xhci-ring.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * xHCI host controller driver
  4. *
  5. * Copyright (C) 2008 Intel Corp.
  6. *
  7. * Author: Sarah Sharp
  8. * Some code borrowed from the Linux EHCI driver.
  9. */
  10. /*
  11. * Ring initialization rules:
  12. * 1. Each segment is initialized to zero, except for link TRBs.
  13. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
  14. * Consumer Cycle State (CCS), depending on ring function.
  15. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  16. *
  17. * Ring behavior rules:
  18. * 1. A ring is empty if enqueue == dequeue. This means there will always be at
  19. * least one free TRB in the ring. This is useful if you want to turn that
  20. * into a link TRB and expand the ring.
  21. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  22. * link TRB, then load the pointer with the address in the link TRB. If the
  23. * link TRB had its toggle bit set, you may need to update the ring cycle
  24. * state (see cycle bit rules). You may have to do this multiple times
  25. * until you reach a non-link TRB.
  26. * 3. A ring is full if enqueue++ (for the definition of increment above)
  27. * equals the dequeue pointer.
  28. *
  29. * Cycle bit rules:
  30. * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  31. * in a link TRB, it must toggle the ring cycle state.
  32. * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  33. * in a link TRB, it must toggle the ring cycle state.
  34. *
  35. * Producer rules:
  36. * 1. Check if ring is full before you enqueue.
  37. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  38. * Update enqueue pointer between each write (which may update the ring
  39. * cycle state).
  40. * 3. Notify consumer. If SW is producer, it rings the doorbell for command
  41. * and endpoint rings. If HC is the producer for the event ring,
  42. * and it generates an interrupt according to interrupt modulation rules.
  43. *
  44. * Consumer rules:
  45. * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
  46. * the TRB is owned by the consumer.
  47. * 2. Update dequeue pointer (which may update the ring cycle state) and
  48. * continue processing TRBs until you reach a TRB which is not owned by you.
  49. * 3. Notify the producer. SW is the consumer for the event ring, and it
  50. * updates event ring dequeue pointer. HC is the consumer for the command and
  51. * endpoint rings; it generates events on the event ring for these.
  52. */
  53. #include <linux/scatterlist.h>
  54. #include <linux/slab.h>
  55. #include <linux/dma-mapping.h>
  56. #include "xhci.h"
  57. #include "xhci-trace.h"
  58. #include "xhci-mtk.h"
  59. /*
  60. * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  61. * address of the TRB.
  62. */
  63. dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  64. union xhci_trb *trb)
  65. {
  66. unsigned long segment_offset;
  67. if (!seg || !trb || trb < seg->trbs)
  68. return 0;
  69. /* offset in TRBs */
  70. segment_offset = trb - seg->trbs;
  71. if (segment_offset >= TRBS_PER_SEGMENT)
  72. return 0;
  73. return seg->dma + (segment_offset * sizeof(*trb));
  74. }
  75. static bool trb_is_noop(union xhci_trb *trb)
  76. {
  77. return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
  78. }
  79. static bool trb_is_link(union xhci_trb *trb)
  80. {
  81. return TRB_TYPE_LINK_LE32(trb->link.control);
  82. }
  83. static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
  84. {
  85. return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
  86. }
  87. static bool last_trb_on_ring(struct xhci_ring *ring,
  88. struct xhci_segment *seg, union xhci_trb *trb)
  89. {
  90. return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
  91. }
  92. static bool link_trb_toggles_cycle(union xhci_trb *trb)
  93. {
  94. return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
  95. }
  96. static bool last_td_in_urb(struct xhci_td *td)
  97. {
  98. struct urb_priv *urb_priv = td->urb->hcpriv;
  99. return urb_priv->num_tds_done == urb_priv->num_tds;
  100. }
  101. static void inc_td_cnt(struct urb *urb)
  102. {
  103. struct urb_priv *urb_priv = urb->hcpriv;
  104. urb_priv->num_tds_done++;
  105. }
  106. static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
  107. {
  108. if (trb_is_link(trb)) {
  109. /* unchain chained link TRBs */
  110. trb->link.control &= cpu_to_le32(~TRB_CHAIN);
  111. } else {
  112. trb->generic.field[0] = 0;
  113. trb->generic.field[1] = 0;
  114. trb->generic.field[2] = 0;
  115. /* Preserve only the cycle bit of this TRB */
  116. trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
  117. trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
  118. }
  119. }
  120. /* Updates trb to point to the next TRB in the ring, and updates seg if the next
  121. * TRB is in a new segment. This does not skip over link TRBs, and it does not
  122. * effect the ring dequeue or enqueue pointers.
  123. */
  124. static void next_trb(struct xhci_hcd *xhci,
  125. struct xhci_ring *ring,
  126. struct xhci_segment **seg,
  127. union xhci_trb **trb)
  128. {
  129. if (trb_is_link(*trb)) {
  130. *seg = (*seg)->next;
  131. *trb = ((*seg)->trbs);
  132. } else {
  133. (*trb)++;
  134. }
  135. }
  136. /*
  137. * See Cycle bit rules. SW is the consumer for the event ring only.
  138. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  139. */
  140. void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
  141. {
  142. /* event ring doesn't have link trbs, check for last trb */
  143. if (ring->type == TYPE_EVENT) {
  144. if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
  145. ring->dequeue++;
  146. goto out;
  147. }
  148. if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
  149. ring->cycle_state ^= 1;
  150. ring->deq_seg = ring->deq_seg->next;
  151. ring->dequeue = ring->deq_seg->trbs;
  152. goto out;
  153. }
  154. /* All other rings have link trbs */
  155. if (!trb_is_link(ring->dequeue)) {
  156. ring->dequeue++;
  157. ring->num_trbs_free++;
  158. }
  159. while (trb_is_link(ring->dequeue)) {
  160. ring->deq_seg = ring->deq_seg->next;
  161. ring->dequeue = ring->deq_seg->trbs;
  162. }
  163. out:
  164. trace_xhci_inc_deq(ring);
  165. return;
  166. }
  167. /*
  168. * See Cycle bit rules. SW is the consumer for the event ring only.
  169. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  170. *
  171. * If we've just enqueued a TRB that is in the middle of a TD (meaning the
  172. * chain bit is set), then set the chain bit in all the following link TRBs.
  173. * If we've enqueued the last TRB in a TD, make sure the following link TRBs
  174. * have their chain bit cleared (so that each Link TRB is a separate TD).
  175. *
  176. * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
  177. * set, but other sections talk about dealing with the chain bit set. This was
  178. * fixed in the 0.96 specification errata, but we have to assume that all 0.95
  179. * xHCI hardware can't handle the chain bit being cleared on a link TRB.
  180. *
  181. * @more_trbs_coming: Will you enqueue more TRBs before calling
  182. * prepare_transfer()?
  183. */
  184. static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
  185. bool more_trbs_coming)
  186. {
  187. u32 chain;
  188. union xhci_trb *next;
  189. chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
  190. /* If this is not event ring, there is one less usable TRB */
  191. if (!trb_is_link(ring->enqueue))
  192. ring->num_trbs_free--;
  193. next = ++(ring->enqueue);
  194. /* Update the dequeue pointer further if that was a link TRB */
  195. while (trb_is_link(next)) {
  196. /*
  197. * If the caller doesn't plan on enqueueing more TDs before
  198. * ringing the doorbell, then we don't want to give the link TRB
  199. * to the hardware just yet. We'll give the link TRB back in
  200. * prepare_ring() just before we enqueue the TD at the top of
  201. * the ring.
  202. */
  203. if (!chain && !more_trbs_coming)
  204. break;
  205. /* If we're not dealing with 0.95 hardware or isoc rings on
  206. * AMD 0.96 host, carry over the chain bit of the previous TRB
  207. * (which may mean the chain bit is cleared).
  208. */
  209. if (!(ring->type == TYPE_ISOC &&
  210. (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
  211. !xhci_link_trb_quirk(xhci)) {
  212. next->link.control &= cpu_to_le32(~TRB_CHAIN);
  213. next->link.control |= cpu_to_le32(chain);
  214. }
  215. /* Give this link TRB to the hardware */
  216. wmb();
  217. next->link.control ^= cpu_to_le32(TRB_CYCLE);
  218. /* Toggle the cycle bit after the last ring segment. */
  219. if (link_trb_toggles_cycle(next))
  220. ring->cycle_state ^= 1;
  221. ring->enq_seg = ring->enq_seg->next;
  222. ring->enqueue = ring->enq_seg->trbs;
  223. next = ring->enqueue;
  224. }
  225. trace_xhci_inc_enq(ring);
  226. }
  227. /*
  228. * Check to see if there's room to enqueue num_trbs on the ring and make sure
  229. * enqueue pointer will not advance into dequeue segment. See rules above.
  230. */
  231. static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
  232. unsigned int num_trbs)
  233. {
  234. int num_trbs_in_deq_seg;
  235. if (ring->num_trbs_free < num_trbs)
  236. return 0;
  237. if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
  238. num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
  239. if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
  240. return 0;
  241. }
  242. return 1;
  243. }
  244. /* Ring the host controller doorbell after placing a command on the ring */
  245. void xhci_ring_cmd_db(struct xhci_hcd *xhci)
  246. {
  247. if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
  248. return;
  249. xhci_dbg(xhci, "// Ding dong!\n");
  250. writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
  251. /* Flush PCI posted writes */
  252. readl(&xhci->dba->doorbell[0]);
  253. }
  254. static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
  255. {
  256. return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
  257. }
  258. static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
  259. {
  260. return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
  261. cmd_list);
  262. }
  263. /*
  264. * Turn all commands on command ring with status set to "aborted" to no-op trbs.
  265. * If there are other commands waiting then restart the ring and kick the timer.
  266. * This must be called with command ring stopped and xhci->lock held.
  267. */
  268. static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
  269. struct xhci_command *cur_cmd)
  270. {
  271. struct xhci_command *i_cmd;
  272. /* Turn all aborted commands in list to no-ops, then restart */
  273. list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
  274. if (i_cmd->status != COMP_COMMAND_ABORTED)
  275. continue;
  276. i_cmd->status = COMP_COMMAND_RING_STOPPED;
  277. xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
  278. i_cmd->command_trb);
  279. trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
  280. /*
  281. * caller waiting for completion is called when command
  282. * completion event is received for these no-op commands
  283. */
  284. }
  285. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  286. /* ring command ring doorbell to restart the command ring */
  287. if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
  288. !(xhci->xhc_state & XHCI_STATE_DYING)) {
  289. xhci->current_cmd = cur_cmd;
  290. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  291. xhci_ring_cmd_db(xhci);
  292. }
  293. }
  294. /* Must be called with xhci->lock held, releases and aquires lock back */
  295. static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
  296. {
  297. u64 temp_64;
  298. int ret;
  299. xhci_dbg(xhci, "Abort command ring\n");
  300. reinit_completion(&xhci->cmd_ring_stop_completion);
  301. temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  302. xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
  303. &xhci->op_regs->cmd_ring);
  304. /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
  305. * completion of the Command Abort operation. If CRR is not negated in 5
  306. * seconds then driver handles it as if host died (-ENODEV).
  307. * In the future we should distinguish between -ENODEV and -ETIMEDOUT
  308. * and try to recover a -ETIMEDOUT with a host controller reset.
  309. */
  310. ret = xhci_handshake(&xhci->op_regs->cmd_ring,
  311. CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
  312. if (ret < 0) {
  313. xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
  314. xhci_halt(xhci);
  315. xhci_hc_died(xhci);
  316. return ret;
  317. }
  318. /*
  319. * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
  320. * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
  321. * but the completion event in never sent. Wait 2 secs (arbitrary
  322. * number) to handle those cases after negation of CMD_RING_RUNNING.
  323. */
  324. spin_unlock_irqrestore(&xhci->lock, flags);
  325. ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
  326. msecs_to_jiffies(2000));
  327. spin_lock_irqsave(&xhci->lock, flags);
  328. if (!ret) {
  329. xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
  330. xhci_cleanup_command_queue(xhci);
  331. } else {
  332. xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
  333. }
  334. return 0;
  335. }
  336. void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
  337. unsigned int slot_id,
  338. unsigned int ep_index,
  339. unsigned int stream_id)
  340. {
  341. __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
  342. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  343. unsigned int ep_state = ep->ep_state;
  344. /* Don't ring the doorbell for this endpoint if there are pending
  345. * cancellations because we don't want to interrupt processing.
  346. * We don't want to restart any stream rings if there's a set dequeue
  347. * pointer command pending because the device can choose to start any
  348. * stream once the endpoint is on the HW schedule.
  349. */
  350. if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
  351. (ep_state & EP_HALTED))
  352. return;
  353. writel(DB_VALUE(ep_index, stream_id), db_addr);
  354. /* The CPU has better things to do at this point than wait for a
  355. * write-posting flush. It'll get there soon enough.
  356. */
  357. }
  358. /* Ring the doorbell for any rings with pending URBs */
  359. static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
  360. unsigned int slot_id,
  361. unsigned int ep_index)
  362. {
  363. unsigned int stream_id;
  364. struct xhci_virt_ep *ep;
  365. ep = &xhci->devs[slot_id]->eps[ep_index];
  366. /* A ring has pending URBs if its TD list is not empty */
  367. if (!(ep->ep_state & EP_HAS_STREAMS)) {
  368. if (ep->ring && !(list_empty(&ep->ring->td_list)))
  369. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
  370. return;
  371. }
  372. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  373. stream_id++) {
  374. struct xhci_stream_info *stream_info = ep->stream_info;
  375. if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
  376. xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
  377. stream_id);
  378. }
  379. }
  380. /* Get the right ring for the given slot_id, ep_index and stream_id.
  381. * If the endpoint supports streams, boundary check the URB's stream ID.
  382. * If the endpoint doesn't support streams, return the singular endpoint ring.
  383. */
  384. struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
  385. unsigned int slot_id, unsigned int ep_index,
  386. unsigned int stream_id)
  387. {
  388. struct xhci_virt_ep *ep;
  389. ep = &xhci->devs[slot_id]->eps[ep_index];
  390. /* Common case: no streams */
  391. if (!(ep->ep_state & EP_HAS_STREAMS))
  392. return ep->ring;
  393. if (stream_id == 0) {
  394. xhci_warn(xhci,
  395. "WARN: Slot ID %u, ep index %u has streams, "
  396. "but URB has no stream ID.\n",
  397. slot_id, ep_index);
  398. return NULL;
  399. }
  400. if (stream_id < ep->stream_info->num_streams)
  401. return ep->stream_info->stream_rings[stream_id];
  402. xhci_warn(xhci,
  403. "WARN: Slot ID %u, ep index %u has "
  404. "stream IDs 1 to %u allocated, "
  405. "but stream ID %u is requested.\n",
  406. slot_id, ep_index,
  407. ep->stream_info->num_streams - 1,
  408. stream_id);
  409. return NULL;
  410. }
  411. /*
  412. * Get the hw dequeue pointer xHC stopped on, either directly from the
  413. * endpoint context, or if streams are in use from the stream context.
  414. * The returned hw_dequeue contains the lowest four bits with cycle state
  415. * and possbile stream context type.
  416. */
  417. static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
  418. unsigned int ep_index, unsigned int stream_id)
  419. {
  420. struct xhci_ep_ctx *ep_ctx;
  421. struct xhci_stream_ctx *st_ctx;
  422. struct xhci_virt_ep *ep;
  423. ep = &vdev->eps[ep_index];
  424. if (ep->ep_state & EP_HAS_STREAMS) {
  425. st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
  426. return le64_to_cpu(st_ctx->stream_ring);
  427. }
  428. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  429. return le64_to_cpu(ep_ctx->deq);
  430. }
  431. /*
  432. * Move the xHC's endpoint ring dequeue pointer past cur_td.
  433. * Record the new state of the xHC's endpoint ring dequeue segment,
  434. * dequeue pointer, stream id, and new consumer cycle state in state.
  435. * Update our internal representation of the ring's dequeue pointer.
  436. *
  437. * We do this in three jumps:
  438. * - First we update our new ring state to be the same as when the xHC stopped.
  439. * - Then we traverse the ring to find the segment that contains
  440. * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
  441. * any link TRBs with the toggle cycle bit set.
  442. * - Finally we move the dequeue state one TRB further, toggling the cycle bit
  443. * if we've moved it past a link TRB with the toggle cycle bit set.
  444. *
  445. * Some of the uses of xhci_generic_trb are grotty, but if they're done
  446. * with correct __le32 accesses they should work fine. Only users of this are
  447. * in here.
  448. */
  449. void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
  450. unsigned int slot_id, unsigned int ep_index,
  451. unsigned int stream_id, struct xhci_td *cur_td,
  452. struct xhci_dequeue_state *state)
  453. {
  454. struct xhci_virt_device *dev = xhci->devs[slot_id];
  455. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  456. struct xhci_ring *ep_ring;
  457. struct xhci_segment *new_seg;
  458. union xhci_trb *new_deq;
  459. dma_addr_t addr;
  460. u64 hw_dequeue;
  461. bool cycle_found = false;
  462. bool td_last_trb_found = false;
  463. ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
  464. ep_index, stream_id);
  465. if (!ep_ring) {
  466. xhci_warn(xhci, "WARN can't find new dequeue state "
  467. "for invalid stream ID %u.\n",
  468. stream_id);
  469. return;
  470. }
  471. /* Dig out the cycle state saved by the xHC during the stop ep cmd */
  472. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  473. "Finding endpoint context");
  474. hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
  475. new_seg = ep_ring->deq_seg;
  476. new_deq = ep_ring->dequeue;
  477. state->new_cycle_state = hw_dequeue & 0x1;
  478. state->stream_id = stream_id;
  479. /*
  480. * We want to find the pointer, segment and cycle state of the new trb
  481. * (the one after current TD's last_trb). We know the cycle state at
  482. * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
  483. * found.
