| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- #ifndef __PPC64_MMU_CONTEXT_H
- #define __PPC64_MMU_CONTEXT_H
- #include <linux/config.h>
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <asm/mmu.h>
- #include <asm/cputable.h>
- /*
- * Copyright (C) 2001 PPC 64 Team, IBM Corp
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- /*
- * Every architecture must define this function. It's the fastest
- * way of searching a 140-bit bitmap where the first 100 bits are
- * unlikely to be set. It's guaranteed that at least one of the 140
- * bits is cleared.
- */
- static inline int sched_find_first_bit(unsigned long *b)
- {
- if (unlikely(b[0]))
- return __ffs(b[0]);
- if (unlikely(b[1]))
- return __ffs(b[1]) + 64;
- return __ffs(b[2]) + 128;
- }
- static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
- {
- }
- #define NO_CONTEXT 0
- #define MAX_CONTEXT (0x100000-1)
- extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
- extern void destroy_context(struct mm_struct *mm);
- extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm);
- extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm);
- /*
- * switch_mm is the entry point called from the architecture independent
- * code in kernel/sched.c
- */
- static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
- struct task_struct *tsk)
- {
- if (!cpu_isset(smp_processor_id(), next->cpu_vm_mask))
- cpu_set(smp_processor_id(), next->cpu_vm_mask);
- /* No need to flush userspace segments if the mm doesnt change */
- if (prev == next)
- return;
- #ifdef CONFIG_ALTIVEC
- if (cpu_has_feature(CPU_FTR_ALTIVEC))
- asm volatile ("dssall");
- #endif /* CONFIG_ALTIVEC */
- if (cpu_has_feature(CPU_FTR_SLB))
- switch_slb(tsk, next);
- else
- switch_stab(tsk, next);
- }
- #define deactivate_mm(tsk,mm) do { } while (0)
- /*
- * After we have set current->mm to a new value, this activates
- * the context for the new mm so we see the new mappings.
- */
- static inline void activate_mm(struct mm_struct *prev, struct mm_struct *next)
- {
- unsigned long flags;
- local_irq_save(flags);
- switch_mm(prev, next, current);
- local_irq_restore(flags);
- }
- /* VSID allocation
- * ===============
- *
- * We first generate a 36-bit "proto-VSID". For kernel addresses this
- * is equal to the ESID, for user addresses it is:
- * (context << 15) | (esid & 0x7fff)
- *
- * The two forms are distinguishable because the top bit is 0 for user
- * addresses, whereas the top two bits are 1 for kernel addresses.
- * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
- * now.
- *
- * The proto-VSIDs are then scrambled into real VSIDs with the
- * multiplicative hash:
- *
- * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
- * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
- * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
- *
- * This scramble is only well defined for proto-VSIDs below
- * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
- * reserved. VSID_MULTIPLIER is prime, so in particular it is
- * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
- * Because the modulus is 2^n-1 we can compute it efficiently without
- * a divide or extra multiply (see below).
- *
- * This scheme has several advantages over older methods:
- *
- * - We have VSIDs allocated for every kernel address
- * (i.e. everything above 0xC000000000000000), except the very top
- * segment, which simplifies several things.
- *
- * - We allow for 15 significant bits of ESID and 20 bits of
- * context for user addresses. i.e. 8T (43 bits) of address space for
- * up to 1M contexts (although the page table structure and context
- * allocation will need changes to take advantage of this).
- *
- * - The scramble function gives robust scattering in the hash
- * table (at least based on some initial results). The previous
- * method was more susceptible to pathological cases giving excessive
- * hash collisions.
- */
- /*
- * WARNING - If you change these you must make sure the asm
- * implementations in slb_allocate(), do_stab_bolted and mmu.h
- * (ASM_VSID_SCRAMBLE macro) are changed accordingly.
- *
- * You'll also need to change the precomputed VSID values in head.S
- * which are used by the iSeries firmware.
- */
- static inline unsigned long vsid_scramble(unsigned long protovsid)
- {
- #if 0
- /* The code below is equivalent to this function for arguments
- * < 2^VSID_BITS, which is all this should ever be called
- * with. However gcc is not clever enough to compute the
- * modulus (2^n-1) without a second multiply. */
- return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
- #else /* 1 */
- unsigned long x;
- x = protovsid * VSID_MULTIPLIER;
- x = (x >> VSID_BITS) + (x & VSID_MODULUS);
- return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
- #endif /* 1 */
- }
- /* This is only valid for addresses >= KERNELBASE */
- static inline unsigned long get_kernel_vsid(unsigned long ea)
- {
- return vsid_scramble(ea >> SID_SHIFT);
- }
- /* This is only valid for user addresses (which are below 2^41) */
- static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
- {
- return vsid_scramble((context << USER_ESID_BITS)
- | (ea >> SID_SHIFT));
- }
- #endif /* __PPC64_MMU_CONTEXT_H */
|