process.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /*
  2. * linux/arch/i386/kernel/process.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of process handling..
  11. */
  12. #include <stdarg.h>
  13. #include <linux/cpu.h>
  14. #include <linux/errno.h>
  15. #include <linux/sched.h>
  16. #include <linux/fs.h>
  17. #include <linux/kernel.h>
  18. #include <linux/mm.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/smp.h>
  21. #include <linux/stddef.h>
  22. #include <linux/slab.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/user.h>
  25. #include <linux/a.out.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/utsname.h>
  28. #include <linux/delay.h>
  29. #include <linux/reboot.h>
  30. #include <linux/init.h>
  31. #include <linux/mc146818rtc.h>
  32. #include <linux/module.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/ptrace.h>
  35. #include <linux/random.h>
  36. #include <linux/personality.h>
  37. #include <linux/tick.h>
  38. #include <linux/percpu.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/system.h>
  42. #include <asm/io.h>
  43. #include <asm/ldt.h>
  44. #include <asm/processor.h>
  45. #include <asm/i387.h>
  46. #include <asm/desc.h>
  47. #include <asm/vm86.h>
  48. #ifdef CONFIG_MATH_EMULATION
  49. #include <asm/math_emu.h>
  50. #endif
  51. #include <linux/err.h>
  52. #include <asm/tlbflush.h>
  53. #include <asm/cpu.h>
  54. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  55. static int hlt_counter;
  56. unsigned long boot_option_idle_override = 0;
  57. EXPORT_SYMBOL(boot_option_idle_override);
  58. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  59. EXPORT_PER_CPU_SYMBOL(current_task);
  60. DEFINE_PER_CPU(int, cpu_number);
  61. EXPORT_PER_CPU_SYMBOL(cpu_number);
  62. /*
  63. * Return saved PC of a blocked thread.
  64. */
  65. unsigned long thread_saved_pc(struct task_struct *tsk)
  66. {
  67. return ((unsigned long *)tsk->thread.esp)[3];
  68. }
  69. /*
  70. * Powermanagement idle function, if any..
  71. */
  72. void (*pm_idle)(void);
  73. EXPORT_SYMBOL(pm_idle);
  74. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  75. void disable_hlt(void)
  76. {
  77. hlt_counter++;
  78. }
  79. EXPORT_SYMBOL(disable_hlt);
  80. void enable_hlt(void)
  81. {
  82. hlt_counter--;
  83. }
  84. EXPORT_SYMBOL(enable_hlt);
  85. /*
  86. * We use this if we don't have any better
  87. * idle routine..
  88. */
  89. void default_idle(void)
  90. {
  91. if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
  92. current_thread_info()->status &= ~TS_POLLING;
  93. /*
  94. * TS_POLLING-cleared state must be visible before we
  95. * test NEED_RESCHED:
  96. */
  97. smp_mb();
  98. local_irq_disable();
  99. if (!need_resched())
  100. safe_halt(); /* enables interrupts racelessly */
  101. else
  102. local_irq_enable();
  103. current_thread_info()->status |= TS_POLLING;
  104. } else {
  105. /* loop is done by the caller */
  106. cpu_relax();
  107. }
  108. }
  109. #ifdef CONFIG_APM_MODULE
  110. EXPORT_SYMBOL(default_idle);
  111. #endif
  112. /*
  113. * On SMP it's slightly faster (but much more power-consuming!)
  114. * to poll the ->work.need_resched flag instead of waiting for the
  115. * cross-CPU IPI to arrive. Use this option with caution.