  484. */
  485. do {
  486. if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
  487. == (dma_addr_t)(hw_dequeue & ~0xf)) {
  488. cycle_found = true;
  489. if (td_last_trb_found)
  490. break;
  491. }
  492. if (new_deq == cur_td->last_trb)
  493. td_last_trb_found = true;
  494. if (cycle_found && trb_is_link(new_deq) &&
  495. link_trb_toggles_cycle(new_deq))
  496. state->new_cycle_state ^= 0x1;
  497. next_trb(xhci, ep_ring, &new_seg, &new_deq);
  498. /* Search wrapped around, bail out */
  499. if (new_deq == ep->ring->dequeue) {
  500. xhci_err(xhci, "Error: Failed finding new dequeue state\n");
  501. state->new_deq_seg = NULL;
  502. state->new_deq_ptr = NULL;
  503. return;
  504. }
  505. } while (!cycle_found || !td_last_trb_found);
  506. state->new_deq_seg = new_seg;
  507. state->new_deq_ptr = new_deq;
  508. /* Don't update the ring cycle state for the producer (us). */
  509. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  510. "Cycle state = 0x%x", state->new_cycle_state);
  511. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  512. "New dequeue segment = %p (virtual)",
  513. state->new_deq_seg);
  514. addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
  515. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  516. "New dequeue pointer = 0x%llx (DMA)",
  517. (unsigned long long) addr);
  518. }
  519. /* flip_cycle means flip the cycle bit of all but the first and last TRB.
  520. * (The last TRB actually points to the ring enqueue pointer, which is not part
  521. * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
  522. */
  523. static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  524. struct xhci_td *td, bool flip_cycle)
  525. {
  526. struct xhci_segment *seg = td->start_seg;
  527. union xhci_trb *trb = td->first_trb;
  528. while (1) {
  529. trb_to_noop(trb, TRB_TR_NOOP);
  530. /* flip cycle if asked to */
  531. if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
  532. trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
  533. if (trb == td->last_trb)
  534. break;
  535. next_trb(xhci, ep_ring, &seg, &trb);
  536. }
  537. }
  538. static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
  539. struct xhci_virt_ep *ep)
  540. {
  541. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  542. /* Can't del_timer_sync in interrupt */
  543. del_timer(&ep->stop_cmd_timer);
  544. }
  545. /*
  546. * Must be called with xhci->lock held in interrupt context,
  547. * releases and re-acquires xhci->lock
  548. */
  549. static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
  550. struct xhci_td *cur_td, int status)
  551. {
  552. struct urb *urb = cur_td->urb;
  553. struct urb_priv *urb_priv = urb->hcpriv;
  554. struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
  555. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
  556. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
  557. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  558. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  559. usb_amd_quirk_pll_enable();
  560. }
  561. }
  562. xhci_urb_free_priv(urb_priv);
  563. usb_hcd_unlink_urb_from_ep(hcd, urb);
  564. spin_unlock(&xhci->lock);
  565. trace_xhci_urb_giveback(urb);
  566. usb_hcd_giveback_urb(hcd, urb, status);
  567. spin_lock(&xhci->lock);
  568. }
  569. static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
  570. struct xhci_ring *ring, struct xhci_td *td)
  571. {
  572. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  573. struct xhci_segment *seg = td->bounce_seg;
  574. struct urb *urb = td->urb;
  575. if (!ring || !seg || !urb)
  576. return;
  577. if (usb_urb_dir_out(urb)) {
  578. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  579. DMA_TO_DEVICE);
  580. return;
  581. }
  582. /* for in tranfers we need to copy the data from bounce to sg */
  583. sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
  584. seg->bounce_len, seg->bounce_offs);
  585. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  586. DMA_FROM_DEVICE);
  587. seg->bounce_len = 0;
  588. seg->bounce_offs = 0;
  589. }
  590. /*
  591. * When we get a command completion for a Stop Endpoint Command, we need to
  592. * unlink any cancelled TDs from the ring. There are two ways to do that:
  593. *
  594. * 1. If the HW was in the middle of processing the TD that needs to be
  595. * cancelled, then we must move the ring's dequeue pointer past the last TRB
  596. * in the TD with a Set Dequeue Pointer Command.
  597. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
  598. * bit cleared) so that the HW will skip over them.
  599. */
  600. static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
  601. union xhci_trb *trb, struct xhci_event_cmd *event)
  602. {
  603. unsigned int ep_index;
  604. struct xhci_ring *ep_ring;
  605. struct xhci_virt_ep *ep;
  606. struct xhci_td *cur_td = NULL;
  607. struct xhci_td *last_unlinked_td;
  608. struct xhci_ep_ctx *ep_ctx;
  609. struct xhci_virt_device *vdev;
  610. u64 hw_deq;
  611. struct xhci_dequeue_state deq_state;
  612. if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
  613. if (!xhci->devs[slot_id])
  614. xhci_warn(xhci, "Stop endpoint command "
  615. "completion for disabled slot %u\n",
  616. slot_id);
  617. return;
  618. }
  619. memset(&deq_state, 0, sizeof(deq_state));
  620. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  621. vdev = xhci->devs[slot_id];
  622. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  623. trace_xhci_handle_cmd_stop_ep(ep_ctx);
  624. ep = &xhci->devs[slot_id]->eps[ep_index];
  625. last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
  626. struct xhci_td, cancelled_td_list);
  627. if (list_empty(&ep->cancelled_td_list)) {
  628. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  629. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  630. return;
  631. }
  632. /* Fix up the ep ring first, so HW stops executing cancelled TDs.
  633. * We have the xHCI lock, so nothing can modify this list until we drop
  634. * it. We're also in the event handler, so we can't get re-interrupted
  635. * if another Stop Endpoint command completes
  636. */
  637. list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
  638. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  639. "Removing canceled TD starting at 0x%llx (dma).",
  640. (unsigned long long)xhci_trb_virt_to_dma(
  641. cur_td->start_seg, cur_td->first_trb));
  642. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  643. if (!ep_ring) {
  644. /* This shouldn't happen unless a driver is mucking
  645. * with the stream ID after submission. This will
  646. * leave the TD on the hardware ring, and the hardware
  647. * will try to execute it, and may access a buffer
  648. * that has already been freed. In the best case, the
  649. * hardware will execute it, and the event handler will
  650. * ignore the completion event for that TD, since it was
  651. * removed from the td_list for that endpoint. In
  652. * short, don't muck with the stream ID after
  653. * submission.
  654. */
  655. xhci_warn(xhci, "WARN Cancelled URB %p "
  656. "has invalid stream ID %u.\n",
  657. cur_td->urb,
  658. cur_td->urb->stream_id);
  659. goto remove_finished_td;
  660. }
  661. /*
  662. * If we stopped on the TD we need to cancel, then we have to
  663. * move the xHC endpoint ring dequeue pointer past this TD.
  664. */
  665. hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
  666. cur_td->urb->stream_id);
  667. hw_deq &= ~0xf;
  668. if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
  669. cur_td->last_trb, hw_deq, false)) {
  670. xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
  671. cur_td->urb->stream_id,
  672. cur_td, &deq_state);
  673. } else {
  674. td_to_noop(xhci, ep_ring, cur_td, false);
  675. }
  676. remove_finished_td:
  677. /*
  678. * The event handler won't see a completion for this TD anymore,
  679. * so remove it from the endpoint ring's TD list. Keep it in
  680. * the cancelled TD list for URB completion later.
  681. */
  682. list_del_init(&cur_td->td_list);
  683. }
  684. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  685. /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
  686. if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
  687. xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
  688. &deq_state);
  689. xhci_ring_cmd_db(xhci);
  690. } else {
  691. /* Otherwise ring the doorbell(s) to restart queued transfers */
  692. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  693. }
  694. /*
  695. * Drop the lock and complete the URBs in the cancelled TD list.
  696. * New TDs to be cancelled might be added to the end of the list before
  697. * we can complete all the URBs for the TDs we already unlinked.
  698. * So stop when we've completed the URB for the last TD we unlinked.
  699. */
  700. do {
  701. cur_td = list_first_entry(&ep->cancelled_td_list,
  702. struct xhci_td, cancelled_td_list);
  703. list_del_init(&cur_td->cancelled_td_list);
  704. /* Clean up the cancelled URB */
  705. /* Doesn't matter what we pass for status, since the core will
  706. * just overwrite it (because the URB has been unlinked).
  707. */
  708. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  709. xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
  710. inc_td_cnt(cur_td->urb);
  711. if (last_td_in_urb(cur_td))
  712. xhci_giveback_urb_in_irq(xhci, cur_td, 0);
  713. /* Stop processing the cancelled list if the watchdog timer is
  714. * running.
  715. */
  716. if (xhci->xhc_state & XHCI_STATE_DYING)
  717. return;
  718. } while (cur_td != last_unlinked_td);
  719. /* Return to the event handler with xhci->lock re-acquired */
  720. }
  721. static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
  722. {
  723. struct xhci_td *cur_td;
  724. struct xhci_td *tmp;
  725. list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
  726. list_del_init(&cur_td->td_list);
  727. if (!list_empty(&cur_td->cancelled_td_list))
  728. list_del_init(&cur_td->cancelled_td_list);
  729. xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
  730. inc_td_cnt(cur_td->urb);
  731. if (last_td_in_urb(cur_td))
  732. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  733. }
  734. }
  735. static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
  736. int slot_id, int ep_index)
  737. {
  738. struct xhci_td *cur_td;
  739. struct xhci_td *tmp;
  740. struct xhci_virt_ep *ep;
  741. struct xhci_ring *ring;
  742. ep = &xhci->devs[slot_id]->eps[ep_index];
  743. if ((ep->ep_state & EP_HAS_STREAMS) ||
  744. (ep->ep_state & EP_GETTING_NO_STREAMS)) {
  745. int stream_id;
  746. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  747. stream_id++) {
  748. ring = ep->stream_info->stream_rings[stream_id];
  749. if (!ring)
  750. continue;
  751. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  752. "Killing URBs for slot ID %u, ep index %u, stream %u",
  753. slot_id, ep_index, stream_id);
  754. xhci_kill_ring_urbs(xhci, ring);
  755. }
  756. } else {
  757. ring = ep->ring;
  758. if (!ring)
  759. return;
  760. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  761. "Killing URBs for slot ID %u, ep index %u",
  762. slot_id, ep_index);
  763. xhci_kill_ring_urbs(xhci, ring);
  764. }
  765. list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
  766. cancelled_td_list) {
  767. list_del_init(&cur_td->cancelled_td_list);
  768. inc_td_cnt(cur_td->urb);
  769. if (last_td_in_urb(cur_td))
  770. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  771. }
  772. }
  773. /*
  774. * host controller died, register read returns 0xffffffff
  775. * Complete pending commands, mark them ABORTED.
  776. * URBs need to be given back as usb core might be waiting with device locks
  777. * held for the URBs to finish during device disconnect, blocking host remove.
  778. *
  779. * Call with xhci->lock held.
  780. * lock is relased and re-acquired while giving back urb.
  781. */
  782. void xhci_hc_died(struct xhci_hcd *xhci)
  783. {
  784. int i, j;
  785. if (xhci->xhc_state & XHCI_STATE_DYING)
  786. return;
  787. xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
  788. xhci->xhc_state |= XHCI_STATE_DYING;
  789. xhci_cleanup_command_queue(xhci);
  790. /* return any pending urbs, remove may be waiting for them */
  791. for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
  792. if (!xhci->devs[i])
  793. continue;
  794. for (j = 0; j < 31; j++)
  795. xhci_kill_endpoint_urbs(xhci, i, j);
  796. }
  797. /* inform usb core hc died if PCI remove isn't already handling it */
  798. if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
  799. usb_hc_died(xhci_to_hcd(xhci));
  800. }
  801. /* Watchdog timer function for when a stop endpoint command fails to complete.
  802. * In this case, we assume the host controller is broken or dying or dead. The
  803. * host may still be completing some other events, so we have to be careful to
  804. * let the event ring handler and the URB dequeueing/enqueueing functions know
  805. * through xhci->state.
  806. *
  807. * The timer may also fire if the host takes a very long time to respond to the
  808. * command, and the stop endpoint command completion handler cannot delete the
  809. * timer before the timer function is called. Another endpoint cancellation may
  810. * sneak in before the timer function can grab the lock, and that may queue
  811. * another stop endpoint command and add the timer back. So we cannot use a
  812. * simple flag to say whether there is a pending stop endpoint command for a
  813. * particular endpoint.
  814. *
  815. * Instead we use a combination of that flag and checking if a new timer is
  816. * pending.
  817. */
  818. void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
  819. {
  820. struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
  821. struct xhci_hcd *xhci = ep->xhci;
  822. unsigned long flags;
  823. spin_lock_irqsave(&xhci->lock, flags);
  824. /* bail out if cmd completed but raced with stop ep watchdog timer.*/
  825. if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
  826. timer_pending(&ep->stop_cmd_timer)) {
  827. spin_unlock_irqrestore(&xhci->lock, flags);
  828. xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
  829. return;
  830. }
  831. xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
  832. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  833. xhci_halt(xhci);
  834. /*
  835. * handle a stop endpoint cmd timeout as if host died (-ENODEV).
  836. * In the future we could distinguish between -ENODEV and -ETIMEDOUT
  837. * and try to recover a -ETIMEDOUT with a host controller reset
  838. */
  839. xhci_hc_died(xhci);
  840. spin_unlock_irqrestore(&xhci->lock, flags);
  841. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  842. "xHCI host controller is dead.");
  843. }
  844. static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
  845. struct xhci_virt_device *dev,
  846. struct xhci_ring *ep_ring,
  847. unsigned int ep_index)
  848. {
  849. union xhci_trb *dequeue_temp;
  850. int num_trbs_free_temp;
  851. bool revert = false;
  852. num_trbs_free_temp = ep_ring->num_trbs_free;
  853. dequeue_temp = ep_ring->dequeue;
  854. /* If we get two back-to-back stalls, and the first stalled transfer
  855. * ends just before a link TRB, the dequeue pointer will be left on
  856. * the link TRB by the code in the while loop. So we have to update
  857. * the dequeue pointer one segment further, or we'll jump off
  858. * the segment into la-la-land.
  859. */
  860. if (trb_is_link(ep_ring->dequeue)) {
  861. ep_ring->deq_seg = ep_ring->deq_seg->next;
  862. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  863. }
  864. while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
  865. /* We have more usable TRBs */
  866. ep_ring->num_trbs_free++;
  867. ep_ring->dequeue++;
  868. if (trb_is_link(ep_ring->dequeue)) {
  869. if (ep_ring->dequeue ==
  870. dev->eps[ep_index].queued_deq_ptr)
  871. break;
  872. ep_ring->deq_seg = ep_ring->deq_seg->next;
  873. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  874. }
  875. if (ep_ring->dequeue == dequeue_temp) {
  876. revert = true;
  877. break;
  878. }
  879. }
  880. if (revert) {
  881. xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
  882. ep_ring->num_trbs_free = num_trbs_free_temp;
  883. }
  884. }
  885. /*
  886. * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
  887. * we need to clear the set deq pending flag in the endpoint ring state, so that
  888. * the TD queueing code can ring the doorbell again. We also need to ring the
  889. * endpoint doorbell to restart the ring, but only if there aren't more
  890. * cancellations pending.
  891. */
  892. static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
  893. union xhci_trb *trb, u32 cmd_comp_code)
  894. {
  895. unsigned int ep_index;
  896. unsigned int stream_id;
  897. struct xhci_ring *ep_ring;
  898. struct xhci_virt_device *dev;
  899. struct xhci_virt_ep *ep;
  900. struct xhci_ep_ctx *ep_ctx;
  901. struct xhci_slot_ctx *slot_ctx;
  902. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  903. stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
  904. dev = xhci->devs[slot_id];
  905. ep = &dev->eps[ep_index];
  906. ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
  907. if (!ep_ring) {
  908. xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
  909. stream_id);
  910. /* XXX: Harmless??? */
  911. goto cleanup;
  912. }
  913. ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  914. slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
  915. trace_xhci_handle_cmd_set_deq(slot_ctx);
  916. trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
  917. if (cmd_comp_code != COMP_SUCCESS) {
  918. unsigned int ep_state;
  919. unsigned int slot_state;
  920. switch (cmd_comp_code) {
  921. case COMP_TRB_ERROR:
  922. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
  923. break;
  924. case COMP_CONTEXT_STATE_ERROR:
  925. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
  926. ep_state = GET_EP_CTX_STATE(ep_ctx);
  927. slot_state = le32_to_cpu(slot_ctx->dev_state);
  928. slot_state = GET_SLOT_STATE(slot_state);
  929. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  930. "Slot state = %u, EP state = %u",
  931. slot_state, ep_state);
  932. break;
  933. case COMP_SLOT_NOT_ENABLED_ERROR:
  934. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
  935. slot_id);
  936. break;
  937. default:
  938. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
  939. cmd_comp_code);
  940. break;
  941. }
  942. /* OK what do we do now? The endpoint state is hosed, and we
  943. * should never get to this point if the synchronization between
  944. * queueing, and endpoint state are correct. This might happen
  945. * if the device gets disconnected after we've finished
  946. * cancelling URBs, which might not be an error...
