adutux.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * adutux - driver for ADU devices from Ontrak Control Systems
  4. * This is an experimental driver. Use at your own risk.
  5. * This driver is not supported by Ontrak Control Systems.
  6. *
  7. * Copyright (c) 2003 John Homppi (SCO, leave this notice here)
  8. *
  9. * derived from the Lego USB Tower driver 0.56:
  10. * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
  11. * 2001 Juergen Stuber <stuber@loria.fr>
  12. * that was derived from USB Skeleton driver - 0.5
  13. * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
  14. *
  15. */
  16. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17. #include <linux/kernel.h>
  18. #include <linux/sched/signal.h>
  19. #include <linux/errno.h>
  20. #include <linux/slab.h>
  21. #include <linux/module.h>
  22. #include <linux/usb.h>
  23. #include <linux/mutex.h>
  24. #include <linux/uaccess.h>
  25. #define DRIVER_AUTHOR "John Homppi"
  26. #define DRIVER_DESC "adutux (see www.ontrak.net)"
  27. /* Define these values to match your device */
  28. #define ADU_VENDOR_ID 0x0a07
  29. #define ADU_PRODUCT_ID 0x0064
  30. /* table of devices that work with this driver */
  31. static const struct usb_device_id device_table[] = {
  32. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */
  33. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */
  34. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */
  35. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */
  36. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */
  37. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */
  38. { } /* Terminating entry */
  39. };
  40. MODULE_DEVICE_TABLE(usb, device_table);
  41. #ifdef CONFIG_USB_DYNAMIC_MINORS
  42. #define ADU_MINOR_BASE 0
  43. #else
  44. #define ADU_MINOR_BASE 67
  45. #endif
  46. /* we can have up to this number of device plugged in at once */
  47. #define MAX_DEVICES 16
  48. #define COMMAND_TIMEOUT (2*HZ) /* 60 second timeout for a command */
  49. /*
  50. * The locking scheme is a vanilla 3-lock:
  51. * adu_device.buflock: A spinlock, covers what IRQs touch.
  52. * adutux_mutex: A Static lock to cover open_count. It would also cover
  53. * any globals, but we don't have them in 2.6.
  54. * adu_device.mtx: A mutex to hold across sleepers like copy_from_user.
  55. * It covers all of adu_device, except the open_count
  56. * and what .buflock covers.
  57. */
  58. /* Structure to hold all of our device specific stuff */
  59. struct adu_device {
  60. struct mutex mtx;
  61. struct usb_device *udev; /* save off the usb device pointer */
  62. struct usb_interface *interface;
  63. unsigned int minor; /* the starting minor number for this device */
  64. char serial_number[8];
  65. int open_count; /* number of times this port has been opened */
  66. char *read_buffer_primary;
  67. int read_buffer_length;
  68. char *read_buffer_secondary;
  69. int secondary_head;
  70. int secondary_tail;
  71. spinlock_t buflock;
  72. wait_queue_head_t read_wait;
  73. wait_queue_head_t write_wait;
  74. char *interrupt_in_buffer;
  75. struct usb_endpoint_descriptor *interrupt_in_endpoint;
  76. struct urb *interrupt_in_urb;
  77. int read_urb_finished;
  78. char *interrupt_out_buffer;
  79. struct usb_endpoint_descriptor *interrupt_out_endpoint;
  80. struct urb *interrupt_out_urb;
  81. int out_urb_finished;
  82. };
  83. static DEFINE_MUTEX(adutux_mutex);
  84. static struct usb_driver adu_driver;
  85. static inline void adu_debug_data(struct device *dev, const char *function,
  86. int size, const unsigned char *data)
  87. {
  88. dev_dbg(dev, "%s - length = %d, data = %*ph\n",
  89. function, size, size, data);
  90. }
  91. /**
  92. * adu_abort_transfers
  93. * aborts transfers and frees associated data structures
  94. */
  95. static void adu_abort_transfers(struct adu_device *dev)
  96. {
  97. unsigned long flags;
