2886. }
  2887. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2888. {
  2889. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  2890. return false;
  2891. if (gfp_mask & __GFP_MEMALLOC)
  2892. return true;
  2893. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2894. return true;
  2895. if (!in_interrupt() &&
  2896. ((current->flags & PF_MEMALLOC) ||
  2897. unlikely(test_thread_flag(TIF_MEMDIE))))
  2898. return true;
  2899. return false;
  2900. }
  2901. /*
  2902. * Maximum number of reclaim retries without any progress before OOM killer
  2903. * is consider as the only way to move forward.
  2904. */
  2905. #define MAX_RECLAIM_RETRIES 16
  2906. /*
  2907. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2908. * for the given allocation request.
  2909. * The reclaim feedback represented by did_some_progress (any progress during
  2910. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2911. * any progress in a row) is considered as well as the reclaimable pages on the
  2912. * applicable zone list (with a backoff mechanism which is a function of
  2913. * no_progress_loops).
  2914. *
  2915. * Returns true if a retry is viable or false to enter the oom path.
  2916. */
  2917. static inline bool
  2918. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2919. struct alloc_context *ac, int alloc_flags,
  2920. bool did_some_progress, int *no_progress_loops)
  2921. {
  2922. struct zone *zone;
  2923. struct zoneref *z;
  2924. /*
  2925. * Costly allocations might have made a progress but this doesn't mean
  2926. * their order will become available due to high fragmentation so
  2927. * always increment the no progress counter for them
  2928. */
  2929. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  2930. *no_progress_loops = 0;
  2931. else
  2932. (*no_progress_loops)++;
  2933. /*
  2934. * Make sure we converge to OOM if we cannot make any progress
  2935. * several times in the row.
  2936. */
  2937. if (*no_progress_loops > MAX_RECLAIM_RETRIES)
  2938. return false;
  2939. /*
  2940. * Keep reclaiming pages while there is a chance this will lead
  2941. * somewhere. If none of the target zones can satisfy our allocation
  2942. * request even if all reclaimable pages are considered then we are
  2943. * screwed and have to go OOM.
  2944. */
  2945. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2946. ac->nodemask) {
  2947. unsigned long available;
  2948. unsigned long reclaimable;
  2949. available = reclaimable = zone_reclaimable_pages(zone);
  2950. available -= DIV_ROUND_UP((*no_progress_loops) * available,
  2951. MAX_RECLAIM_RETRIES);
  2952. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  2953. /*
  2954. * Would the allocation succeed if we reclaimed the whole
  2955. * available?
  2956. */
  2957. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  2958. ac_classzone_idx(ac), alloc_flags, available)) {
  2959. /*
  2960. * If we didn't make any progress and have a lot of
  2961. * dirty + writeback pages then we should wait for
  2962. * an IO to complete to slow down the reclaim and
  2963. * prevent from pre mature OOM
  2964. */
  2965. if (!did_some_progress) {
  2966. unsigned long write_pending;
  2967. write_pending = zone_page_state_snapshot(zone,
  2968. NR_ZONE_WRITE_PENDING);
  2969. if (2 * write_pending > reclaimable) {
  2970. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2971. return true;
  2972. }
  2973. }
  2974. /*
  2975. * Memory allocation/reclaim might be called from a WQ
  2976. * context and the current implementation of the WQ
  2977. * concurrency control doesn't recognize that
  2978. * a particular WQ is congested if the worker thread is
  2979. * looping without ever sleeping. Therefore we have to
  2980. * do a short sleep here rather than calling
  2981. * cond_resched().
  2982. */
  2983. if (current->flags & PF_WQ_WORKER)
  2984. schedule_timeout_uninterruptible(1);
  2985. else
  2986. cond_resched();
  2987. return true;
  2988. }
  2989. }
  2990. return false;
  2991. }
  2992. static inline struct page *
  2993. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2994. struct alloc_context *ac)
  2995. {
  2996. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  2997. struct page *page = NULL;
  2998. unsigned int alloc_flags;
  2999. unsigned long did_some_progress;
  3000. enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
  3001. enum compact_result compact_result;
  3002. int compaction_retries = 0;
  3003. int no_progress_loops = 0;
  3004. unsigned long alloc_start = jiffies;
  3005. unsigned int stall_timeout = 10 * HZ;
  3006. /*
  3007. * In the slowpath, we sanity check order to avoid ever trying to
  3008. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3009. * be using allocators in order of preference for an area that is
  3010. * too large.
  3011. */
  3012. if (order >= MAX_ORDER) {
  3013. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3014. return NULL;
  3015. }
  3016. /*
  3017. * We also sanity check to catch abuse of atomic reserves being used by
  3018. * callers that are not in atomic context.
  3019. */
  3020. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3021. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3022. gfp_mask &= ~__GFP_ATOMIC;
  3023. /*
  3024. * The fast path uses conservative alloc_flags to succeed only until
  3025. * kswapd needs to be woken up, and to avoid the cost of setting up
  3026. * alloc_flags precisely. So we do that now.
  3027. */
  3028. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3029. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3030. wake_all_kswapds(order, ac);
  3031. /*
  3032. * The adjusted alloc_flags might result in immediate success, so try
  3033. * that first
  3034. */
  3035. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3036. if (page)
  3037. goto got_pg;
  3038. /*
  3039. * For costly allocations, try direct compaction first, as it's likely
  3040. * that we have enough base pages and don't need to reclaim. Don't try
  3041. * that for allocations that are allowed to ignore watermarks, as the
  3042. * ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3043. */
  3044. if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
  3045. !gfp_pfmemalloc_allowed(gfp_mask)) {
  3046. page = __alloc_pages_direct_compact(gfp_mask, order,
  3047. alloc_flags, ac,
  3048. INIT_COMPACT_PRIORITY,
  3049. &compact_result);
  3050. if (page)
  3051. goto got_pg;
  3052. /*
  3053. * Checks for costly allocations with __GFP_NORETRY, which
  3054. * includes THP page fault allocations
  3055. */
  3056. if (gfp_mask & __GFP_NORETRY) {
  3057. /*
  3058. * If compaction is deferred for high-order allocations,
  3059. * it is because sync compaction recently failed. If
  3060. * this is the case and the caller requested a THP
  3061. * allocation, we do not want to heavily disrupt the
  3062. * system, so we fail the allocation instead of entering
  3063. * direct reclaim.
  3064. */
  3065. if (compact_result == COMPACT_DEFERRED)
  3066. goto nopage;
  3067. /*
  3068. * Looks like reclaim/compaction is worth trying, but
  3069. * sync compaction could be very expensive, so keep
  3070. * using async compaction.
  3071. */
  3072. compact_priority = INIT_COMPACT_PRIORITY;
  3073. }
  3074. }
  3075. retry:
  3076. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3077. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3078. wake_all_kswapds(order, ac);
  3079. if (gfp_pfmemalloc_allowed(gfp_mask))
  3080. alloc_flags = ALLOC_NO_WATERMARKS;
  3081. /*
  3082. * Reset the zonelist iterators if memory policies can be ignored.
  3083. * These allocations are high priority and system rather than user
  3084. * orientated.
  3085. */
  3086. if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
  3087. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3088. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3089. ac->high_zoneidx, ac->nodemask);
  3090. }
  3091. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3092. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3093. if (page)
  3094. goto got_pg;
  3095. /* Caller is not willing to reclaim, we can't balance anything */
  3096. if (!can_direct_reclaim) {
  3097. /*
  3098. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3099. * of any new users that actually allow this type of allocation
  3100. * to fail.
  3101. */
  3102. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3103. goto nopage;
  3104. }
  3105. /* Avoid recursion of direct reclaim */
  3106. if (current->flags & PF_MEMALLOC) {
  3107. /*
  3108. * __GFP_NOFAIL request from this context is rather bizarre
  3109. * because we cannot reclaim anything and only can loop waiting
  3110. * for somebody to do a work for us.
  3111. */
  3112. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3113. cond_resched();
  3114. goto retry;
  3115. }
  3116. goto nopage;
  3117. }
  3118. /* Avoid allocations with no watermarks from looping endlessly */
  3119. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3120. goto nopage;
  3121. /* Try direct reclaim and then allocating */
  3122. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3123. &did_some_progress);
  3124. if (page)
  3125. goto got_pg;
  3126. /* Try direct compaction and then allocating */
  3127. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3128. compact_priority, &compact_result);
  3129. if (page)
  3130. goto got_pg;
  3131. /* Do not loop if specifically requested */
  3132. if (gfp_mask & __GFP_NORETRY)
  3133. goto nopage;
  3134. /*
  3135. * Do not retry costly high order allocations unless they are
  3136. * __GFP_REPEAT
  3137. */
  3138. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3139. goto nopage;
  3140. /* Make sure we know about allocations which stall for too long */
  3141. if (time_after(jiffies, alloc_start + stall_timeout)) {
  3142. warn_alloc(gfp_mask,
  3143. "page allocation stalls for %ums, order:%u",
  3144. jiffies_to_msecs(jiffies-alloc_start), order);
  3145. stall_timeout += 10 * HZ;
  3146. }
  3147. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3148. did_some_progress > 0, &no_progress_loops))
  3149. goto retry;
  3150. /*
  3151. * It doesn't make any sense to retry for the compaction if the order-0
  3152. * reclaim is not able to make any progress because the current
  3153. * implementation of the compaction depends on the sufficient amount
  3154. * of free memory (see __compaction_suitable)
  3155. */
  3156. if (did_some_progress > 0 &&
  3157. should_compact_retry(ac, order, alloc_flags,
  3158. compact_result, &compact_priority,
  3159. &compaction_retries))
  3160. goto retry;
  3161. /* Reclaim has failed us, start killing things */
  3162. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3163. if (page)
  3164. goto got_pg;
  3165. /* Retry as long as the OOM killer is making progress */
  3166. if (did_some_progress) {
  3167. no_progress_loops = 0;
  3168. goto retry;
  3169. }
  3170. nopage:
  3171. warn_alloc(gfp_mask,
  3172. "page allocation failure: order:%u", order);
  3173. got_pg:
  3174. return page;
  3175. }
  3176. /*
  3177. * This is the 'heart' of the zoned buddy allocator.
  3178. */
  3179. struct page *
  3180. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3181. struct zonelist *zonelist, nodemask_t *nodemask)
  3182. {
  3183. struct page *page;
  3184. unsigned int cpuset_mems_cookie;
  3185. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3186. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3187. struct alloc_context ac = {
  3188. .high_zoneidx = gfp_zone(gfp_mask),
  3189. .zonelist = zonelist,
  3190. .nodemask = nodemask,
  3191. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3192. };
  3193. if (cpusets_enabled()) {
  3194. alloc_mask |= __GFP_HARDWALL;
  3195. alloc_flags |= ALLOC_CPUSET;
  3196. if (!ac.nodemask)
  3197. ac.nodemask = &cpuset_current_mems_allowed;
  3198. }
  3199. gfp_mask &= gfp_allowed_mask;
  3200. lockdep_trace_alloc(gfp_mask);
  3201. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3202. if (should_fail_alloc_page(gfp_mask, order))
  3203. return NULL;
  3204. /*
  3205. * Check the zones suitable for the gfp_mask contain at least one
  3206. * valid zone. It's possible to have an empty zonelist as a result
  3207. * of __GFP_THISNODE and a memoryless node
  3208. */
  3209. if (unlikely(!zonelist->_zonerefs->zone))
  3210. return NULL;
  3211. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3212. alloc_flags |= ALLOC_CMA;
  3213. retry_cpuset:
  3214. cpuset_mems_cookie = read_mems_allowed_begin();
  3215. /* Dirty zone balancing only done in the fast path */
  3216. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3217. /*
  3218. * The preferred zone is used for statistics but crucially it is
  3219. * also used as the starting point for the zonelist iterator. It
  3220. * may get reset for allocations that ignore memory policies.
  3221. */
  3222. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3223. ac.high_zoneidx, ac.nodemask);
  3224. if (!ac.preferred_zoneref) {
  3225. page = NULL;
  3226. goto no_zone;
  3227. }
  3228. /* First allocation attempt */
  3229. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3230. if (likely(page))
  3231. goto out;
  3232. /*
  3233. * Runtime PM, block IO and its error handling path can deadlock
  3234. * because I/O on the device might not complete.
  3235. */
  3236. alloc_mask = memalloc_noio_flags(gfp_mask);
  3237. ac.spread_dirty_pages = false;
  3238. /*
  3239. * Restore the original nodemask if it was potentially replaced with
  3240. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3241. */
  3242. if (cpusets_enabled())
  3243. ac.nodemask = nodemask;
  3244. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3245. no_zone:
  3246. /*
  3247. * When updating a task's mems_allowed, it is possible to race with
  3248. * parallel threads in such a way that an allocation can fail while
  3249. * the mask is being updated. If a page allocation is about to fail,
  3250. * check if the cpuset changed during allocation and if so, retry.
  3251. */
  3252. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
  3253. alloc_mask = gfp_mask;
  3254. goto retry_cpuset;
  3255. }
  3256. out:
  3257. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3258. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3259. __free_pages(page, order);
  3260. page = NULL;
  3261. }
  3262. if (kmemcheck_enabled && page)
  3263. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3264. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3265. return page;
  3266. }
  3267. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3268. /*
  3269. * Common helper functions.
  3270. */
  3271. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3272. {
  3273. struct page *page;
  3274. /*
  3275. * __get_free_pages() returns a 32-bit address, which cannot represent
  3276. * a highmem page
  3277. */
  3278. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3279. page = alloc_pages(gfp_mask, order);
  3280. if (!page)
  3281. return 0;
  3282. return (unsigned long) page_address(page);
  3283. }
  3284. EXPORT_SYMBOL(__get_free_pages);
  3285. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3286. {
  3287. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3288. }
  3289. EXPORT_SYMBOL(get_zeroed_page);
  3290. void __free_pages(struct page *page, unsigned int order)
  3291. {
  3292. if (put_page_testzero(page)) {
  3293. if (order == 0)
  3294. free_hot_cold_page(page, false);
  3295. else
  3296. __free_pages_ok(page, order);
  3297. }
  3298. }
  3299. EXPORT_SYMBOL(__free_pages);
  3300. void free_pages(unsigned long addr, unsigned int order)
  3301. {
  3302. if (addr != 0) {
  3303. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3304. __free_pages(virt_to_page((void *)addr), order);
  3305. }
  3306. }
  3307. EXPORT_SYMBOL(free_pages);
  3308. /*
  3309. * Page Fragment:
  3310. * An arbitrary-length arbitrary-offset area of memory which resides
  3311. * within a 0 or higher order page. Multiple fragments within that page
  3312. * are individually refcounted, in the page's reference counter.
  3313. *
  3314. * The page_frag functions below provide a simple allocation framework for
  3315. * page fragments. This is used by the network stack and network device
  3316. * drivers to provide a backing region of memory for use as either an
  3317. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3318. */
  3319. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3320. gfp_t gfp_mask)
  3321. {
  3322. struct page *page = NULL;
  3323. gfp_t gfp = gfp_mask;
  3324. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3325. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3326. __GFP_NOMEMALLOC;
  3327. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3328. PAGE_FRAG_CACHE_MAX_ORDER);
  3329. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3330. #endif
  3331. if (unlikely(!page))
  3332. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3333. nc->va = page ? page_address(page) : NULL;
  3334. return page;
  3335. }
  3336. void *__alloc_page_frag(struct page_frag_cache *nc,
  3337. unsigned int fragsz, gfp_t gfp_mask)
  3338. {
  3339. unsigned int size = PAGE_SIZE;
  3340. struct page *page;
  3341. int offset;
  3342. if (unlikely(!nc->va)) {
  3343. refill:
  3344. page = __page_frag_refill(nc, gfp_mask);
  3345. if (!page)
  3346. return NULL;
  3347. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3348. /* if size can vary use size else just use PAGE_SIZE */
  3349. size = nc->size;
  3350. #endif
  3351. /* Even if we own the page, we do not use atomic_set().