  947. */
  948. } else {
  949. u64 deq;
  950. /* 4.6.10 deq ptr is written to the stream ctx for streams */
  951. if (ep->ep_state & EP_HAS_STREAMS) {
  952. struct xhci_stream_ctx *ctx =
  953. &ep->stream_info->stream_ctx_array[stream_id];
  954. deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
  955. } else {
  956. deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
  957. }
  958. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  959. "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
  960. if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
  961. ep->queued_deq_ptr) == deq) {
  962. /* Update the ring's dequeue segment and dequeue pointer
  963. * to reflect the new position.
  964. */
  965. update_ring_for_set_deq_completion(xhci, dev,
  966. ep_ring, ep_index);
  967. } else {
  968. xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
  969. xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
  970. ep->queued_deq_seg, ep->queued_deq_ptr);
  971. }
  972. }
  973. cleanup:
  974. dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
  975. dev->eps[ep_index].queued_deq_seg = NULL;
  976. dev->eps[ep_index].queued_deq_ptr = NULL;
  977. /* Restart any rings with pending URBs */
  978. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  979. }
  980. static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
  981. union xhci_trb *trb, u32 cmd_comp_code)
  982. {
  983. struct xhci_virt_device *vdev;
  984. struct xhci_ep_ctx *ep_ctx;
  985. unsigned int ep_index;
  986. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  987. vdev = xhci->devs[slot_id];
  988. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  989. trace_xhci_handle_cmd_reset_ep(ep_ctx);
  990. /* This command will only fail if the endpoint wasn't halted,
  991. * but we don't care.
  992. */
  993. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  994. "Ignoring reset ep completion code of %u", cmd_comp_code);
  995. /* HW with the reset endpoint quirk needs to have a configure endpoint
  996. * command complete before the endpoint can be used. Queue that here
  997. * because the HW can't handle two commands being queued in a row.
  998. */
  999. if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
  1000. struct xhci_command *command;
  1001. command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  1002. if (!command)
  1003. return;
  1004. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1005. "Queueing configure endpoint command");
  1006. xhci_queue_configure_endpoint(xhci, command,
  1007. xhci->devs[slot_id]->in_ctx->dma, slot_id,
  1008. false);
  1009. xhci_ring_cmd_db(xhci);
  1010. } else {
  1011. /* Clear our internal halted state */
  1012. xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
  1013. }
  1014. }
  1015. static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
  1016. struct xhci_command *command, u32 cmd_comp_code)
  1017. {
  1018. if (cmd_comp_code == COMP_SUCCESS)
  1019. command->slot_id = slot_id;
  1020. else
  1021. command->slot_id = 0;
  1022. }
  1023. static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
  1024. {
  1025. struct xhci_virt_device *virt_dev;
  1026. struct xhci_slot_ctx *slot_ctx;
  1027. virt_dev = xhci->devs[slot_id];
  1028. if (!virt_dev)
  1029. return;
  1030. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  1031. trace_xhci_handle_cmd_disable_slot(slot_ctx);
  1032. if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
  1033. /* Delete default control endpoint resources */
  1034. xhci_free_device_endpoint_resources(xhci, virt_dev, true);
  1035. xhci_free_virt_device(xhci, slot_id);
  1036. }
  1037. static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
  1038. struct xhci_event_cmd *event, u32 cmd_comp_code)
  1039. {
  1040. struct xhci_virt_device *virt_dev;
  1041. struct xhci_input_control_ctx *ctrl_ctx;
  1042. struct xhci_ep_ctx *ep_ctx;
  1043. unsigned int ep_index;
  1044. unsigned int ep_state;
  1045. u32 add_flags, drop_flags;
  1046. /*
  1047. * Configure endpoint commands can come from the USB core
  1048. * configuration or alt setting changes, or because the HW
  1049. * needed an extra configure endpoint command after a reset
  1050. * endpoint command or streams were being configured.
  1051. * If the command was for a halted endpoint, the xHCI driver
  1052. * is not waiting on the configure endpoint command.
  1053. */
  1054. virt_dev = xhci->devs[slot_id];
  1055. ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
  1056. if (!ctrl_ctx) {
  1057. xhci_warn(xhci, "Could not get input context, bad type.\n");
  1058. return;
  1059. }
  1060. add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1061. drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1062. /* Input ctx add_flags are the endpoint index plus one */
  1063. ep_index = xhci_last_valid_endpoint(add_flags) - 1;
  1064. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
  1065. trace_xhci_handle_cmd_config_ep(ep_ctx);
  1066. /* A usb_set_interface() call directly after clearing a halted
  1067. * condition may race on this quirky hardware. Not worth
  1068. * worrying about, since this is prototype hardware. Not sure
  1069. * if this will work for streams, but streams support was
  1070. * untested on this prototype.
  1071. */
  1072. if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
  1073. ep_index != (unsigned int) -1 &&
  1074. add_flags - SLOT_FLAG == drop_flags) {
  1075. ep_state = virt_dev->eps[ep_index].ep_state;
  1076. if (!(ep_state & EP_HALTED))
  1077. return;
  1078. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1079. "Completed config ep cmd - "
  1080. "last ep index = %d, state = %d",
  1081. ep_index, ep_state);
  1082. /* Clear internal halted state and restart ring(s) */
  1083. virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
  1084. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  1085. return;
  1086. }
  1087. return;
  1088. }
  1089. static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
  1090. {
  1091. struct xhci_virt_device *vdev;
  1092. struct xhci_slot_ctx *slot_ctx;
  1093. vdev = xhci->devs[slot_id];
  1094. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1095. trace_xhci_handle_cmd_addr_dev(slot_ctx);
  1096. }
  1097. static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
  1098. struct xhci_event_cmd *event)
  1099. {
  1100. struct xhci_virt_device *vdev;
  1101. struct xhci_slot_ctx *slot_ctx;
  1102. vdev = xhci->devs[slot_id];
  1103. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1104. trace_xhci_handle_cmd_reset_dev(slot_ctx);
  1105. xhci_dbg(xhci, "Completed reset device command.\n");
  1106. if (!xhci->devs[slot_id])
  1107. xhci_warn(xhci, "Reset device command completion "
  1108. "for disabled slot %u\n", slot_id);
  1109. }
  1110. static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
  1111. struct xhci_event_cmd *event)
  1112. {
  1113. if (!(xhci->quirks & XHCI_NEC_HOST)) {
  1114. xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
  1115. return;
  1116. }
  1117. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1118. "NEC firmware version %2x.%02x",
  1119. NEC_FW_MAJOR(le32_to_cpu(event->status)),
  1120. NEC_FW_MINOR(le32_to_cpu(event->status)));
  1121. }
  1122. static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
  1123. {
  1124. list_del(&cmd->cmd_list);
  1125. if (cmd->completion) {
  1126. cmd->status = status;
  1127. complete(cmd->completion);
  1128. } else {
  1129. kfree(cmd);
  1130. }
  1131. }
  1132. void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
  1133. {
  1134. struct xhci_command *cur_cmd, *tmp_cmd;
  1135. xhci->current_cmd = NULL;
  1136. list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
  1137. xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
  1138. }
  1139. void xhci_handle_command_timeout(struct work_struct *work)
  1140. {
  1141. struct xhci_hcd *xhci;
  1142. unsigned long flags;
  1143. u64 hw_ring_state;
  1144. xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
  1145. spin_lock_irqsave(&xhci->lock, flags);
  1146. /*
  1147. * If timeout work is pending, or current_cmd is NULL, it means we
  1148. * raced with command completion. Command is handled so just return.
  1149. */
  1150. if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
  1151. spin_unlock_irqrestore(&xhci->lock, flags);
  1152. return;
  1153. }
  1154. /* mark this command to be cancelled */
  1155. xhci->current_cmd->status = COMP_COMMAND_ABORTED;
  1156. /* Make sure command ring is running before aborting it */
  1157. hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1158. if (hw_ring_state == ~(u64)0) {
  1159. xhci_hc_died(xhci);
  1160. goto time_out_completed;
  1161. }
  1162. if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
  1163. (hw_ring_state & CMD_RING_RUNNING)) {
  1164. /* Prevent new doorbell, and start command abort */
  1165. xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
  1166. xhci_dbg(xhci, "Command timeout\n");
  1167. xhci_abort_cmd_ring(xhci, flags);
  1168. goto time_out_completed;
  1169. }
  1170. /* host removed. Bail out */
  1171. if (xhci->xhc_state & XHCI_STATE_REMOVING) {
  1172. xhci_dbg(xhci, "host removed, ring start fail?\n");
  1173. xhci_cleanup_command_queue(xhci);
  1174. goto time_out_completed;
  1175. }
  1176. /* command timeout on stopped ring, ring can't be aborted */
  1177. xhci_dbg(xhci, "Command timeout on stopped ring\n");
  1178. xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
  1179. time_out_completed:
  1180. spin_unlock_irqrestore(&xhci->lock, flags);
  1181. return;
  1182. }
  1183. static void handle_cmd_completion(struct xhci_hcd *xhci,
  1184. struct xhci_event_cmd *event)
  1185. {
  1186. int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1187. u64 cmd_dma;
  1188. dma_addr_t cmd_dequeue_dma;
  1189. u32 cmd_comp_code;
  1190. union xhci_trb *cmd_trb;
  1191. struct xhci_command *cmd;
  1192. u32 cmd_type;
  1193. cmd_dma = le64_to_cpu(event->cmd_trb);
  1194. cmd_trb = xhci->cmd_ring->dequeue;
  1195. trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
  1196. cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  1197. cmd_trb);
  1198. /*
  1199. * Check whether the completion event is for our internal kept
  1200. * command.
  1201. */
  1202. if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
  1203. xhci_warn(xhci,
  1204. "ERROR mismatched command completion event\n");
  1205. return;
  1206. }
  1207. cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
  1208. cancel_delayed_work(&xhci->cmd_timer);
  1209. cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
  1210. /* If CMD ring stopped we own the trbs between enqueue and dequeue */
  1211. if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
  1212. complete_all(&xhci->cmd_ring_stop_completion);
  1213. return;
  1214. }
  1215. if (cmd->command_trb != xhci->cmd_ring->dequeue) {
  1216. xhci_err(xhci,
  1217. "Command completion event does not match command\n");
  1218. return;
  1219. }
  1220. /*
  1221. * Host aborted the command ring, check if the current command was
  1222. * supposed to be aborted, otherwise continue normally.
  1223. * The command ring is stopped now, but the xHC will issue a Command
  1224. * Ring Stopped event which will cause us to restart it.
  1225. */
  1226. if (cmd_comp_code == COMP_COMMAND_ABORTED) {
  1227. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  1228. if (cmd->status == COMP_COMMAND_ABORTED) {
  1229. if (xhci->current_cmd == cmd)
  1230. xhci->current_cmd = NULL;
  1231. goto event_handled;
  1232. }
  1233. }
  1234. cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
  1235. switch (cmd_type) {
  1236. case TRB_ENABLE_SLOT:
  1237. xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
  1238. break;
  1239. case TRB_DISABLE_SLOT:
  1240. xhci_handle_cmd_disable_slot(xhci, slot_id);
  1241. break;
  1242. case TRB_CONFIG_EP:
  1243. if (!cmd->completion)
  1244. xhci_handle_cmd_config_ep(xhci, slot_id, event,
  1245. cmd_comp_code);
  1246. break;
  1247. case TRB_EVAL_CONTEXT:
  1248. break;
  1249. case TRB_ADDR_DEV:
  1250. xhci_handle_cmd_addr_dev(xhci, slot_id);
  1251. break;
  1252. case TRB_STOP_RING:
  1253. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1254. le32_to_cpu(cmd_trb->generic.field[3])));
  1255. xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
  1256. break;
  1257. case TRB_SET_DEQ:
  1258. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1259. le32_to_cpu(cmd_trb->generic.field[3])));
  1260. xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
  1261. break;
  1262. case TRB_CMD_NOOP:
  1263. /* Is this an aborted command turned to NO-OP? */
  1264. if (cmd->status == COMP_COMMAND_RING_STOPPED)
  1265. cmd_comp_code = COMP_COMMAND_RING_STOPPED;
  1266. break;
  1267. case TRB_RESET_EP:
  1268. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1269. le32_to_cpu(cmd_trb->generic.field[3])));
  1270. xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
  1271. break;
  1272. case TRB_RESET_DEV:
  1273. /* SLOT_ID field in reset device cmd completion event TRB is 0.
  1274. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
  1275. */
  1276. slot_id = TRB_TO_SLOT_ID(
  1277. le32_to_cpu(cmd_trb->generic.field[3]));
  1278. xhci_handle_cmd_reset_dev(xhci, slot_id, event);
  1279. break;
  1280. case TRB_NEC_GET_FW:
  1281. xhci_handle_cmd_nec_get_fw(xhci, event);
  1282. break;
  1283. default:
  1284. /* Skip over unknown commands on the event ring */
  1285. xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
  1286. break;
  1287. }
  1288. /* restart timer if this wasn't the last command */
  1289. if (!list_is_singular(&xhci->cmd_list)) {
  1290. xhci->current_cmd = list_first_entry(&cmd->cmd_list,
  1291. struct xhci_command, cmd_list);
  1292. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  1293. } else if (xhci->current_cmd == cmd) {
  1294. xhci->current_cmd = NULL;
  1295. }
  1296. event_handled:
  1297. xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
  1298. inc_deq(xhci, xhci->cmd_ring);
  1299. }
  1300. static void handle_vendor_event(struct xhci_hcd *xhci,
  1301. union xhci_trb *event)
  1302. {
  1303. u32 trb_type;
  1304. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
  1305. xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
  1306. if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
  1307. handle_cmd_completion(xhci, &event->event_cmd);
  1308. }
  1309. /* @port_id: the one-based port ID from the hardware (indexed from array of all
  1310. * port registers -- USB 3.0 and USB 2.0).
  1311. *
  1312. * Returns a zero-based port number, which is suitable for indexing into each of
  1313. * the split roothubs' port arrays and bus state arrays.
  1314. * Add one to it in order to call xhci_find_slot_id_by_port.
  1315. */
  1316. static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
  1317. struct xhci_hcd *xhci, u32 port_id)
  1318. {
  1319. unsigned int i;
  1320. unsigned int num_similar_speed_ports = 0;
  1321. /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
  1322. * and usb2_ports are 0-based indexes. Count the number of similar
  1323. * speed ports, up to 1 port before this port.
  1324. */
  1325. for (i = 0; i < (port_id - 1); i++) {
  1326. u8 port_speed = xhci->port_array[i];
  1327. /*
  1328. * Skip ports that don't have known speeds, or have duplicate
  1329. * Extended Capabilities port speed entries.
  1330. */
  1331. if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
  1332. continue;
  1333. /*
  1334. * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
  1335. * 1.1 ports are under the USB 2.0 hub. If the port speed
  1336. * matches the device speed, it's a similar speed port.
  1337. */
  1338. if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
  1339. num_similar_speed_ports++;
  1340. }
  1341. return num_similar_speed_ports;
  1342. }
  1343. static void handle_device_notification(struct xhci_hcd *xhci,
  1344. union xhci_trb *event)
  1345. {
  1346. u32 slot_id;
  1347. struct usb_device *udev;
  1348. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
  1349. if (!xhci->devs[slot_id]) {
  1350. xhci_warn(xhci, "Device Notification event for "
  1351. "unused slot %u\n", slot_id);
  1352. return;
  1353. }
  1354. xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
  1355. slot_id);
  1356. udev = xhci->devs[slot_id]->udev;
  1357. if (udev && udev->parent)
  1358. usb_wakeup_notification(udev->parent, udev->portnum);
  1359. }
  1360. static void handle_port_status(struct xhci_hcd *xhci,
  1361. union xhci_trb *event)
  1362. {
  1363. struct usb_hcd *hcd;
  1364. u32 port_id;
  1365. u32 portsc, cmd_reg;
  1366. int max_ports;
  1367. int slot_id;
  1368. unsigned int faked_port_index;
  1369. u8 major_revision;
  1370. struct xhci_bus_state *bus_state;
  1371. __le32 __iomem **port_array;
  1372. bool bogus_port_status = false;
  1373. /* Port status change events always have a successful completion code */
  1374. if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
  1375. xhci_warn(xhci,
  1376. "WARN: xHC returned failed port status event\n");
  1377. port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
  1378. xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
  1379. max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1380. if ((port_id <= 0) || (port_id > max_ports)) {
  1381. xhci_warn(xhci, "Invalid port id %d\n", port_id);
  1382. inc_deq(xhci, xhci->event_ring);
  1383. return;
  1384. }
  1385. /* Figure out which usb_hcd this port is attached to:
  1386. * is it a USB 3.0 port or a USB 2.0/1.1 port?