  116. */
  117. static void poll_idle (void)
  118. {
  119. cpu_relax();
  120. }
  121. #ifdef CONFIG_HOTPLUG_CPU
  122. #include <asm/nmi.h>
  123. /* We don't actually take CPU down, just spin without interrupts. */
  124. static inline void play_dead(void)
  125. {
  126. /* This must be done before dead CPU ack */
  127. cpu_exit_clear();
  128. wbinvd();
  129. mb();
  130. /* Ack it */
  131. __get_cpu_var(cpu_state) = CPU_DEAD;
  132. /*
  133. * With physical CPU hotplug, we should halt the cpu
  134. */
  135. local_irq_disable();
  136. while (1)
  137. halt();
  138. }
  139. #else
  140. static inline void play_dead(void)
  141. {
  142. BUG();
  143. }
  144. #endif /* CONFIG_HOTPLUG_CPU */
  145. /*
  146. * The idle thread. There's no useful work to be
  147. * done, so just try to conserve power and have a
  148. * low exit latency (ie sit in a loop waiting for
  149. * somebody to say that they'd like to reschedule)
  150. */
  151. void cpu_idle(void)
  152. {
  153. int cpu = smp_processor_id();
  154. current_thread_info()->status |= TS_POLLING;
  155. /* endless idle loop with no priority at all */
  156. while (1) {
  157. tick_nohz_stop_sched_tick();
  158. while (!need_resched()) {
  159. void (*idle)(void);
  160. if (__get_cpu_var(cpu_idle_state))
  161. __get_cpu_var(cpu_idle_state) = 0;
  162. rmb();
  163. idle = pm_idle;
  164. if (!idle)
  165. idle = default_idle;
  166. if (cpu_is_offline(cpu))
  167. play_dead();
  168. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  169. idle();
  170. }
  171. tick_nohz_restart_sched_tick();
  172. preempt_enable_no_resched();
  173. schedule();
  174. preempt_disable();
  175. }
  176. }
  177. void cpu_idle_wait(void)
  178. {
  179. unsigned int cpu, this_cpu = get_cpu();
  180. cpumask_t map, tmp = current->cpus_allowed;
  181. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  182. put_cpu();
  183. cpus_clear(map);
  184. for_each_online_cpu(cpu) {
  185. per_cpu(cpu_idle_state, cpu) = 1;
  186. cpu_set(cpu, map);
  187. }
  188. __get_cpu_var(cpu_idle_state) = 0;
  189. wmb();
  190. do {
  191. ssleep(1);
  192. for_each_online_cpu(cpu) {
  193. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  194. cpu_clear(cpu, map);
  195. }
  196. cpus_and(map, map, cpu_online_map);
  197. } while (!cpus_empty(map));
  198. set_cpus_allowed(current, tmp);
  199. }
  200. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  201. /*
  202. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  203. * which can obviate IPI to trigger checking of need_resched.
  204. * We execute MONITOR against need_resched and enter optimized wait state
  205. * through MWAIT. Whenever someone changes need_resched, we would be woken
  206. * up from MWAIT (without an IPI).
  207. *
  208. * New with Core Duo processors, MWAIT can take some hints based on CPU
  209. * capability.
  210. */
  211. void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
  212. {
  213. if (!need_resched()) {
  214. __monitor((void *)&current_thread_info()->flags, 0, 0);
  215. smp_mb();
  216. if (!need_resched())
  217. __mwait(eax, ecx);
  218. }
  219. }
  220. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  221. static void mwait_idle(void)
  222. {
  223. local_irq_enable();
  224. mwait_idle_with_hints(0, 0);
  225. }
  226. void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
  227. {
  228. if (cpu_has(c, X86_FEATURE_MWAIT)) {
  229. printk("monitor/mwait feature present.\n");
  230. /*
  231. * Skip, if setup has overridden idle.