  3352. * This would break get_page_unless_zero() users.
  3353. */
  3354. page_ref_add(page, size - 1);
  3355. /* reset page count bias and offset to start of new frag */
  3356. nc->pfmemalloc = page_is_pfmemalloc(page);
  3357. nc->pagecnt_bias = size;
  3358. nc->offset = size;
  3359. }
  3360. offset = nc->offset - fragsz;
  3361. if (unlikely(offset < 0)) {
  3362. page = virt_to_page(nc->va);
  3363. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3364. goto refill;
  3365. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3366. /* if size can vary use size else just use PAGE_SIZE */
  3367. size = nc->size;
  3368. #endif
  3369. /* OK, page count is 0, we can safely set it */
  3370. set_page_count(page, size);
  3371. /* reset page count bias and offset to start of new frag */
  3372. nc->pagecnt_bias = size;
  3373. offset = size - fragsz;
  3374. }
  3375. nc->pagecnt_bias--;
  3376. nc->offset = offset;
  3377. return nc->va + offset;
  3378. }
  3379. EXPORT_SYMBOL(__alloc_page_frag);
  3380. /*
  3381. * Frees a page fragment allocated out of either a compound or order 0 page.
  3382. */
  3383. void __free_page_frag(void *addr)
  3384. {
  3385. struct page *page = virt_to_head_page(addr);
  3386. if (unlikely(put_page_testzero(page)))
  3387. __free_pages_ok(page, compound_order(page));
  3388. }
  3389. EXPORT_SYMBOL(__free_page_frag);
  3390. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3391. size_t size)
  3392. {
  3393. if (addr) {
  3394. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3395. unsigned long used = addr + PAGE_ALIGN(size);
  3396. split_page(virt_to_page((void *)addr), order);
  3397. while (used < alloc_end) {
  3398. free_page(used);
  3399. used += PAGE_SIZE;
  3400. }
  3401. }
  3402. return (void *)addr;
  3403. }
  3404. /**
  3405. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3406. * @size: the number of bytes to allocate
  3407. * @gfp_mask: GFP flags for the allocation
  3408. *
  3409. * This function is similar to alloc_pages(), except that it allocates the
  3410. * minimum number of pages to satisfy the request. alloc_pages() can only
  3411. * allocate memory in power-of-two pages.
  3412. *
  3413. * This function is also limited by MAX_ORDER.
  3414. *
  3415. * Memory allocated by this function must be released by free_pages_exact().
  3416. */
  3417. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3418. {
  3419. unsigned int order = get_order(size);
  3420. unsigned long addr;
  3421. addr = __get_free_pages(gfp_mask, order);
  3422. return make_alloc_exact(addr, order, size);
  3423. }
  3424. EXPORT_SYMBOL(alloc_pages_exact);
  3425. /**
  3426. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3427. * pages on a node.
  3428. * @nid: the preferred node ID where memory should be allocated
  3429. * @size: the number of bytes to allocate
  3430. * @gfp_mask: GFP flags for the allocation
  3431. *
  3432. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3433. * back.
  3434. */
  3435. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3436. {
  3437. unsigned int order = get_order(size);
  3438. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3439. if (!p)
  3440. return NULL;
  3441. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3442. }
  3443. /**
  3444. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3445. * @virt: the value returned by alloc_pages_exact.
  3446. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3447. *
  3448. * Release the memory allocated by a previous call to alloc_pages_exact.
  3449. */
  3450. void free_pages_exact(void *virt, size_t size)
  3451. {
  3452. unsigned long addr = (unsigned long)virt;
  3453. unsigned long end = addr + PAGE_ALIGN(size);
  3454. while (addr < end) {
  3455. free_page(addr);
  3456. addr += PAGE_SIZE;
  3457. }
  3458. }
  3459. EXPORT_SYMBOL(free_pages_exact);
  3460. /**
  3461. * nr_free_zone_pages - count number of pages beyond high watermark
  3462. * @offset: The zone index of the highest zone
  3463. *
  3464. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3465. * high watermark within all zones at or below a given zone index. For each
  3466. * zone, the number of pages is calculated as:
  3467. * managed_pages - high_pages
  3468. */
  3469. static unsigned long nr_free_zone_pages(int offset)
  3470. {
  3471. struct zoneref *z;
  3472. struct zone *zone;
  3473. /* Just pick one node, since fallback list is circular */
  3474. unsigned long sum = 0;
  3475. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3476. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3477. unsigned long size = zone->managed_pages;
  3478. unsigned long high = high_wmark_pages(zone);
  3479. if (size > high)
  3480. sum += size - high;
  3481. }
  3482. return sum;
  3483. }
  3484. /**
  3485. * nr_free_buffer_pages - count number of pages beyond high watermark
  3486. *
  3487. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3488. * watermark within ZONE_DMA and ZONE_NORMAL.
  3489. */
  3490. unsigned long nr_free_buffer_pages(void)
  3491. {
  3492. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3493. }
  3494. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3495. /**
  3496. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3497. *
  3498. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3499. * high watermark within all zones.
  3500. */
  3501. unsigned long nr_free_pagecache_pages(void)
  3502. {
  3503. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3504. }
  3505. static inline void show_node(struct zone *zone)
  3506. {
  3507. if (IS_ENABLED(CONFIG_NUMA))
  3508. printk("Node %d ", zone_to_nid(zone));
  3509. }
  3510. long si_mem_available(void)
  3511. {
  3512. long available;
  3513. unsigned long pagecache;
  3514. unsigned long wmark_low = 0;
  3515. unsigned long pages[NR_LRU_LISTS];
  3516. struct zone *zone;
  3517. int lru;
  3518. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3519. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3520. for_each_zone(zone)
  3521. wmark_low += zone->watermark[WMARK_LOW];
  3522. /*
  3523. * Estimate the amount of memory available for userspace allocations,
  3524. * without causing swapping.
  3525. */
  3526. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3527. /*
  3528. * Not all the page cache can be freed, otherwise the system will
  3529. * start swapping. Assume at least half of the page cache, or the
  3530. * low watermark worth of cache, needs to stay.
  3531. */
  3532. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3533. pagecache -= min(pagecache / 2, wmark_low);
  3534. available += pagecache;
  3535. /*
  3536. * Part of the reclaimable slab consists of items that are in use,
  3537. * and cannot be freed. Cap this estimate at the low watermark.
  3538. */
  3539. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3540. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3541. if (available < 0)
  3542. available = 0;
  3543. return available;
  3544. }
  3545. EXPORT_SYMBOL_GPL(si_mem_available);
  3546. void si_meminfo(struct sysinfo *val)
  3547. {
  3548. val->totalram = totalram_pages;
  3549. val->sharedram = global_node_page_state(NR_SHMEM);
  3550. val->freeram = global_page_state(NR_FREE_PAGES);
  3551. val->bufferram = nr_blockdev_pages();
  3552. val->totalhigh = totalhigh_pages;
  3553. val->freehigh = nr_free_highpages();
  3554. val->mem_unit = PAGE_SIZE;
  3555. }
  3556. EXPORT_SYMBOL(si_meminfo);
  3557. #ifdef CONFIG_NUMA
  3558. void si_meminfo_node(struct sysinfo *val, int nid)
  3559. {
  3560. int zone_type; /* needs to be signed */
  3561. unsigned long managed_pages = 0;
  3562. unsigned long managed_highpages = 0;
  3563. unsigned long free_highpages = 0;
  3564. pg_data_t *pgdat = NODE_DATA(nid);
  3565. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3566. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3567. val->totalram = managed_pages;
  3568. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3569. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3570. #ifdef CONFIG_HIGHMEM
  3571. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3572. struct zone *zone = &pgdat->node_zones[zone_type];
  3573. if (is_highmem(zone)) {
  3574. managed_highpages += zone->managed_pages;
  3575. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3576. }
  3577. }
  3578. val->totalhigh = managed_highpages;
  3579. val->freehigh = free_highpages;
  3580. #else
  3581. val->totalhigh = managed_highpages;
  3582. val->freehigh = free_highpages;
  3583. #endif
  3584. val->mem_unit = PAGE_SIZE;
  3585. }
  3586. #endif
  3587. /*
  3588. * Determine whether the node should be displayed or not, depending on whether
  3589. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3590. */
  3591. bool skip_free_areas_node(unsigned int flags, int nid)
  3592. {
  3593. bool ret = false;
  3594. unsigned int cpuset_mems_cookie;
  3595. if (!(flags & SHOW_MEM_FILTER_NODES))
  3596. goto out;
  3597. do {
  3598. cpuset_mems_cookie = read_mems_allowed_begin();
  3599. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3600. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3601. out:
  3602. return ret;
  3603. }
  3604. #define K(x) ((x) << (PAGE_SHIFT-10))
  3605. static void show_migration_types(unsigned char type)
  3606. {
  3607. static const char types[MIGRATE_TYPES] = {
  3608. [MIGRATE_UNMOVABLE] = 'U',
  3609. [MIGRATE_MOVABLE] = 'M',
  3610. [MIGRATE_RECLAIMABLE] = 'E',
  3611. [MIGRATE_HIGHATOMIC] = 'H',
  3612. #ifdef CONFIG_CMA
  3613. [MIGRATE_CMA] = 'C',
  3614. #endif
  3615. #ifdef CONFIG_MEMORY_ISOLATION
  3616. [MIGRATE_ISOLATE] = 'I',
  3617. #endif
  3618. };
  3619. char tmp[MIGRATE_TYPES + 1];
  3620. char *p = tmp;
  3621. int i;
  3622. for (i = 0; i < MIGRATE_TYPES; i++) {
  3623. if (type & (1 << i))
  3624. *p++ = types[i];
  3625. }
  3626. *p = '\0';
  3627. printk(KERN_CONT "(%s) ", tmp);
  3628. }
  3629. /*
  3630. * Show free area list (used inside shift_scroll-lock stuff)
  3631. * We also calculate the percentage fragmentation. We do this by counting the
  3632. * memory on each free list with the exception of the first item on the list.
  3633. *
  3634. * Bits in @filter:
  3635. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3636. * cpuset.
  3637. */
  3638. void show_free_areas(unsigned int filter)
  3639. {
  3640. unsigned long free_pcp = 0;
  3641. int cpu;
  3642. struct zone *zone;
  3643. pg_data_t *pgdat;
  3644. for_each_populated_zone(zone) {
  3645. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3646. continue;
  3647. for_each_online_cpu(cpu)
  3648. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3649. }
  3650. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3651. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3652. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3653. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3654. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3655. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3656. global_node_page_state(NR_ACTIVE_ANON),
  3657. global_node_page_state(NR_INACTIVE_ANON),
  3658. global_node_page_state(NR_ISOLATED_ANON),
  3659. global_node_page_state(NR_ACTIVE_FILE),
  3660. global_node_page_state(NR_INACTIVE_FILE),
  3661. global_node_page_state(NR_ISOLATED_FILE),
  3662. global_node_page_state(NR_UNEVICTABLE),
  3663. global_node_page_state(NR_FILE_DIRTY),
  3664. global_node_page_state(NR_WRITEBACK),
  3665. global_node_page_state(NR_UNSTABLE_NFS),
  3666. global_page_state(NR_SLAB_RECLAIMABLE),
  3667. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3668. global_node_page_state(NR_FILE_MAPPED),
  3669. global_node_page_state(NR_SHMEM),
  3670. global_page_state(NR_PAGETABLE),
  3671. global_page_state(NR_BOUNCE),
  3672. global_page_state(NR_FREE_PAGES),
  3673. free_pcp,
  3674. global_page_state(NR_FREE_CMA_PAGES));
  3675. for_each_online_pgdat(pgdat) {
  3676. printk("Node %d"
  3677. " active_anon:%lukB"
  3678. " inactive_anon:%lukB"
  3679. " active_file:%lukB"
  3680. " inactive_file:%lukB"
  3681. " unevictable:%lukB"
  3682. " isolated(anon):%lukB"
  3683. " isolated(file):%lukB"
  3684. " mapped:%lukB"
  3685. " dirty:%lukB"
  3686. " writeback:%lukB"
  3687. " shmem:%lukB"
  3688. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3689. " shmem_thp: %lukB"
  3690. " shmem_pmdmapped: %lukB"
  3691. " anon_thp: %lukB"
  3692. #endif
  3693. " writeback_tmp:%lukB"
  3694. " unstable:%lukB"
  3695. " pages_scanned:%lu"
  3696. " all_unreclaimable? %s"
  3697. "\n",
  3698. pgdat->node_id,
  3699. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  3700. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  3701. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  3702. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  3703. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  3704. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  3705. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  3706. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  3707. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  3708. K(node_page_state(pgdat, NR_WRITEBACK)),
  3709. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3710. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  3711. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  3712. * HPAGE_PMD_NR),
  3713. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  3714. #endif
  3715. K(node_page_state(pgdat, NR_SHMEM)),
  3716. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  3717. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  3718. node_page_state(pgdat, NR_PAGES_SCANNED),
  3719. !pgdat_reclaimable(pgdat) ? "yes" : "no");
  3720. }
  3721. for_each_populated_zone(zone) {
  3722. int i;
  3723. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3724. continue;
  3725. free_pcp = 0;
  3726. for_each_online_cpu(cpu)
  3727. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3728. show_node(zone);
  3729. printk(KERN_CONT
  3730. "%s"
  3731. " free:%lukB"
  3732. " min:%lukB"
  3733. " low:%lukB"
  3734. " high:%lukB"
  3735. " active_anon:%lukB"
  3736. " inactive_anon:%lukB"
  3737. " active_file:%lukB"
  3738. " inactive_file:%lukB"
  3739. " unevictable:%lukB"
  3740. " writepending:%lukB"
  3741. " present:%lukB"
  3742. " managed:%lukB"
  3743. " mlocked:%lukB"
  3744. " slab_reclaimable:%lukB"
  3745. " slab_unreclaimable:%lukB"
  3746. " kernel_stack:%lukB"
  3747. " pagetables:%lukB"
  3748. " bounce:%lukB"
  3749. " free_pcp:%lukB"
  3750. " local_pcp:%ukB"
  3751. " free_cma:%lukB"
  3752. "\n",
  3753. zone->name,
  3754. K(zone_page_state(zone, NR_FREE_PAGES)),
  3755. K(min_wmark_pages(zone)),
  3756. K(low_wmark_pages(zone)),
  3757. K(high_wmark_pages(zone)),
  3758. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  3759. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  3760. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  3761. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  3762. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  3763. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  3764. K(zone->present_pages),
  3765. K(zone->managed_pages),
  3766. K(zone_page_state(zone, NR_MLOCK)),
  3767. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3768. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3769. zone_page_state(zone, NR_KERNEL_STACK_KB),
  3770. K(zone_page_state(zone, NR_PAGETABLE)),
  3771. K(zone_page_state(zone, NR_BOUNCE)),
  3772. K(free_pcp),
  3773. K(this_cpu_read(zone->pageset->pcp.count)),
  3774. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  3775. printk("lowmem_reserve[]:");
  3776. for (i = 0; i < MAX_NR_ZONES; i++)
  3777. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  3778. printk(KERN_CONT "\n");
  3779. }
  3780. for_each_populated_zone(zone) {
  3781. unsigned int order;
  3782. unsigned long nr[MAX_ORDER], flags, total = 0;
  3783. unsigned char types[MAX_ORDER];
  3784. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3785. continue;
  3786. show_node(zone);
  3787. printk(KERN_CONT "%s: ", zone->name);
  3788. spin_lock_irqsave(&zone->lock, flags);
  3789. for (order = 0; order < MAX_ORDER; order++) {
  3790. struct free_area *area = &zone->free_area[order];
  3791. int type;
  3792. nr[order] = area->nr_free;
  3793. total += nr[order] << order;
  3794. types[order] = 0;
  3795. for (type = 0; type < MIGRATE_TYPES; type++) {
  3796. if (!list_empty(&area->free_list[type]))
  3797. types[order] |= 1 << type;
  3798. }
  3799. }
  3800. spin_unlock_irqrestore(&zone->lock, flags);
  3801. for (order = 0; order < MAX_ORDER; order++) {
  3802. printk(KERN_CONT "%lu*%lukB ",
  3803. nr[order], K(1UL) << order);
  3804. if (nr[order])
  3805. show_migration_types(types[order]);
  3806. }
  3807. printk(KERN_CONT "= %lukB\n", K(total));
  3808. }
  3809. hugetlb_show_meminfo();
  3810. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  3811. show_swap_cache_info();
  3812. }
  3813. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3814. {
  3815. zoneref->zone = zone;
  3816. zoneref->zone_idx = zone_idx(zone);
  3817. }
  3818. /*
  3819. * Builds allocation fallback zone lists.