  1387. */
  1388. major_revision = xhci->port_array[port_id - 1];
  1389. /* Find the right roothub. */
  1390. hcd = xhci_to_hcd(xhci);
  1391. if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
  1392. hcd = xhci->shared_hcd;
  1393. if (major_revision == 0) {
  1394. xhci_warn(xhci, "Event for port %u not in "
  1395. "Extended Capabilities, ignoring.\n",
  1396. port_id);
  1397. bogus_port_status = true;
  1398. goto cleanup;
  1399. }
  1400. if (major_revision == DUPLICATE_ENTRY) {
  1401. xhci_warn(xhci, "Event for port %u duplicated in"
  1402. "Extended Capabilities, ignoring.\n",
  1403. port_id);
  1404. bogus_port_status = true;
  1405. goto cleanup;
  1406. }
  1407. /*
  1408. * Hardware port IDs reported by a Port Status Change Event include USB
  1409. * 3.0 and USB 2.0 ports. We want to check if the port has reported a
  1410. * resume event, but we first need to translate the hardware port ID
  1411. * into the index into the ports on the correct split roothub, and the
  1412. * correct bus_state structure.
  1413. */
  1414. bus_state = &xhci->bus_state[hcd_index(hcd)];
  1415. if (hcd->speed >= HCD_USB3)
  1416. port_array = xhci->usb3_ports;
  1417. else
  1418. port_array = xhci->usb2_ports;
  1419. /* Find the faked port hub number */
  1420. faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
  1421. port_id);
  1422. portsc = readl(port_array[faked_port_index]);
  1423. trace_xhci_handle_port_status(faked_port_index, portsc);
  1424. if (hcd->state == HC_STATE_SUSPENDED) {
  1425. xhci_dbg(xhci, "resume root hub\n");
  1426. usb_hcd_resume_root_hub(hcd);
  1427. }
  1428. if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
  1429. bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
  1430. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
  1431. xhci_dbg(xhci, "port resume event for port %d\n", port_id);
  1432. cmd_reg = readl(&xhci->op_regs->command);
  1433. if (!(cmd_reg & CMD_RUN)) {
  1434. xhci_warn(xhci, "xHC is not running.\n");
  1435. goto cleanup;
  1436. }
  1437. if (DEV_SUPERSPEED_ANY(portsc)) {
  1438. xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
  1439. /* Set a flag to say the port signaled remote wakeup,
  1440. * so we can tell the difference between the end of
  1441. * device and host initiated resume.
  1442. */
  1443. bus_state->port_remote_wakeup |= 1 << faked_port_index;
  1444. xhci_test_and_clear_bit(xhci, port_array,
  1445. faked_port_index, PORT_PLC);
  1446. xhci_set_link_state(xhci, port_array, faked_port_index,
  1447. XDEV_U0);
  1448. /* Need to wait until the next link state change
  1449. * indicates the device is actually in U0.
  1450. */
  1451. bogus_port_status = true;
  1452. goto cleanup;
  1453. } else if (!test_bit(faked_port_index,
  1454. &bus_state->resuming_ports)) {
  1455. xhci_dbg(xhci, "resume HS port %d\n", port_id);
  1456. bus_state->resume_done[faked_port_index] = jiffies +
  1457. msecs_to_jiffies(USB_RESUME_TIMEOUT);
  1458. set_bit(faked_port_index, &bus_state->resuming_ports);
  1459. /* Do the rest in GetPortStatus after resume time delay.
  1460. * Avoid polling roothub status before that so that a
  1461. * usb device auto-resume latency around ~40ms.
  1462. */
  1463. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1464. mod_timer(&hcd->rh_timer,
  1465. bus_state->resume_done[faked_port_index]);
  1466. bogus_port_status = true;
  1467. }
  1468. }
  1469. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
  1470. DEV_SUPERSPEED_ANY(portsc)) {
  1471. xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
  1472. /* We've just brought the device into U0 through either the
  1473. * Resume state after a device remote wakeup, or through the
  1474. * U3Exit state after a host-initiated resume. If it's a device
  1475. * initiated remote wake, don't pass up the link state change,
  1476. * so the roothub behavior is consistent with external
  1477. * USB 3.0 hub behavior.
  1478. */
  1479. slot_id = xhci_find_slot_id_by_port(hcd, xhci,
  1480. faked_port_index + 1);
  1481. if (slot_id && xhci->devs[slot_id])
  1482. xhci_ring_device(xhci, slot_id);
  1483. if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
  1484. bus_state->port_remote_wakeup &=
  1485. ~(1 << faked_port_index);
  1486. xhci_test_and_clear_bit(xhci, port_array,
  1487. faked_port_index, PORT_PLC);
  1488. usb_wakeup_notification(hcd->self.root_hub,
  1489. faked_port_index + 1);
  1490. bogus_port_status = true;
  1491. goto cleanup;
  1492. }
  1493. }
  1494. /*
  1495. * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
  1496. * RExit to a disconnect state). If so, let the the driver know it's
  1497. * out of the RExit state.
  1498. */
  1499. if (!DEV_SUPERSPEED_ANY(portsc) &&
  1500. test_and_clear_bit(faked_port_index,
  1501. &bus_state->rexit_ports)) {
  1502. complete(&bus_state->rexit_done[faked_port_index]);
  1503. bogus_port_status = true;
  1504. goto cleanup;
  1505. }
  1506. if (hcd->speed < HCD_USB3)
  1507. xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
  1508. PORT_PLC);
  1509. cleanup:
  1510. /* Update event ring dequeue pointer before dropping the lock */
  1511. inc_deq(xhci, xhci->event_ring);
  1512. /* Don't make the USB core poll the roothub if we got a bad port status
  1513. * change event. Besides, at that point we can't tell which roothub
  1514. * (USB 2.0 or USB 3.0) to kick.
  1515. */
  1516. if (bogus_port_status)
  1517. return;
  1518. /*
  1519. * xHCI port-status-change events occur when the "or" of all the
  1520. * status-change bits in the portsc register changes from 0 to 1.
  1521. * New status changes won't cause an event if any other change
  1522. * bits are still set. When an event occurs, switch over to
  1523. * polling to avoid losing status changes.
  1524. */
  1525. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  1526. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1527. spin_unlock(&xhci->lock);
  1528. /* Pass this up to the core */
  1529. usb_hcd_poll_rh_status(hcd);
  1530. spin_lock(&xhci->lock);
  1531. }
  1532. /*
  1533. * This TD is defined by the TRBs starting at start_trb in start_seg and ending
  1534. * at end_trb, which may be in another segment. If the suspect DMA address is a
  1535. * TRB in this TD, this function returns that TRB's segment. Otherwise it
  1536. * returns 0.
  1537. */
  1538. struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
  1539. struct xhci_segment *start_seg,
  1540. union xhci_trb *start_trb,
  1541. union xhci_trb *end_trb,
  1542. dma_addr_t suspect_dma,
  1543. bool debug)
  1544. {
  1545. dma_addr_t start_dma;
  1546. dma_addr_t end_seg_dma;
  1547. dma_addr_t end_trb_dma;
  1548. struct xhci_segment *cur_seg;
  1549. start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
  1550. cur_seg = start_seg;
  1551. do {
  1552. if (start_dma == 0)
  1553. return NULL;
  1554. /* We may get an event for a Link TRB in the middle of a TD */
  1555. end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
  1556. &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
  1557. /* If the end TRB isn't in this segment, this is set to 0 */
  1558. end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
  1559. if (debug)
  1560. xhci_warn(xhci,
  1561. "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
  1562. (unsigned long long)suspect_dma,
  1563. (unsigned long long)start_dma,
  1564. (unsigned long long)end_trb_dma,
  1565. (unsigned long long)cur_seg->dma,
  1566. (unsigned long long)end_seg_dma);
  1567. if (end_trb_dma > 0) {
  1568. /* The end TRB is in this segment, so suspect should be here */
  1569. if (start_dma <= end_trb_dma) {
  1570. if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
  1571. return cur_seg;
  1572. } else {
  1573. /* Case for one segment with
  1574. * a TD wrapped around to the top
  1575. */
  1576. if ((suspect_dma >= start_dma &&
  1577. suspect_dma <= end_seg_dma) ||
  1578. (suspect_dma >= cur_seg->dma &&
  1579. suspect_dma <= end_trb_dma))
  1580. return cur_seg;
  1581. }
  1582. return NULL;
  1583. } else {
  1584. /* Might still be somewhere in this segment */
  1585. if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
  1586. return cur_seg;
  1587. }
  1588. cur_seg = cur_seg->next;
  1589. start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
  1590. } while (cur_seg != start_seg);
  1591. return NULL;
  1592. }
  1593. static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
  1594. unsigned int slot_id, unsigned int ep_index,
  1595. unsigned int stream_id,
  1596. struct xhci_td *td, union xhci_trb *ep_trb,
  1597. enum xhci_ep_reset_type reset_type)
  1598. {
  1599. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  1600. struct xhci_command *command;
  1601. command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  1602. if (!command)
  1603. return;
  1604. ep->ep_state |= EP_HALTED;
  1605. xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
  1606. if (reset_type == EP_HARD_RESET)
  1607. xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
  1608. xhci_ring_cmd_db(xhci);
  1609. }
  1610. /* Check if an error has halted the endpoint ring. The class driver will
  1611. * cleanup the halt for a non-default control endpoint if we indicate a stall.
  1612. * However, a babble and other errors also halt the endpoint ring, and the class
  1613. * driver won't clear the halt in that case, so we need to issue a Set Transfer
  1614. * Ring Dequeue Pointer command manually.
  1615. */
  1616. static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
  1617. struct xhci_ep_ctx *ep_ctx,
  1618. unsigned int trb_comp_code)
  1619. {
  1620. /* TRB completion codes that may require a manual halt cleanup */
  1621. if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
  1622. trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
  1623. trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
  1624. /* The 0.95 spec says a babbling control endpoint
  1625. * is not halted. The 0.96 spec says it is. Some HW
  1626. * claims to be 0.95 compliant, but it halts the control
  1627. * endpoint anyway. Check if a babble halted the
  1628. * endpoint.
  1629. */
  1630. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
  1631. return 1;
  1632. return 0;
  1633. }
  1634. int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
  1635. {
  1636. if (trb_comp_code >= 224 && trb_comp_code <= 255) {
  1637. /* Vendor defined "informational" completion code,
  1638. * treat as not-an-error.
  1639. */
  1640. xhci_dbg(xhci, "Vendor defined info completion code %u\n",
  1641. trb_comp_code);
  1642. xhci_dbg(xhci, "Treating code as success.\n");
  1643. return 1;
  1644. }
  1645. return 0;
  1646. }
  1647. static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
  1648. struct xhci_ring *ep_ring, int *status)
  1649. {
  1650. struct urb *urb = NULL;
  1651. /* Clean up the endpoint's TD list */
  1652. urb = td->urb;
  1653. /* if a bounce buffer was used to align this td then unmap it */
  1654. xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
  1655. /* Do one last check of the actual transfer length.
  1656. * If the host controller said we transferred more data than the buffer
  1657. * length, urb->actual_length will be a very big number (since it's
  1658. * unsigned). Play it safe and say we didn't transfer anything.
  1659. */
  1660. if (urb->actual_length > urb->transfer_buffer_length) {
  1661. xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
  1662. urb->transfer_buffer_length, urb->actual_length);
  1663. urb->actual_length = 0;
  1664. *status = 0;
  1665. }
  1666. list_del_init(&td->td_list);
  1667. /* Was this TD slated to be cancelled but completed anyway? */
  1668. if (!list_empty(&td->cancelled_td_list))
  1669. list_del_init(&td->cancelled_td_list);
  1670. inc_td_cnt(urb);
  1671. /* Giveback the urb when all the tds are completed */
  1672. if (last_td_in_urb(td)) {
  1673. if ((urb->actual_length != urb->transfer_buffer_length &&
  1674. (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
  1675. (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
  1676. xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
  1677. urb, urb->actual_length,
  1678. urb->transfer_buffer_length, *status);
  1679. /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
  1680. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
  1681. *status = 0;
  1682. xhci_giveback_urb_in_irq(xhci, td, *status);
  1683. }
  1684. return 0;
  1685. }
  1686. static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1687. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1688. struct xhci_virt_ep *ep, int *status)
  1689. {
  1690. struct xhci_virt_device *xdev;
  1691. struct xhci_ep_ctx *ep_ctx;
  1692. struct xhci_ring *ep_ring;
  1693. unsigned int slot_id;
  1694. u32 trb_comp_code;
  1695. int ep_index;
  1696. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1697. xdev = xhci->devs[slot_id];
  1698. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1699. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1700. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1701. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1702. if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  1703. trb_comp_code == COMP_STOPPED ||
  1704. trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
  1705. /* The Endpoint Stop Command completion will take care of any
  1706. * stopped TDs. A stopped TD may be restarted, so don't update
  1707. * the ring dequeue pointer or take this TD off any lists yet.
  1708. */
  1709. return 0;
  1710. }
  1711. if (trb_comp_code == COMP_STALL_ERROR ||
  1712. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  1713. trb_comp_code)) {
  1714. /* Issue a reset endpoint command to clear the host side
  1715. * halt, followed by a set dequeue command to move the
  1716. * dequeue pointer past the TD.
  1717. * The class driver clears the device side halt later.
  1718. */
  1719. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
  1720. ep_ring->stream_id, td, ep_trb,
  1721. EP_HARD_RESET);
  1722. } else {
  1723. /* Update ring dequeue pointer */
  1724. while (ep_ring->dequeue != td->last_trb)
  1725. inc_deq(xhci, ep_ring);
  1726. inc_deq(xhci, ep_ring);
  1727. }
  1728. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1729. }
  1730. /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
  1731. static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
  1732. union xhci_trb *stop_trb)
  1733. {
  1734. u32 sum;
  1735. union xhci_trb *trb = ring->dequeue;
  1736. struct xhci_segment *seg = ring->deq_seg;
  1737. for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
  1738. if (!trb_is_noop(trb) && !trb_is_link(trb))
  1739. sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
  1740. }
  1741. return sum;
  1742. }
  1743. /*
  1744. * Process control tds, update urb status and actual_length.
  1745. */
  1746. static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1747. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1748. struct xhci_virt_ep *ep, int *status)
  1749. {
  1750. struct xhci_virt_device *xdev;
  1751. unsigned int slot_id;
  1752. int ep_index;
  1753. struct xhci_ep_ctx *ep_ctx;
  1754. u32 trb_comp_code;
  1755. u32 remaining, requested;
  1756. u32 trb_type;
  1757. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
  1758. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1759. xdev = xhci->devs[slot_id];
  1760. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1761. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1762. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1763. requested = td->urb->transfer_buffer_length;
  1764. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1765. switch (trb_comp_code) {
  1766. case COMP_SUCCESS:
  1767. if (trb_type != TRB_STATUS) {
  1768. xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
  1769. (trb_type == TRB_DATA) ? "data" : "setup");
  1770. *status = -ESHUTDOWN;
  1771. break;
  1772. }
  1773. *status = 0;
  1774. break;
  1775. case COMP_SHORT_PACKET:
  1776. *status = 0;
  1777. break;
  1778. case COMP_STOPPED_SHORT_PACKET:
  1779. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1780. td->urb->actual_length = remaining;
  1781. else
  1782. xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
  1783. goto finish_td;
  1784. case COMP_STOPPED:
  1785. switch (trb_type) {
  1786. case TRB_SETUP:
  1787. td->urb->actual_length = 0;
  1788. goto finish_td;
  1789. case TRB_DATA:
  1790. case TRB_NORMAL:
  1791. td->urb->actual_length = requested - remaining;
  1792. goto finish_td;
  1793. case TRB_STATUS:
  1794. td->urb->actual_length = requested;
  1795. goto finish_td;
  1796. default:
  1797. xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
  1798. trb_type);
  1799. goto finish_td;
  1800. }
  1801. case COMP_STOPPED_LENGTH_INVALID:
  1802. goto finish_td;
  1803. default:
  1804. if (!xhci_requires_manual_halt_cleanup(xhci,
  1805. ep_ctx, trb_comp_code))
  1806. break;
  1807. xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
  1808. trb_comp_code, ep_index);
  1809. /* else fall through */
  1810. case COMP_STALL_ERROR:
  1811. /* Did we transfer part of the data (middle) phase? */
  1812. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1813. td->urb->actual_length = requested - remaining;
  1814. else if (!td->urb_length_set)
  1815. td->urb->actual_length = 0;
  1816. goto finish_td;
  1817. }
  1818. /* stopped at setup stage, no data transferred */
  1819. if (trb_type == TRB_SETUP)
  1820. goto finish_td;
  1821. /*
  1822. * if on data stage then update the actual_length of the URB and flag it
  1823. * as set, so it won't be overwritten in the event for the last TRB.