  232. * One CPU supports mwait => All CPUs supports mwait
  233. */
  234. if (!pm_idle) {
  235. printk("using mwait in idle threads.\n");
  236. pm_idle = mwait_idle;
  237. }
  238. }
  239. }
  240. static int __init idle_setup(char *str)
  241. {
  242. if (!strcmp(str, "poll")) {
  243. printk("using polling idle threads.\n");
  244. pm_idle = poll_idle;
  245. #ifdef CONFIG_X86_SMP
  246. if (smp_num_siblings > 1)
  247. printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
  248. #endif
  249. } else if (!strcmp(str, "mwait"))
  250. force_mwait = 1;
  251. else
  252. return -1;
  253. boot_option_idle_override = 1;
  254. return 0;
  255. }
  256. early_param("idle", idle_setup);
  257. void show_regs(struct pt_regs * regs)
  258. {
  259. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  260. printk("\n");
  261. printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
  262. printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
  263. print_symbol("EIP is at %s\n", regs->eip);
  264. if (user_mode_vm(regs))
  265. printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
  266. printk(" EFLAGS: %08lx %s (%s %.*s)\n",
  267. regs->eflags, print_tainted(), init_utsname()->release,
  268. (int)strcspn(init_utsname()->version, " "),
  269. init_utsname()->version);
  270. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  271. regs->eax,regs->ebx,regs->ecx,regs->edx);
  272. printk("ESI: %08lx EDI: %08lx EBP: %08lx",
  273. regs->esi, regs->edi, regs->ebp);
  274. printk(" DS: %04x ES: %04x FS: %04x\n",
  275. 0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs);
  276. cr0 = read_cr0();
  277. cr2 = read_cr2();
  278. cr3 = read_cr3();
  279. cr4 = read_cr4_safe();
  280. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
  281. show_trace(NULL, regs, &regs->esp);
  282. }
  283. /*
  284. * This gets run with %ebx containing the
  285. * function to call, and %edx containing
  286. * the "args".
  287. */
  288. extern void kernel_thread_helper(void);
  289. /*
  290. * Create a kernel thread
  291. */
  292. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  293. {
  294. struct pt_regs regs;
  295. memset(&regs, 0, sizeof(regs));
  296. regs.ebx = (unsigned long) fn;
  297. regs.edx = (unsigned long) arg;
  298. regs.xds = __USER_DS;
  299. regs.xes = __USER_DS;
  300. regs.xfs = __KERNEL_PERCPU;
  301. regs.orig_eax = -1;
  302. regs.eip = (unsigned long) kernel_thread_helper;
  303. regs.xcs = __KERNEL_CS | get_kernel_rpl();
  304. regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  305. /* Ok, create the new process.. */
  306. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  307. }
  308. EXPORT_SYMBOL(kernel_thread);
  309. /*
  310. * Free current thread data structures etc..
  311. */
  312. void exit_thread(void)
  313. {
  314. /* The process may have allocated an io port bitmap... nuke it. */
  315. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  316. struct task_struct *tsk = current;
  317. struct thread_struct *t = &tsk->thread;
  318. int cpu = get_cpu();
  319. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  320. kfree(t->io_bitmap_ptr);
  321. t->io_bitmap_ptr = NULL;
  322. clear_thread_flag(TIF_IO_BITMAP);
  323. /*
  324. * Careful, clear this in the TSS too:
  325. */
  326. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  327. t->io_bitmap_max = 0;
  328. tss->io_bitmap_owner = NULL;
  329. tss->io_bitmap_max = 0;
  330. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  331. put_cpu();
  332. }
  333. }
  334. void flush_thread(void)
  335. {
  336. struct task_struct *tsk = current;
  337. memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
  338. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  339. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  340. /*
  341. * Forget coprocessor state..
  342. */
  343. clear_fpu(tsk);
  344. clear_used_math();
  345. }
  346. void release_thread(struct task_struct *dead_task)
  347. {
  348. BUG_ON(dead_task->mm);
  349. release_vm86_irqs(dead_task);
  350. }
  351. /*
  352. * This gets called before we allocate a new thread and copy
  353. * the current task into it.
  354. */
  355. void prepare_to_copy(struct task_struct *tsk)
  356. {
  357. unlazy_fpu(tsk);
  358. }
  359. int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
  360. unsigned long unused,
  361. struct task_struct * p, struct pt_regs * regs)
  362. {
  363. struct pt_regs * childregs;
  364. struct task_struct *tsk;
  365. int err;
  366. childregs = task_pt_regs(p);
  367. *childregs = *regs;
  368. childregs->eax = 0;
  369. childregs->esp = esp;
  370. p->thread.esp = (unsigned long) childregs;
  371. p->thread.esp0 = (unsigned long) (childregs+1);
  372. p->thread.eip = (unsigned long) ret_from_fork;
  373. savesegment(gs,p->thread.gs);
  374. tsk = current;
  375. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  376. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  377. IO_BITMAP_BYTES, GFP_KERNEL);
  378. if (!p->thread.io_bitmap_ptr) {
  379. p->thread.io_bitmap_max = 0;
  380. return -ENOMEM;
  381. }
  382. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  383. }
  384. /*
  385. * Set a new TLS for the child thread?