  3820. *
  3821. * Add all populated zones of a node to the zonelist.
  3822. */
  3823. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3824. int nr_zones)
  3825. {
  3826. struct zone *zone;
  3827. enum zone_type zone_type = MAX_NR_ZONES;
  3828. do {
  3829. zone_type--;
  3830. zone = pgdat->node_zones + zone_type;
  3831. if (managed_zone(zone)) {
  3832. zoneref_set_zone(zone,
  3833. &zonelist->_zonerefs[nr_zones++]);
  3834. check_highest_zone(zone_type);
  3835. }
  3836. } while (zone_type);
  3837. return nr_zones;
  3838. }
  3839. /*
  3840. * zonelist_order:
  3841. * 0 = automatic detection of better ordering.
  3842. * 1 = order by ([node] distance, -zonetype)
  3843. * 2 = order by (-zonetype, [node] distance)
  3844. *
  3845. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3846. * the same zonelist. So only NUMA can configure this param.
  3847. */
  3848. #define ZONELIST_ORDER_DEFAULT 0
  3849. #define ZONELIST_ORDER_NODE 1
  3850. #define ZONELIST_ORDER_ZONE 2
  3851. /* zonelist order in the kernel.
  3852. * set_zonelist_order() will set this to NODE or ZONE.
  3853. */
  3854. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3855. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3856. #ifdef CONFIG_NUMA
  3857. /* The value user specified ....changed by config */
  3858. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3859. /* string for sysctl */
  3860. #define NUMA_ZONELIST_ORDER_LEN 16
  3861. char numa_zonelist_order[16] = "default";
  3862. /*
  3863. * interface for configure zonelist ordering.
  3864. * command line option "numa_zonelist_order"
  3865. * = "[dD]efault - default, automatic configuration.
  3866. * = "[nN]ode - order by node locality, then by zone within node
  3867. * = "[zZ]one - order by zone, then by locality within zone
  3868. */
  3869. static int __parse_numa_zonelist_order(char *s)
  3870. {
  3871. if (*s == 'd' || *s == 'D') {
  3872. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3873. } else if (*s == 'n' || *s == 'N') {
  3874. user_zonelist_order = ZONELIST_ORDER_NODE;
  3875. } else if (*s == 'z' || *s == 'Z') {
  3876. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3877. } else {
  3878. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3879. return -EINVAL;
  3880. }
  3881. return 0;
  3882. }
  3883. static __init int setup_numa_zonelist_order(char *s)
  3884. {
  3885. int ret;
  3886. if (!s)
  3887. return 0;
  3888. ret = __parse_numa_zonelist_order(s);
  3889. if (ret == 0)
  3890. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3891. return ret;
  3892. }
  3893. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3894. /*
  3895. * sysctl handler for numa_zonelist_order
  3896. */
  3897. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3898. void __user *buffer, size_t *length,
  3899. loff_t *ppos)
  3900. {
  3901. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3902. int ret;
  3903. static DEFINE_MUTEX(zl_order_mutex);
  3904. mutex_lock(&zl_order_mutex);
  3905. if (write) {
  3906. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3907. ret = -EINVAL;
  3908. goto out;
  3909. }
  3910. strcpy(saved_string, (char *)table->data);
  3911. }
  3912. ret = proc_dostring(table, write, buffer, length, ppos);
  3913. if (ret)
  3914. goto out;
  3915. if (write) {
  3916. int oldval = user_zonelist_order;
  3917. ret = __parse_numa_zonelist_order((char *)table->data);
  3918. if (ret) {
  3919. /*
  3920. * bogus value. restore saved string
  3921. */
  3922. strncpy((char *)table->data, saved_string,
  3923. NUMA_ZONELIST_ORDER_LEN);
  3924. user_zonelist_order = oldval;
  3925. } else if (oldval != user_zonelist_order) {
  3926. mutex_lock(&zonelists_mutex);
  3927. build_all_zonelists(NULL, NULL);
  3928. mutex_unlock(&zonelists_mutex);
  3929. }
  3930. }
  3931. out:
  3932. mutex_unlock(&zl_order_mutex);
  3933. return ret;
  3934. }
  3935. #define MAX_NODE_LOAD (nr_online_nodes)
  3936. static int node_load[MAX_NUMNODES];
  3937. /**
  3938. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3939. * @node: node whose fallback list we're appending
  3940. * @used_node_mask: nodemask_t of already used nodes
  3941. *
  3942. * We use a number of factors to determine which is the next node that should
  3943. * appear on a given node's fallback list. The node should not have appeared
  3944. * already in @node's fallback list, and it should be the next closest node
  3945. * according to the distance array (which contains arbitrary distance values
  3946. * from each node to each node in the system), and should also prefer nodes
  3947. * with no CPUs, since presumably they'll have very little allocation pressure
  3948. * on them otherwise.
  3949. * It returns -1 if no node is found.
  3950. */
  3951. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3952. {
  3953. int n, val;
  3954. int min_val = INT_MAX;
  3955. int best_node = NUMA_NO_NODE;
  3956. const struct cpumask *tmp = cpumask_of_node(0);
  3957. /* Use the local node if we haven't already */
  3958. if (!node_isset(node, *used_node_mask)) {
  3959. node_set(node, *used_node_mask);
  3960. return node;
  3961. }
  3962. for_each_node_state(n, N_MEMORY) {
  3963. /* Don't want a node to appear more than once */
  3964. if (node_isset(n, *used_node_mask))
  3965. continue;
  3966. /* Use the distance array to find the distance */
  3967. val = node_distance(node, n);
  3968. /* Penalize nodes under us ("prefer the next node") */
  3969. val += (n < node);
  3970. /* Give preference to headless and unused nodes */
  3971. tmp = cpumask_of_node(n);
  3972. if (!cpumask_empty(tmp))
  3973. val += PENALTY_FOR_NODE_WITH_CPUS;
  3974. /* Slight preference for less loaded node */
  3975. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3976. val += node_load[n];
  3977. if (val < min_val) {
  3978. min_val = val;
  3979. best_node = n;
  3980. }
  3981. }
  3982. if (best_node >= 0)
  3983. node_set(best_node, *used_node_mask);
  3984. return best_node;
  3985. }
  3986. /*
  3987. * Build zonelists ordered by node and zones within node.
  3988. * This results in maximum locality--normal zone overflows into local
  3989. * DMA zone, if any--but risks exhausting DMA zone.
  3990. */
  3991. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3992. {
  3993. int j;
  3994. struct zonelist *zonelist;
  3995. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  3996. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3997. ;
  3998. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3999. zonelist->_zonerefs[j].zone = NULL;
  4000. zonelist->_zonerefs[j].zone_idx = 0;
  4001. }
  4002. /*
  4003. * Build gfp_thisnode zonelists
  4004. */
  4005. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4006. {
  4007. int j;
  4008. struct zonelist *zonelist;
  4009. zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
  4010. j = build_zonelists_node(pgdat, zonelist, 0);
  4011. zonelist->_zonerefs[j].zone = NULL;
  4012. zonelist->_zonerefs[j].zone_idx = 0;
  4013. }
  4014. /*
  4015. * Build zonelists ordered by zone and nodes within zones.
  4016. * This results in conserving DMA zone[s] until all Normal memory is
  4017. * exhausted, but results in overflowing to remote node while memory
  4018. * may still exist in local DMA zone.
  4019. */
  4020. static int node_order[MAX_NUMNODES];
  4021. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4022. {
  4023. int pos, j, node;
  4024. int zone_type; /* needs to be signed */
  4025. struct zone *z;
  4026. struct zonelist *zonelist;
  4027. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4028. pos = 0;
  4029. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4030. for (j = 0; j < nr_nodes; j++) {
  4031. node = node_order[j];
  4032. z = &NODE_DATA(node)->node_zones[zone_type];
  4033. if (managed_zone(z)) {
  4034. zoneref_set_zone(z,
  4035. &zonelist->_zonerefs[pos++]);
  4036. check_highest_zone(zone_type);
  4037. }
  4038. }
  4039. }
  4040. zonelist->_zonerefs[pos].zone = NULL;
  4041. zonelist->_zonerefs[pos].zone_idx = 0;
  4042. }
  4043. #if defined(CONFIG_64BIT)
  4044. /*
  4045. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4046. * penalty to every machine in case the specialised case applies. Default
  4047. * to Node-ordering on 64-bit NUMA machines
  4048. */
  4049. static int default_zonelist_order(void)
  4050. {
  4051. return ZONELIST_ORDER_NODE;
  4052. }
  4053. #else
  4054. /*
  4055. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4056. * by the kernel. If processes running on node 0 deplete the low memory zone
  4057. * then reclaim will occur more frequency increasing stalls and potentially
  4058. * be easier to OOM if a large percentage of the zone is under writeback or
  4059. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4060. * Hence, default to zone ordering on 32-bit.
  4061. */
  4062. static int default_zonelist_order(void)
  4063. {
  4064. return ZONELIST_ORDER_ZONE;
  4065. }
  4066. #endif /* CONFIG_64BIT */
  4067. static void set_zonelist_order(void)
  4068. {
  4069. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4070. current_zonelist_order = default_zonelist_order();
  4071. else
  4072. current_zonelist_order = user_zonelist_order;
  4073. }
  4074. static void build_zonelists(pg_data_t *pgdat)
  4075. {
  4076. int i, node, load;
  4077. nodemask_t used_mask;
  4078. int local_node, prev_node;
  4079. struct zonelist *zonelist;
  4080. unsigned int order = current_zonelist_order;
  4081. /* initialize zonelists */
  4082. for (i = 0; i < MAX_ZONELISTS; i++) {
  4083. zonelist = pgdat->node_zonelists + i;
  4084. zonelist->_zonerefs[0].zone = NULL;
  4085. zonelist->_zonerefs[0].zone_idx = 0;
  4086. }
  4087. /* NUMA-aware ordering of nodes */
  4088. local_node = pgdat->node_id;
  4089. load = nr_online_nodes;
  4090. prev_node = local_node;
  4091. nodes_clear(used_mask);
  4092. memset(node_order, 0, sizeof(node_order));
  4093. i = 0;
  4094. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4095. /*
  4096. * We don't want to pressure a particular node.
  4097. * So adding penalty to the first node in same
  4098. * distance group to make it round-robin.
  4099. */
  4100. if (node_distance(local_node, node) !=
  4101. node_distance(local_node, prev_node))
  4102. node_load[node] = load;
  4103. prev_node = node;
  4104. load--;
  4105. if (order == ZONELIST_ORDER_NODE)
  4106. build_zonelists_in_node_order(pgdat, node);
  4107. else
  4108. node_order[i++] = node; /* remember order */
  4109. }
  4110. if (order == ZONELIST_ORDER_ZONE) {
  4111. /* calculate node order -- i.e., DMA last! */
  4112. build_zonelists_in_zone_order(pgdat, i);
  4113. }
  4114. build_thisnode_zonelists(pgdat);
  4115. }
  4116. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4117. /*
  4118. * Return node id of node used for "local" allocations.
  4119. * I.e., first node id of first zone in arg node's generic zonelist.
  4120. * Used for initializing percpu 'numa_mem', which is used primarily
  4121. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4122. */
  4123. int local_memory_node(int node)
  4124. {
  4125. struct zoneref *z;
  4126. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4127. gfp_zone(GFP_KERNEL),
  4128. NULL);
  4129. return z->zone->node;
  4130. }
  4131. #endif
  4132. static void setup_min_unmapped_ratio(void);
  4133. static void setup_min_slab_ratio(void);
  4134. #else /* CONFIG_NUMA */
  4135. static void set_zonelist_order(void)
  4136. {
  4137. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4138. }
  4139. static void build_zonelists(pg_data_t *pgdat)
  4140. {
  4141. int node, local_node;
  4142. enum zone_type j;
  4143. struct zonelist *zonelist;
  4144. local_node = pgdat->node_id;
  4145. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4146. j = build_zonelists_node(pgdat, zonelist, 0);
  4147. /*
  4148. * Now we build the zonelist so that it contains the zones
  4149. * of all the other nodes.
  4150. * We don't want to pressure a particular node, so when
  4151. * building the zones for node N, we make sure that the
  4152. * zones coming right after the local ones are those from
  4153. * node N+1 (modulo N)
  4154. */
  4155. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4156. if (!node_online(node))
  4157. continue;
  4158. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4159. }
  4160. for (node = 0; node < local_node; node++) {
  4161. if (!node_online(node))
  4162. continue;
  4163. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4164. }
  4165. zonelist->_zonerefs[j].zone = NULL;
  4166. zonelist->_zonerefs[j].zone_idx = 0;
  4167. }
  4168. #endif /* CONFIG_NUMA */
  4169. /*
  4170. * Boot pageset table. One per cpu which is going to be used for all
  4171. * zones and all nodes. The parameters will be set in such a way
  4172. * that an item put on a list will immediately be handed over to
  4173. * the buddy list. This is safe since pageset manipulation is done
  4174. * with interrupts disabled.
  4175. *
  4176. * The boot_pagesets must be kept even after bootup is complete for
  4177. * unused processors and/or zones. They do play a role for bootstrapping
  4178. * hotplugged processors.
  4179. *
  4180. * zoneinfo_show() and maybe other functions do
  4181. * not check if the processor is online before following the pageset pointer.
  4182. * Other parts of the kernel may not check if the zone is available.
  4183. */
  4184. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4185. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4186. static void setup_zone_pageset(struct zone *zone);
  4187. /*
  4188. * Global mutex to protect against size modification of zonelists
  4189. * as well as to serialize pageset setup for the new populated zone.
  4190. */
  4191. DEFINE_MUTEX(zonelists_mutex);
  4192. /* return values int ....just for stop_machine() */
  4193. static int __build_all_zonelists(void *data)
  4194. {
  4195. int nid;
  4196. int cpu;
  4197. pg_data_t *self = data;
  4198. #ifdef CONFIG_NUMA
  4199. memset(node_load, 0, sizeof(node_load));
  4200. #endif
  4201. if (self && !node_online(self->node_id)) {
  4202. build_zonelists(self);
  4203. }
  4204. for_each_online_node(nid) {
  4205. pg_data_t *pgdat = NODE_DATA(nid);
  4206. build_zonelists(pgdat);
  4207. }
  4208. /*
  4209. * Initialize the boot_pagesets that are going to be used
  4210. * for bootstrapping processors. The real pagesets for
  4211. * each zone will be allocated later when the per cpu
  4212. * allocator is available.
  4213. *
  4214. * boot_pagesets are used also for bootstrapping offline
  4215. * cpus if the system is already booted because the pagesets
  4216. * are needed to initialize allocators on a specific cpu too.
  4217. * F.e. the percpu allocator needs the page allocator which
  4218. * needs the percpu allocator in order to allocate its pagesets
  4219. * (a chicken-egg dilemma).
