urb.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Released under the GPLv2 only.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/string.h>
  7. #include <linux/bitops.h>
  8. #include <linux/slab.h>
  9. #include <linux/log2.h>
  10. #include <linux/usb.h>
  11. #include <linux/wait.h>
  12. #include <linux/usb/hcd.h>
  13. #include <linux/scatterlist.h>
  14. #define to_urb(d) container_of(d, struct urb, kref)
  15. static void urb_destroy(struct kref *kref)
  16. {
  17. struct urb *urb = to_urb(kref);
  18. if (urb->transfer_flags & URB_FREE_BUFFER)
  19. kfree(urb->transfer_buffer);
  20. kfree(urb);
  21. }
  22. /**
  23. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  24. * @urb: pointer to the urb to initialize
  25. *
  26. * Initializes a urb so that the USB subsystem can use it properly.
  27. *
  28. * If a urb is created with a call to usb_alloc_urb() it is not
  29. * necessary to call this function. Only use this if you allocate the
  30. * space for a struct urb on your own. If you call this function, be
  31. * careful when freeing the memory for your urb that it is no longer in
  32. * use by the USB core.
  33. *
  34. * Only use this function if you _really_ understand what you are doing.
  35. */
  36. void usb_init_urb(struct urb *urb)
  37. {
  38. if (urb) {
  39. memset(urb, 0, sizeof(*urb));
  40. kref_init(&urb->kref);
  41. INIT_LIST_HEAD(&urb->anchor_list);
  42. }
  43. }
  44. EXPORT_SYMBOL_GPL(usb_init_urb);
  45. /**
  46. * usb_alloc_urb - creates a new urb for a USB driver to use
  47. * @iso_packets: number of iso packets for this urb
  48. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  49. * valid options for this.
  50. *
  51. * Creates an urb for the USB driver to use, initializes a few internal
  52. * structures, increments the usage counter, and returns a pointer to it.
  53. *
  54. * If the driver want to use this urb for interrupt, control, or bulk
  55. * endpoints, pass '0' as the number of iso packets.
  56. *
  57. * The driver must call usb_free_urb() when it is finished with the urb.
  58. *
  59. * Return: A pointer to the new urb, or %NULL if no memory is available.
  60. */
  61. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  62. {
  63. struct urb *urb;
  64. urb = kmalloc(sizeof(struct urb) +
  65. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  66. mem_flags);
  67. if (!urb)
  68. return NULL;
  69. usb_init_urb(urb);
  70. return urb;
  71. }
  72. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  73. /**
  74. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  75. * @urb: pointer to the urb to free, may be NULL
  76. *
  77. * Must be called when a user of a urb is finished with it. When the last user
  78. * of the urb calls this function, the memory of the urb is freed.
  79. *
  80. * Note: The transfer buffer associated with the urb is not freed unless the
  81. * URB_FREE_BUFFER transfer flag is set.
  82. */
  83. void usb_free_urb(struct urb *urb)
  84. {
  85. if (urb)
  86. kref_put(&urb->kref, urb_destroy);
  87. }
  88. EXPORT_SYMBOL_GPL(usb_free_urb);
  89. /**
  90. * usb_get_urb - increments the reference count of the urb
  91. * @urb: pointer to the urb to modify, may be NULL
  92. *
  93. * This must be called whenever a urb is transferred from a device driver to a
  94. * host controller driver. This allows proper reference counting to happen
  95. * for urbs.
  96. *
  97. * Return: A pointer to the urb with the incremented reference counter.