  1824. */
  1825. if (trb_type == TRB_DATA ||
  1826. trb_type == TRB_NORMAL) {
  1827. td->urb_length_set = true;
  1828. td->urb->actual_length = requested - remaining;
  1829. xhci_dbg(xhci, "Waiting for status stage event\n");
  1830. return 0;
  1831. }
  1832. /* at status stage */
  1833. if (!td->urb_length_set)
  1834. td->urb->actual_length = requested;
  1835. finish_td:
  1836. return finish_td(xhci, td, ep_trb, event, ep, status);
  1837. }
  1838. /*
  1839. * Process isochronous tds, update urb packet status and actual_length.
  1840. */
  1841. static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1842. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1843. struct xhci_virt_ep *ep, int *status)
  1844. {
  1845. struct xhci_ring *ep_ring;
  1846. struct urb_priv *urb_priv;
  1847. int idx;
  1848. struct usb_iso_packet_descriptor *frame;
  1849. u32 trb_comp_code;
  1850. bool sum_trbs_for_length = false;
  1851. u32 remaining, requested, ep_trb_len;
  1852. int short_framestatus;
  1853. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1854. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1855. urb_priv = td->urb->hcpriv;
  1856. idx = urb_priv->num_tds_done;
  1857. frame = &td->urb->iso_frame_desc[idx];
  1858. requested = frame->length;
  1859. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1860. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1861. short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
  1862. -EREMOTEIO : 0;
  1863. /* handle completion code */
  1864. switch (trb_comp_code) {
  1865. case COMP_SUCCESS:
  1866. if (remaining) {
  1867. frame->status = short_framestatus;
  1868. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  1869. sum_trbs_for_length = true;
  1870. break;
  1871. }
  1872. frame->status = 0;
  1873. break;
  1874. case COMP_SHORT_PACKET:
  1875. frame->status = short_framestatus;
  1876. sum_trbs_for_length = true;
  1877. break;
  1878. case COMP_BANDWIDTH_OVERRUN_ERROR:
  1879. frame->status = -ECOMM;
  1880. break;
  1881. case COMP_ISOCH_BUFFER_OVERRUN:
  1882. case COMP_BABBLE_DETECTED_ERROR:
  1883. frame->status = -EOVERFLOW;
  1884. break;
  1885. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  1886. case COMP_STALL_ERROR:
  1887. frame->status = -EPROTO;
  1888. break;
  1889. case COMP_USB_TRANSACTION_ERROR:
  1890. frame->status = -EPROTO;
  1891. if (ep_trb != td->last_trb)
  1892. return 0;
  1893. break;
  1894. case COMP_STOPPED:
  1895. sum_trbs_for_length = true;
  1896. break;
  1897. case COMP_STOPPED_SHORT_PACKET:
  1898. /* field normally containing residue now contains tranferred */
  1899. frame->status = short_framestatus;
  1900. requested = remaining;
  1901. break;
  1902. case COMP_STOPPED_LENGTH_INVALID:
  1903. requested = 0;
  1904. remaining = 0;
  1905. break;
  1906. default:
  1907. sum_trbs_for_length = true;
  1908. frame->status = -1;
  1909. break;
  1910. }
  1911. if (sum_trbs_for_length)
  1912. frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1913. ep_trb_len - remaining;
  1914. else
  1915. frame->actual_length = requested;
  1916. td->urb->actual_length += frame->actual_length;
  1917. return finish_td(xhci, td, ep_trb, event, ep, status);
  1918. }
  1919. static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1920. struct xhci_transfer_event *event,
  1921. struct xhci_virt_ep *ep, int *status)
  1922. {
  1923. struct xhci_ring *ep_ring;
  1924. struct urb_priv *urb_priv;
  1925. struct usb_iso_packet_descriptor *frame;
  1926. int idx;
  1927. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1928. urb_priv = td->urb->hcpriv;
  1929. idx = urb_priv->num_tds_done;
  1930. frame = &td->urb->iso_frame_desc[idx];
  1931. /* The transfer is partly done. */
  1932. frame->status = -EXDEV;
  1933. /* calc actual length */
  1934. frame->actual_length = 0;
  1935. /* Update ring dequeue pointer */
  1936. while (ep_ring->dequeue != td->last_trb)
  1937. inc_deq(xhci, ep_ring);
  1938. inc_deq(xhci, ep_ring);
  1939. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1940. }
  1941. /*
  1942. * Process bulk and interrupt tds, update urb status and actual_length.
  1943. */
  1944. static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1945. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1946. struct xhci_virt_ep *ep, int *status)
  1947. {
  1948. struct xhci_ring *ep_ring;
  1949. u32 trb_comp_code;
  1950. u32 remaining, requested, ep_trb_len;
  1951. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1952. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1953. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1954. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1955. requested = td->urb->transfer_buffer_length;
  1956. switch (trb_comp_code) {
  1957. case COMP_SUCCESS:
  1958. /* handle success with untransferred data as short packet */
  1959. if (ep_trb != td->last_trb || remaining) {
  1960. xhci_warn(xhci, "WARN Successful completion on short TX\n");
  1961. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1962. td->urb->ep->desc.bEndpointAddress,
  1963. requested, remaining);
  1964. }
  1965. *status = 0;
  1966. break;
  1967. case COMP_SHORT_PACKET:
  1968. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1969. td->urb->ep->desc.bEndpointAddress,
  1970. requested, remaining);
  1971. *status = 0;
  1972. break;
  1973. case COMP_STOPPED_SHORT_PACKET:
  1974. td->urb->actual_length = remaining;
  1975. goto finish_td;
  1976. case COMP_STOPPED_LENGTH_INVALID:
  1977. /* stopped on ep trb with invalid length, exclude it */
  1978. ep_trb_len = 0;
  1979. remaining = 0;
  1980. break;
  1981. default:
  1982. /* do nothing */
  1983. break;
  1984. }
  1985. if (ep_trb == td->last_trb)
  1986. td->urb->actual_length = requested - remaining;
  1987. else
  1988. td->urb->actual_length =
  1989. sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1990. ep_trb_len - remaining;
  1991. finish_td:
  1992. if (remaining > requested) {
  1993. xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
  1994. remaining);
  1995. td->urb->actual_length = 0;
  1996. }
  1997. return finish_td(xhci, td, ep_trb, event, ep, status);
  1998. }
  1999. /*
  2000. * If this function returns an error condition, it means it got a Transfer
  2001. * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
  2002. * At this point, the host controller is probably hosed and should be reset.
  2003. */
  2004. static int handle_tx_event(struct xhci_hcd *xhci,
  2005. struct xhci_transfer_event *event)
  2006. {
  2007. struct xhci_virt_device *xdev;
  2008. struct xhci_virt_ep *ep;
  2009. struct xhci_ring *ep_ring;
  2010. unsigned int slot_id;
  2011. int ep_index;
  2012. struct xhci_td *td = NULL;
  2013. dma_addr_t ep_trb_dma;
  2014. struct xhci_segment *ep_seg;
  2015. union xhci_trb *ep_trb;
  2016. int status = -EINPROGRESS;
  2017. struct xhci_ep_ctx *ep_ctx;
  2018. struct list_head *tmp;
  2019. u32 trb_comp_code;
  2020. int td_num = 0;
  2021. bool handling_skipped_tds = false;
  2022. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  2023. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  2024. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  2025. ep_trb_dma = le64_to_cpu(event->buffer);
  2026. xdev = xhci->devs[slot_id];
  2027. if (!xdev) {
  2028. xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
  2029. slot_id);
  2030. goto err_out;
  2031. }
  2032. ep = &xdev->eps[ep_index];
  2033. ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
  2034. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2035. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
  2036. xhci_err(xhci,
  2037. "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
  2038. slot_id, ep_index);
  2039. goto err_out;
  2040. }
  2041. /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
  2042. if (!ep_ring) {
  2043. switch (trb_comp_code) {
  2044. case COMP_STALL_ERROR:
  2045. case COMP_USB_TRANSACTION_ERROR:
  2046. case COMP_INVALID_STREAM_TYPE_ERROR:
  2047. case COMP_INVALID_STREAM_ID_ERROR:
  2048. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
  2049. NULL, NULL, EP_SOFT_RESET);
  2050. goto cleanup;
  2051. case COMP_RING_UNDERRUN:
  2052. case COMP_RING_OVERRUN:
  2053. goto cleanup;
  2054. default:
  2055. xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
  2056. slot_id, ep_index);
  2057. goto err_out;
  2058. }
  2059. }
  2060. /* Count current td numbers if ep->skip is set */
  2061. if (ep->skip) {
  2062. list_for_each(tmp, &ep_ring->td_list)
  2063. td_num++;
  2064. }
  2065. /* Look for common error cases */
  2066. switch (trb_comp_code) {
  2067. /* Skip codes that require special handling depending on
  2068. * transfer type
  2069. */
  2070. case COMP_SUCCESS:
  2071. if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
  2072. break;
  2073. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  2074. trb_comp_code = COMP_SHORT_PACKET;
  2075. else
  2076. xhci_warn_ratelimited(xhci,
  2077. "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
  2078. slot_id, ep_index);
  2079. case COMP_SHORT_PACKET:
  2080. break;
  2081. /* Completion codes for endpoint stopped state */
  2082. case COMP_STOPPED:
  2083. xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
  2084. slot_id, ep_index);
  2085. break;
  2086. case COMP_STOPPED_LENGTH_INVALID:
  2087. xhci_dbg(xhci,
  2088. "Stopped on No-op or Link TRB for slot %u ep %u\n",
  2089. slot_id, ep_index);
  2090. break;
  2091. case COMP_STOPPED_SHORT_PACKET:
  2092. xhci_dbg(xhci,
  2093. "Stopped with short packet transfer detected for slot %u ep %u\n",
  2094. slot_id, ep_index);
  2095. break;
  2096. /* Completion codes for endpoint halted state */
  2097. case COMP_STALL_ERROR:
  2098. xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
  2099. ep_index);
  2100. ep->ep_state |= EP_HALTED;
  2101. status = -EPIPE;
  2102. break;
  2103. case COMP_SPLIT_TRANSACTION_ERROR:
  2104. case COMP_USB_TRANSACTION_ERROR:
  2105. xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
  2106. slot_id, ep_index);
  2107. status = -EPROTO;
  2108. break;
  2109. case COMP_BABBLE_DETECTED_ERROR:
  2110. xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
  2111. slot_id, ep_index);
  2112. status = -EOVERFLOW;
  2113. break;
  2114. /* Completion codes for endpoint error state */
  2115. case COMP_TRB_ERROR:
  2116. xhci_warn(xhci,
  2117. "WARN: TRB error for slot %u ep %u on endpoint\n",
  2118. slot_id, ep_index);
  2119. status = -EILSEQ;
  2120. break;
  2121. /* completion codes not indicating endpoint state change */
  2122. case COMP_DATA_BUFFER_ERROR:
  2123. xhci_warn(xhci,
  2124. "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
  2125. slot_id, ep_index);
  2126. status = -ENOSR;
  2127. break;
  2128. case COMP_BANDWIDTH_OVERRUN_ERROR:
  2129. xhci_warn(xhci,
  2130. "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
  2131. slot_id, ep_index);
  2132. break;
  2133. case COMP_ISOCH_BUFFER_OVERRUN:
  2134. xhci_warn(xhci,
  2135. "WARN: buffer overrun event for slot %u ep %u on endpoint",
  2136. slot_id, ep_index);
  2137. break;
  2138. case COMP_RING_UNDERRUN:
  2139. /*
  2140. * When the Isoch ring is empty, the xHC will generate
  2141. * a Ring Overrun Event for IN Isoch endpoint or Ring
  2142. * Underrun Event for OUT Isoch endpoint.
  2143. */
  2144. xhci_dbg(xhci, "underrun event on endpoint\n");
  2145. if (!list_empty(&ep_ring->td_list))
  2146. xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
  2147. "still with TDs queued?\n",
  2148. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2149. ep_index);
  2150. goto cleanup;
  2151. case COMP_RING_OVERRUN:
  2152. xhci_dbg(xhci, "overrun event on endpoint\n");
  2153. if (!list_empty(&ep_ring->td_list))
  2154. xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
  2155. "still with TDs queued?\n",
  2156. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2157. ep_index);
  2158. goto cleanup;
  2159. case COMP_MISSED_SERVICE_ERROR:
  2160. /*
  2161. * When encounter missed service error, one or more isoc tds
  2162. * may be missed by xHC.
  2163. * Set skip flag of the ep_ring; Complete the missed tds as
  2164. * short transfer when process the ep_ring next time.
  2165. */
  2166. ep->skip = true;
  2167. xhci_dbg(xhci,
  2168. "Miss service interval error for slot %u ep %u, set skip flag\n",
  2169. slot_id, ep_index);
  2170. goto cleanup;
  2171. case COMP_NO_PING_RESPONSE_ERROR:
  2172. ep->skip = true;
  2173. xhci_dbg(xhci,
  2174. "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
  2175. slot_id, ep_index);
  2176. goto cleanup;
  2177. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  2178. /* needs disable slot command to recover */
  2179. xhci_warn(xhci,
  2180. "WARN: detect an incompatible device for slot %u ep %u",
  2181. slot_id, ep_index);
  2182. status = -EPROTO;
  2183. break;
  2184. default:
  2185. if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
  2186. status = 0;
  2187. break;
  2188. }
  2189. xhci_warn(xhci,
  2190. "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
  2191. trb_comp_code, slot_id, ep_index);
  2192. goto cleanup;
  2193. }
  2194. do {
  2195. /* This TRB should be in the TD at the head of this ring's
  2196. * TD list.
  2197. */
  2198. if (list_empty(&ep_ring->td_list)) {
  2199. /*
  2200. * Don't print wanings if it's due to a stopped endpoint
  2201. * generating an extra completion event if the device
  2202. * was suspended. Or, a event for the last TRB of a
  2203. * short TD we already got a short event for.
  2204. * The short TD is already removed from the TD list.
  2205. */
  2206. if (!(trb_comp_code == COMP_STOPPED ||
  2207. trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  2208. ep_ring->last_td_was_short)) {
  2209. xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
  2210. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2211. ep_index);
  2212. }
  2213. if (ep->skip) {
  2214. ep->skip = false;
  2215. xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
  2216. slot_id, ep_index);
  2217. }
  2218. goto cleanup;
  2219. }
  2220. /* We've skipped all the TDs on the ep ring when ep->skip set */
  2221. if (ep->skip && td_num == 0) {
  2222. ep->skip = false;
  2223. xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
  2224. slot_id, ep_index);
  2225. goto cleanup;
  2226. }
  2227. td = list_first_entry(&ep_ring->td_list, struct xhci_td,
  2228. td_list);
  2229. if (ep->skip)
  2230. td_num--;
  2231. /* Is this a TRB in the currently executing TD? */
  2232. ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
  2233. td->last_trb, ep_trb_dma, false);
  2234. /*
  2235. * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
  2236. * is not in the current TD pointed by ep_ring->dequeue because
  2237. * that the hardware dequeue pointer still at the previous TRB
  2238. * of the current TD. The previous TRB maybe a Link TD or the
  2239. * last TRB of the previous TD. The command completion handle
  2240. * will take care the rest.
  2241. */
  2242. if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
  2243. trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
  2244. goto cleanup;
  2245. }
  2246. if (!ep_seg) {
  2247. if (!ep->skip ||
  2248. !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
  2249. /* Some host controllers give a spurious
  2250. * successful event after a short transfer.
  2251. * Ignore it.
  2252. */
  2253. if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
  2254. ep_ring->last_td_was_short) {
  2255. ep_ring->last_td_was_short = false;
  2256. goto cleanup;
  2257. }
  2258. /* HC is busted, give up! */
  2259. xhci_err(xhci,
  2260. "ERROR Transfer event TRB DMA ptr not "
  2261. "part of current TD ep_index %d "
  2262. "comp_code %u\n", ep_index,
  2263. trb_comp_code);
  2264. trb_in_td(xhci, ep_ring->deq_seg,
  2265. ep_ring->dequeue, td->last_trb,
  2266. ep_trb_dma, true);
  2267. return -ESHUTDOWN;
  2268. }
  2269. skip_isoc_td(xhci, td, event, ep, &status);
  2270. goto cleanup;
  2271. }
  2272. if (trb_comp_code == COMP_SHORT_PACKET)
  2273. ep_ring->last_td_was_short = true;
  2274. else
  2275. ep_ring->last_td_was_short = false;
  2276. if (ep->skip) {
  2277. xhci_dbg(xhci,
  2278. "Found td. Clear skip flag for slot %u ep %u.\n",
  2279. slot_id, ep_index);
  2280. ep->skip = false;
  2281. }
  2282. ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
  2283. sizeof(*ep_trb)];
  2284. trace_xhci_handle_transfer(ep_ring,
  2285. (struct xhci_generic_trb *) ep_trb);
  2286. /*
  2287. * No-op TRB could trigger interrupts in a case where
  2288. * a URB was killed and a STALL_ERROR happens right
  2289. * after the endpoint ring stopped. Reset the halted
  2290. * endpoint. Otherwise, the endpoint remains stalled
  2291. * indefinitely.