  4220. */
  4221. for_each_possible_cpu(cpu) {
  4222. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4223. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4224. /*
  4225. * We now know the "local memory node" for each node--
  4226. * i.e., the node of the first zone in the generic zonelist.
  4227. * Set up numa_mem percpu variable for on-line cpus. During
  4228. * boot, only the boot cpu should be on-line; we'll init the
  4229. * secondary cpus' numa_mem as they come on-line. During
  4230. * node/memory hotplug, we'll fixup all on-line cpus.
  4231. */
  4232. if (cpu_online(cpu))
  4233. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4234. #endif
  4235. }
  4236. return 0;
  4237. }
  4238. static noinline void __init
  4239. build_all_zonelists_init(void)
  4240. {
  4241. __build_all_zonelists(NULL);
  4242. mminit_verify_zonelist();
  4243. cpuset_init_current_mems_allowed();
  4244. }
  4245. /*
  4246. * Called with zonelists_mutex held always
  4247. * unless system_state == SYSTEM_BOOTING.
  4248. *
  4249. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4250. * [we're only called with non-NULL zone through __meminit paths] and
  4251. * (2) call of __init annotated helper build_all_zonelists_init
  4252. * [protected by SYSTEM_BOOTING].
  4253. */
  4254. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4255. {
  4256. set_zonelist_order();
  4257. if (system_state == SYSTEM_BOOTING) {
  4258. build_all_zonelists_init();
  4259. } else {
  4260. #ifdef CONFIG_MEMORY_HOTPLUG
  4261. if (zone)
  4262. setup_zone_pageset(zone);
  4263. #endif
  4264. /* we have to stop all cpus to guarantee there is no user
  4265. of zonelist */
  4266. stop_machine(__build_all_zonelists, pgdat, NULL);
  4267. /* cpuset refresh routine should be here */
  4268. }
  4269. vm_total_pages = nr_free_pagecache_pages();
  4270. /*
  4271. * Disable grouping by mobility if the number of pages in the
  4272. * system is too low to allow the mechanism to work. It would be
  4273. * more accurate, but expensive to check per-zone. This check is
  4274. * made on memory-hotadd so a system can start with mobility
  4275. * disabled and enable it later
  4276. */
  4277. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4278. page_group_by_mobility_disabled = 1;
  4279. else
  4280. page_group_by_mobility_disabled = 0;
  4281. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4282. nr_online_nodes,
  4283. zonelist_order_name[current_zonelist_order],
  4284. page_group_by_mobility_disabled ? "off" : "on",
  4285. vm_total_pages);
  4286. #ifdef CONFIG_NUMA
  4287. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4288. #endif
  4289. }
  4290. /*
  4291. * Initially all pages are reserved - free ones are freed
  4292. * up by free_all_bootmem() once the early boot process is
  4293. * done. Non-atomic initialization, single-pass.
  4294. */
  4295. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4296. unsigned long start_pfn, enum memmap_context context)
  4297. {
  4298. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4299. unsigned long end_pfn = start_pfn + size;
  4300. pg_data_t *pgdat = NODE_DATA(nid);
  4301. unsigned long pfn;
  4302. unsigned long nr_initialised = 0;
  4303. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4304. struct memblock_region *r = NULL, *tmp;
  4305. #endif
  4306. if (highest_memmap_pfn < end_pfn - 1)
  4307. highest_memmap_pfn = end_pfn - 1;
  4308. /*
  4309. * Honor reservation requested by the driver for this ZONE_DEVICE
  4310. * memory
  4311. */
  4312. if (altmap && start_pfn == altmap->base_pfn)
  4313. start_pfn += altmap->reserve;
  4314. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4315. /*
  4316. * There can be holes in boot-time mem_map[]s handed to this
  4317. * function. They do not exist on hotplugged memory.
  4318. */
  4319. if (context != MEMMAP_EARLY)
  4320. goto not_early;
  4321. if (!early_pfn_valid(pfn))
  4322. continue;
  4323. if (!early_pfn_in_nid(pfn, nid))
  4324. continue;
  4325. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4326. break;
  4327. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4328. /*
  4329. * Check given memblock attribute by firmware which can affect
  4330. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4331. * mirrored, it's an overlapped memmap init. skip it.
  4332. */
  4333. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4334. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4335. for_each_memblock(memory, tmp)
  4336. if (pfn < memblock_region_memory_end_pfn(tmp))
  4337. break;
  4338. r = tmp;
  4339. }
  4340. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4341. memblock_is_mirror(r)) {
  4342. /* already initialized as NORMAL */
  4343. pfn = memblock_region_memory_end_pfn(r);
  4344. continue;
  4345. }
  4346. }
  4347. #endif
  4348. not_early:
  4349. /*
  4350. * Mark the block movable so that blocks are reserved for
  4351. * movable at startup. This will force kernel allocations
  4352. * to reserve their blocks rather than leaking throughout
  4353. * the address space during boot when many long-lived
  4354. * kernel allocations are made.
  4355. *
  4356. * bitmap is created for zone's valid pfn range. but memmap
  4357. * can be created for invalid pages (for alignment)
  4358. * check here not to call set_pageblock_migratetype() against
  4359. * pfn out of zone.
  4360. */
  4361. if (!(pfn & (pageblock_nr_pages - 1))) {
  4362. struct page *page = pfn_to_page(pfn);
  4363. __init_single_page(page, pfn, zone, nid);
  4364. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4365. } else {
  4366. __init_single_pfn(pfn, zone, nid);
  4367. }
  4368. }
  4369. }
  4370. static void __meminit zone_init_free_lists(struct zone *zone)
  4371. {
  4372. unsigned int order, t;
  4373. for_each_migratetype_order(order, t) {
  4374. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4375. zone->free_area[order].nr_free = 0;
  4376. }
  4377. }
  4378. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4379. #define memmap_init(size, nid, zone, start_pfn) \
  4380. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4381. #endif
  4382. static int zone_batchsize(struct zone *zone)
  4383. {
  4384. #ifdef CONFIG_MMU
  4385. int batch;
  4386. /*
  4387. * The per-cpu-pages pools are set to around 1000th of the
  4388. * size of the zone. But no more than 1/2 of a meg.
  4389. *
  4390. * OK, so we don't know how big the cache is. So guess.
  4391. */
  4392. batch = zone->managed_pages / 1024;
  4393. if (batch * PAGE_SIZE > 512 * 1024)
  4394. batch = (512 * 1024) / PAGE_SIZE;
  4395. batch /= 4; /* We effectively *= 4 below */
  4396. if (batch < 1)
  4397. batch = 1;
  4398. /*
  4399. * Clamp the batch to a 2^n - 1 value. Having a power
  4400. * of 2 value was found to be more likely to have
  4401. * suboptimal cache aliasing properties in some cases.
  4402. *
  4403. * For example if 2 tasks are alternately allocating
  4404. * batches of pages, one task can end up with a lot
  4405. * of pages of one half of the possible page colors
  4406. * and the other with pages of the other colors.
  4407. */
  4408. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4409. return batch;
  4410. #else
  4411. /* The deferral and batching of frees should be suppressed under NOMMU
  4412. * conditions.
  4413. *
  4414. * The problem is that NOMMU needs to be able to allocate large chunks
  4415. * of contiguous memory as there's no hardware page translation to
  4416. * assemble apparent contiguous memory from discontiguous pages.
  4417. *
  4418. * Queueing large contiguous runs of pages for batching, however,
  4419. * causes the pages to actually be freed in smaller chunks. As there
  4420. * can be a significant delay between the individual batches being
  4421. * recycled, this leads to the once large chunks of space being
  4422. * fragmented and becoming unavailable for high-order allocations.
  4423. */
  4424. return 0;
  4425. #endif
  4426. }
  4427. /*
  4428. * pcp->high and pcp->batch values are related and dependent on one another:
  4429. * ->batch must never be higher then ->high.
  4430. * The following function updates them in a safe manner without read side
  4431. * locking.
  4432. *
  4433. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4434. * those fields changing asynchronously (acording the the above rule).
  4435. *
  4436. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4437. * outside of boot time (or some other assurance that no concurrent updaters
  4438. * exist).
  4439. */
  4440. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4441. unsigned long batch)
  4442. {
  4443. /* start with a fail safe value for batch */
  4444. pcp->batch = 1;
  4445. smp_wmb();
  4446. /* Update high, then batch, in order */
  4447. pcp->high = high;
  4448. smp_wmb();
  4449. pcp->batch = batch;
  4450. }
  4451. /* a companion to pageset_set_high() */
  4452. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4453. {
  4454. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4455. }
  4456. static void pageset_init(struct per_cpu_pageset *p)
  4457. {
  4458. struct per_cpu_pages *pcp;
  4459. int migratetype;
  4460. memset(p, 0, sizeof(*p));
  4461. pcp = &p->pcp;
  4462. pcp->count = 0;
  4463. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4464. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4465. }
  4466. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4467. {
  4468. pageset_init(p);
  4469. pageset_set_batch(p, batch);
  4470. }
  4471. /*
  4472. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4473. * to the value high for the pageset p.
  4474. */
  4475. static void pageset_set_high(struct per_cpu_pageset *p,
  4476. unsigned long high)
  4477. {
  4478. unsigned long batch = max(1UL, high / 4);
  4479. if ((high / 4) > (PAGE_SHIFT * 8))
  4480. batch = PAGE_SHIFT * 8;
  4481. pageset_update(&p->pcp, high, batch);
  4482. }
  4483. static void pageset_set_high_and_batch(struct zone *zone,
  4484. struct per_cpu_pageset *pcp)
  4485. {
  4486. if (percpu_pagelist_fraction)
  4487. pageset_set_high(pcp,
  4488. (zone->managed_pages /
  4489. percpu_pagelist_fraction));
  4490. else
  4491. pageset_set_batch(pcp, zone_batchsize(zone));
  4492. }
  4493. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4494. {
  4495. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4496. pageset_init(pcp);
  4497. pageset_set_high_and_batch(zone, pcp);
  4498. }
  4499. static void __meminit setup_zone_pageset(struct zone *zone)
  4500. {
  4501. int cpu;
  4502. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4503. for_each_possible_cpu(cpu)
  4504. zone_pageset_init(zone, cpu);
  4505. }
  4506. /*
  4507. * Allocate per cpu pagesets and initialize them.
  4508. * Before this call only boot pagesets were available.
  4509. */
  4510. void __init setup_per_cpu_pageset(void)
  4511. {
  4512. struct pglist_data *pgdat;
  4513. struct zone *zone;
  4514. for_each_populated_zone(zone)
  4515. setup_zone_pageset(zone);
  4516. for_each_online_pgdat(pgdat)
  4517. pgdat->per_cpu_nodestats =
  4518. alloc_percpu(struct per_cpu_nodestat);
  4519. }
  4520. static __meminit void zone_pcp_init(struct zone *zone)
  4521. {
  4522. /*
  4523. * per cpu subsystem is not up at this point. The following code
  4524. * relies on the ability of the linker to provide the
  4525. * offset of a (static) per cpu variable into the per cpu area.
  4526. */
  4527. zone->pageset = &boot_pageset;
  4528. if (populated_zone(zone))
  4529. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4530. zone->name, zone->present_pages,
  4531. zone_batchsize(zone));
  4532. }
  4533. int __meminit init_currently_empty_zone(struct zone *zone,
  4534. unsigned long zone_start_pfn,
  4535. unsigned long size)
  4536. {
  4537. struct pglist_data *pgdat = zone->zone_pgdat;
  4538. pgdat->nr_zones = zone_idx(zone) + 1;
  4539. zone->zone_start_pfn = zone_start_pfn;
  4540. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4541. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4542. pgdat->node_id,
  4543. (unsigned long)zone_idx(zone),
  4544. zone_start_pfn, (zone_start_pfn + size));
  4545. zone_init_free_lists(zone);
  4546. zone->initialized = 1;
  4547. return 0;
  4548. }
  4549. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4550. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4551. /*
  4552. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4553. */
  4554. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4555. struct mminit_pfnnid_cache *state)
  4556. {
  4557. unsigned long start_pfn, end_pfn;
  4558. int nid;
  4559. if (state->last_start <= pfn && pfn < state->last_end)
  4560. return state->last_nid;
  4561. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4562. if (nid != -1) {
  4563. state->last_start = start_pfn;
  4564. state->last_end = end_pfn;
  4565. state->last_nid = nid;
  4566. }
  4567. return nid;
  4568. }
  4569. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4570. /**
  4571. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4572. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4573. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4574. *
  4575. * If an architecture guarantees that all ranges registered contain no holes
  4576. * and may be freed, this this function may be used instead of calling
  4577. * memblock_free_early_nid() manually.
  4578. */
  4579. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4580. {
  4581. unsigned long start_pfn, end_pfn;
  4582. int i, this_nid;
  4583. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4584. start_pfn = min(start_pfn, max_low_pfn);
  4585. end_pfn = min(end_pfn, max_low_pfn);
  4586. if (start_pfn < end_pfn)
  4587. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4588. (end_pfn - start_pfn) << PAGE_SHIFT,
  4589. this_nid);
  4590. }
  4591. }
  4592. /**
  4593. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4594. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4595. *
  4596. * If an architecture guarantees that all ranges registered contain no holes and may
  4597. * be freed, this function may be used instead of calling memory_present() manually.
  4598. */
  4599. void __init sparse_memory_present_with_active_regions(int nid)
  4600. {
  4601. unsigned long start_pfn, end_pfn;
  4602. int i, this_nid;
  4603. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4604. memory_present(this_nid, start_pfn, end_pfn);
  4605. }
  4606. /**
  4607. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4608. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4609. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4610. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4611. *
  4612. * It returns the start and end page frame of a node based on information
  4613. * provided by memblock_set_node(). If called for a node
  4614. * with no available memory, a warning is printed and the start and end
  4615. * PFNs will be 0.