  98. */
  99. struct urb *usb_get_urb(struct urb *urb)
  100. {
  101. if (urb)
  102. kref_get(&urb->kref);
  103. return urb;
  104. }
  105. EXPORT_SYMBOL_GPL(usb_get_urb);
  106. /**
  107. * usb_anchor_urb - anchors an URB while it is processed
  108. * @urb: pointer to the urb to anchor
  109. * @anchor: pointer to the anchor
  110. *
  111. * This can be called to have access to URBs which are to be executed
  112. * without bothering to track them
  113. */
  114. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  115. {
  116. unsigned long flags;
  117. spin_lock_irqsave(&anchor->lock, flags);
  118. usb_get_urb(urb);
  119. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  120. urb->anchor = anchor;
  121. if (unlikely(anchor->poisoned))
  122. atomic_inc(&urb->reject);
  123. spin_unlock_irqrestore(&anchor->lock, flags);
  124. }
  125. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  126. static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
  127. {
  128. return atomic_read(&anchor->suspend_wakeups) == 0 &&
  129. list_empty(&anchor->urb_list);
  130. }
  131. /* Callers must hold anchor->lock */
  132. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  133. {
  134. urb->anchor = NULL;
  135. list_del(&urb->anchor_list);
  136. usb_put_urb(urb);
  137. if (usb_anchor_check_wakeup(anchor))
  138. wake_up(&anchor->wait);
  139. }
  140. /**
  141. * usb_unanchor_urb - unanchors an URB
  142. * @urb: pointer to the urb to anchor
  143. *
  144. * Call this to stop the system keeping track of this URB
  145. */
  146. void usb_unanchor_urb(struct urb *urb)
  147. {
  148. unsigned long flags;
  149. struct usb_anchor *anchor;
  150. if (!urb)
  151. return;
  152. anchor = urb->anchor;
  153. if (!anchor)
  154. return;
  155. spin_lock_irqsave(&anchor->lock, flags);
  156. /*
  157. * At this point, we could be competing with another thread which
  158. * has the same intention. To protect the urb from being unanchored
  159. * twice, only the winner of the race gets the job.
  160. */
  161. if (likely(anchor == urb->anchor))
  162. __usb_unanchor_urb(urb, anchor);
  163. spin_unlock_irqrestore(&anchor->lock, flags);
  164. }
  165. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  166. /*-------------------------------------------------------------------*/
  167. static const int pipetypes[4] = {
  168. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  169. };
  170. /**
  171. * usb_urb_ep_type_check - sanity check of endpoint in the given urb
  172. * @urb: urb to be checked
  173. *
  174. * This performs a light-weight sanity check for the endpoint in the
  175. * given urb. It returns 0 if the urb contains a valid endpoint, otherwise
  176. * a negative error code.
  177. */
  178. int usb_urb_ep_type_check(const struct urb *urb)
  179. {
  180. const struct usb_host_endpoint *ep;
  181. ep = usb_pipe_endpoint(urb->dev, urb->pipe);
  182. if (!ep)
  183. return -EINVAL;
  184. if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
  185. return -EINVAL;
  186. return 0;
  187. }
  188. EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
  189. /**
  190. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  191. * @urb: pointer to the urb describing the request
  192. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  193. * of valid options for this.
  194. *
  195. * This submits a transfer request, and transfers control of the URB
  196. * describing that request to the USB subsystem. Request completion will
  197. * be indicated later, asynchronously, by calling the completion handler.
  198. * The three types of completion are success, error, and unlink
  199. * (a software-induced fault, also called "request cancellation").
  200. *
  201. * URBs may be submitted in interrupt context.
  202. *
  203. * The caller must have correctly initialized the URB before submitting
  204. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  205. * available to ensure that most fields are correctly initialized, for
  206. * the particular kind of transfer, although they will not initialize
  207. * any transfer flags.
  208. *
  209. * If the submission is successful, the complete() callback from the URB
  210. * will be called exactly once, when the USB core and Host Controller Driver
  211. * (HCD) are finished with the URB. When the completion function is called,
  212. * control of the URB is returned to the device driver which issued the
  213. * request. The completion handler may then immediately free or reuse that
  214. * URB.
  215. *
  216. * With few exceptions, USB device drivers should never access URB fields
  217. * provided by usbcore or the HCD until its complete() is called.
  218. * The exceptions relate to periodic transfer scheduling. For both
  219. * interrupt and isochronous urbs, as part of successful URB submission
  220. * urb->interval is modified to reflect the actual transfer period used
  221. * (normally some power of two units). And for isochronous urbs,
  222. * urb->start_frame is modified to reflect when the URB's transfers were
  223. * scheduled to start.