  98. if (dev->udev == NULL)
  99. return;
  100. /* shutdown transfer */
  101. /* XXX Anchor these instead */
  102. spin_lock_irqsave(&dev->buflock, flags);
  103. if (!dev->read_urb_finished) {
  104. spin_unlock_irqrestore(&dev->buflock, flags);
  105. usb_kill_urb(dev->interrupt_in_urb);
  106. } else
  107. spin_unlock_irqrestore(&dev->buflock, flags);
  108. spin_lock_irqsave(&dev->buflock, flags);
  109. if (!dev->out_urb_finished) {
  110. spin_unlock_irqrestore(&dev->buflock, flags);
  111. usb_kill_urb(dev->interrupt_out_urb);
  112. } else
  113. spin_unlock_irqrestore(&dev->buflock, flags);
  114. }
  115. static void adu_delete(struct adu_device *dev)
  116. {
  117. /* free data structures */
  118. usb_free_urb(dev->interrupt_in_urb);
  119. usb_free_urb(dev->interrupt_out_urb);
  120. kfree(dev->read_buffer_primary);
  121. kfree(dev->read_buffer_secondary);
  122. kfree(dev->interrupt_in_buffer);
  123. kfree(dev->interrupt_out_buffer);
  124. kfree(dev);
  125. }
  126. static void adu_interrupt_in_callback(struct urb *urb)
  127. {
  128. struct adu_device *dev = urb->context;
  129. int status = urb->status;
  130. adu_debug_data(&dev->udev->dev, __func__,
  131. urb->actual_length, urb->transfer_buffer);
  132. spin_lock(&dev->buflock);
  133. if (status != 0) {
  134. if ((status != -ENOENT) && (status != -ECONNRESET) &&
  135. (status != -ESHUTDOWN)) {
  136. dev_dbg(&dev->udev->dev,
  137. "%s : nonzero status received: %d\n",
  138. __func__, status);
  139. }
  140. goto exit;
  141. }
  142. if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
  143. if (dev->read_buffer_length <
  144. (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) -
  145. (urb->actual_length)) {
  146. memcpy (dev->read_buffer_primary +
  147. dev->read_buffer_length,
  148. dev->interrupt_in_buffer, urb->actual_length);
  149. dev->read_buffer_length += urb->actual_length;
  150. dev_dbg(&dev->udev->dev,"%s reading %d\n", __func__,
  151. urb->actual_length);
  152. } else {
  153. dev_dbg(&dev->udev->dev,"%s : read_buffer overflow\n",
  154. __func__);
  155. }
  156. }
  157. exit:
  158. dev->read_urb_finished = 1;
  159. spin_unlock(&dev->buflock);
  160. /* always wake up so we recover from errors */
  161. wake_up_interruptible(&dev->read_wait);
  162. }
  163. static void adu_interrupt_out_callback(struct urb *urb)
  164. {
  165. struct adu_device *dev = urb->context;
  166. int status = urb->status;
  167. adu_debug_data(&dev->udev->dev, __func__,
  168. urb->actual_length, urb->transfer_buffer);
  169. if (status != 0) {
  170. if ((status != -ENOENT) &&
  171. (status != -ECONNRESET)) {
  172. dev_dbg(&dev->udev->dev,
  173. "%s :nonzero status received: %d\n", __func__,
  174. status);
  175. }
  176. return;
  177. }
  178. spin_lock(&dev->buflock);
  179. dev->out_urb_finished = 1;
  180. wake_up(&dev->write_wait);
  181. spin_unlock(&dev->buflock);
  182. }
  183. static int adu_open(struct inode *inode, struct file *file)
  184. {
  185. struct adu_device *dev = NULL;
  186. struct usb_interface *interface;
  187. int subminor;
  188. int retval;
  189. subminor = iminor(inode);
  190. retval = mutex_lock_interruptible(&adutux_mutex);
  191. if (retval)
  192. goto exit_no_lock;
  193. interface = usb_find_interface(&adu_driver, subminor);
  194. if (!interface) {
  195. pr_err("%s - error, can't find device for minor %d\n",
  196. __func__, subminor);
  197. retval = -ENODEV;
  198. goto exit_no_device;
  199. }
  200. dev = usb_get_intfdata(interface);
  201. if (!dev || !dev->udev) {
  202. retval = -ENODEV;
  203. goto exit_no_device;
  204. }
  205. /* check that nobody else is using the device */
  206. if (dev->open_count) {
  207. retval = -EBUSY;
  208. goto exit_no_device;
  209. }
  210. ++dev->open_count;
  211. dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__,
  212. dev->open_count);
  213. /* save device in the file's private structure */