  4616. */
  4617. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4618. unsigned long *start_pfn, unsigned long *end_pfn)
  4619. {
  4620. unsigned long this_start_pfn, this_end_pfn;
  4621. int i;
  4622. *start_pfn = -1UL;
  4623. *end_pfn = 0;
  4624. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4625. *start_pfn = min(*start_pfn, this_start_pfn);
  4626. *end_pfn = max(*end_pfn, this_end_pfn);
  4627. }
  4628. if (*start_pfn == -1UL)
  4629. *start_pfn = 0;
  4630. }
  4631. /*
  4632. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4633. * assumption is made that zones within a node are ordered in monotonic
  4634. * increasing memory addresses so that the "highest" populated zone is used
  4635. */
  4636. static void __init find_usable_zone_for_movable(void)
  4637. {
  4638. int zone_index;
  4639. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4640. if (zone_index == ZONE_MOVABLE)
  4641. continue;
  4642. if (arch_zone_highest_possible_pfn[zone_index] >
  4643. arch_zone_lowest_possible_pfn[zone_index])
  4644. break;
  4645. }
  4646. VM_BUG_ON(zone_index == -1);
  4647. movable_zone = zone_index;
  4648. }
  4649. /*
  4650. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4651. * because it is sized independent of architecture. Unlike the other zones,
  4652. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4653. * in each node depending on the size of each node and how evenly kernelcore
  4654. * is distributed. This helper function adjusts the zone ranges
  4655. * provided by the architecture for a given node by using the end of the
  4656. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4657. * zones within a node are in order of monotonic increases memory addresses
  4658. */
  4659. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4660. unsigned long zone_type,
  4661. unsigned long node_start_pfn,
  4662. unsigned long node_end_pfn,
  4663. unsigned long *zone_start_pfn,
  4664. unsigned long *zone_end_pfn)
  4665. {
  4666. /* Only adjust if ZONE_MOVABLE is on this node */
  4667. if (zone_movable_pfn[nid]) {
  4668. /* Size ZONE_MOVABLE */
  4669. if (zone_type == ZONE_MOVABLE) {
  4670. *zone_start_pfn = zone_movable_pfn[nid];
  4671. *zone_end_pfn = min(node_end_pfn,
  4672. arch_zone_highest_possible_pfn[movable_zone]);
  4673. /* Adjust for ZONE_MOVABLE starting within this range */
  4674. } else if (!mirrored_kernelcore &&
  4675. *zone_start_pfn < zone_movable_pfn[nid] &&
  4676. *zone_end_pfn > zone_movable_pfn[nid]) {
  4677. *zone_end_pfn = zone_movable_pfn[nid];
  4678. /* Check if this whole range is within ZONE_MOVABLE */
  4679. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4680. *zone_start_pfn = *zone_end_pfn;
  4681. }
  4682. }
  4683. /*
  4684. * Return the number of pages a zone spans in a node, including holes
  4685. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4686. */
  4687. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4688. unsigned long zone_type,
  4689. unsigned long node_start_pfn,
  4690. unsigned long node_end_pfn,
  4691. unsigned long *zone_start_pfn,
  4692. unsigned long *zone_end_pfn,
  4693. unsigned long *ignored)
  4694. {
  4695. /* When hotadd a new node from cpu_up(), the node should be empty */
  4696. if (!node_start_pfn && !node_end_pfn)
  4697. return 0;
  4698. /* Get the start and end of the zone */
  4699. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4700. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4701. adjust_zone_range_for_zone_movable(nid, zone_type,
  4702. node_start_pfn, node_end_pfn,
  4703. zone_start_pfn, zone_end_pfn);
  4704. /* Check that this node has pages within the zone's required range */
  4705. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4706. return 0;
  4707. /* Move the zone boundaries inside the node if necessary */
  4708. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4709. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4710. /* Return the spanned pages */
  4711. return *zone_end_pfn - *zone_start_pfn;
  4712. }
  4713. /*
  4714. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4715. * then all holes in the requested range will be accounted for.
  4716. */
  4717. unsigned long __meminit __absent_pages_in_range(int nid,
  4718. unsigned long range_start_pfn,
  4719. unsigned long range_end_pfn)
  4720. {
  4721. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4722. unsigned long start_pfn, end_pfn;
  4723. int i;
  4724. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4725. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4726. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4727. nr_absent -= end_pfn - start_pfn;
  4728. }
  4729. return nr_absent;
  4730. }
  4731. /**
  4732. * absent_pages_in_range - Return number of page frames in holes within a range
  4733. * @start_pfn: The start PFN to start searching for holes
  4734. * @end_pfn: The end PFN to stop searching for holes
  4735. *
  4736. * It returns the number of pages frames in memory holes within a range.
  4737. */
  4738. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4739. unsigned long end_pfn)
  4740. {
  4741. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4742. }
  4743. /* Return the number of page frames in holes in a zone on a node */
  4744. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4745. unsigned long zone_type,
  4746. unsigned long node_start_pfn,
  4747. unsigned long node_end_pfn,
  4748. unsigned long *ignored)
  4749. {
  4750. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4751. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4752. unsigned long zone_start_pfn, zone_end_pfn;
  4753. unsigned long nr_absent;
  4754. /* When hotadd a new node from cpu_up(), the node should be empty */
  4755. if (!node_start_pfn && !node_end_pfn)
  4756. return 0;
  4757. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4758. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4759. adjust_zone_range_for_zone_movable(nid, zone_type,
  4760. node_start_pfn, node_end_pfn,
  4761. &zone_start_pfn, &zone_end_pfn);
  4762. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4763. /*
  4764. * ZONE_MOVABLE handling.
  4765. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4766. * and vice versa.
  4767. */
  4768. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  4769. unsigned long start_pfn, end_pfn;
  4770. struct memblock_region *r;
  4771. for_each_memblock(memory, r) {
  4772. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4773. zone_start_pfn, zone_end_pfn);
  4774. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4775. zone_start_pfn, zone_end_pfn);
  4776. if (zone_type == ZONE_MOVABLE &&
  4777. memblock_is_mirror(r))
  4778. nr_absent += end_pfn - start_pfn;
  4779. if (zone_type == ZONE_NORMAL &&
  4780. !memblock_is_mirror(r))
  4781. nr_absent += end_pfn - start_pfn;
  4782. }
  4783. }
  4784. return nr_absent;
  4785. }
  4786. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4787. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4788. unsigned long zone_type,
  4789. unsigned long node_start_pfn,
  4790. unsigned long node_end_pfn,
  4791. unsigned long *zone_start_pfn,
  4792. unsigned long *zone_end_pfn,
  4793. unsigned long *zones_size)
  4794. {
  4795. unsigned int zone;
  4796. *zone_start_pfn = node_start_pfn;
  4797. for (zone = 0; zone < zone_type; zone++)
  4798. *zone_start_pfn += zones_size[zone];
  4799. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4800. return zones_size[zone_type];
  4801. }
  4802. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4803. unsigned long zone_type,
  4804. unsigned long node_start_pfn,
  4805. unsigned long node_end_pfn,
  4806. unsigned long *zholes_size)
  4807. {
  4808. if (!zholes_size)
  4809. return 0;
  4810. return zholes_size[zone_type];
  4811. }
  4812. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4813. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4814. unsigned long node_start_pfn,
  4815. unsigned long node_end_pfn,
  4816. unsigned long *zones_size,
  4817. unsigned long *zholes_size)
  4818. {
  4819. unsigned long realtotalpages = 0, totalpages = 0;
  4820. enum zone_type i;
  4821. for (i = 0; i < MAX_NR_ZONES; i++) {
  4822. struct zone *zone = pgdat->node_zones + i;
  4823. unsigned long zone_start_pfn, zone_end_pfn;
  4824. unsigned long size, real_size;
  4825. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4826. node_start_pfn,
  4827. node_end_pfn,
  4828. &zone_start_pfn,
  4829. &zone_end_pfn,
  4830. zones_size);
  4831. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4832. node_start_pfn, node_end_pfn,
  4833. zholes_size);
  4834. if (size)
  4835. zone->zone_start_pfn = zone_start_pfn;
  4836. else
  4837. zone->zone_start_pfn = 0;
  4838. zone->spanned_pages = size;
  4839. zone->present_pages = real_size;
  4840. totalpages += size;
  4841. realtotalpages += real_size;
  4842. }
  4843. pgdat->node_spanned_pages = totalpages;
  4844. pgdat->node_present_pages = realtotalpages;
  4845. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4846. realtotalpages);
  4847. }
  4848. #ifndef CONFIG_SPARSEMEM
  4849. /*
  4850. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4851. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4852. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4853. * round what is now in bits to nearest long in bits, then return it in
  4854. * bytes.
  4855. */
  4856. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4857. {
  4858. unsigned long usemapsize;
  4859. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4860. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4861. usemapsize = usemapsize >> pageblock_order;
  4862. usemapsize *= NR_PAGEBLOCK_BITS;
  4863. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4864. return usemapsize / 8;
  4865. }
  4866. static void __init setup_usemap(struct pglist_data *pgdat,
  4867. struct zone *zone,
  4868. unsigned long zone_start_pfn,
  4869. unsigned long zonesize)
  4870. {
  4871. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4872. zone->pageblock_flags = NULL;
  4873. if (usemapsize)
  4874. zone->pageblock_flags =
  4875. memblock_virt_alloc_node_nopanic(usemapsize,
  4876. pgdat->node_id);
  4877. }
  4878. #else
  4879. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4880. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4881. #endif /* CONFIG_SPARSEMEM */
  4882. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4883. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4884. void __paginginit set_pageblock_order(void)
  4885. {
  4886. unsigned int order;
  4887. /* Check that pageblock_nr_pages has not already been setup */
  4888. if (pageblock_order)
  4889. return;
  4890. if (HPAGE_SHIFT > PAGE_SHIFT)
  4891. order = HUGETLB_PAGE_ORDER;
  4892. else
  4893. order = MAX_ORDER - 1;
  4894. /*
  4895. * Assume the largest contiguous order of interest is a huge page.
  4896. * This value may be variable depending on boot parameters on IA64 and
  4897. * powerpc.
  4898. */
  4899. pageblock_order = order;
  4900. }
  4901. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4902. /*
  4903. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4904. * is unused as pageblock_order is set at compile-time. See
  4905. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4906. * the kernel config
  4907. */
  4908. void __paginginit set_pageblock_order(void)
  4909. {
  4910. }
  4911. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4912. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4913. unsigned long present_pages)
  4914. {
  4915. unsigned long pages = spanned_pages;
  4916. /*
  4917. * Provide a more accurate estimation if there are holes within
  4918. * the zone and SPARSEMEM is in use. If there are holes within the
  4919. * zone, each populated memory region may cost us one or two extra
  4920. * memmap pages due to alignment because memmap pages for each
  4921. * populated regions may not naturally algined on page boundary.
  4922. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4923. */
  4924. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4925. IS_ENABLED(CONFIG_SPARSEMEM))
  4926. pages = present_pages;
  4927. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4928. }
  4929. /*
  4930. * Set up the zone data structures:
  4931. * - mark all pages reserved
  4932. * - mark all memory queues empty
  4933. * - clear the memory bitmaps
  4934. *
  4935. * NOTE: pgdat should get zeroed by caller.
  4936. */
  4937. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  4938. {
  4939. enum zone_type j;
  4940. int nid = pgdat->node_id;
  4941. int ret;
  4942. pgdat_resize_init(pgdat);
  4943. #ifdef CONFIG_NUMA_BALANCING
  4944. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4945. pgdat->numabalancing_migrate_nr_pages = 0;
  4946. pgdat->numabalancing_migrate_next_window = jiffies;
  4947. #endif
  4948. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4949. spin_lock_init(&pgdat->split_queue_lock);
  4950. INIT_LIST_HEAD(&pgdat->split_queue);
  4951. pgdat->split_queue_len = 0;
  4952. #endif
  4953. init_waitqueue_head(&pgdat->kswapd_wait);
  4954. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4955. #ifdef CONFIG_COMPACTION
  4956. init_waitqueue_head(&pgdat->kcompactd_wait);
  4957. #endif
  4958. pgdat_page_ext_init(pgdat);
  4959. spin_lock_init(&pgdat->lru_lock);
  4960. lruvec_init(node_lruvec(pgdat));
  4961. for (j = 0; j < MAX_NR_ZONES; j++) {
  4962. struct zone *zone = pgdat->node_zones + j;
  4963. unsigned long size, realsize, freesize, memmap_pages;
  4964. unsigned long zone_start_pfn = zone->zone_start_pfn;
  4965. size = zone->spanned_pages;
  4966. realsize = freesize = zone->present_pages;
  4967. /*
  4968. * Adjust freesize so that it accounts for how much memory
  4969. * is used by this zone for memmap. This affects the watermark
  4970. * and per-cpu initialisations
  4971. */
  4972. memmap_pages = calc_memmap_size(size, realsize);
  4973. if (!is_highmem_idx(j)) {
  4974. if (freesize >= memmap_pages) {
  4975. freesize -= memmap_pages;
  4976. if (memmap_pages)
  4977. printk(KERN_DEBUG
  4978. " %s zone: %lu pages used for memmap\n",
  4979. zone_names[j], memmap_pages);
  4980. } else
  4981. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  4982. zone_names[j], memmap_pages, freesize);
  4983. }
  4984. /* Account for reserved pages */
  4985. if (j == 0 && freesize > dma_reserve) {
  4986. freesize -= dma_reserve;
  4987. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4988. zone_names[0], dma_reserve);
  4989. }
  4990. if (!is_highmem_idx(j))
  4991. nr_kernel_pages += freesize;
  4992. /* Charge for highmem memmap if there are enough kernel pages */
  4993. else if (nr_kernel_pages > memmap_pages * 2)
  4994. nr_kernel_pages -= memmap_pages;
  4995. nr_all_pages += freesize;
  4996. /*
  4997. * Set an approximate value for lowmem here, it will be adjusted
  4998. * when the bootmem allocator frees pages into the buddy system.
  4999. * And all highmem pages will be managed by the buddy system.
  5000. */
  5001. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5002. #ifdef CONFIG_NUMA
  5003. zone->node = nid;
  5004. #endif
  5005. zone->name = zone_names[j];
  5006. zone->zone_pgdat = pgdat;
  5007. spin_lock_init(&zone->lock);
  5008. zone_seqlock_init(zone);
  5009. zone_pcp_init(zone);
  5010. if (!size)
  5011. continue;
  5012. set_pageblock_order();
  5013. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5014. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5015. BUG_ON(ret);
  5016. memmap_init(size, nid, j, zone_start_pfn);
  5017. }
  5018. }
  5019. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5020. {
  5021. unsigned long __maybe_unused start = 0;
  5022. unsigned long __maybe_unused offset = 0;
  5023. /* Skip empty nodes */
  5024. if (!pgdat->node_spanned_pages)
  5025. return;
  5026. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5027. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5028. offset = pgdat->node_start_pfn - start;
  5029. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5030. if (!pgdat->node_mem_map) {
  5031. unsigned long size, end;
  5032. struct page *map;
  5033. /*
  5034. * The zone's endpoints aren't required to be MAX_ORDER
  5035. * aligned but the node_mem_map endpoints must be in order
  5036. * for the buddy allocator to function correctly.
  5037. */
  5038. end = pgdat_end_pfn(pgdat);
  5039. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5040. size = (end - start) * sizeof(struct page);
  5041. map = alloc_remap(pgdat->node_id, size);
  5042. if (!map)
  5043. map = memblock_virt_alloc_node_nopanic(size,
  5044. pgdat->node_id);
  5045. pgdat->node_mem_map = map + offset;
  5046. }
  5047. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5048. /*
  5049. * With no DISCONTIG, the global mem_map is just set as node 0's
  5050. */
  5051. if (pgdat == NODE_DATA(0)) {
  5052. mem_map = NODE_DATA(0)->node_mem_map;
  5053. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5054. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5055. mem_map -= offset;
  5056. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5057. }
  5058. #endif
  5059. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5060. }
  5061. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5062. unsigned long node_start_pfn, unsigned long *zholes_size)
  5063. {
  5064. pg_data_t *pgdat = NODE_DATA(nid);
  5065. unsigned long start_pfn = 0;
  5066. unsigned long end_pfn = 0;
  5067. /* pg_data_t should be reset to zero when it's allocated */
  5068. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5069. reset_deferred_meminit(pgdat);
  5070. pgdat->node_id = nid;
  5071. pgdat->node_start_pfn = node_start_pfn;
  5072. pgdat->per_cpu_nodestats = NULL;
  5073. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5074. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5075. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5076. (u64)start_pfn << PAGE_SHIFT,
  5077. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5078. #else
  5079. start_pfn = node_start_pfn;
  5080. #endif
  5081. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5082. zones_size, zholes_size);
  5083. alloc_node_mem_map(pgdat);
  5084. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5085. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5086. nid, (unsigned long)pgdat,
  5087. (unsigned long)pgdat->node_mem_map);
  5088. #endif
  5089. free_area_init_core(pgdat);
  5090. }
  5091. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5092. #if MAX_NUMNODES > 1
  5093. /*
  5094. * Figure out the number of possible node ids.
  5095. */
  5096. void __init setup_nr_node_ids(void)
  5097. {
  5098. unsigned int highest;
  5099. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5100. nr_node_ids = highest + 1;
  5101. }
  5102. #endif
  5103. /**
  5104. * node_map_pfn_alignment - determine the maximum internode alignment
  5105. *
  5106. * This function should be called after node map is populated and sorted.
  5107. * It calculates the maximum power of two alignment which can distinguish
  5108. * all the nodes.
  5109. *
  5110. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5111. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5112. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5113. * shifted, 1GiB is enough and this function will indicate so.