  2292. */
  2293. if (trb_is_noop(ep_trb)) {
  2294. if (trb_comp_code == COMP_STALL_ERROR ||
  2295. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  2296. trb_comp_code))
  2297. xhci_cleanup_halted_endpoint(xhci, slot_id,
  2298. ep_index,
  2299. ep_ring->stream_id,
  2300. td, ep_trb,
  2301. EP_HARD_RESET);
  2302. goto cleanup;
  2303. }
  2304. /* update the urb's actual_length and give back to the core */
  2305. if (usb_endpoint_xfer_control(&td->urb->ep->desc))
  2306. process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
  2307. else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
  2308. process_isoc_td(xhci, td, ep_trb, event, ep, &status);
  2309. else
  2310. process_bulk_intr_td(xhci, td, ep_trb, event, ep,
  2311. &status);
  2312. cleanup:
  2313. handling_skipped_tds = ep->skip &&
  2314. trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
  2315. trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
  2316. /*
  2317. * Do not update event ring dequeue pointer if we're in a loop
  2318. * processing missed tds.
  2319. */
  2320. if (!handling_skipped_tds)
  2321. inc_deq(xhci, xhci->event_ring);
  2322. /*
  2323. * If ep->skip is set, it means there are missed tds on the
  2324. * endpoint ring need to take care of.
  2325. * Process them as short transfer until reach the td pointed by
  2326. * the event.
  2327. */
  2328. } while (handling_skipped_tds);
  2329. return 0;
  2330. err_out:
  2331. xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
  2332. (unsigned long long) xhci_trb_virt_to_dma(
  2333. xhci->event_ring->deq_seg,
  2334. xhci->event_ring->dequeue),
  2335. lower_32_bits(le64_to_cpu(event->buffer)),
  2336. upper_32_bits(le64_to_cpu(event->buffer)),
  2337. le32_to_cpu(event->transfer_len),
  2338. le32_to_cpu(event->flags));
  2339. return -ENODEV;
  2340. }
  2341. /*
  2342. * This function handles all OS-owned events on the event ring. It may drop
  2343. * xhci->lock between event processing (e.g. to pass up port status changes).
  2344. * Returns >0 for "possibly more events to process" (caller should call again),
  2345. * otherwise 0 if done. In future, <0 returns should indicate error code.
  2346. */
  2347. static int xhci_handle_event(struct xhci_hcd *xhci)
  2348. {
  2349. union xhci_trb *event;
  2350. int update_ptrs = 1;
  2351. int ret;
  2352. /* Event ring hasn't been allocated yet. */
  2353. if (!xhci->event_ring || !xhci->event_ring->dequeue) {
  2354. xhci_err(xhci, "ERROR event ring not ready\n");
  2355. return -ENOMEM;
  2356. }
  2357. event = xhci->event_ring->dequeue;
  2358. /* Does the HC or OS own the TRB? */
  2359. if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
  2360. xhci->event_ring->cycle_state)
  2361. return 0;
  2362. trace_xhci_handle_event(xhci->event_ring, &event->generic);
  2363. /*
  2364. * Barrier between reading the TRB_CYCLE (valid) flag above and any
  2365. * speculative reads of the event's flags/data below.
  2366. */
  2367. rmb();
  2368. /* FIXME: Handle more event types. */
  2369. switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
  2370. case TRB_TYPE(TRB_COMPLETION):
  2371. handle_cmd_completion(xhci, &event->event_cmd);
  2372. break;
  2373. case TRB_TYPE(TRB_PORT_STATUS):
  2374. handle_port_status(xhci, event);
  2375. update_ptrs = 0;
  2376. break;
  2377. case TRB_TYPE(TRB_TRANSFER):
  2378. ret = handle_tx_event(xhci, &event->trans_event);
  2379. if (ret >= 0)
  2380. update_ptrs = 0;
  2381. break;
  2382. case TRB_TYPE(TRB_DEV_NOTE):
  2383. handle_device_notification(xhci, event);
  2384. break;
  2385. default:
  2386. if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
  2387. TRB_TYPE(48))
  2388. handle_vendor_event(xhci, event);
  2389. else
  2390. xhci_warn(xhci, "ERROR unknown event type %d\n",
  2391. TRB_FIELD_TO_TYPE(
  2392. le32_to_cpu(event->event_cmd.flags)));
  2393. }
  2394. /* Any of the above functions may drop and re-acquire the lock, so check
  2395. * to make sure a watchdog timer didn't mark the host as non-responsive.
  2396. */
  2397. if (xhci->xhc_state & XHCI_STATE_DYING) {
  2398. xhci_dbg(xhci, "xHCI host dying, returning from "
  2399. "event handler.\n");
  2400. return 0;
  2401. }
  2402. if (update_ptrs)
  2403. /* Update SW event ring dequeue pointer */
  2404. inc_deq(xhci, xhci->event_ring);
  2405. /* Are there more items on the event ring? Caller will call us again to
  2406. * check.
  2407. */
  2408. return 1;
  2409. }
  2410. /*
  2411. * xHCI spec says we can get an interrupt, and if the HC has an error condition,
  2412. * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
  2413. * indicators of an event TRB error, but we check the status *first* to be safe.
  2414. */
  2415. irqreturn_t xhci_irq(struct usb_hcd *hcd)
  2416. {
  2417. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  2418. union xhci_trb *event_ring_deq;
  2419. irqreturn_t ret = IRQ_NONE;
  2420. unsigned long flags;
  2421. dma_addr_t deq;
  2422. u64 temp_64;
  2423. u32 status;
  2424. spin_lock_irqsave(&xhci->lock, flags);
  2425. /* Check if the xHC generated the interrupt, or the irq is shared */
  2426. status = readl(&xhci->op_regs->status);
  2427. if (status == ~(u32)0) {
  2428. xhci_hc_died(xhci);
  2429. ret = IRQ_HANDLED;
  2430. goto out;
  2431. }
  2432. if (!(status & STS_EINT))
  2433. goto out;
  2434. if (status & STS_FATAL) {
  2435. xhci_warn(xhci, "WARNING: Host System Error\n");
  2436. xhci_halt(xhci);
  2437. ret = IRQ_HANDLED;
  2438. goto out;
  2439. }
  2440. /*
  2441. * Clear the op reg interrupt status first,
  2442. * so we can receive interrupts from other MSI-X interrupters.
  2443. * Write 1 to clear the interrupt status.
  2444. */
  2445. status |= STS_EINT;
  2446. writel(status, &xhci->op_regs->status);
  2447. if (!hcd->msi_enabled) {
  2448. u32 irq_pending;
  2449. irq_pending = readl(&xhci->ir_set->irq_pending);
  2450. irq_pending |= IMAN_IP;
  2451. writel(irq_pending, &xhci->ir_set->irq_pending);
  2452. }
  2453. if (xhci->xhc_state & XHCI_STATE_DYING ||
  2454. xhci->xhc_state & XHCI_STATE_HALTED) {
  2455. xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
  2456. "Shouldn't IRQs be disabled?\n");
  2457. /* Clear the event handler busy flag (RW1C);
  2458. * the event ring should be empty.
  2459. */
  2460. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2461. xhci_write_64(xhci, temp_64 | ERST_EHB,
  2462. &xhci->ir_set->erst_dequeue);
  2463. ret = IRQ_HANDLED;
  2464. goto out;
  2465. }
  2466. event_ring_deq = xhci->event_ring->dequeue;
  2467. /* FIXME this should be a delayed service routine
  2468. * that clears the EHB.
  2469. */
  2470. while (xhci_handle_event(xhci) > 0) {}
  2471. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2472. /* If necessary, update the HW's version of the event ring deq ptr. */
  2473. if (event_ring_deq != xhci->event_ring->dequeue) {
  2474. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  2475. xhci->event_ring->dequeue);
  2476. if (deq == 0)
  2477. xhci_warn(xhci, "WARN something wrong with SW event "
  2478. "ring dequeue ptr.\n");
  2479. /* Update HC event ring dequeue pointer */
  2480. temp_64 &= ERST_PTR_MASK;
  2481. temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
  2482. }
  2483. /* Clear the event handler busy flag (RW1C); event ring is empty. */
  2484. temp_64 |= ERST_EHB;
  2485. xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
  2486. ret = IRQ_HANDLED;
  2487. out:
  2488. spin_unlock_irqrestore(&xhci->lock, flags);
  2489. return ret;
  2490. }
  2491. irqreturn_t xhci_msi_irq(int irq, void *hcd)
  2492. {
  2493. return xhci_irq(hcd);
  2494. }
  2495. /**** Endpoint Ring Operations ****/
  2496. /*
  2497. * Generic function for queueing a TRB on a ring.
  2498. * The caller must have checked to make sure there's room on the ring.
  2499. *
  2500. * @more_trbs_coming: Will you enqueue more TRBs before calling
  2501. * prepare_transfer()?
  2502. */
  2503. static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
  2504. bool more_trbs_coming,
  2505. u32 field1, u32 field2, u32 field3, u32 field4)
  2506. {
  2507. struct xhci_generic_trb *trb;
  2508. trb = &ring->enqueue->generic;
  2509. trb->field[0] = cpu_to_le32(field1);
  2510. trb->field[1] = cpu_to_le32(field2);
  2511. trb->field[2] = cpu_to_le32(field3);
  2512. trb->field[3] = cpu_to_le32(field4);
  2513. trace_xhci_queue_trb(ring, trb);
  2514. inc_enq(xhci, ring, more_trbs_coming);
  2515. }
  2516. /*
  2517. * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
  2518. * FIXME allocate segments if the ring is full.
  2519. */
  2520. static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  2521. u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
  2522. {
  2523. unsigned int num_trbs_needed;
  2524. /* Make sure the endpoint has been added to xHC schedule */
  2525. switch (ep_state) {
  2526. case EP_STATE_DISABLED:
  2527. /*
  2528. * USB core changed config/interfaces without notifying us,
  2529. * or hardware is reporting the wrong state.
  2530. */
  2531. xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
  2532. return -ENOENT;
  2533. case EP_STATE_ERROR:
  2534. xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
  2535. /* FIXME event handling code for error needs to clear it */
  2536. /* XXX not sure if this should be -ENOENT or not */
  2537. return -EINVAL;
  2538. case EP_STATE_HALTED:
  2539. xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
  2540. case EP_STATE_STOPPED:
  2541. case EP_STATE_RUNNING:
  2542. break;
  2543. default:
  2544. xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
  2545. /*
  2546. * FIXME issue Configure Endpoint command to try to get the HC
  2547. * back into a known state.
  2548. */
  2549. return -EINVAL;
  2550. }
  2551. while (1) {
  2552. if (room_on_ring(xhci, ep_ring, num_trbs))
  2553. break;
  2554. if (ep_ring == xhci->cmd_ring) {
  2555. xhci_err(xhci, "Do not support expand command ring\n");
  2556. return -ENOMEM;
  2557. }
  2558. xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
  2559. "ERROR no room on ep ring, try ring expansion");
  2560. num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
  2561. if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
  2562. mem_flags)) {
  2563. xhci_err(xhci, "Ring expansion failed\n");
  2564. return -ENOMEM;
  2565. }
  2566. }
  2567. while (trb_is_link(ep_ring->enqueue)) {
  2568. /* If we're not dealing with 0.95 hardware or isoc rings
  2569. * on AMD 0.96 host, clear the chain bit.
  2570. */
  2571. if (!xhci_link_trb_quirk(xhci) &&
  2572. !(ep_ring->type == TYPE_ISOC &&
  2573. (xhci->quirks & XHCI_AMD_0x96_HOST)))
  2574. ep_ring->enqueue->link.control &=
  2575. cpu_to_le32(~TRB_CHAIN);
  2576. else
  2577. ep_ring->enqueue->link.control |=
  2578. cpu_to_le32(TRB_CHAIN);
  2579. wmb();
  2580. ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
  2581. /* Toggle the cycle bit after the last ring segment. */
  2582. if (link_trb_toggles_cycle(ep_ring->enqueue))
  2583. ep_ring->cycle_state ^= 1;
  2584. ep_ring->enq_seg = ep_ring->enq_seg->next;
  2585. ep_ring->enqueue = ep_ring->enq_seg->trbs;
  2586. }
  2587. return 0;
  2588. }
  2589. static int prepare_transfer(struct xhci_hcd *xhci,
  2590. struct xhci_virt_device *xdev,
  2591. unsigned int ep_index,
  2592. unsigned int stream_id,
  2593. unsigned int num_trbs,
  2594. struct urb *urb,
  2595. unsigned int td_index,
  2596. gfp_t mem_flags)
  2597. {
  2598. int ret;
  2599. struct urb_priv *urb_priv;
  2600. struct xhci_td *td;
  2601. struct xhci_ring *ep_ring;
  2602. struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2603. ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
  2604. if (!ep_ring) {
  2605. xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
  2606. stream_id);
  2607. return -EINVAL;
  2608. }
  2609. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  2610. num_trbs, mem_flags);
  2611. if (ret)
  2612. return ret;
  2613. urb_priv = urb->hcpriv;
  2614. td = &urb_priv->td[td_index];
  2615. INIT_LIST_HEAD(&td->td_list);
  2616. INIT_LIST_HEAD(&td->cancelled_td_list);
  2617. if (td_index == 0) {
  2618. ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
  2619. if (unlikely(ret))
  2620. return ret;
  2621. }
  2622. td->urb = urb;
  2623. /* Add this TD to the tail of the endpoint ring's TD list */
  2624. list_add_tail(&td->td_list, &ep_ring->td_list);
  2625. td->start_seg = ep_ring->enq_seg;
  2626. td->first_trb = ep_ring->enqueue;
  2627. return 0;
  2628. }
  2629. unsigned int count_trbs(u64 addr, u64 len)
  2630. {
  2631. unsigned int num_trbs;
  2632. num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
  2633. TRB_MAX_BUFF_SIZE);
  2634. if (num_trbs == 0)
  2635. num_trbs++;
  2636. return num_trbs;
  2637. }
  2638. static inline unsigned int count_trbs_needed(struct urb *urb)
  2639. {
  2640. return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
  2641. }
  2642. static unsigned int count_sg_trbs_needed(struct urb *urb)
  2643. {
  2644. struct scatterlist *sg;
  2645. unsigned int i, len, full_len, num_trbs = 0;
  2646. full_len = urb->transfer_buffer_length;
  2647. for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
  2648. len = sg_dma_len(sg);
  2649. num_trbs += count_trbs(sg_dma_address(sg), len);
  2650. len = min_t(unsigned int, len, full_len);
  2651. full_len -= len;
  2652. if (full_len == 0)
  2653. break;
  2654. }
  2655. return num_trbs;
  2656. }
  2657. static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
  2658. {
  2659. u64 addr, len;
  2660. addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
  2661. len = urb->iso_frame_desc[i].length;
  2662. return count_trbs(addr, len);
  2663. }
  2664. static void check_trb_math(struct urb *urb, int running_total)
  2665. {
  2666. if (unlikely(running_total != urb->transfer_buffer_length))
  2667. dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
  2668. "queued %#x (%d), asked for %#x (%d)\n",
  2669. __func__,
  2670. urb->ep->desc.bEndpointAddress,
  2671. running_total, running_total,
  2672. urb->transfer_buffer_length,
  2673. urb->transfer_buffer_length);
  2674. }
  2675. static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
  2676. unsigned int ep_index, unsigned int stream_id, int start_cycle,
  2677. struct xhci_generic_trb *start_trb)
  2678. {
  2679. /*
  2680. * Pass all the TRBs to the hardware at once and make sure this write
  2681. * isn't reordered.
  2682. */
  2683. wmb();
  2684. if (start_cycle)
  2685. start_trb->field[3] |= cpu_to_le32(start_cycle);
  2686. else
  2687. start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
  2688. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
  2689. }
  2690. static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
  2691. struct xhci_ep_ctx *ep_ctx)
  2692. {
  2693. int xhci_interval;
  2694. int ep_interval;
  2695. xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
  2696. ep_interval = urb->interval;
  2697. /* Convert to microframes */
  2698. if (urb->dev->speed == USB_SPEED_LOW ||
  2699. urb->dev->speed == USB_SPEED_FULL)
  2700. ep_interval *= 8;
  2701. /* FIXME change this to a warning and a suggestion to use the new API
  2702. * to set the polling interval (once the API is added).
  2703. */
  2704. if (xhci_interval != ep_interval) {
  2705. dev_dbg_ratelimited(&urb->dev->dev,
  2706. "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
  2707. ep_interval, ep_interval == 1 ? "" : "s",
  2708. xhci_interval, xhci_interval == 1 ? "" : "s");
  2709. urb->interval = xhci_interval;
  2710. /* Convert back to frames for LS/FS devices */
  2711. if (urb->dev->speed == USB_SPEED_LOW ||
  2712. urb->dev->speed == USB_SPEED_FULL)
  2713. urb->interval /= 8;
  2714. }
  2715. }
  2716. /*
  2717. * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
  2718. * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
  2719. * (comprised of sg list entries) can take several service intervals to
  2720. * transmit.
  2721. */
  2722. int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2723. struct urb *urb, int slot_id, unsigned int ep_index)
  2724. {
  2725. struct xhci_ep_ctx *ep_ctx;
  2726. ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
  2727. check_interval(xhci, urb, ep_ctx);
  2728. return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
  2729. }
  2730. /*
  2731. * For xHCI 1.0 host controllers, TD size is the number of max packet sized
  2732. * packets remaining in the TD (*not* including this TRB).