  386. */
  387. if (clone_flags & CLONE_SETTLS) {
  388. struct desc_struct *desc;
  389. struct user_desc info;
  390. int idx;
  391. err = -EFAULT;
  392. if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
  393. goto out;
  394. err = -EINVAL;
  395. if (LDT_empty(&info))
  396. goto out;
  397. idx = info.entry_number;
  398. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  399. goto out;
  400. desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  401. desc->a = LDT_entry_a(&info);
  402. desc->b = LDT_entry_b(&info);
  403. }
  404. err = 0;
  405. out:
  406. if (err && p->thread.io_bitmap_ptr) {
  407. kfree(p->thread.io_bitmap_ptr);
  408. p->thread.io_bitmap_max = 0;
  409. }
  410. return err;
  411. }
  412. /*
  413. * fill in the user structure for a core dump..
  414. */
  415. void dump_thread(struct pt_regs * regs, struct user * dump)
  416. {
  417. int i;
  418. /* changed the size calculations - should hopefully work better. lbt */
  419. dump->magic = CMAGIC;
  420. dump->start_code = 0;
  421. dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
  422. dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
  423. dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
  424. dump->u_dsize -= dump->u_tsize;
  425. dump->u_ssize = 0;
  426. for (i = 0; i < 8; i++)
  427. dump->u_debugreg[i] = current->thread.debugreg[i];
  428. if (dump->start_stack < TASK_SIZE)
  429. dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
  430. dump->regs.ebx = regs->ebx;
  431. dump->regs.ecx = regs->ecx;
  432. dump->regs.edx = regs->edx;
  433. dump->regs.esi = regs->esi;
  434. dump->regs.edi = regs->edi;
  435. dump->regs.ebp = regs->ebp;
  436. dump->regs.eax = regs->eax;
  437. dump->regs.ds = regs->xds;
  438. dump->regs.es = regs->xes;
  439. dump->regs.fs = regs->xfs;
  440. savesegment(gs,dump->regs.gs);
  441. dump->regs.orig_eax = regs->orig_eax;
  442. dump->regs.eip = regs->eip;
  443. dump->regs.cs = regs->xcs;
  444. dump->regs.eflags = regs->eflags;
  445. dump->regs.esp = regs->esp;
  446. dump->regs.ss = regs->xss;
  447. dump->u_fpvalid = dump_fpu (regs, &dump->i387);
  448. }
  449. EXPORT_SYMBOL(dump_thread);
  450. /*
  451. * Capture the user space registers if the task is not running (in user space)
  452. */
  453. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  454. {
  455. struct pt_regs ptregs = *task_pt_regs(tsk);
  456. ptregs.xcs &= 0xffff;
  457. ptregs.xds &= 0xffff;
  458. ptregs.xes &= 0xffff;
  459. ptregs.xss &= 0xffff;
  460. elf_core_copy_regs(regs, &ptregs);
  461. return 1;
  462. }
  463. static noinline void __switch_to_xtra(struct task_struct *next_p,
  464. struct tss_struct *tss)
  465. {
  466. struct thread_struct *next;
  467. next = &next_p->thread;
  468. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  469. set_debugreg(next->debugreg[0], 0);
  470. set_debugreg(next->debugreg[1], 1);
  471. set_debugreg(next->debugreg[2], 2);
  472. set_debugreg(next->debugreg[3], 3);
  473. /* no 4 and 5 */
  474. set_debugreg(next->debugreg[6], 6);
  475. set_debugreg(next->debugreg[7], 7);
  476. }
  477. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  478. /*
  479. * Disable the bitmap via an invalid offset. We still cache
  480. * the previous bitmap owner and the IO bitmap contents:
  481. */
  482. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  483. return;
  484. }
  485. if (likely(next == tss->io_bitmap_owner)) {
  486. /*
  487. * Previous owner of the bitmap (hence the bitmap content)
  488. * matches the next task, we dont have to do anything but
  489. * to set a valid offset in the TSS:
  490. */
  491. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  492. return;
  493. }
  494. /*
  495. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  496. * and we let the task to get a GPF in case an I/O instruction
  497. * is performed. The handler of the GPF will verify that the
  498. * faulting task has a valid I/O bitmap and, it true, does the
  499. * real copy and restart the instruction. This will save us
  500. * redundant copies when the currently switched task does not
  501. * perform any I/O during its timeslice.