  5114. *
  5115. * This is used to test whether pfn -> nid mapping of the chosen memory
  5116. * model has fine enough granularity to avoid incorrect mapping for the
  5117. * populated node map.
  5118. *
  5119. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5120. * requirement (single node).
  5121. */
  5122. unsigned long __init node_map_pfn_alignment(void)
  5123. {
  5124. unsigned long accl_mask = 0, last_end = 0;
  5125. unsigned long start, end, mask;
  5126. int last_nid = -1;
  5127. int i, nid;
  5128. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5129. if (!start || last_nid < 0 || last_nid == nid) {
  5130. last_nid = nid;
  5131. last_end = end;
  5132. continue;
  5133. }
  5134. /*
  5135. * Start with a mask granular enough to pin-point to the
  5136. * start pfn and tick off bits one-by-one until it becomes
  5137. * too coarse to separate the current node from the last.
  5138. */
  5139. mask = ~((1 << __ffs(start)) - 1);
  5140. while (mask && last_end <= (start & (mask << 1)))
  5141. mask <<= 1;
  5142. /* accumulate all internode masks */
  5143. accl_mask |= mask;
  5144. }
  5145. /* convert mask to number of pages */
  5146. return ~accl_mask + 1;
  5147. }
  5148. /* Find the lowest pfn for a node */
  5149. static unsigned long __init find_min_pfn_for_node(int nid)
  5150. {
  5151. unsigned long min_pfn = ULONG_MAX;
  5152. unsigned long start_pfn;
  5153. int i;
  5154. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5155. min_pfn = min(min_pfn, start_pfn);
  5156. if (min_pfn == ULONG_MAX) {
  5157. pr_warn("Could not find start_pfn for node %d\n", nid);
  5158. return 0;
  5159. }
  5160. return min_pfn;
  5161. }
  5162. /**
  5163. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5164. *
  5165. * It returns the minimum PFN based on information provided via
  5166. * memblock_set_node().
  5167. */
  5168. unsigned long __init find_min_pfn_with_active_regions(void)
  5169. {
  5170. return find_min_pfn_for_node(MAX_NUMNODES);
  5171. }
  5172. /*
  5173. * early_calculate_totalpages()
  5174. * Sum pages in active regions for movable zone.
  5175. * Populate N_MEMORY for calculating usable_nodes.
  5176. */
  5177. static unsigned long __init early_calculate_totalpages(void)
  5178. {
  5179. unsigned long totalpages = 0;
  5180. unsigned long start_pfn, end_pfn;
  5181. int i, nid;
  5182. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5183. unsigned long pages = end_pfn - start_pfn;
  5184. totalpages += pages;
  5185. if (pages)
  5186. node_set_state(nid, N_MEMORY);
  5187. }
  5188. return totalpages;
  5189. }
  5190. /*
  5191. * Find the PFN the Movable zone begins in each node. Kernel memory
  5192. * is spread evenly between nodes as long as the nodes have enough
  5193. * memory. When they don't, some nodes will have more kernelcore than
  5194. * others
  5195. */
  5196. static void __init find_zone_movable_pfns_for_nodes(void)
  5197. {
  5198. int i, nid;
  5199. unsigned long usable_startpfn;
  5200. unsigned long kernelcore_node, kernelcore_remaining;
  5201. /* save the state before borrow the nodemask */
  5202. nodemask_t saved_node_state = node_states[N_MEMORY];
  5203. unsigned long totalpages = early_calculate_totalpages();
  5204. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5205. struct memblock_region *r;
  5206. /* Need to find movable_zone earlier when movable_node is specified. */
  5207. find_usable_zone_for_movable();
  5208. /*
  5209. * If movable_node is specified, ignore kernelcore and movablecore
  5210. * options.
  5211. */
  5212. if (movable_node_is_enabled()) {
  5213. for_each_memblock(memory, r) {
  5214. if (!memblock_is_hotpluggable(r))
  5215. continue;
  5216. nid = r->nid;
  5217. usable_startpfn = PFN_DOWN(r->base);
  5218. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5219. min(usable_startpfn, zone_movable_pfn[nid]) :
  5220. usable_startpfn;
  5221. }
  5222. goto out2;
  5223. }
  5224. /*
  5225. * If kernelcore=mirror is specified, ignore movablecore option
  5226. */
  5227. if (mirrored_kernelcore) {
  5228. bool mem_below_4gb_not_mirrored = false;
  5229. for_each_memblock(memory, r) {
  5230. if (memblock_is_mirror(r))
  5231. continue;
  5232. nid = r->nid;
  5233. usable_startpfn = memblock_region_memory_base_pfn(r);
  5234. if (usable_startpfn < 0x100000) {
  5235. mem_below_4gb_not_mirrored = true;
  5236. continue;
  5237. }
  5238. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5239. min(usable_startpfn, zone_movable_pfn[nid]) :
  5240. usable_startpfn;
  5241. }
  5242. if (mem_below_4gb_not_mirrored)
  5243. pr_warn("This configuration results in unmirrored kernel memory.");
  5244. goto out2;
  5245. }
  5246. /*
  5247. * If movablecore=nn[KMG] was specified, calculate what size of
  5248. * kernelcore that corresponds so that memory usable for
  5249. * any allocation type is evenly spread. If both kernelcore
  5250. * and movablecore are specified, then the value of kernelcore
  5251. * will be used for required_kernelcore if it's greater than
  5252. * what movablecore would have allowed.
  5253. */
  5254. if (required_movablecore) {
  5255. unsigned long corepages;
  5256. /*
  5257. * Round-up so that ZONE_MOVABLE is at least as large as what
  5258. * was requested by the user
  5259. */
  5260. required_movablecore =
  5261. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5262. required_movablecore = min(totalpages, required_movablecore);
  5263. corepages = totalpages - required_movablecore;
  5264. required_kernelcore = max(required_kernelcore, corepages);
  5265. }
  5266. /*
  5267. * If kernelcore was not specified or kernelcore size is larger
  5268. * than totalpages, there is no ZONE_MOVABLE.
  5269. */
  5270. if (!required_kernelcore || required_kernelcore >= totalpages)
  5271. goto out;
  5272. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5273. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5274. restart:
  5275. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5276. kernelcore_node = required_kernelcore / usable_nodes;
  5277. for_each_node_state(nid, N_MEMORY) {
  5278. unsigned long start_pfn, end_pfn;
  5279. /*
  5280. * Recalculate kernelcore_node if the division per node
  5281. * now exceeds what is necessary to satisfy the requested
  5282. * amount of memory for the kernel
  5283. */
  5284. if (required_kernelcore < kernelcore_node)
  5285. kernelcore_node = required_kernelcore / usable_nodes;
  5286. /*
  5287. * As the map is walked, we track how much memory is usable
  5288. * by the kernel using kernelcore_remaining. When it is
  5289. * 0, the rest of the node is usable by ZONE_MOVABLE
  5290. */
  5291. kernelcore_remaining = kernelcore_node;
  5292. /* Go through each range of PFNs within this node */
  5293. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5294. unsigned long size_pages;
  5295. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5296. if (start_pfn >= end_pfn)
  5297. continue;
  5298. /* Account for what is only usable for kernelcore */
  5299. if (start_pfn < usable_startpfn) {
  5300. unsigned long kernel_pages;
  5301. kernel_pages = min(end_pfn, usable_startpfn)
  5302. - start_pfn;
  5303. kernelcore_remaining -= min(kernel_pages,
  5304. kernelcore_remaining);
  5305. required_kernelcore -= min(kernel_pages,
  5306. required_kernelcore);
  5307. /* Continue if range is now fully accounted */
  5308. if (end_pfn <= usable_startpfn) {
  5309. /*
  5310. * Push zone_movable_pfn to the end so
  5311. * that if we have to rebalance
  5312. * kernelcore across nodes, we will
  5313. * not double account here
  5314. */
  5315. zone_movable_pfn[nid] = end_pfn;
  5316. continue;
  5317. }
  5318. start_pfn = usable_startpfn;
  5319. }
  5320. /*
  5321. * The usable PFN range for ZONE_MOVABLE is from
  5322. * start_pfn->end_pfn. Calculate size_pages as the
  5323. * number of pages used as kernelcore
  5324. */
  5325. size_pages = end_pfn - start_pfn;
  5326. if (size_pages > kernelcore_remaining)
  5327. size_pages = kernelcore_remaining;
  5328. zone_movable_pfn[nid] = start_pfn + size_pages;
  5329. /*
  5330. * Some kernelcore has been met, update counts and
  5331. * break if the kernelcore for this node has been
  5332. * satisfied
  5333. */
  5334. required_kernelcore -= min(required_kernelcore,
  5335. size_pages);
  5336. kernelcore_remaining -= size_pages;
  5337. if (!kernelcore_remaining)
  5338. break;
  5339. }
  5340. }
  5341. /*
  5342. * If there is still required_kernelcore, we do another pass with one
  5343. * less node in the count. This will push zone_movable_pfn[nid] further
  5344. * along on the nodes that still have memory until kernelcore is
  5345. * satisfied
  5346. */
  5347. usable_nodes--;
  5348. if (usable_nodes && required_kernelcore > usable_nodes)
  5349. goto restart;
  5350. out2:
  5351. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5352. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5353. zone_movable_pfn[nid] =
  5354. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5355. out:
  5356. /* restore the node_state */
  5357. node_states[N_MEMORY] = saved_node_state;
  5358. }
  5359. /* Any regular or high memory on that node ? */
  5360. static void check_for_memory(pg_data_t *pgdat, int nid)
  5361. {
  5362. enum zone_type zone_type;
  5363. if (N_MEMORY == N_NORMAL_MEMORY)
  5364. return;
  5365. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5366. struct zone *zone = &pgdat->node_zones[zone_type];
  5367. if (populated_zone(zone)) {
  5368. node_set_state(nid, N_HIGH_MEMORY);
  5369. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5370. zone_type <= ZONE_NORMAL)
  5371. node_set_state(nid, N_NORMAL_MEMORY);
  5372. break;
  5373. }
  5374. }
  5375. }
  5376. /**
  5377. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5378. * @max_zone_pfn: an array of max PFNs for each zone
  5379. *
  5380. * This will call free_area_init_node() for each active node in the system.
  5381. * Using the page ranges provided by memblock_set_node(), the size of each
  5382. * zone in each node and their holes is calculated. If the maximum PFN
  5383. * between two adjacent zones match, it is assumed that the zone is empty.
  5384. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5385. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5386. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5387. * at arch_max_dma_pfn.
  5388. */
  5389. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5390. {
  5391. unsigned long start_pfn, end_pfn;
  5392. int i, nid;
  5393. /* Record where the zone boundaries are */
  5394. memset(arch_zone_lowest_possible_pfn, 0,
  5395. sizeof(arch_zone_lowest_possible_pfn));
  5396. memset(arch_zone_highest_possible_pfn, 0,
  5397. sizeof(arch_zone_highest_possible_pfn));
  5398. start_pfn = find_min_pfn_with_active_regions();
  5399. for (i = 0; i < MAX_NR_ZONES; i++) {
  5400. if (i == ZONE_MOVABLE)
  5401. continue;
  5402. end_pfn = max(max_zone_pfn[i], start_pfn);
  5403. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5404. arch_zone_highest_possible_pfn[i] = end_pfn;
  5405. start_pfn = end_pfn;
  5406. }
  5407. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5408. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5409. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5410. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5411. find_zone_movable_pfns_for_nodes();
  5412. /* Print out the zone ranges */
  5413. pr_info("Zone ranges:\n");
  5414. for (i = 0; i < MAX_NR_ZONES; i++) {
  5415. if (i == ZONE_MOVABLE)
  5416. continue;
  5417. pr_info(" %-8s ", zone_names[i]);
  5418. if (arch_zone_lowest_possible_pfn[i] ==
  5419. arch_zone_highest_possible_pfn[i])
  5420. pr_cont("empty\n");
  5421. else
  5422. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5423. (u64)arch_zone_lowest_possible_pfn[i]
  5424. << PAGE_SHIFT,
  5425. ((u64)arch_zone_highest_possible_pfn[i]
  5426. << PAGE_SHIFT) - 1);
  5427. }
  5428. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5429. pr_info("Movable zone start for each node\n");
  5430. for (i = 0; i < MAX_NUMNODES; i++) {
  5431. if (zone_movable_pfn[i])
  5432. pr_info(" Node %d: %#018Lx\n", i,
  5433. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5434. }
  5435. /* Print out the early node map */
  5436. pr_info("Early memory node ranges\n");
  5437. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5438. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5439. (u64)start_pfn << PAGE_SHIFT,
  5440. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5441. /* Initialise every node */
  5442. mminit_verify_pageflags_layout();
  5443. setup_nr_node_ids();
  5444. for_each_online_node(nid) {
  5445. pg_data_t *pgdat = NODE_DATA(nid);
  5446. free_area_init_node(nid, NULL,
  5447. find_min_pfn_for_node(nid), NULL);
  5448. /* Any memory on that node */
  5449. if (pgdat->node_present_pages)
  5450. node_set_state(nid, N_MEMORY);
  5451. check_for_memory(pgdat, nid);
  5452. }
  5453. }
  5454. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5455. {
  5456. unsigned long long coremem;
  5457. if (!p)
  5458. return -EINVAL;
  5459. coremem = memparse(p, &p);
  5460. *core = coremem >> PAGE_SHIFT;
  5461. /* Paranoid check that UL is enough for the coremem value */
  5462. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5463. return 0;
  5464. }
  5465. /*
  5466. * kernelcore=size sets the amount of memory for use for allocations that
  5467. * cannot be reclaimed or migrated.
  5468. */
  5469. static int __init cmdline_parse_kernelcore(char *p)
  5470. {
  5471. /* parse kernelcore=mirror */
  5472. if (parse_option_str(p, "mirror")) {
  5473. mirrored_kernelcore = true;
  5474. return 0;
  5475. }
  5476. return cmdline_parse_core(p, &required_kernelcore);
  5477. }
  5478. /*
  5479. * movablecore=size sets the amount of memory for use for allocations that
  5480. * can be reclaimed or migrated.
  5481. */
  5482. static int __init cmdline_parse_movablecore(char *p)
  5483. {
  5484. return cmdline_parse_core(p, &required_movablecore);
  5485. }
  5486. early_param("kernelcore", cmdline_parse_kernelcore);
  5487. early_param("movablecore", cmdline_parse_movablecore);
  5488. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5489. void adjust_managed_page_count(struct page *page, long count)
  5490. {
  5491. spin_lock(&managed_page_count_lock);
  5492. page_zone(page)->managed_pages += count;
  5493. totalram_pages += count;
  5494. #ifdef CONFIG_HIGHMEM
  5495. if (PageHighMem(page))
  5496. totalhigh_pages += count;
  5497. #endif
  5498. spin_unlock(&managed_page_count_lock);
  5499. }
  5500. EXPORT_SYMBOL(adjust_managed_page_count);
  5501. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5502. {
  5503. void *pos;
  5504. unsigned long pages = 0;
  5505. start = (void *)PAGE_ALIGN((unsigned long)start);
  5506. end = (void *)((unsigned long)end & PAGE_MASK);
  5507. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5508. if ((unsigned int)poison <= 0xFF)
  5509. memset(pos, poison, PAGE_SIZE);
  5510. free_reserved_page(virt_to_page(pos));
  5511. }
  5512. if (pages && s)
  5513. pr_info("Freeing %s memory: %ldK\n",
  5514. s, pages << (PAGE_SHIFT - 10));
  5515. return pages;
  5516. }
  5517. EXPORT_SYMBOL(free_reserved_area);
  5518. #ifdef CONFIG_HIGHMEM
  5519. void free_highmem_page(struct page *page)
  5520. {
  5521. __free_reserved_page(page);
  5522. totalram_pages++;
  5523. page_zone(page)->managed_pages++;
  5524. totalhigh_pages++;
  5525. }
  5526. #endif
  5527. void __init mem_init_print_info(const char *str)
  5528. {
  5529. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5530. unsigned long init_code_size, init_data_size;
  5531. physpages = get_num_physpages();
  5532. codesize = _etext - _stext;
  5533. datasize = _edata - _sdata;
  5534. rosize = __end_rodata - __start_rodata;
  5535. bss_size = __bss_stop - __bss_start;
  5536. init_data_size = __init_end - __init_begin;
  5537. init_code_size = _einittext - _sinittext;
  5538. /*
  5539. * Detect special cases and adjust section sizes accordingly:
  5540. * 1) .init.* may be embedded into .data sections
  5541. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5542. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5543. * 3) .rodata.* may be embedded into .text or .data sections.