  224. *
  225. * Not all isochronous transfer scheduling policies will work, but most
  226. * host controller drivers should easily handle ISO queues going from now
  227. * until 10-200 msec into the future. Drivers should try to keep at
  228. * least one or two msec of data in the queue; many controllers require
  229. * that new transfers start at least 1 msec in the future when they are
  230. * added. If the driver is unable to keep up and the queue empties out,
  231. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  232. * If the flag is set, or if the queue is idle, then the URB is always
  233. * assigned to the first available (and not yet expired) slot in the
  234. * endpoint's schedule. If the flag is not set and the queue is active
  235. * then the URB is always assigned to the next slot in the schedule
  236. * following the end of the endpoint's previous URB, even if that slot is
  237. * in the past. When a packet is assigned in this way to a slot that has
  238. * already expired, the packet is not transmitted and the corresponding
  239. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  240. * would happen to all the packets in the URB, submission fails with a
  241. * -EXDEV error code.
  242. *
  243. * For control endpoints, the synchronous usb_control_msg() call is
  244. * often used (in non-interrupt context) instead of this call.
  245. * That is often used through convenience wrappers, for the requests
  246. * that are standardized in the USB 2.0 specification. For bulk
  247. * endpoints, a synchronous usb_bulk_msg() call is available.
  248. *
  249. * Return:
  250. * 0 on successful submissions. A negative error number otherwise.
  251. *
  252. * Request Queuing:
  253. *
  254. * URBs may be submitted to endpoints before previous ones complete, to
  255. * minimize the impact of interrupt latencies and system overhead on data
  256. * throughput. With that queuing policy, an endpoint's queue would never
  257. * be empty. This is required for continuous isochronous data streams,
  258. * and may also be required for some kinds of interrupt transfers. Such
  259. * queuing also maximizes bandwidth utilization by letting USB controllers
  260. * start work on later requests before driver software has finished the
  261. * completion processing for earlier (successful) requests.
  262. *
  263. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  264. * than one. This was previously a HCD-specific behavior, except for ISO
  265. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  266. * after faults (transfer errors or cancellation).
  267. *
  268. * Reserved Bandwidth Transfers:
  269. *
  270. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  271. * using the interval specified in the urb. Submitting the first urb to
  272. * the endpoint reserves the bandwidth necessary to make those transfers.
  273. * If the USB subsystem can't allocate sufficient bandwidth to perform
  274. * the periodic request, submitting such a periodic request should fail.
  275. *
  276. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  277. * when the alt setting is selected. If there is not enough bus bandwidth, the
  278. * configuration/alt setting request will fail. Therefore, submissions to
  279. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  280. * constraints.
  281. *
  282. * Device drivers must explicitly request that repetition, by ensuring that
  283. * some URB is always on the endpoint's queue (except possibly for short
  284. * periods during completion callbacks). When there is no longer an urb
  285. * queued, the endpoint's bandwidth reservation is canceled. This means
  286. * drivers can use their completion handlers to ensure they keep bandwidth
  287. * they need, by reinitializing and resubmitting the just-completed urb
  288. * until the driver longer needs that periodic bandwidth.
  289. *
  290. * Memory Flags:
  291. *
  292. * The general rules for how to decide which mem_flags to use
  293. * are the same as for kmalloc. There are four
  294. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  295. * GFP_ATOMIC.
  296. *
  297. * GFP_NOFS is not ever used, as it has not been implemented yet.
  298. *
  299. * GFP_ATOMIC is used when
  300. * (a) you are inside a completion handler, an interrupt, bottom half,
  301. * tasklet or timer, or
  302. * (b) you are holding a spinlock or rwlock (does not apply to
  303. * semaphores), or
  304. * (c) current->state != TASK_RUNNING, this is the case only after
  305. * you've changed it.
  306. *
  307. * GFP_NOIO is used in the block io path and error handling of storage
  308. * devices.
  309. *
  310. * All other situations use GFP_KERNEL.