  502. */
  503. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  504. }
  505. /*
  506. * This function selects if the context switch from prev to next
  507. * has to tweak the TSC disable bit in the cr4.
  508. */
  509. static inline void disable_tsc(struct task_struct *prev_p,
  510. struct task_struct *next_p)
  511. {
  512. struct thread_info *prev, *next;
  513. /*
  514. * gcc should eliminate the ->thread_info dereference if
  515. * has_secure_computing returns 0 at compile time (SECCOMP=n).
  516. */
  517. prev = task_thread_info(prev_p);
  518. next = task_thread_info(next_p);
  519. if (has_secure_computing(prev) || has_secure_computing(next)) {
  520. /* slow path here */
  521. if (has_secure_computing(prev) &&
  522. !has_secure_computing(next)) {
  523. write_cr4(read_cr4() & ~X86_CR4_TSD);
  524. } else if (!has_secure_computing(prev) &&
  525. has_secure_computing(next))
  526. write_cr4(read_cr4() | X86_CR4_TSD);
  527. }
  528. }
  529. /*
  530. * switch_to(x,yn) should switch tasks from x to y.
  531. *
  532. * We fsave/fwait so that an exception goes off at the right time
  533. * (as a call from the fsave or fwait in effect) rather than to
  534. * the wrong process. Lazy FP saving no longer makes any sense
  535. * with modern CPU's, and this simplifies a lot of things (SMP
  536. * and UP become the same).
  537. *
  538. * NOTE! We used to use the x86 hardware context switching. The
  539. * reason for not using it any more becomes apparent when you
  540. * try to recover gracefully from saved state that is no longer
  541. * valid (stale segment register values in particular). With the
  542. * hardware task-switch, there is no way to fix up bad state in
  543. * a reasonable manner.
  544. *
  545. * The fact that Intel documents the hardware task-switching to
  546. * be slow is a fairly red herring - this code is not noticeably
  547. * faster. However, there _is_ some room for improvement here,
  548. * so the performance issues may eventually be a valid point.
  549. * More important, however, is the fact that this allows us much
  550. * more flexibility.
  551. *
  552. * The return value (in %eax) will be the "prev" task after
  553. * the task-switch, and shows up in ret_from_fork in entry.S,
  554. * for example.
  555. */
  556. struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  557. {
  558. struct thread_struct *prev = &prev_p->thread,
  559. *next = &next_p->thread;
  560. int cpu = smp_processor_id();
  561. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  562. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  563. __unlazy_fpu(prev_p);
  564. /* we're going to use this soon, after a few expensive things */
  565. if (next_p->fpu_counter > 5)
  566. prefetch(&next->i387.fxsave);
  567. /*
  568. * Reload esp0.
  569. */
  570. load_esp0(tss, next);
  571. /*
  572. * Save away %gs. No need to save %fs, as it was saved on the
  573. * stack on entry. No need to save %es and %ds, as those are
  574. * always kernel segments while inside the kernel. Doing this
  575. * before setting the new TLS descriptors avoids the situation
  576. * where we temporarily have non-reloadable segments in %fs
  577. * and %gs. This could be an issue if the NMI handler ever
  578. * used %fs or %gs (it does not today), or if the kernel is
  579. * running inside of a hypervisor layer.