  5544. */
  5545. #define adj_init_size(start, end, size, pos, adj) \
  5546. do { \
  5547. if (start <= pos && pos < end && size > adj) \
  5548. size -= adj; \
  5549. } while (0)
  5550. adj_init_size(__init_begin, __init_end, init_data_size,
  5551. _sinittext, init_code_size);
  5552. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5553. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5554. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5555. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5556. #undef adj_init_size
  5557. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5558. #ifdef CONFIG_HIGHMEM
  5559. ", %luK highmem"
  5560. #endif
  5561. "%s%s)\n",
  5562. nr_free_pages() << (PAGE_SHIFT - 10),
  5563. physpages << (PAGE_SHIFT - 10),
  5564. codesize >> 10, datasize >> 10, rosize >> 10,
  5565. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5566. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5567. totalcma_pages << (PAGE_SHIFT - 10),
  5568. #ifdef CONFIG_HIGHMEM
  5569. totalhigh_pages << (PAGE_SHIFT - 10),
  5570. #endif
  5571. str ? ", " : "", str ? str : "");
  5572. }
  5573. /**
  5574. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5575. * @new_dma_reserve: The number of pages to mark reserved
  5576. *
  5577. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5578. * In the DMA zone, a significant percentage may be consumed by kernel image
  5579. * and other unfreeable allocations which can skew the watermarks badly. This
  5580. * function may optionally be used to account for unfreeable pages in the
  5581. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5582. * smaller per-cpu batchsize.
  5583. */
  5584. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5585. {
  5586. dma_reserve = new_dma_reserve;
  5587. }
  5588. void __init free_area_init(unsigned long *zones_size)
  5589. {
  5590. free_area_init_node(0, zones_size,
  5591. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5592. }
  5593. static int page_alloc_cpu_dead(unsigned int cpu)
  5594. {
  5595. lru_add_drain_cpu(cpu);
  5596. drain_pages(cpu);
  5597. /*
  5598. * Spill the event counters of the dead processor
  5599. * into the current processors event counters.
  5600. * This artificially elevates the count of the current
  5601. * processor.
  5602. */
  5603. vm_events_fold_cpu(cpu);
  5604. /*
  5605. * Zero the differential counters of the dead processor
  5606. * so that the vm statistics are consistent.
  5607. *
  5608. * This is only okay since the processor is dead and cannot
  5609. * race with what we are doing.
  5610. */
  5611. cpu_vm_stats_fold(cpu);
  5612. return 0;
  5613. }
  5614. void __init page_alloc_init(void)
  5615. {
  5616. int ret;
  5617. ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
  5618. "mm/page_alloc:dead", NULL,
  5619. page_alloc_cpu_dead);
  5620. WARN_ON(ret < 0);
  5621. }
  5622. /*
  5623. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5624. * or min_free_kbytes changes.
  5625. */
  5626. static void calculate_totalreserve_pages(void)
  5627. {
  5628. struct pglist_data *pgdat;
  5629. unsigned long reserve_pages = 0;
  5630. enum zone_type i, j;
  5631. for_each_online_pgdat(pgdat) {
  5632. pgdat->totalreserve_pages = 0;
  5633. for (i = 0; i < MAX_NR_ZONES; i++) {
  5634. struct zone *zone = pgdat->node_zones + i;
  5635. long max = 0;
  5636. /* Find valid and maximum lowmem_reserve in the zone */
  5637. for (j = i; j < MAX_NR_ZONES; j++) {
  5638. if (zone->lowmem_reserve[j] > max)
  5639. max = zone->lowmem_reserve[j];
  5640. }
  5641. /* we treat the high watermark as reserved pages. */
  5642. max += high_wmark_pages(zone);
  5643. if (max > zone->managed_pages)
  5644. max = zone->managed_pages;
  5645. pgdat->totalreserve_pages += max;
  5646. reserve_pages += max;
  5647. }
  5648. }
  5649. totalreserve_pages = reserve_pages;
  5650. }
  5651. /*
  5652. * setup_per_zone_lowmem_reserve - called whenever
  5653. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5654. * has a correct pages reserved value, so an adequate number of
  5655. * pages are left in the zone after a successful __alloc_pages().
  5656. */
  5657. static void setup_per_zone_lowmem_reserve(void)
  5658. {
  5659. struct pglist_data *pgdat;
  5660. enum zone_type j, idx;
  5661. for_each_online_pgdat(pgdat) {
  5662. for (j = 0; j < MAX_NR_ZONES; j++) {
  5663. struct zone *zone = pgdat->node_zones + j;
  5664. unsigned long managed_pages = zone->managed_pages;
  5665. zone->lowmem_reserve[j] = 0;
  5666. idx = j;
  5667. while (idx) {
  5668. struct zone *lower_zone;
  5669. idx--;
  5670. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5671. sysctl_lowmem_reserve_ratio[idx] = 1;
  5672. lower_zone = pgdat->node_zones + idx;
  5673. lower_zone->lowmem_reserve[j] = managed_pages /
  5674. sysctl_lowmem_reserve_ratio[idx];
  5675. managed_pages += lower_zone->managed_pages;
  5676. }
  5677. }
  5678. }
  5679. /* update totalreserve_pages */
  5680. calculate_totalreserve_pages();
  5681. }
  5682. static void __setup_per_zone_wmarks(void)
  5683. {
  5684. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5685. unsigned long lowmem_pages = 0;
  5686. struct zone *zone;
  5687. unsigned long flags;
  5688. /* Calculate total number of !ZONE_HIGHMEM pages */
  5689. for_each_zone(zone) {
  5690. if (!is_highmem(zone))
  5691. lowmem_pages += zone->managed_pages;
  5692. }
  5693. for_each_zone(zone) {
  5694. u64 tmp;
  5695. spin_lock_irqsave(&zone->lock, flags);
  5696. tmp = (u64)pages_min * zone->managed_pages;
  5697. do_div(tmp, lowmem_pages);
  5698. if (is_highmem(zone)) {
  5699. /*
  5700. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5701. * need highmem pages, so cap pages_min to a small
  5702. * value here.
  5703. *
  5704. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5705. * deltas control asynch page reclaim, and so should
  5706. * not be capped for highmem.
  5707. */
  5708. unsigned long min_pages;
  5709. min_pages = zone->managed_pages / 1024;
  5710. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5711. zone->watermark[WMARK_MIN] = min_pages;
  5712. } else {
  5713. /*
  5714. * If it's a lowmem zone, reserve a number of pages
  5715. * proportionate to the zone's size.
  5716. */
  5717. zone->watermark[WMARK_MIN] = tmp;
  5718. }
  5719. /*
  5720. * Set the kswapd watermarks distance according to the
  5721. * scale factor in proportion to available memory, but
  5722. * ensure a minimum size on small systems.
  5723. */
  5724. tmp = max_t(u64, tmp >> 2,
  5725. mult_frac(zone->managed_pages,
  5726. watermark_scale_factor, 10000));
  5727. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5728. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5729. spin_unlock_irqrestore(&zone->lock, flags);
  5730. }
  5731. /* update totalreserve_pages */
  5732. calculate_totalreserve_pages();
  5733. }
  5734. /**
  5735. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5736. * or when memory is hot-{added|removed}
  5737. *
  5738. * Ensures that the watermark[min,low,high] values for each zone are set
  5739. * correctly with respect to min_free_kbytes.
  5740. */
  5741. void setup_per_zone_wmarks(void)
  5742. {
  5743. mutex_lock(&zonelists_mutex);
  5744. __setup_per_zone_wmarks();
  5745. mutex_unlock(&zonelists_mutex);
  5746. }
  5747. /*
  5748. * Initialise min_free_kbytes.
  5749. *
  5750. * For small machines we want it small (128k min). For large machines
  5751. * we want it large (64MB max). But it is not linear, because network
  5752. * bandwidth does not increase linearly with machine size. We use
  5753. *
  5754. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5755. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5756. *
  5757. * which yields
  5758. *
  5759. * 16MB: 512k
  5760. * 32MB: 724k
  5761. * 64MB: 1024k
  5762. * 128MB: 1448k
  5763. * 256MB: 2048k
  5764. * 512MB: 2896k
  5765. * 1024MB: 4096k
  5766. * 2048MB: 5792k
  5767. * 4096MB: 8192k
  5768. * 8192MB: 11584k
  5769. * 16384MB: 16384k
  5770. */
  5771. int __meminit init_per_zone_wmark_min(void)
  5772. {
  5773. unsigned long lowmem_kbytes;
  5774. int new_min_free_kbytes;
  5775. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5776. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5777. if (new_min_free_kbytes > user_min_free_kbytes) {
  5778. min_free_kbytes = new_min_free_kbytes;
  5779. if (min_free_kbytes < 128)
  5780. min_free_kbytes = 128;
  5781. if (min_free_kbytes > 65536)
  5782. min_free_kbytes = 65536;
  5783. } else {
  5784. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5785. new_min_free_kbytes, user_min_free_kbytes);
  5786. }
  5787. setup_per_zone_wmarks();
  5788. refresh_zone_stat_thresholds();
  5789. setup_per_zone_lowmem_reserve();
  5790. #ifdef CONFIG_NUMA
  5791. setup_min_unmapped_ratio();
  5792. setup_min_slab_ratio();
  5793. #endif
  5794. return 0;
  5795. }
  5796. core_initcall(init_per_zone_wmark_min)
  5797. /*
  5798. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5799. * that we can call two helper functions whenever min_free_kbytes
  5800. * changes.
  5801. */
  5802. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5803. void __user *buffer, size_t *length, loff_t *ppos)
  5804. {
  5805. int rc;
  5806. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5807. if (rc)
  5808. return rc;
  5809. if (write) {
  5810. user_min_free_kbytes = min_free_kbytes;
  5811. setup_per_zone_wmarks();
  5812. }
  5813. return 0;
  5814. }
  5815. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5816. void __user *buffer, size_t *length, loff_t *ppos)
  5817. {
  5818. int rc;
  5819. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5820. if (rc)
  5821. return rc;
  5822. if (write)
  5823. setup_per_zone_wmarks();
  5824. return 0;
  5825. }
  5826. #ifdef CONFIG_NUMA
  5827. static void setup_min_unmapped_ratio(void)
  5828. {
  5829. pg_data_t *pgdat;
  5830. struct zone *zone;
  5831. for_each_online_pgdat(pgdat)
  5832. pgdat->min_unmapped_pages = 0;
  5833. for_each_zone(zone)
  5834. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  5835. sysctl_min_unmapped_ratio) / 100;
  5836. }
  5837. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5838. void __user *buffer, size_t *length, loff_t *ppos)
  5839. {
  5840. int rc;
  5841. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5842. if (rc)
  5843. return rc;
  5844. setup_min_unmapped_ratio();
  5845. return 0;
  5846. }
  5847. static void setup_min_slab_ratio(void)
  5848. {
  5849. pg_data_t *pgdat;
  5850. struct zone *zone;
  5851. for_each_online_pgdat(pgdat)
  5852. pgdat->min_slab_pages = 0;
  5853. for_each_zone(zone)
  5854. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  5855. sysctl_min_slab_ratio) / 100;
  5856. }
  5857. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5858. void __user *buffer, size_t *length, loff_t *ppos)
  5859. {
  5860. int rc;
  5861. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5862. if (rc)
  5863. return rc;
  5864. setup_min_slab_ratio();
  5865. return 0;
  5866. }
  5867. #endif
  5868. /*
  5869. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5870. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5871. * whenever sysctl_lowmem_reserve_ratio changes.
  5872. *
  5873. * The reserve ratio obviously has absolutely no relation with the
  5874. * minimum watermarks. The lowmem reserve ratio can only make sense
  5875. * if in function of the boot time zone sizes.
  5876. */
  5877. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5878. void __user *buffer, size_t *length, loff_t *ppos)
  5879. {
  5880. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5881. setup_per_zone_lowmem_reserve();
  5882. return 0;
  5883. }
  5884. /*
  5885. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5886. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5887. * pagelist can have before it gets flushed back to buddy allocator.
  5888. */
  5889. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5890. void __user *buffer, size_t *length, loff_t *ppos)
  5891. {
  5892. struct zone *zone;
  5893. int old_percpu_pagelist_fraction;
  5894. int ret;
  5895. mutex_lock(&pcp_batch_high_lock);
  5896. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5897. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5898. if (!write || ret < 0)
  5899. goto out;
  5900. /* Sanity checking to avoid pcp imbalance */
  5901. if (percpu_pagelist_fraction &&
  5902. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5903. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5904. ret = -EINVAL;
  5905. goto out;
  5906. }
  5907. /* No change? */
  5908. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5909. goto out;
  5910. for_each_populated_zone(zone) {
  5911. unsigned int cpu;
  5912. for_each_possible_cpu(cpu)
  5913. pageset_set_high_and_batch(zone,
  5914. per_cpu_ptr(zone->pageset, cpu));
  5915. }
  5916. out:
  5917. mutex_unlock(&pcp_batch_high_lock);
  5918. return ret;
  5919. }
  5920. #ifdef CONFIG_NUMA
  5921. int hashdist = HASHDIST_DEFAULT;
  5922. static int __init set_hashdist(char *str)
  5923. {
  5924. if (!str)
  5925. return 0;
  5926. hashdist = simple_strtoul(str, &str, 0);
  5927. return 1;
  5928. }
  5929. __setup("hashdist=", set_hashdist);
  5930. #endif
  5931. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  5932. /*
  5933. * Returns the number of pages that arch has reserved but
  5934. * is not known to alloc_large_system_hash().