  311. *
  312. * Some more specific rules for mem_flags can be inferred, such as
  313. * (1) start_xmit, timeout, and receive methods of network drivers must
  314. * use GFP_ATOMIC (they are called with a spinlock held);
  315. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  316. * called with a spinlock held);
  317. * (3) If you use a kernel thread with a network driver you must use
  318. * GFP_NOIO, unless (b) or (c) apply;
  319. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  320. * apply or your are in a storage driver's block io path;
  321. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  322. * (6) changing firmware on a running storage or net device uses
  323. * GFP_NOIO, unless b) or c) apply
  324. *
  325. */
  326. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  327. {
  328. int xfertype, max;
  329. struct usb_device *dev;
  330. struct usb_host_endpoint *ep;
  331. int is_out;
  332. unsigned int allowed;
  333. if (!urb || !urb->complete)
  334. return -EINVAL;
  335. if (urb->hcpriv) {
  336. WARN_ONCE(1, "URB %pK submitted while active\n", urb);
  337. return -EBUSY;
  338. }
  339. dev = urb->dev;
  340. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  341. return -ENODEV;
  342. /* For now, get the endpoint from the pipe. Eventually drivers
  343. * will be required to set urb->ep directly and we will eliminate
  344. * urb->pipe.
  345. */
  346. ep = usb_pipe_endpoint(dev, urb->pipe);
  347. if (!ep)
  348. return -ENOENT;
  349. urb->ep = ep;
  350. urb->status = -EINPROGRESS;
  351. urb->actual_length = 0;
  352. /* Lots of sanity checks, so HCDs can rely on clean data
  353. * and don't need to duplicate tests
  354. */
  355. xfertype = usb_endpoint_type(&ep->desc);
  356. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  357. struct usb_ctrlrequest *setup =
  358. (struct usb_ctrlrequest *) urb->setup_packet;
  359. if (!setup)
  360. return -ENOEXEC;
  361. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  362. !setup->wLength;
  363. } else {
  364. is_out = usb_endpoint_dir_out(&ep->desc);
  365. }
  366. /* Clear the internal flags and cache the direction for later use */
  367. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  368. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  369. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  370. URB_DMA_SG_COMBINED);
  371. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  372. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  373. dev->state < USB_STATE_CONFIGURED)
  374. return -ENODEV;
  375. max = usb_endpoint_maxp(&ep->desc);
  376. if (max <= 0) {
  377. dev_dbg(&dev->dev,
  378. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  379. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  380. __func__, max);
  381. return -EMSGSIZE;
  382. }
  383. /* periodic transfers limit size per frame/uframe,
  384. * but drivers only control those sizes for ISO.
  385. * while we're checking, initialize return status.
  386. */
  387. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  388. int n, len;
  389. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  390. * 3 packets each
  391. */
  392. if (dev->speed >= USB_SPEED_SUPER) {
  393. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  394. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  395. max *= burst;
  396. max *= mult;
  397. }
  398. /* "high bandwidth" mode, 1-3 packets/uframe? */
  399. if (dev->speed == USB_SPEED_HIGH)
  400. max *= usb_endpoint_maxp_mult(&ep->desc);
  401. if (urb->number_of_packets <= 0)
  402. return -EINVAL;
  403. for (n = 0; n < urb->number_of_packets; n++) {
  404. len = urb->iso_frame_desc[n].length;
  405. if (len < 0 || len > max)
  406. return -EMSGSIZE;
  407. urb->iso_frame_desc[n].status = -EXDEV;
  408. urb->iso_frame_desc[n].actual_length = 0;
  409. }
  410. } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
  411. dev->speed != USB_SPEED_WIRELESS) {
  412. struct scatterlist *sg;
  413. int i;
  414. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  415. if (sg->length % max)
  416. return -EINVAL;
  417. }
  418. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  419. if (urb->transfer_buffer_length > INT_MAX)
  420. return -EMSGSIZE;
  421. /*
  422. * stuff that drivers shouldn't do, but which shouldn't
  423. * cause problems in HCDs if they get it wrong.