  2733. *
  2734. * Total TD packet count = total_packet_count =
  2735. * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
  2736. *
  2737. * Packets transferred up to and including this TRB = packets_transferred =
  2738. * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
  2739. *
  2740. * TD size = total_packet_count - packets_transferred
  2741. *
  2742. * For xHCI 0.96 and older, TD size field should be the remaining bytes
  2743. * including this TRB, right shifted by 10
  2744. *
  2745. * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
  2746. * This is taken care of in the TRB_TD_SIZE() macro
  2747. *
  2748. * The last TRB in a TD must have the TD size set to zero.
  2749. */
  2750. static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
  2751. int trb_buff_len, unsigned int td_total_len,
  2752. struct urb *urb, bool more_trbs_coming)
  2753. {
  2754. u32 maxp, total_packet_count;
  2755. /* MTK xHCI 0.96 contains some features from 1.0 */
  2756. if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
  2757. return ((td_total_len - transferred) >> 10);
  2758. /* One TRB with a zero-length data packet. */
  2759. if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
  2760. trb_buff_len == td_total_len)
  2761. return 0;
  2762. /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
  2763. if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
  2764. trb_buff_len = 0;
  2765. maxp = usb_endpoint_maxp(&urb->ep->desc);
  2766. total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
  2767. /* Queueing functions don't count the current TRB into transferred */
  2768. return (total_packet_count - ((transferred + trb_buff_len) / maxp));
  2769. }
  2770. static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
  2771. u32 *trb_buff_len, struct xhci_segment *seg)
  2772. {
  2773. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  2774. unsigned int unalign;
  2775. unsigned int max_pkt;
  2776. u32 new_buff_len;
  2777. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  2778. unalign = (enqd_len + *trb_buff_len) % max_pkt;
  2779. /* we got lucky, last normal TRB data on segment is packet aligned */
  2780. if (unalign == 0)
  2781. return 0;
  2782. xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
  2783. unalign, *trb_buff_len);
  2784. /* is the last nornal TRB alignable by splitting it */
  2785. if (*trb_buff_len > unalign) {
  2786. *trb_buff_len -= unalign;
  2787. xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
  2788. return 0;
  2789. }
  2790. /*
  2791. * We want enqd_len + trb_buff_len to sum up to a number aligned to
  2792. * number which is divisible by the endpoint's wMaxPacketSize. IOW:
  2793. * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
  2794. */
  2795. new_buff_len = max_pkt - (enqd_len % max_pkt);
  2796. if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
  2797. new_buff_len = (urb->transfer_buffer_length - enqd_len);
  2798. /* create a max max_pkt sized bounce buffer pointed to by last trb */
  2799. if (usb_urb_dir_out(urb)) {
  2800. sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
  2801. seg->bounce_buf, new_buff_len, enqd_len);
  2802. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2803. max_pkt, DMA_TO_DEVICE);
  2804. } else {
  2805. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2806. max_pkt, DMA_FROM_DEVICE);
  2807. }
  2808. if (dma_mapping_error(dev, seg->bounce_dma)) {
  2809. /* try without aligning. Some host controllers survive */
  2810. xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
  2811. return 0;
  2812. }
  2813. *trb_buff_len = new_buff_len;
  2814. seg->bounce_len = new_buff_len;
  2815. seg->bounce_offs = enqd_len;
  2816. xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
  2817. return 1;
  2818. }
  2819. /* This is very similar to what ehci-q.c qtd_fill() does */
  2820. int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2821. struct urb *urb, int slot_id, unsigned int ep_index)
  2822. {
  2823. struct xhci_ring *ring;
  2824. struct urb_priv *urb_priv;
  2825. struct xhci_td *td;
  2826. struct xhci_generic_trb *start_trb;
  2827. struct scatterlist *sg = NULL;
  2828. bool more_trbs_coming = true;
  2829. bool need_zero_pkt = false;
  2830. bool first_trb = true;
  2831. unsigned int num_trbs;
  2832. unsigned int start_cycle, num_sgs = 0;
  2833. unsigned int enqd_len, block_len, trb_buff_len, full_len;
  2834. int sent_len, ret;
  2835. u32 field, length_field, remainder;
  2836. u64 addr, send_addr;
  2837. ring = xhci_urb_to_transfer_ring(xhci, urb);
  2838. if (!ring)
  2839. return -EINVAL;
  2840. full_len = urb->transfer_buffer_length;
  2841. /* If we have scatter/gather list, we use it. */
  2842. if (urb->num_sgs) {
  2843. num_sgs = urb->num_mapped_sgs;
  2844. sg = urb->sg;
  2845. addr = (u64) sg_dma_address(sg);
  2846. block_len = sg_dma_len(sg);
  2847. num_trbs = count_sg_trbs_needed(urb);
  2848. } else {
  2849. num_trbs = count_trbs_needed(urb);
  2850. addr = (u64) urb->transfer_dma;
  2851. block_len = full_len;
  2852. }
  2853. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2854. ep_index, urb->stream_id,
  2855. num_trbs, urb, 0, mem_flags);
  2856. if (unlikely(ret < 0))
  2857. return ret;
  2858. urb_priv = urb->hcpriv;
  2859. /* Deal with URB_ZERO_PACKET - need one more td/trb */
  2860. if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
  2861. need_zero_pkt = true;
  2862. td = &urb_priv->td[0];
  2863. /*
  2864. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2865. * until we've finished creating all the other TRBs. The ring's cycle
  2866. * state may change as we enqueue the other TRBs, so save it too.
  2867. */
  2868. start_trb = &ring->enqueue->generic;
  2869. start_cycle = ring->cycle_state;
  2870. send_addr = addr;
  2871. /* Queue the TRBs, even if they are zero-length */
  2872. for (enqd_len = 0; first_trb || enqd_len < full_len;
  2873. enqd_len += trb_buff_len) {
  2874. field = TRB_TYPE(TRB_NORMAL);
  2875. /* TRB buffer should not cross 64KB boundaries */
  2876. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  2877. trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
  2878. if (enqd_len + trb_buff_len > full_len)
  2879. trb_buff_len = full_len - enqd_len;
  2880. /* Don't change the cycle bit of the first TRB until later */
  2881. if (first_trb) {
  2882. first_trb = false;
  2883. if (start_cycle == 0)
  2884. field |= TRB_CYCLE;
  2885. } else
  2886. field |= ring->cycle_state;
  2887. /* Chain all the TRBs together; clear the chain bit in the last
  2888. * TRB to indicate it's the last TRB in the chain.
  2889. */
  2890. if (enqd_len + trb_buff_len < full_len) {
  2891. field |= TRB_CHAIN;
  2892. if (trb_is_link(ring->enqueue + 1)) {
  2893. if (xhci_align_td(xhci, urb, enqd_len,
  2894. &trb_buff_len,
  2895. ring->enq_seg)) {
  2896. send_addr = ring->enq_seg->bounce_dma;
  2897. /* assuming TD won't span 2 segs */
  2898. td->bounce_seg = ring->enq_seg;
  2899. }
  2900. }
  2901. }
  2902. if (enqd_len + trb_buff_len >= full_len) {
  2903. field &= ~TRB_CHAIN;
  2904. field |= TRB_IOC;
  2905. more_trbs_coming = false;
  2906. td->last_trb = ring->enqueue;
  2907. }
  2908. /* Only set interrupt on short packet for IN endpoints */
  2909. if (usb_urb_dir_in(urb))
  2910. field |= TRB_ISP;
  2911. /* Set the TRB length, TD size, and interrupter fields. */
  2912. remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
  2913. full_len, urb, more_trbs_coming);
  2914. length_field = TRB_LEN(trb_buff_len) |
  2915. TRB_TD_SIZE(remainder) |
  2916. TRB_INTR_TARGET(0);
  2917. queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
  2918. lower_32_bits(send_addr),
  2919. upper_32_bits(send_addr),
  2920. length_field,
  2921. field);
  2922. addr += trb_buff_len;
  2923. sent_len = trb_buff_len;
  2924. while (sg && sent_len >= block_len) {
  2925. /* New sg entry */
  2926. --num_sgs;
  2927. sent_len -= block_len;
  2928. if (num_sgs != 0) {
  2929. sg = sg_next(sg);
  2930. block_len = sg_dma_len(sg);
  2931. addr = (u64) sg_dma_address(sg);
  2932. addr += sent_len;
  2933. }
  2934. }
  2935. block_len -= sent_len;
  2936. send_addr = addr;
  2937. }
  2938. if (need_zero_pkt) {
  2939. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2940. ep_index, urb->stream_id,
  2941. 1, urb, 1, mem_flags);
  2942. urb_priv->td[1].last_trb = ring->enqueue;
  2943. field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
  2944. queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
  2945. }
  2946. check_trb_math(urb, enqd_len);
  2947. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  2948. start_cycle, start_trb);
  2949. return 0;
  2950. }
  2951. /* Caller must have locked xhci->lock */
  2952. int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2953. struct urb *urb, int slot_id, unsigned int ep_index)
  2954. {
  2955. struct xhci_ring *ep_ring;
  2956. int num_trbs;
  2957. int ret;
  2958. struct usb_ctrlrequest *setup;
  2959. struct xhci_generic_trb *start_trb;
  2960. int start_cycle;
  2961. u32 field;
  2962. struct urb_priv *urb_priv;
  2963. struct xhci_td *td;
  2964. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  2965. if (!ep_ring)
  2966. return -EINVAL;
  2967. /*
  2968. * Need to copy setup packet into setup TRB, so we can't use the setup
  2969. * DMA address.
  2970. */
  2971. if (!urb->setup_packet)
  2972. return -EINVAL;
  2973. /* 1 TRB for setup, 1 for status */
  2974. num_trbs = 2;
  2975. /*
  2976. * Don't need to check if we need additional event data and normal TRBs,
  2977. * since data in control transfers will never get bigger than 16MB
  2978. * XXX: can we get a buffer that crosses 64KB boundaries?
  2979. */
  2980. if (urb->transfer_buffer_length > 0)
  2981. num_trbs++;
  2982. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2983. ep_index, urb->stream_id,
  2984. num_trbs, urb, 0, mem_flags);
  2985. if (ret < 0)
  2986. return ret;
  2987. urb_priv = urb->hcpriv;
  2988. td = &urb_priv->td[0];
  2989. /*
  2990. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2991. * until we've finished creating all the other TRBs. The ring's cycle
  2992. * state may change as we enqueue the other TRBs, so save it too.
  2993. */
  2994. start_trb = &ep_ring->enqueue->generic;
  2995. start_cycle = ep_ring->cycle_state;
  2996. /* Queue setup TRB - see section 6.4.1.2.1 */
  2997. /* FIXME better way to translate setup_packet into two u32 fields? */
  2998. setup = (struct usb_ctrlrequest *) urb->setup_packet;
  2999. field = 0;
  3000. field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
  3001. if (start_cycle == 0)
  3002. field |= 0x1;
  3003. /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
  3004. if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
  3005. if (urb->transfer_buffer_length > 0) {
  3006. if (setup->bRequestType & USB_DIR_IN)
  3007. field |= TRB_TX_TYPE(TRB_DATA_IN);
  3008. else
  3009. field |= TRB_TX_TYPE(TRB_DATA_OUT);
  3010. }
  3011. }
  3012. queue_trb(xhci, ep_ring, true,
  3013. setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
  3014. le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
  3015. TRB_LEN(8) | TRB_INTR_TARGET(0),
  3016. /* Immediate data in pointer */
  3017. field);
  3018. /* If there's data, queue data TRBs */
  3019. /* Only set interrupt on short packet for IN endpoints */
  3020. if (usb_urb_dir_in(urb))
  3021. field = TRB_ISP | TRB_TYPE(TRB_DATA);
  3022. else
  3023. field = TRB_TYPE(TRB_DATA);
  3024. if (urb->transfer_buffer_length > 0) {
  3025. u32 length_field, remainder;
  3026. remainder = xhci_td_remainder(xhci, 0,
  3027. urb->transfer_buffer_length,
  3028. urb->transfer_buffer_length,
  3029. urb, 1);
  3030. length_field = TRB_LEN(urb->transfer_buffer_length) |
  3031. TRB_TD_SIZE(remainder) |
  3032. TRB_INTR_TARGET(0);
  3033. if (setup->bRequestType & USB_DIR_IN)
  3034. field |= TRB_DIR_IN;
  3035. queue_trb(xhci, ep_ring, true,
  3036. lower_32_bits(urb->transfer_dma),
  3037. upper_32_bits(urb->transfer_dma),
  3038. length_field,
  3039. field | ep_ring->cycle_state);
  3040. }
  3041. /* Save the DMA address of the last TRB in the TD */
  3042. td->last_trb = ep_ring->enqueue;
  3043. /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
  3044. /* If the device sent data, the status stage is an OUT transfer */
  3045. if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
  3046. field = 0;
  3047. else
  3048. field = TRB_DIR_IN;
  3049. queue_trb(xhci, ep_ring, false,
  3050. 0,
  3051. 0,
  3052. TRB_INTR_TARGET(0),
  3053. /* Event on completion */
  3054. field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
  3055. giveback_first_trb(xhci, slot_id, ep_index, 0,
  3056. start_cycle, start_trb);
  3057. return 0;
  3058. }
  3059. /*
  3060. * The transfer burst count field of the isochronous TRB defines the number of
  3061. * bursts that are required to move all packets in this TD. Only SuperSpeed
  3062. * devices can burst up to bMaxBurst number of packets per service interval.
  3063. * This field is zero based, meaning a value of zero in the field means one
  3064. * burst. Basically, for everything but SuperSpeed devices, this field will be
  3065. * zero. Only xHCI 1.0 host controllers support this field.
  3066. */
  3067. static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
  3068. struct urb *urb, unsigned int total_packet_count)
  3069. {
  3070. unsigned int max_burst;
  3071. if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
  3072. return 0;
  3073. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3074. return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
  3075. }
  3076. /*
  3077. * Returns the number of packets in the last "burst" of packets. This field is
  3078. * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
  3079. * the last burst packet count is equal to the total number of packets in the
  3080. * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
  3081. * must contain (bMaxBurst + 1) number of packets, but the last burst can
  3082. * contain 1 to (bMaxBurst + 1) packets.
  3083. */
  3084. static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
  3085. struct urb *urb, unsigned int total_packet_count)
  3086. {
  3087. unsigned int max_burst;
  3088. unsigned int residue;
  3089. if (xhci->hci_version < 0x100)
  3090. return 0;
  3091. if (urb->dev->speed >= USB_SPEED_SUPER) {
  3092. /* bMaxBurst is zero based: 0 means 1 packet per burst */
  3093. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3094. residue = total_packet_count % (max_burst + 1);
  3095. /* If residue is zero, the last burst contains (max_burst + 1)
  3096. * number of packets, but the TLBPC field is zero-based.
  3097. */
  3098. if (residue == 0)
  3099. return max_burst;
  3100. return residue - 1;
  3101. }
  3102. if (total_packet_count == 0)
  3103. return 0;
  3104. return total_packet_count - 1;
  3105. }
  3106. /*
  3107. * Calculates Frame ID field of the isochronous TRB identifies the
  3108. * target frame that the Interval associated with this Isochronous
  3109. * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
  3110. *
  3111. * Returns actual frame id on success, negative value on error.
  3112. */
  3113. static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
  3114. struct urb *urb, int index)
  3115. {
  3116. int start_frame, ist, ret = 0;
  3117. int start_frame_id, end_frame_id, current_frame_id;
  3118. if (urb->dev->speed == USB_SPEED_LOW ||
  3119. urb->dev->speed == USB_SPEED_FULL)
  3120. start_frame = urb->start_frame + index * urb->interval;
  3121. else
  3122. start_frame = (urb->start_frame + index * urb->interval) >> 3;
  3123. /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
  3124. *
  3125. * If bit [3] of IST is cleared to '0', software can add a TRB no
  3126. * later than IST[2:0] Microframes before that TRB is scheduled to
  3127. * be executed.
  3128. * If bit [3] of IST is set to '1', software can add a TRB no later
  3129. * than IST[2:0] Frames before that TRB is scheduled to be executed.
  3130. */
  3131. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3132. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3133. ist <<= 3;
  3134. /* Software shall not schedule an Isoch TD with a Frame ID value that
  3135. * is less than the Start Frame ID or greater than the End Frame ID,
  3136. * where:
  3137. *
  3138. * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
  3139. * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
  3140. *
  3141. * Both the End Frame ID and Start Frame ID values are calculated
  3142. * in microframes. When software determines the valid Frame ID value;
  3143. * The End Frame ID value should be rounded down to the nearest Frame
  3144. * boundary, and the Start Frame ID value should be rounded up to the
  3145. * nearest Frame boundary.