  214. file->private_data = dev;
  215. /* initialize in direction */
  216. dev->read_buffer_length = 0;
  217. /* fixup first read by having urb waiting for it */
  218. usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
  219. usb_rcvintpipe(dev->udev,
  220. dev->interrupt_in_endpoint->bEndpointAddress),
  221. dev->interrupt_in_buffer,
  222. usb_endpoint_maxp(dev->interrupt_in_endpoint),
  223. adu_interrupt_in_callback, dev,
  224. dev->interrupt_in_endpoint->bInterval);
  225. dev->read_urb_finished = 0;
  226. if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL))
  227. dev->read_urb_finished = 1;
  228. /* we ignore failure */
  229. /* end of fixup for first read */
  230. /* initialize out direction */
  231. dev->out_urb_finished = 1;
  232. retval = 0;
  233. exit_no_device:
  234. mutex_unlock(&adutux_mutex);
  235. exit_no_lock:
  236. return retval;
  237. }
  238. static void adu_release_internal(struct adu_device *dev)
  239. {
  240. /* decrement our usage count for the device */
  241. --dev->open_count;
  242. dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__,
  243. dev->open_count);
  244. if (dev->open_count <= 0) {
  245. adu_abort_transfers(dev);
  246. dev->open_count = 0;
  247. }
  248. }
  249. static int adu_release(struct inode *inode, struct file *file)
  250. {
  251. struct adu_device *dev;
  252. int retval = 0;
  253. if (file == NULL) {
  254. retval = -ENODEV;
  255. goto exit;
  256. }
  257. dev = file->private_data;
  258. if (dev == NULL) {
  259. retval = -ENODEV;
  260. goto exit;
  261. }
  262. mutex_lock(&adutux_mutex); /* not interruptible */
  263. if (dev->open_count <= 0) {
  264. dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__);
  265. retval = -ENODEV;
  266. goto unlock;
  267. }
  268. adu_release_internal(dev);
  269. if (dev->udev == NULL) {
  270. /* the device was unplugged before the file was released */
  271. if (!dev->open_count) /* ... and we're the last user */
  272. adu_delete(dev);
  273. }
  274. unlock:
  275. mutex_unlock(&adutux_mutex);
  276. exit:
  277. return retval;
  278. }
  279. static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
  280. loff_t *ppos)
  281. {
  282. struct adu_device *dev;
  283. size_t bytes_read = 0;
  284. size_t bytes_to_read = count;
  285. int i;
  286. int retval = 0;
  287. int timeout = 0;
  288. int should_submit = 0;
  289. unsigned long flags;
  290. DECLARE_WAITQUEUE(wait, current);
  291. dev = file->private_data;
  292. if (mutex_lock_interruptible(&dev->mtx))
  293. return -ERESTARTSYS;
  294. /* verify that the device wasn't unplugged */
  295. if (dev->udev == NULL) {
  296. retval = -ENODEV;
  297. pr_err("No device or device unplugged %d\n", retval);
  298. goto exit;
  299. }
  300. /* verify that some data was requested */
  301. if (count == 0) {
  302. dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n",
  303. __func__);
  304. goto exit;
  305. }
  306. timeout = COMMAND_TIMEOUT;
  307. dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__);
  308. while (bytes_to_read) {
  309. int data_in_secondary = dev->secondary_tail - dev->secondary_head;
  310. dev_dbg(&dev->udev->dev,
  311. "%s : while, data_in_secondary=%d, status=%d\n",
  312. __func__, data_in_secondary,
  313. dev->interrupt_in_urb->status);
  314. if (data_in_secondary) {
  315. /* drain secondary buffer */
  316. int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary;
  317. i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount);
  318. if (i) {
  319. retval = -EFAULT;
  320. goto exit;
  321. }
  322. dev->secondary_head += (amount - i);
  323. bytes_read += (amount - i);
  324. bytes_to_read -= (amount - i);
  325. } else {
  326. /* we check the primary buffer */
  327. spin_lock_irqsave (&dev->buflock, flags);
  328. if (dev->read_buffer_length) {
  329. /* we secure access to the primary */
  330. char *tmp;