  424. */
  425. /* Check that the pipe's type matches the endpoint's type */
  426. if (usb_urb_ep_type_check(urb))
  427. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  428. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  429. /* Check against a simple/standard policy */
  430. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  431. URB_FREE_BUFFER);
  432. switch (xfertype) {
  433. case USB_ENDPOINT_XFER_BULK:
  434. case USB_ENDPOINT_XFER_INT:
  435. if (is_out)
  436. allowed |= URB_ZERO_PACKET;
  437. /* FALLTHROUGH */
  438. default: /* all non-iso endpoints */
  439. if (!is_out)
  440. allowed |= URB_SHORT_NOT_OK;
  441. break;
  442. case USB_ENDPOINT_XFER_ISOC:
  443. allowed |= URB_ISO_ASAP;
  444. break;
  445. }
  446. allowed &= urb->transfer_flags;
  447. /* warn if submitter gave bogus flags */
  448. if (allowed != urb->transfer_flags)
  449. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  450. urb->transfer_flags, allowed);
  451. /*
  452. * Force periodic transfer intervals to be legal values that are
  453. * a power of two (so HCDs don't need to).
  454. *
  455. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  456. * supports different values... this uses EHCI/UHCI defaults (and
  457. * EHCI can use smaller non-default values).
  458. */
  459. switch (xfertype) {
  460. case USB_ENDPOINT_XFER_ISOC:
  461. case USB_ENDPOINT_XFER_INT:
  462. /* too small? */
  463. switch (dev->speed) {
  464. case USB_SPEED_WIRELESS:
  465. if ((urb->interval < 6)
  466. && (xfertype == USB_ENDPOINT_XFER_INT))
  467. return -EINVAL;
  468. /* fall through */
  469. default:
  470. if (urb->interval <= 0)
  471. return -EINVAL;
  472. break;
  473. }
  474. /* too big? */
  475. switch (dev->speed) {
  476. case USB_SPEED_SUPER_PLUS:
  477. case USB_SPEED_SUPER: /* units are 125us */
  478. /* Handle up to 2^(16-1) microframes */
  479. if (urb->interval > (1 << 15))
  480. return -EINVAL;
  481. max = 1 << 15;
  482. break;
  483. case USB_SPEED_WIRELESS:
  484. if (urb->interval > 16)
  485. return -EINVAL;
  486. break;
  487. case USB_SPEED_HIGH: /* units are microframes */
  488. /* NOTE usb handles 2^15 */
  489. if (urb->interval > (1024 * 8))
  490. urb->interval = 1024 * 8;
  491. max = 1024 * 8;
  492. break;
  493. case USB_SPEED_FULL: /* units are frames/msec */
  494. case USB_SPEED_LOW:
  495. if (xfertype == USB_ENDPOINT_XFER_INT) {
  496. if (urb->interval > 255)
  497. return -EINVAL;
  498. /* NOTE ohci only handles up to 32 */
  499. max = 128;
  500. } else {
  501. if (urb->interval > 1024)
  502. urb->interval = 1024;
  503. /* NOTE usb and ohci handle up to 2^15 */
  504. max = 1024;
  505. }
  506. break;
  507. default:
  508. return -EINVAL;
  509. }
  510. if (dev->speed != USB_SPEED_WIRELESS) {
  511. /* Round down to a power of 2, no more than max */
  512. urb->interval = min(max, 1 << ilog2(urb->interval));
  513. }
  514. }
  515. return usb_hcd_submit_urb(urb, mem_flags);
  516. }
  517. EXPORT_SYMBOL_GPL(usb_submit_urb);
  518. /*-------------------------------------------------------------------*/
  519. /**
  520. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  521. * @urb: pointer to urb describing a previously submitted request,
  522. * may be NULL
  523. *
  524. * This routine cancels an in-progress request. URBs complete only once
  525. * per submission, and may be canceled only once per submission.
  526. * Successful cancellation means termination of @urb will be expedited
  527. * and the completion handler will be called with a status code
  528. * indicating that the request has been canceled (rather than any other
  529. * code).
  530. *
  531. * Drivers should not call this routine or related routines, such as
  532. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  533. * method has returned. The disconnect function should synchronize with
  534. * a driver's I/O routines to insure that all URB-related activity has
  535. * completed before it returns.