  3146. */
  3147. current_frame_id = readl(&xhci->run_regs->microframe_index);
  3148. start_frame_id = roundup(current_frame_id + ist + 1, 8);
  3149. end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
  3150. start_frame &= 0x7ff;
  3151. start_frame_id = (start_frame_id >> 3) & 0x7ff;
  3152. end_frame_id = (end_frame_id >> 3) & 0x7ff;
  3153. xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
  3154. __func__, index, readl(&xhci->run_regs->microframe_index),
  3155. start_frame_id, end_frame_id, start_frame);
  3156. if (start_frame_id < end_frame_id) {
  3157. if (start_frame > end_frame_id ||
  3158. start_frame < start_frame_id)
  3159. ret = -EINVAL;
  3160. } else if (start_frame_id > end_frame_id) {
  3161. if ((start_frame > end_frame_id &&
  3162. start_frame < start_frame_id))
  3163. ret = -EINVAL;
  3164. } else {
  3165. ret = -EINVAL;
  3166. }
  3167. if (index == 0) {
  3168. if (ret == -EINVAL || start_frame == start_frame_id) {
  3169. start_frame = start_frame_id + 1;
  3170. if (urb->dev->speed == USB_SPEED_LOW ||
  3171. urb->dev->speed == USB_SPEED_FULL)
  3172. urb->start_frame = start_frame;
  3173. else
  3174. urb->start_frame = start_frame << 3;
  3175. ret = 0;
  3176. }
  3177. }
  3178. if (ret) {
  3179. xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
  3180. start_frame, current_frame_id, index,
  3181. start_frame_id, end_frame_id);
  3182. xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
  3183. return ret;
  3184. }
  3185. return start_frame;
  3186. }
  3187. /* This is for isoc transfer */
  3188. static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  3189. struct urb *urb, int slot_id, unsigned int ep_index)
  3190. {
  3191. struct xhci_ring *ep_ring;
  3192. struct urb_priv *urb_priv;
  3193. struct xhci_td *td;
  3194. int num_tds, trbs_per_td;
  3195. struct xhci_generic_trb *start_trb;
  3196. bool first_trb;
  3197. int start_cycle;
  3198. u32 field, length_field;
  3199. int running_total, trb_buff_len, td_len, td_remain_len, ret;
  3200. u64 start_addr, addr;
  3201. int i, j;
  3202. bool more_trbs_coming;
  3203. struct xhci_virt_ep *xep;
  3204. int frame_id;
  3205. xep = &xhci->devs[slot_id]->eps[ep_index];
  3206. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  3207. num_tds = urb->number_of_packets;
  3208. if (num_tds < 1) {
  3209. xhci_dbg(xhci, "Isoc URB with zero packets?\n");
  3210. return -EINVAL;
  3211. }
  3212. start_addr = (u64) urb->transfer_dma;
  3213. start_trb = &ep_ring->enqueue->generic;
  3214. start_cycle = ep_ring->cycle_state;
  3215. urb_priv = urb->hcpriv;
  3216. /* Queue the TRBs for each TD, even if they are zero-length */
  3217. for (i = 0; i < num_tds; i++) {
  3218. unsigned int total_pkt_count, max_pkt;
  3219. unsigned int burst_count, last_burst_pkt_count;
  3220. u32 sia_frame_id;
  3221. first_trb = true;
  3222. running_total = 0;
  3223. addr = start_addr + urb->iso_frame_desc[i].offset;
  3224. td_len = urb->iso_frame_desc[i].length;
  3225. td_remain_len = td_len;
  3226. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  3227. total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
  3228. /* A zero-length transfer still involves at least one packet. */
  3229. if (total_pkt_count == 0)
  3230. total_pkt_count++;
  3231. burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
  3232. last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
  3233. urb, total_pkt_count);
  3234. trbs_per_td = count_isoc_trbs_needed(urb, i);
  3235. ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
  3236. urb->stream_id, trbs_per_td, urb, i, mem_flags);
  3237. if (ret < 0) {
  3238. if (i == 0)
  3239. return ret;
  3240. goto cleanup;
  3241. }
  3242. td = &urb_priv->td[i];
  3243. /* use SIA as default, if frame id is used overwrite it */
  3244. sia_frame_id = TRB_SIA;
  3245. if (!(urb->transfer_flags & URB_ISO_ASAP) &&
  3246. HCC_CFC(xhci->hcc_params)) {
  3247. frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
  3248. if (frame_id >= 0)
  3249. sia_frame_id = TRB_FRAME_ID(frame_id);
  3250. }
  3251. /*
  3252. * Set isoc specific data for the first TRB in a TD.
  3253. * Prevent HW from getting the TRBs by keeping the cycle state
  3254. * inverted in the first TDs isoc TRB.
  3255. */
  3256. field = TRB_TYPE(TRB_ISOC) |
  3257. TRB_TLBPC(last_burst_pkt_count) |
  3258. sia_frame_id |
  3259. (i ? ep_ring->cycle_state : !start_cycle);
  3260. /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
  3261. if (!xep->use_extended_tbc)
  3262. field |= TRB_TBC(burst_count);
  3263. /* fill the rest of the TRB fields, and remaining normal TRBs */
  3264. for (j = 0; j < trbs_per_td; j++) {
  3265. u32 remainder = 0;
  3266. /* only first TRB is isoc, overwrite otherwise */
  3267. if (!first_trb)
  3268. field = TRB_TYPE(TRB_NORMAL) |
  3269. ep_ring->cycle_state;
  3270. /* Only set interrupt on short packet for IN EPs */
  3271. if (usb_urb_dir_in(urb))
  3272. field |= TRB_ISP;
  3273. /* Set the chain bit for all except the last TRB */
  3274. if (j < trbs_per_td - 1) {
  3275. more_trbs_coming = true;
  3276. field |= TRB_CHAIN;
  3277. } else {
  3278. more_trbs_coming = false;
  3279. td->last_trb = ep_ring->enqueue;
  3280. field |= TRB_IOC;
  3281. /* set BEI, except for the last TD */
  3282. if (xhci->hci_version >= 0x100 &&
  3283. !(xhci->quirks & XHCI_AVOID_BEI) &&
  3284. i < num_tds - 1)
  3285. field |= TRB_BEI;
  3286. }
  3287. /* Calculate TRB length */
  3288. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  3289. if (trb_buff_len > td_remain_len)
  3290. trb_buff_len = td_remain_len;
  3291. /* Set the TRB length, TD size, & interrupter fields. */
  3292. remainder = xhci_td_remainder(xhci, running_total,
  3293. trb_buff_len, td_len,
  3294. urb, more_trbs_coming);
  3295. length_field = TRB_LEN(trb_buff_len) |
  3296. TRB_INTR_TARGET(0);
  3297. /* xhci 1.1 with ETE uses TD Size field for TBC */
  3298. if (first_trb && xep->use_extended_tbc)
  3299. length_field |= TRB_TD_SIZE_TBC(burst_count);
  3300. else
  3301. length_field |= TRB_TD_SIZE(remainder);
  3302. first_trb = false;
  3303. queue_trb(xhci, ep_ring, more_trbs_coming,
  3304. lower_32_bits(addr),
  3305. upper_32_bits(addr),
  3306. length_field,
  3307. field);
  3308. running_total += trb_buff_len;
  3309. addr += trb_buff_len;
  3310. td_remain_len -= trb_buff_len;
  3311. }
  3312. /* Check TD length */
  3313. if (running_total != td_len) {
  3314. xhci_err(xhci, "ISOC TD length unmatch\n");
  3315. ret = -EINVAL;
  3316. goto cleanup;
  3317. }
  3318. }
  3319. /* store the next frame id */
  3320. if (HCC_CFC(xhci->hcc_params))
  3321. xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
  3322. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  3323. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  3324. usb_amd_quirk_pll_disable();
  3325. }
  3326. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
  3327. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  3328. start_cycle, start_trb);
  3329. return 0;
  3330. cleanup:
  3331. /* Clean up a partially enqueued isoc transfer. */
  3332. for (i--; i >= 0; i--)
  3333. list_del_init(&urb_priv->td[i].td_list);
  3334. /* Use the first TD as a temporary variable to turn the TDs we've queued
  3335. * into No-ops with a software-owned cycle bit. That way the hardware
  3336. * won't accidentally start executing bogus TDs when we partially
  3337. * overwrite them. td->first_trb and td->start_seg are already set.
  3338. */
  3339. urb_priv->td[0].last_trb = ep_ring->enqueue;
  3340. /* Every TRB except the first & last will have its cycle bit flipped. */
  3341. td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
  3342. /* Reset the ring enqueue back to the first TRB and its cycle bit. */
  3343. ep_ring->enqueue = urb_priv->td[0].first_trb;
  3344. ep_ring->enq_seg = urb_priv->td[0].start_seg;
  3345. ep_ring->cycle_state = start_cycle;
  3346. ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
  3347. usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
  3348. return ret;
  3349. }
  3350. /*
  3351. * Check transfer ring to guarantee there is enough room for the urb.
  3352. * Update ISO URB start_frame and interval.
  3353. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
  3354. * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
  3355. * Contiguous Frame ID is not supported by HC.
  3356. */
  3357. int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
  3358. struct urb *urb, int slot_id, unsigned int ep_index)
  3359. {
  3360. struct xhci_virt_device *xdev;
  3361. struct xhci_ring *ep_ring;
  3362. struct xhci_ep_ctx *ep_ctx;
  3363. int start_frame;
  3364. int num_tds, num_trbs, i;
  3365. int ret;
  3366. struct xhci_virt_ep *xep;
  3367. int ist;
  3368. xdev = xhci->devs[slot_id];
  3369. xep = &xhci->devs[slot_id]->eps[ep_index];
  3370. ep_ring = xdev->eps[ep_index].ring;
  3371. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  3372. num_trbs = 0;
  3373. num_tds = urb->number_of_packets;
  3374. for (i = 0; i < num_tds; i++)
  3375. num_trbs += count_isoc_trbs_needed(urb, i);
  3376. /* Check the ring to guarantee there is enough room for the whole urb.
  3377. * Do not insert any td of the urb to the ring if the check failed.
  3378. */
  3379. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  3380. num_trbs, mem_flags);
  3381. if (ret)
  3382. return ret;
  3383. /*
  3384. * Check interval value. This should be done before we start to
  3385. * calculate the start frame value.
  3386. */
  3387. check_interval(xhci, urb, ep_ctx);
  3388. /* Calculate the start frame and put it in urb->start_frame. */
  3389. if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
  3390. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
  3391. urb->start_frame = xep->next_frame_id;
  3392. goto skip_start_over;
  3393. }
  3394. }
  3395. start_frame = readl(&xhci->run_regs->microframe_index);
  3396. start_frame &= 0x3fff;
  3397. /*
  3398. * Round up to the next frame and consider the time before trb really
  3399. * gets scheduled by hardare.
  3400. */
  3401. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3402. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3403. ist <<= 3;
  3404. start_frame += ist + XHCI_CFC_DELAY;
  3405. start_frame = roundup(start_frame, 8);
  3406. /*
  3407. * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
  3408. * is greate than 8 microframes.
  3409. */
  3410. if (urb->dev->speed == USB_SPEED_LOW ||
  3411. urb->dev->speed == USB_SPEED_FULL) {
  3412. start_frame = roundup(start_frame, urb->interval << 3);
  3413. urb->start_frame = start_frame >> 3;
  3414. } else {
  3415. start_frame = roundup(start_frame, urb->interval);
  3416. urb->start_frame = start_frame;
  3417. }
  3418. skip_start_over:
  3419. ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
  3420. return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
  3421. }
  3422. /**** Command Ring Operations ****/
  3423. /* Generic function for queueing a command TRB on the command ring.
  3424. * Check to make sure there's room on the command ring for one command TRB.
  3425. * Also check that there's room reserved for commands that must not fail.
  3426. * If this is a command that must not fail, meaning command_must_succeed = TRUE,
  3427. * then only check for the number of reserved spots.
  3428. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
  3429. * because the command event handler may want to resubmit a failed command.
  3430. */
  3431. static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3432. u32 field1, u32 field2,
  3433. u32 field3, u32 field4, bool command_must_succeed)
  3434. {
  3435. int reserved_trbs = xhci->cmd_ring_reserved_trbs;
  3436. int ret;
  3437. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  3438. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3439. xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
  3440. return -ESHUTDOWN;
  3441. }
  3442. if (!command_must_succeed)
  3443. reserved_trbs++;
  3444. ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
  3445. reserved_trbs, GFP_ATOMIC);
  3446. if (ret < 0) {
  3447. xhci_err(xhci, "ERR: No room for command on command ring\n");
  3448. if (command_must_succeed)
  3449. xhci_err(xhci, "ERR: Reserved TRB counting for "
  3450. "unfailable commands failed.\n");
  3451. return ret;
  3452. }
  3453. cmd->command_trb = xhci->cmd_ring->enqueue;
  3454. /* if there are no other commands queued we start the timeout timer */
  3455. if (list_empty(&xhci->cmd_list)) {
  3456. xhci->current_cmd = cmd;
  3457. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  3458. }
  3459. list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
  3460. queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
  3461. field4 | xhci->cmd_ring->cycle_state);
  3462. return 0;
  3463. }
  3464. /* Queue a slot enable or disable request on the command ring */
  3465. int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3466. u32 trb_type, u32 slot_id)
  3467. {
  3468. return queue_command(xhci, cmd, 0, 0, 0,
  3469. TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
  3470. }
  3471. /* Queue an address device command TRB */
  3472. int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3473. dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
  3474. {
  3475. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3476. upper_32_bits(in_ctx_ptr), 0,
  3477. TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
  3478. | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
  3479. }
  3480. int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3481. u32 field1, u32 field2, u32 field3, u32 field4)
  3482. {
  3483. return queue_command(xhci, cmd, field1, field2, field3, field4, false);
  3484. }
  3485. /* Queue a reset device command TRB */
  3486. int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3487. u32 slot_id)
  3488. {
  3489. return queue_command(xhci, cmd, 0, 0, 0,
  3490. TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
  3491. false);
  3492. }
  3493. /* Queue a configure endpoint command TRB */
  3494. int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
  3495. struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
  3496. u32 slot_id, bool command_must_succeed)
  3497. {
  3498. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3499. upper_32_bits(in_ctx_ptr), 0,
  3500. TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
  3501. command_must_succeed);
  3502. }
  3503. /* Queue an evaluate context command TRB */
  3504. int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3505. dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
  3506. {
  3507. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3508. upper_32_bits(in_ctx_ptr), 0,
  3509. TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
  3510. command_must_succeed);
  3511. }
  3512. /*
  3513. * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
  3514. * activity on an endpoint that is about to be suspended.
  3515. */
  3516. int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3517. int slot_id, unsigned int ep_index, int suspend)
  3518. {
  3519. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3520. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3521. u32 type = TRB_TYPE(TRB_STOP_RING);
  3522. u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
  3523. return queue_command(xhci, cmd, 0, 0, 0,
  3524. trb_slot_id | trb_ep_index | type | trb_suspend, false);
  3525. }
  3526. /* Set Transfer Ring Dequeue Pointer command */
  3527. void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
  3528. unsigned int slot_id, unsigned int ep_index,
  3529. struct xhci_dequeue_state *deq_state)
  3530. {
  3531. dma_addr_t addr;
  3532. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3533. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3534. u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
  3535. u32 trb_sct = 0;
  3536. u32 type = TRB_TYPE(TRB_SET_DEQ);
  3537. struct xhci_virt_ep *ep;
  3538. struct xhci_command *cmd;
  3539. int ret;
  3540. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  3541. "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
  3542. deq_state->new_deq_seg,
  3543. (unsigned long long)deq_state->new_deq_seg->dma,
  3544. deq_state->new_deq_ptr,
  3545. (unsigned long long)xhci_trb_virt_to_dma(
  3546. deq_state->new_deq_seg, deq_state->new_deq_ptr),
  3547. deq_state->new_cycle_state);
  3548. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  3549. deq_state->new_deq_ptr);
  3550. if (addr == 0) {
  3551. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3552. xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
  3553. deq_state->new_deq_seg, deq_state->new_deq_ptr);
  3554. return;
  3555. }
  3556. ep = &xhci->devs[slot_id]->eps[ep_index];
  3557. if ((ep->ep_state & SET_DEQ_PENDING)) {
  3558. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3559. xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
  3560. return;
  3561. }
  3562. /* This function gets called from contexts where it cannot sleep */
  3563. cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  3564. if (!cmd)
  3565. return;
  3566. ep->queued_deq_seg = deq_state->new_deq_seg;
  3567. ep->queued_deq_ptr = deq_state->new_deq_ptr;
  3568. if (deq_state->stream_id)
  3569. trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
  3570. ret = queue_command(xhci, cmd,
  3571. lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
  3572. upper_32_bits(addr), trb_stream_id,
  3573. trb_slot_id | trb_ep_index | type, false);
  3574. if (ret < 0) {
  3575. xhci_free_command(xhci, cmd);
  3576. return;
  3577. }
  3578. /* Stop the TD queueing code from ringing the doorbell until
  3579. * this command completes. The HC won't set the dequeue pointer
  3580. * if the ring is running, and ringing the doorbell starts the
  3581. * ring running.
  3582. */
  3583. ep->ep_state |= SET_DEQ_PENDING;
  3584. }
  3585. int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3586. int slot_id, unsigned int ep_index,
  3587. enum xhci_ep_reset_type reset_type)
  3588. {
  3589. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3590. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3591. u32 type = TRB_TYPE(TRB_RESET_EP);
  3592. if (reset_type == EP_SOFT_RESET)
  3593. type |= TRB_TSP;
  3594. return queue_command(xhci, cmd, 0, 0, 0,
  3595. trb_slot_id | trb_ep_index | type, false);
  3596. }