  331. dev_dbg(&dev->udev->dev,
  332. "%s : swap, read_buffer_length = %d\n",
  333. __func__, dev->read_buffer_length);
  334. tmp = dev->read_buffer_secondary;
  335. dev->read_buffer_secondary = dev->read_buffer_primary;
  336. dev->read_buffer_primary = tmp;
  337. dev->secondary_head = 0;
  338. dev->secondary_tail = dev->read_buffer_length;
  339. dev->read_buffer_length = 0;
  340. spin_unlock_irqrestore(&dev->buflock, flags);
  341. /* we have a free buffer so use it */
  342. should_submit = 1;
  343. } else {
  344. /* even the primary was empty - we may need to do IO */
  345. if (!dev->read_urb_finished) {
  346. /* somebody is doing IO */
  347. spin_unlock_irqrestore(&dev->buflock, flags);
  348. dev_dbg(&dev->udev->dev,
  349. "%s : submitted already\n",
  350. __func__);
  351. } else {
  352. /* we must initiate input */
  353. dev_dbg(&dev->udev->dev,
  354. "%s : initiate input\n",
  355. __func__);
  356. dev->read_urb_finished = 0;
  357. spin_unlock_irqrestore(&dev->buflock, flags);
  358. usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
  359. usb_rcvintpipe(dev->udev,
  360. dev->interrupt_in_endpoint->bEndpointAddress),
  361. dev->interrupt_in_buffer,
  362. usb_endpoint_maxp(dev->interrupt_in_endpoint),
  363. adu_interrupt_in_callback,
  364. dev,
  365. dev->interrupt_in_endpoint->bInterval);
  366. retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
  367. if (retval) {
  368. dev->read_urb_finished = 1;
  369. if (retval == -ENOMEM) {
  370. retval = bytes_read ? bytes_read : -ENOMEM;
  371. }
  372. dev_dbg(&dev->udev->dev,
  373. "%s : submit failed\n",
  374. __func__);
  375. goto exit;
  376. }
  377. }
  378. /* we wait for I/O to complete */
  379. set_current_state(TASK_INTERRUPTIBLE);
  380. add_wait_queue(&dev->read_wait, &wait);
  381. spin_lock_irqsave(&dev->buflock, flags);
  382. if (!dev->read_urb_finished) {
  383. spin_unlock_irqrestore(&dev->buflock, flags);
  384. timeout = schedule_timeout(COMMAND_TIMEOUT);
  385. } else {
  386. spin_unlock_irqrestore(&dev->buflock, flags);
  387. set_current_state(TASK_RUNNING);
  388. }
  389. remove_wait_queue(&dev->read_wait, &wait);
  390. if (timeout <= 0) {
  391. dev_dbg(&dev->udev->dev,
  392. "%s : timeout\n", __func__);
  393. retval = bytes_read ? bytes_read : -ETIMEDOUT;
  394. goto exit;
  395. }
  396. if (signal_pending(current)) {
  397. dev_dbg(&dev->udev->dev,
  398. "%s : signal pending\n",
  399. __func__);
  400. retval = bytes_read ? bytes_read : -EINTR;
  401. goto exit;
  402. }
  403. }
  404. }
  405. }
  406. retval = bytes_read;
  407. /* if the primary buffer is empty then use it */
  408. spin_lock_irqsave(&dev->buflock, flags);
  409. if (should_submit && dev->read_urb_finished) {
  410. dev->read_urb_finished = 0;
  411. spin_unlock_irqrestore(&dev->buflock, flags);
  412. usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
  413. usb_rcvintpipe(dev->udev,
  414. dev->interrupt_in_endpoint->bEndpointAddress),
  415. dev->interrupt_in_buffer,
  416. usb_endpoint_maxp(dev->interrupt_in_endpoint),
  417. adu_interrupt_in_callback,
  418. dev,
  419. dev->interrupt_in_endpoint->bInterval);
  420. if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0)
  421. dev->read_urb_finished = 1;
  422. /* we ignore failure */
  423. } else {
  424. spin_unlock_irqrestore(&dev->buflock, flags);
  425. }
  426. exit:
  427. /* unlock the device */
  428. mutex_unlock(&dev->mtx);
  429. return retval;
  430. }
  431. static ssize_t adu_write(struct file *file, const __user char *buffer,
  432. size_t count, loff_t *ppos)
  433. {
  434. DECLARE_WAITQUEUE(waita, current);
  435. struct adu_device *dev;
  436. size_t bytes_written = 0;
  437. size_t bytes_to_write;
  438. size_t buffer_size;
  439. unsigned long flags;
  440. int retval;
  441. dev = file->private_data;
  442. retval = mutex_lock_interruptible(&dev->mtx);
  443. if (retval)
  444. goto exit_nolock;