  580. */
  581. savesegment(gs, prev->gs);
  582. /*
  583. * Load the per-thread Thread-Local Storage descriptor.
  584. */
  585. load_TLS(next, cpu);
  586. /*
  587. * Restore IOPL if needed. In normal use, the flags restore
  588. * in the switch assembly will handle this. But if the kernel
  589. * is running virtualized at a non-zero CPL, the popf will
  590. * not restore flags, so it must be done in a separate step.
  591. */
  592. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  593. set_iopl_mask(next->iopl);
  594. /*
  595. * Now maybe handle debug registers and/or IO bitmaps
  596. */
  597. if (unlikely((task_thread_info(next_p)->flags & _TIF_WORK_CTXSW)
  598. || test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)))
  599. __switch_to_xtra(next_p, tss);
  600. disable_tsc(prev_p, next_p);
  601. /*
  602. * Leave lazy mode, flushing any hypercalls made here.
  603. * This must be done before restoring TLS segments so
  604. * the GDT and LDT are properly updated, and must be
  605. * done before math_state_restore, so the TS bit is up
  606. * to date.
  607. */
  608. arch_leave_lazy_cpu_mode();
  609. /* If the task has used fpu the last 5 timeslices, just do a full
  610. * restore of the math state immediately to avoid the trap; the
  611. * chances of needing FPU soon are obviously high now
  612. */
  613. if (next_p->fpu_counter > 5)
  614. math_state_restore();
  615. /*
  616. * Restore %gs if needed (which is common)
  617. */
  618. if (prev->gs | next->gs)
  619. loadsegment(gs, next->gs);
  620. x86_write_percpu(current_task, next_p);
  621. return prev_p;
  622. }
  623. asmlinkage int sys_fork(struct pt_regs regs)
  624. {
  625. return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  626. }
  627. asmlinkage int sys_clone(struct pt_regs regs)
  628. {
  629. unsigned long clone_flags;
  630. unsigned long newsp;
  631. int __user *parent_tidptr, *child_tidptr;
  632. clone_flags = regs.ebx;
  633. newsp = regs.ecx;
  634. parent_tidptr = (int __user *)regs.edx;
  635. child_tidptr = (int __user *)regs.edi;
  636. if (!newsp)
  637. newsp = regs.esp;
  638. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  639. }
  640. /*
  641. * This is trivial, and on the face of it looks like it
  642. * could equally well be done in user mode.
  643. *
  644. * Not so, for quite unobvious reasons - register pressure.
  645. * In user mode vfork() cannot have a stack frame, and if
  646. * done by calling the "clone()" system call directly, you
  647. * do not have enough call-clobbered registers to hold all
  648. * the information you need.
  649. */
  650. asmlinkage int sys_vfork(struct pt_regs regs)
  651. {
  652. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  653. }
  654. /*
  655. * sys_execve() executes a new program.
  656. */
  657. asmlinkage int sys_execve(struct pt_regs regs)
  658. {
  659. int error;
  660. char * filename;
  661. filename = getname((char __user *) regs.ebx);
  662. error = PTR_ERR(filename);
  663. if (IS_ERR(filename))
  664. goto out;
  665. error = do_execve(filename,
  666. (char __user * __user *) regs.ecx,
  667. (char __user * __user *) regs.edx,
  668. &regs);
  669. if (error == 0) {
  670. task_lock(current);
  671. current->ptrace &= ~PT_DTRACE;
  672. task_unlock(current);
  673. /* Make sure we don't return using sysenter.. */
  674. set_thread_flag(TIF_IRET);
  675. }
  676. putname(filename);
  677. out:
  678. return error;
  679. }
  680. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  681. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  682. unsigned long get_wchan(struct task_struct *p)
  683. {
  684. unsigned long ebp, esp, eip;
  685. unsigned long stack_page;
  686. int count = 0;
  687. if (!p || p == current || p->state == TASK_RUNNING)
  688. return 0;
  689. stack_page = (unsigned long)task_stack_page(p);
  690. esp = p->thread.esp;
  691. if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
  692. return 0;
  693. /* include/asm-i386/system.h:switch_to() pushes ebp last. */
  694. ebp = *(unsigned long *) esp;
  695. do {
  696. if (ebp < stack_page || ebp > top_ebp+stack_page)
  697. return 0;
  698. eip = *(unsigned long *) (ebp+4);
  699. if (!in_sched_functions(eip))
  700. return eip;
  701. ebp = *(unsigned long *) ebp;
  702. } while (count++ < 16);
  703. return 0;
  704. }
  705. /*
  706. * sys_alloc_thread_area: get a yet unused TLS descriptor index.