  536. *
  537. * This request is asynchronous, however the HCD might call the ->complete()
  538. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  539. * must not hold any locks that may be taken by the completion function.
  540. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  541. * probably not yet have been given back to the device driver. When it is
  542. * eventually called, the completion function will see @urb->status ==
  543. * -ECONNRESET.
  544. * Failure is indicated by usb_unlink_urb() returning any other value.
  545. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  546. * never submitted, or it was unlinked before, or the hardware is already
  547. * finished with it), even if the completion handler has not yet run.
  548. *
  549. * The URB must not be deallocated while this routine is running. In
  550. * particular, when a driver calls this routine, it must insure that the
  551. * completion handler cannot deallocate the URB.
  552. *
  553. * Return: -EINPROGRESS on success. See description for other values on
  554. * failure.
  555. *
  556. * Unlinking and Endpoint Queues:
  557. *
  558. * [The behaviors and guarantees described below do not apply to virtual
  559. * root hubs but only to endpoint queues for physical USB devices.]
  560. *
  561. * Host Controller Drivers (HCDs) place all the URBs for a particular
  562. * endpoint in a queue. Normally the queue advances as the controller
  563. * hardware processes each request. But when an URB terminates with an
  564. * error its queue generally stops (see below), at least until that URB's
  565. * completion routine returns. It is guaranteed that a stopped queue
  566. * will not restart until all its unlinked URBs have been fully retired,
  567. * with their completion routines run, even if that's not until some time
  568. * after the original completion handler returns. The same behavior and
  569. * guarantee apply when an URB terminates because it was unlinked.
  570. *
  571. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  572. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  573. * and -EREMOTEIO. Control endpoint queues behave the same way except
  574. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  575. * for isochronous endpoints are treated differently, because they must
  576. * advance at fixed rates. Such queues do not stop when an URB
  577. * encounters an error or is unlinked. An unlinked isochronous URB may
  578. * leave a gap in the stream of packets; it is undefined whether such
  579. * gaps can be filled in.
  580. *
  581. * Note that early termination of an URB because a short packet was
  582. * received will generate a -EREMOTEIO error if and only if the
  583. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  584. * drivers can build deep queues for large or complex bulk transfers
  585. * and clean them up reliably after any sort of aborted transfer by
  586. * unlinking all pending URBs at the first fault.
  587. *
  588. * When a control URB terminates with an error other than -EREMOTEIO, it
  589. * is quite likely that the status stage of the transfer will not take
  590. * place.
  591. */
  592. int usb_unlink_urb(struct urb *urb)
  593. {
  594. if (!urb)
  595. return -EINVAL;
  596. if (!urb->dev)
  597. return -ENODEV;
  598. if (!urb->ep)
  599. return -EIDRM;
  600. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  601. }
  602. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  603. /**
  604. * usb_kill_urb - cancel a transfer request and wait for it to finish
  605. * @urb: pointer to URB describing a previously submitted request,
  606. * may be NULL
  607. *
  608. * This routine cancels an in-progress request. It is guaranteed that
  609. * upon return all completion handlers will have finished and the URB
  610. * will be totally idle and available for reuse. These features make
  611. * this an ideal way to stop I/O in a disconnect() callback or close()
  612. * function. If the request has not already finished or been unlinked
  613. * the completion handler will see urb->status == -ENOENT.
  614. *
  615. * While the routine is running, attempts to resubmit the URB will fail
  616. * with error -EPERM. Thus even if the URB's completion handler always
  617. * tries to resubmit, it will not succeed and the URB will become idle.
  618. *
  619. * The URB must not be deallocated while this routine is running. In
  620. * particular, when a driver calls this routine, it must insure that the
  621. * completion handler cannot deallocate the URB.
  622. *
  623. * This routine may not be used in an interrupt context (such as a bottom
  624. * half or a completion handler), or when holding a spinlock, or in other
  625. * situations where the caller can't schedule().
  626. *
  627. * This routine should not be called by a driver after its disconnect
  628. * method has returned.