  445. /* verify that the device wasn't unplugged */
  446. if (dev->udev == NULL) {
  447. retval = -ENODEV;
  448. pr_err("No device or device unplugged %d\n", retval);
  449. goto exit;
  450. }
  451. /* verify that we actually have some data to write */
  452. if (count == 0) {
  453. dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n",
  454. __func__);
  455. goto exit;
  456. }
  457. while (count > 0) {
  458. add_wait_queue(&dev->write_wait, &waita);
  459. set_current_state(TASK_INTERRUPTIBLE);
  460. spin_lock_irqsave(&dev->buflock, flags);
  461. if (!dev->out_urb_finished) {
  462. spin_unlock_irqrestore(&dev->buflock, flags);
  463. mutex_unlock(&dev->mtx);
  464. if (signal_pending(current)) {
  465. dev_dbg(&dev->udev->dev, "%s : interrupted\n",
  466. __func__);
  467. set_current_state(TASK_RUNNING);
  468. retval = -EINTR;
  469. goto exit_onqueue;
  470. }
  471. if (schedule_timeout(COMMAND_TIMEOUT) == 0) {
  472. dev_dbg(&dev->udev->dev,
  473. "%s - command timed out.\n", __func__);
  474. retval = -ETIMEDOUT;
  475. goto exit_onqueue;
  476. }
  477. remove_wait_queue(&dev->write_wait, &waita);
  478. retval = mutex_lock_interruptible(&dev->mtx);
  479. if (retval) {
  480. retval = bytes_written ? bytes_written : retval;
  481. goto exit_nolock;
  482. }
  483. dev_dbg(&dev->udev->dev,
  484. "%s : in progress, count = %zd\n",
  485. __func__, count);
  486. } else {
  487. spin_unlock_irqrestore(&dev->buflock, flags);
  488. set_current_state(TASK_RUNNING);
  489. remove_wait_queue(&dev->write_wait, &waita);
  490. dev_dbg(&dev->udev->dev, "%s : sending, count = %zd\n",
  491. __func__, count);
  492. /* write the data into interrupt_out_buffer from userspace */
  493. buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
  494. bytes_to_write = count > buffer_size ? buffer_size : count;
  495. dev_dbg(&dev->udev->dev,
  496. "%s : buffer_size = %zd, count = %zd, bytes_to_write = %zd\n",
  497. __func__, buffer_size, count, bytes_to_write);
  498. if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
  499. retval = -EFAULT;
  500. goto exit;
  501. }
  502. /* send off the urb */
  503. usb_fill_int_urb(
  504. dev->interrupt_out_urb,
  505. dev->udev,
  506. usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
  507. dev->interrupt_out_buffer,
  508. bytes_to_write,
  509. adu_interrupt_out_callback,
  510. dev,
  511. dev->interrupt_out_endpoint->bInterval);
  512. dev->interrupt_out_urb->actual_length = bytes_to_write;
  513. dev->out_urb_finished = 0;
  514. retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
  515. if (retval < 0) {
  516. dev->out_urb_finished = 1;
  517. dev_err(&dev->udev->dev, "Couldn't submit "
  518. "interrupt_out_urb %d\n", retval);
  519. goto exit;
  520. }
  521. buffer += bytes_to_write;
  522. count -= bytes_to_write;
  523. bytes_written += bytes_to_write;
  524. }
  525. }
  526. mutex_unlock(&dev->mtx);
  527. return bytes_written;
  528. exit:
  529. mutex_unlock(&dev->mtx);
  530. exit_nolock:
  531. return retval;
  532. exit_onqueue:
  533. remove_wait_queue(&dev->write_wait, &waita);
  534. return retval;
  535. }
  536. /* file operations needed when we register this driver */
  537. static const struct file_operations adu_fops = {
  538. .owner = THIS_MODULE,
  539. .read = adu_read,
  540. .write = adu_write,
  541. .open = adu_open,
  542. .release = adu_release,
  543. .llseek = noop_llseek,
  544. };
  545. /*
  546. * usb class driver info in order to get a minor number from the usb core,
  547. * and to have the device registered with devfs and the driver core
  548. */
  549. static struct usb_class_driver adu_class = {
  550. .name = "usb/adutux%d",
  551. .fops = &adu_fops,
  552. .minor_base = ADU_MINOR_BASE,
  553. };
  554. /**
  555. * adu_probe
  556. *
  557. * Called by the usb core when a new device is connected that it thinks
  558. * this driver might be interested in.