  707. */
  708. static int get_free_idx(void)
  709. {
  710. struct thread_struct *t = &current->thread;
  711. int idx;
  712. for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
  713. if (desc_empty(t->tls_array + idx))
  714. return idx + GDT_ENTRY_TLS_MIN;
  715. return -ESRCH;
  716. }
  717. /*
  718. * Set a given TLS descriptor:
  719. */
  720. asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
  721. {
  722. struct thread_struct *t = &current->thread;
  723. struct user_desc info;
  724. struct desc_struct *desc;
  725. int cpu, idx;
  726. if (copy_from_user(&info, u_info, sizeof(info)))
  727. return -EFAULT;
  728. idx = info.entry_number;
  729. /*
  730. * index -1 means the kernel should try to find and
  731. * allocate an empty descriptor:
  732. */
  733. if (idx == -1) {
  734. idx = get_free_idx();
  735. if (idx < 0)
  736. return idx;
  737. if (put_user(idx, &u_info->entry_number))
  738. return -EFAULT;
  739. }
  740. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  741. return -EINVAL;
  742. desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
  743. /*
  744. * We must not get preempted while modifying the TLS.
  745. */
  746. cpu = get_cpu();
  747. if (LDT_empty(&info)) {
  748. desc->a = 0;
  749. desc->b = 0;
  750. } else {
  751. desc->a = LDT_entry_a(&info);
  752. desc->b = LDT_entry_b(&info);
  753. }
  754. load_TLS(t, cpu);
  755. put_cpu();
  756. return 0;
  757. }
  758. /*
  759. * Get the current Thread-Local Storage area:
  760. */
  761. #define GET_BASE(desc) ( \
  762. (((desc)->a >> 16) & 0x0000ffff) | \
  763. (((desc)->b << 16) & 0x00ff0000) | \
  764. ( (desc)->b & 0xff000000) )
  765. #define GET_LIMIT(desc) ( \
  766. ((desc)->a & 0x0ffff) | \
  767. ((desc)->b & 0xf0000) )
  768. #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
  769. #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
  770. #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
  771. #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
  772. #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
  773. #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
  774. asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
  775. {
  776. struct user_desc info;
  777. struct desc_struct *desc;
  778. int idx;
  779. if (get_user(idx, &u_info->entry_number))
  780. return -EFAULT;
  781. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  782. return -EINVAL;
  783. memset(&info, 0, sizeof(info));
  784. desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  785. info.entry_number = idx;
  786. info.base_addr = GET_BASE(desc);
  787. info.limit = GET_LIMIT(desc);
  788. info.seg_32bit = GET_32BIT(desc);
  789. info.contents = GET_CONTENTS(desc);
  790. info.read_exec_only = !GET_WRITABLE(desc);
  791. info.limit_in_pages = GET_LIMIT_PAGES(desc);
  792. info.seg_not_present = !GET_PRESENT(desc);
  793. info.useable = GET_USEABLE(desc);
  794. if (copy_to_user(u_info, &info, sizeof(info)))
  795. return -EFAULT;
  796. return 0;
  797. }
  798. unsigned long arch_align_stack(unsigned long sp)
  799. {
  800. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  801. sp -= get_random_int() % 8192;
  802. return sp & ~0xf;
  803. }