  5935. */
  5936. static unsigned long __init arch_reserved_kernel_pages(void)
  5937. {
  5938. return 0;
  5939. }
  5940. #endif
  5941. /*
  5942. * allocate a large system hash table from bootmem
  5943. * - it is assumed that the hash table must contain an exact power-of-2
  5944. * quantity of entries
  5945. * - limit is the number of hash buckets, not the total allocation size
  5946. */
  5947. void *__init alloc_large_system_hash(const char *tablename,
  5948. unsigned long bucketsize,
  5949. unsigned long numentries,
  5950. int scale,
  5951. int flags,
  5952. unsigned int *_hash_shift,
  5953. unsigned int *_hash_mask,
  5954. unsigned long low_limit,
  5955. unsigned long high_limit)
  5956. {
  5957. unsigned long long max = high_limit;
  5958. unsigned long log2qty, size;
  5959. void *table = NULL;
  5960. /* allow the kernel cmdline to have a say */
  5961. if (!numentries) {
  5962. /* round applicable memory size up to nearest megabyte */
  5963. numentries = nr_kernel_pages;
  5964. numentries -= arch_reserved_kernel_pages();
  5965. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5966. if (PAGE_SHIFT < 20)
  5967. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5968. /* limit to 1 bucket per 2^scale bytes of low memory */
  5969. if (scale > PAGE_SHIFT)
  5970. numentries >>= (scale - PAGE_SHIFT);
  5971. else
  5972. numentries <<= (PAGE_SHIFT - scale);
  5973. /* Make sure we've got at least a 0-order allocation.. */
  5974. if (unlikely(flags & HASH_SMALL)) {
  5975. /* Makes no sense without HASH_EARLY */
  5976. WARN_ON(!(flags & HASH_EARLY));
  5977. if (!(numentries >> *_hash_shift)) {
  5978. numentries = 1UL << *_hash_shift;
  5979. BUG_ON(!numentries);
  5980. }
  5981. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5982. numentries = PAGE_SIZE / bucketsize;
  5983. }
  5984. numentries = roundup_pow_of_two(numentries);
  5985. /* limit allocation size to 1/16 total memory by default */
  5986. if (max == 0) {
  5987. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5988. do_div(max, bucketsize);
  5989. }
  5990. max = min(max, 0x80000000ULL);
  5991. if (numentries < low_limit)
  5992. numentries = low_limit;
  5993. if (numentries > max)
  5994. numentries = max;
  5995. log2qty = ilog2(numentries);
  5996. do {
  5997. size = bucketsize << log2qty;
  5998. if (flags & HASH_EARLY)
  5999. table = memblock_virt_alloc_nopanic(size, 0);
  6000. else if (hashdist)
  6001. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6002. else {
  6003. /*
  6004. * If bucketsize is not a power-of-two, we may free
  6005. * some pages at the end of hash table which
  6006. * alloc_pages_exact() automatically does
  6007. */
  6008. if (get_order(size) < MAX_ORDER) {
  6009. table = alloc_pages_exact(size, GFP_ATOMIC);
  6010. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6011. }
  6012. }
  6013. } while (!table && size > PAGE_SIZE && --log2qty);
  6014. if (!table)
  6015. panic("Failed to allocate %s hash table\n", tablename);
  6016. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6017. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6018. if (_hash_shift)
  6019. *_hash_shift = log2qty;
  6020. if (_hash_mask)
  6021. *_hash_mask = (1 << log2qty) - 1;
  6022. return table;
  6023. }
  6024. /*
  6025. * This function checks whether pageblock includes unmovable pages or not.
  6026. * If @count is not zero, it is okay to include less @count unmovable pages
  6027. *
  6028. * PageLRU check without isolation or lru_lock could race so that
  6029. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6030. * expect this function should be exact.
  6031. */
  6032. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6033. bool skip_hwpoisoned_pages)
  6034. {
  6035. unsigned long pfn, iter, found;
  6036. int mt;
  6037. /*
  6038. * For avoiding noise data, lru_add_drain_all() should be called
  6039. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6040. */
  6041. if (zone_idx(zone) == ZONE_MOVABLE)
  6042. return false;
  6043. mt = get_pageblock_migratetype(page);
  6044. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6045. return false;
  6046. pfn = page_to_pfn(page);
  6047. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6048. unsigned long check = pfn + iter;
  6049. if (!pfn_valid_within(check))
  6050. continue;
  6051. page = pfn_to_page(check);
  6052. /*
  6053. * Hugepages are not in LRU lists, but they're movable.
  6054. * We need not scan over tail pages bacause we don't
  6055. * handle each tail page individually in migration.
  6056. */
  6057. if (PageHuge(page)) {
  6058. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6059. continue;
  6060. }
  6061. /*
  6062. * We can't use page_count without pin a page
  6063. * because another CPU can free compound page.
  6064. * This check already skips compound tails of THP
  6065. * because their page->_refcount is zero at all time.
  6066. */
  6067. if (!page_ref_count(page)) {
  6068. if (PageBuddy(page))
  6069. iter += (1 << page_order(page)) - 1;
  6070. continue;
  6071. }
  6072. /*
  6073. * The HWPoisoned page may be not in buddy system, and
  6074. * page_count() is not 0.
  6075. */
  6076. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6077. continue;
  6078. if (!PageLRU(page))
  6079. found++;
  6080. /*
  6081. * If there are RECLAIMABLE pages, we need to check
  6082. * it. But now, memory offline itself doesn't call
  6083. * shrink_node_slabs() and it still to be fixed.
  6084. */
  6085. /*
  6086. * If the page is not RAM, page_count()should be 0.
  6087. * we don't need more check. This is an _used_ not-movable page.
  6088. *
  6089. * The problematic thing here is PG_reserved pages. PG_reserved
  6090. * is set to both of a memory hole page and a _used_ kernel
  6091. * page at boot.
  6092. */
  6093. if (found > count)
  6094. return true;
  6095. }
  6096. return false;
  6097. }
  6098. bool is_pageblock_removable_nolock(struct page *page)
  6099. {
  6100. struct zone *zone;
  6101. unsigned long pfn;
  6102. /*
  6103. * We have to be careful here because we are iterating over memory
  6104. * sections which are not zone aware so we might end up outside of
  6105. * the zone but still within the section.
  6106. * We have to take care about the node as well. If the node is offline
  6107. * its NODE_DATA will be NULL - see page_zone.
  6108. */
  6109. if (!node_online(page_to_nid(page)))
  6110. return false;
  6111. zone = page_zone(page);
  6112. pfn = page_to_pfn(page);
  6113. if (!zone_spans_pfn(zone, pfn))
  6114. return false;
  6115. return !has_unmovable_pages(zone, page, 0, true);
  6116. }
  6117. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6118. static unsigned long pfn_max_align_down(unsigned long pfn)
  6119. {
  6120. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6121. pageblock_nr_pages) - 1);
  6122. }
  6123. static unsigned long pfn_max_align_up(unsigned long pfn)
  6124. {
  6125. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6126. pageblock_nr_pages));
  6127. }
  6128. /* [start, end) must belong to a single zone. */
  6129. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6130. unsigned long start, unsigned long end)
  6131. {
  6132. /* This function is based on compact_zone() from compaction.c. */
  6133. unsigned long nr_reclaimed;
  6134. unsigned long pfn = start;
  6135. unsigned int tries = 0;
  6136. int ret = 0;
  6137. migrate_prep();
  6138. while (pfn < end || !list_empty(&cc->migratepages)) {
  6139. if (fatal_signal_pending(current)) {
  6140. ret = -EINTR;
  6141. break;
  6142. }
  6143. if (list_empty(&cc->migratepages)) {
  6144. cc->nr_migratepages = 0;
  6145. pfn = isolate_migratepages_range(cc, pfn, end);
  6146. if (!pfn) {
  6147. ret = -EINTR;
  6148. break;
  6149. }
  6150. tries = 0;
  6151. } else if (++tries == 5) {
  6152. ret = ret < 0 ? ret : -EBUSY;
  6153. break;
  6154. }
  6155. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6156. &cc->migratepages);
  6157. cc->nr_migratepages -= nr_reclaimed;
  6158. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6159. NULL, 0, cc->mode, MR_CMA);
  6160. }
  6161. if (ret < 0) {
  6162. putback_movable_pages(&cc->migratepages);
  6163. return ret;
  6164. }
  6165. return 0;
  6166. }
  6167. /**
  6168. * alloc_contig_range() -- tries to allocate given range of pages
  6169. * @start: start PFN to allocate
  6170. * @end: one-past-the-last PFN to allocate
  6171. * @migratetype: migratetype of the underlaying pageblocks (either
  6172. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6173. * in range must have the same migratetype and it must
  6174. * be either of the two.
  6175. *
  6176. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6177. * aligned, however it's the caller's responsibility to guarantee that
  6178. * we are the only thread that changes migrate type of pageblocks the
  6179. * pages fall in.
  6180. *
  6181. * The PFN range must belong to a single zone.
  6182. *
  6183. * Returns zero on success or negative error code. On success all
  6184. * pages which PFN is in [start, end) are allocated for the caller and
  6185. * need to be freed with free_contig_range().
  6186. */
  6187. int alloc_contig_range(unsigned long start, unsigned long end,
  6188. unsigned migratetype)
  6189. {
  6190. unsigned long outer_start, outer_end;
  6191. unsigned int order;
  6192. int ret = 0;
  6193. struct compact_control cc = {
  6194. .nr_migratepages = 0,
  6195. .order = -1,
  6196. .zone = page_zone(pfn_to_page(start)),
  6197. .mode = MIGRATE_SYNC,
  6198. .ignore_skip_hint = true,
  6199. };
  6200. INIT_LIST_HEAD(&cc.migratepages);
  6201. /*
  6202. * What we do here is we mark all pageblocks in range as
  6203. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6204. * have different sizes, and due to the way page allocator
  6205. * work, we align the range to biggest of the two pages so
  6206. * that page allocator won't try to merge buddies from
  6207. * different pageblocks and change MIGRATE_ISOLATE to some
  6208. * other migration type.
  6209. *
  6210. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6211. * migrate the pages from an unaligned range (ie. pages that
  6212. * we are interested in). This will put all the pages in
  6213. * range back to page allocator as MIGRATE_ISOLATE.
  6214. *
  6215. * When this is done, we take the pages in range from page
  6216. * allocator removing them from the buddy system. This way
  6217. * page allocator will never consider using them.
  6218. *
  6219. * This lets us mark the pageblocks back as
  6220. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6221. * aligned range but not in the unaligned, original range are
  6222. * put back to page allocator so that buddy can use them.
  6223. */
  6224. ret = start_isolate_page_range(pfn_max_align_down(start),
  6225. pfn_max_align_up(end), migratetype,
  6226. false);
  6227. if (ret)
  6228. return ret;
  6229. /*
  6230. * In case of -EBUSY, we'd like to know which page causes problem.
  6231. * So, just fall through. We will check it in test_pages_isolated().
  6232. */
  6233. ret = __alloc_contig_migrate_range(&cc, start, end);
  6234. if (ret && ret != -EBUSY)
  6235. goto done;
  6236. /*
  6237. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6238. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6239. * more, all pages in [start, end) are free in page allocator.
  6240. * What we are going to do is to allocate all pages from
  6241. * [start, end) (that is remove them from page allocator).
  6242. *
  6243. * The only problem is that pages at the beginning and at the
  6244. * end of interesting range may be not aligned with pages that
  6245. * page allocator holds, ie. they can be part of higher order
  6246. * pages. Because of this, we reserve the bigger range and
  6247. * once this is done free the pages we are not interested in.
  6248. *
  6249. * We don't have to hold zone->lock here because the pages are
  6250. * isolated thus they won't get removed from buddy.
  6251. */
  6252. lru_add_drain_all();
  6253. drain_all_pages(cc.zone);
  6254. order = 0;
  6255. outer_start = start;
  6256. while (!PageBuddy(pfn_to_page(outer_start))) {
  6257. if (++order >= MAX_ORDER) {
  6258. outer_start = start;
  6259. break;
  6260. }
  6261. outer_start &= ~0UL << order;
  6262. }
  6263. if (outer_start != start) {
  6264. order = page_order(pfn_to_page(outer_start));
  6265. /*
  6266. * outer_start page could be small order buddy page and
  6267. * it doesn't include start page. Adjust outer_start
  6268. * in this case to report failed page properly
  6269. * on tracepoint in test_pages_isolated()
  6270. */
  6271. if (outer_start + (1UL << order) <= start)
  6272. outer_start = start;
  6273. }
  6274. /* Make sure the range is really isolated. */
  6275. if (test_pages_isolated(outer_start, end, false)) {
  6276. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6277. __func__, outer_start, end);
  6278. ret = -EBUSY;
  6279. goto done;
  6280. }
  6281. /* Grab isolated pages from freelists. */
  6282. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6283. if (!outer_end) {
  6284. ret = -EBUSY;
  6285. goto done;
  6286. }
  6287. /* Free head and tail (if any) */
  6288. if (start != outer_start)
  6289. free_contig_range(outer_start, start - outer_start);
  6290. if (end != outer_end)
  6291. free_contig_range(end, outer_end - end);
  6292. done:
  6293. undo_isolate_page_range(pfn_max_align_down(start),
  6294. pfn_max_align_up(end), migratetype);
  6295. return ret;
  6296. }
  6297. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6298. {
  6299. unsigned int count = 0;
  6300. for (; nr_pages--; pfn++) {
  6301. struct page *page = pfn_to_page(pfn);
  6302. count += page_count(page) != 1;
  6303. __free_page(page);
  6304. }
  6305. WARN(count != 0, "%d pages are still in use!\n", count);
  6306. }
  6307. #endif
  6308. #ifdef CONFIG_MEMORY_HOTPLUG
  6309. /*
  6310. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6311. * page high values need to be recalulated.
  6312. */
  6313. void __meminit zone_pcp_update(struct zone *zone)
  6314. {
  6315. unsigned cpu;
  6316. mutex_lock(&pcp_batch_high_lock);
  6317. for_each_possible_cpu(cpu)
  6318. pageset_set_high_and_batch(zone,
  6319. per_cpu_ptr(zone->pageset, cpu));
  6320. mutex_unlock(&pcp_batch_high_lock);
  6321. }
  6322. #endif
  6323. void zone_pcp_reset(struct zone *zone)
  6324. {
  6325. unsigned long flags;
  6326. int cpu;
  6327. struct per_cpu_pageset *pset;
  6328. /* avoid races with drain_pages() */
  6329. local_irq_save(flags);
  6330. if (zone->pageset != &boot_pageset) {
  6331. for_each_online_cpu(cpu) {
  6332. pset = per_cpu_ptr(zone->pageset, cpu);
  6333. drain_zonestat(zone, pset);
  6334. }
  6335. free_percpu(zone->pageset);
  6336. zone->pageset = &boot_pageset;
  6337. }
  6338. local_irq_restore(flags);
  6339. }
  6340. #ifdef CONFIG_MEMORY_HOTREMOVE
  6341. /*
  6342. * All pages in the range must be in a single zone and isolated
  6343. * before calling this.
  6344. */
  6345. void
  6346. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6347. {
  6348. struct page *page;
  6349. struct zone *zone;
  6350. unsigned int order, i;
  6351. unsigned long pfn;
  6352. unsigned long flags;
  6353. /* find the first valid pfn */
  6354. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6355. if (pfn_valid(pfn))
  6356. break;
  6357. if (pfn == end_pfn)
  6358. return;
  6359. zone = page_zone(pfn_to_page(pfn));
  6360. spin_lock_irqsave(&zone->lock, flags);
  6361. pfn = start_pfn;
  6362. while (pfn < end_pfn) {
  6363. if (!pfn_valid(pfn)) {
  6364. pfn++;
  6365. continue;
  6366. }
  6367. page = pfn_to_page(pfn);
  6368. /*
  6369. * The HWPoisoned page may be not in buddy system, and
  6370. * page_count() is not 0.
  6371. */
  6372. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6373. pfn++;
  6374. SetPageReserved(page);
  6375. continue;
  6376. }
  6377. BUG_ON(page_count(page));
  6378. BUG_ON(!PageBuddy(page));
  6379. order = page_order(page);
  6380. #ifdef CONFIG_DEBUG_VM
  6381. pr_info("remove from free list %lx %d %lx\n",
  6382. pfn, 1 << order, end_pfn);
  6383. #endif
  6384. list_del(&page->lru);
  6385. rmv_page_order(page);
  6386. zone->free_area[order].nr_free--;
  6387. for (i = 0; i < (1 << order); i++)
  6388. SetPageReserved((page+i));
  6389. pfn += (1 << order);
  6390. }
  6391. spin_unlock_irqrestore(&zone->lock, flags);
  6392. }
  6393. #endif
  6394. bool is_free_buddy_page(struct page *page)
  6395. {
  6396. struct zone *zone = page_zone(page);
  6397. unsigned long pfn = page_to_pfn(page);
  6398. unsigned long flags;
  6399. unsigned int order;
  6400. spin_lock_irqsave(&zone->lock, flags);
  6401. for (order = 0; order < MAX_ORDER; order++) {
  6402. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6403. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6404. break;
  6405. }
  6406. spin_unlock_irqrestore(&zone->lock, flags);
  6407. return order < MAX_ORDER;
  6408. }