  559. */
  560. static int adu_probe(struct usb_interface *interface,
  561. const struct usb_device_id *id)
  562. {
  563. struct usb_device *udev = interface_to_usbdev(interface);
  564. struct adu_device *dev = NULL;
  565. int retval = -ENOMEM;
  566. int in_end_size;
  567. int out_end_size;
  568. int res;
  569. /* allocate memory for our device state and initialize it */
  570. dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
  571. if (!dev)
  572. return -ENOMEM;
  573. mutex_init(&dev->mtx);
  574. spin_lock_init(&dev->buflock);
  575. dev->udev = udev;
  576. init_waitqueue_head(&dev->read_wait);
  577. init_waitqueue_head(&dev->write_wait);
  578. res = usb_find_common_endpoints_reverse(&interface->altsetting[0],
  579. NULL, NULL,
  580. &dev->interrupt_in_endpoint,
  581. &dev->interrupt_out_endpoint);
  582. if (res) {
  583. dev_err(&interface->dev, "interrupt endpoints not found\n");
  584. retval = res;
  585. goto error;
  586. }
  587. in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint);
  588. out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
  589. dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
  590. if (!dev->read_buffer_primary)
  591. goto error;
  592. /* debug code prime the buffer */
  593. memset(dev->read_buffer_primary, 'a', in_end_size);
  594. memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
  595. memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
  596. memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);
  597. dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
  598. if (!dev->read_buffer_secondary)
  599. goto error;
  600. /* debug code prime the buffer */
  601. memset(dev->read_buffer_secondary, 'e', in_end_size);
  602. memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
  603. memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
  604. memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);
  605. dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
  606. if (!dev->interrupt_in_buffer)
  607. goto error;
  608. /* debug code prime the buffer */
  609. memset(dev->interrupt_in_buffer, 'i', in_end_size);
  610. dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
  611. if (!dev->interrupt_in_urb)
  612. goto error;
  613. dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
  614. if (!dev->interrupt_out_buffer)
  615. goto error;
  616. dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
  617. if (!dev->interrupt_out_urb)
  618. goto error;
  619. if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
  620. sizeof(dev->serial_number))) {
  621. dev_err(&interface->dev, "Could not retrieve serial number\n");
  622. retval = -EIO;
  623. goto error;
  624. }
  625. dev_dbg(&interface->dev,"serial_number=%s", dev->serial_number);
  626. /* we can register the device now, as it is ready */
  627. usb_set_intfdata(interface, dev);
  628. retval = usb_register_dev(interface, &adu_class);
  629. if (retval) {
  630. /* something prevented us from registering this driver */
  631. dev_err(&interface->dev, "Not able to get a minor for this device.\n");
  632. usb_set_intfdata(interface, NULL);
  633. goto error;
  634. }
  635. dev->minor = interface->minor;
  636. /* let the user know what node this device is now attached to */
  637. dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n",
  638. le16_to_cpu(udev->descriptor.idProduct), dev->serial_number,
  639. (dev->minor - ADU_MINOR_BASE));
  640. return 0;
  641. error:
  642. adu_delete(dev);
  643. return retval;
  644. }
  645. /**
  646. * adu_disconnect
  647. *
  648. * Called by the usb core when the device is removed from the system.
  649. */
  650. static void adu_disconnect(struct usb_interface *interface)
  651. {
  652. struct adu_device *dev;
  653. dev = usb_get_intfdata(interface);
  654. mutex_lock(&dev->mtx); /* not interruptible */
  655. dev->udev = NULL; /* poison */
  656. usb_deregister_dev(interface, &adu_class);
  657. mutex_unlock(&dev->mtx);
  658. mutex_lock(&adutux_mutex);
  659. usb_set_intfdata(interface, NULL);
  660. /* if the device is not opened, then we clean up right now */
  661. if (!dev->open_count)
  662. adu_delete(dev);
  663. mutex_unlock(&adutux_mutex);
  664. }
  665. /* usb specific object needed to register this driver with the usb subsystem */
  666. static struct usb_driver adu_driver = {
  667. .name = "adutux",
  668. .probe = adu_probe,
  669. .disconnect = adu_disconnect,
  670. .id_table = device_table,
  671. };
  672. module_usb_driver(adu_driver);
  673. MODULE_AUTHOR(DRIVER_AUTHOR);
  674. MODULE_DESCRIPTION(DRIVER_DESC);
  675. MODULE_LICENSE("GPL");