  629. */
  630. void usb_kill_urb(struct urb *urb)
  631. {
  632. might_sleep();
  633. if (!(urb && urb->dev && urb->ep))
  634. return;
  635. atomic_inc(&urb->reject);
  636. usb_hcd_unlink_urb(urb, -ENOENT);
  637. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  638. atomic_dec(&urb->reject);
  639. }
  640. EXPORT_SYMBOL_GPL(usb_kill_urb);
  641. /**
  642. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  643. * @urb: pointer to URB describing a previously submitted request,
  644. * may be NULL
  645. *
  646. * This routine cancels an in-progress request. It is guaranteed that
  647. * upon return all completion handlers will have finished and the URB
  648. * will be totally idle and cannot be reused. These features make
  649. * this an ideal way to stop I/O in a disconnect() callback.
  650. * If the request has not already finished or been unlinked
  651. * the completion handler will see urb->status == -ENOENT.
  652. *
  653. * After and while the routine runs, attempts to resubmit the URB will fail
  654. * with error -EPERM. Thus even if the URB's completion handler always
  655. * tries to resubmit, it will not succeed and the URB will become idle.
  656. *
  657. * The URB must not be deallocated while this routine is running. In
  658. * particular, when a driver calls this routine, it must insure that the
  659. * completion handler cannot deallocate the URB.
  660. *
  661. * This routine may not be used in an interrupt context (such as a bottom
  662. * half or a completion handler), or when holding a spinlock, or in other
  663. * situations where the caller can't schedule().
  664. *
  665. * This routine should not be called by a driver after its disconnect
  666. * method has returned.
  667. */
  668. void usb_poison_urb(struct urb *urb)
  669. {
  670. might_sleep();
  671. if (!urb)
  672. return;
  673. atomic_inc(&urb->reject);
  674. if (!urb->dev || !urb->ep)
  675. return;
  676. usb_hcd_unlink_urb(urb, -ENOENT);
  677. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  678. }
  679. EXPORT_SYMBOL_GPL(usb_poison_urb);
  680. void usb_unpoison_urb(struct urb *urb)
  681. {
  682. if (!urb)
  683. return;
  684. atomic_dec(&urb->reject);
  685. }
  686. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  687. /**
  688. * usb_block_urb - reliably prevent further use of an URB
  689. * @urb: pointer to URB to be blocked, may be NULL
  690. *
  691. * After the routine has run, attempts to resubmit the URB will fail
  692. * with error -EPERM. Thus even if the URB's completion handler always
  693. * tries to resubmit, it will not succeed and the URB will become idle.
  694. *
  695. * The URB must not be deallocated while this routine is running. In
  696. * particular, when a driver calls this routine, it must insure that the
  697. * completion handler cannot deallocate the URB.
  698. */
  699. void usb_block_urb(struct urb *urb)
  700. {
  701. if (!urb)
  702. return;
  703. atomic_inc(&urb->reject);
  704. }
  705. EXPORT_SYMBOL_GPL(usb_block_urb);
  706. /**
  707. * usb_kill_anchored_urbs - cancel transfer requests en masse
  708. * @anchor: anchor the requests are bound to
  709. *
  710. * this allows all outstanding URBs to be killed starting
  711. * from the back of the queue
  712. *
  713. * This routine should not be called by a driver after its disconnect
  714. * method has returned.
  715. */
  716. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  717. {
  718. struct urb *victim;
  719. spin_lock_irq(&anchor->lock);
  720. while (!list_empty(&anchor->urb_list)) {
  721. victim = list_entry(anchor->urb_list.prev, struct urb,
  722. anchor_list);
  723. /* we must make sure the URB isn't freed before we kill it*/
  724. usb_get_urb(victim);
  725. spin_unlock_irq(&anchor->lock);
  726. /* this will unanchor the URB */
  727. usb_kill_urb(victim);
  728. usb_put_urb(victim);
  729. spin_lock_irq(&anchor->lock);
  730. }
  731. spin_unlock_irq(&anchor->lock);
  732. }
  733. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  734. /**
  735. * usb_poison_anchored_urbs - cease all traffic from an anchor
  736. * @anchor: anchor the requests are bound to
  737. *
  738. * this allows all outstanding URBs to be poisoned starting
  739. * from the back of the queue. Newly added URBs will also be
  740. * poisoned
  741. *
  742. * This routine should not be called by a driver after its disconnect
  743. * method has returned.
  744. */
  745. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  746. {
  747. struct urb *victim;
  748. spin_lock_irq(&anchor->lock);
  749. anchor->poisoned = 1;
  750. while (!list_empty(&anchor->urb_list)) {
  751. victim = list_entry(anchor->urb_list.prev, struct urb,
  752. anchor_list);
  753. /* we must make sure the URB isn't freed before we kill it*/
  754. usb_get_urb(victim);
  755. spin_unlock_irq(&anchor->lock);
  756. /* this will unanchor the URB */
  757. usb_poison_urb(victim);
  758. usb_put_urb(victim);
  759. spin_lock_irq(&anchor->lock);
  760. }
  761. spin_unlock_irq(&anchor->lock);
  762. }
  763. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  764. /**
  765. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  766. * @anchor: anchor the requests are bound to
  767. *
  768. * Reverses the effect of usb_poison_anchored_urbs
  769. * the anchor can be used normally after it returns
  770. */
  771. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  772. {
  773. unsigned long flags;
  774. struct urb *lazarus;
  775. spin_lock_irqsave(&anchor->lock, flags);
  776. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  777. usb_unpoison_urb(lazarus);
  778. }
  779. anchor->poisoned = 0;
  780. spin_unlock_irqrestore(&anchor->lock, flags);
  781. }
  782. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  783. /**
  784. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  785. * @anchor: anchor the requests are bound to
  786. *
  787. * this allows all outstanding URBs to be unlinked starting
  788. * from the back of the queue. This function is asynchronous.
  789. * The unlinking is just triggered. It may happen after this
  790. * function has returned.
  791. *
  792. * This routine should not be called by a driver after its disconnect
  793. * method has returned.
  794. */
  795. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  796. {
  797. struct urb *victim;
  798. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  799. usb_unlink_urb(victim);
  800. usb_put_urb(victim);
  801. }
  802. }
  803. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  804. /**
  805. * usb_anchor_suspend_wakeups
  806. * @anchor: the anchor you want to suspend wakeups on
  807. *
  808. * Call this to stop the last urb being unanchored from waking up any
  809. * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
  810. * back path to delay waking up until after the completion handler has run.
  811. */
  812. void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
  813. {
  814. if (anchor)
  815. atomic_inc(&anchor->suspend_wakeups);
  816. }
  817. EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
  818. /**
  819. * usb_anchor_resume_wakeups
  820. * @anchor: the anchor you want to resume wakeups on
  821. *
  822. * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
  823. * wake up any current waiters if the anchor is empty.
  824. */
  825. void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
  826. {
  827. if (!anchor)
  828. return;
  829. atomic_dec(&anchor->suspend_wakeups);
  830. if (usb_anchor_check_wakeup(anchor))
  831. wake_up(&anchor->wait);
  832. }
  833. EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
  834. /**
  835. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  836. * @anchor: the anchor you want to become unused
  837. * @timeout: how long you are willing to wait in milliseconds
  838. *
  839. * Call this is you want to be sure all an anchor's
  840. * URBs have finished
  841. *
  842. * Return: Non-zero if the anchor became unused. Zero on timeout.
  843. */
  844. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  845. unsigned int timeout)
  846. {
  847. return wait_event_timeout(anchor->wait,
  848. usb_anchor_check_wakeup(anchor),
  849. msecs_to_jiffies(timeout));
  850. }
  851. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  852. /**
  853. * usb_get_from_anchor - get an anchor's oldest urb
  854. * @anchor: the anchor whose urb you want
  855. *
  856. * This will take the oldest urb from an anchor,
  857. * unanchor and return it
  858. *
  859. * Return: The oldest urb from @anchor, or %NULL if @anchor has no
  860. * urbs associated with it.
  861. */
  862. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  863. {
  864. struct urb *victim;
  865. unsigned long flags;
  866. spin_lock_irqsave(&anchor->lock, flags);
  867. if (!list_empty(&anchor->urb_list)) {
  868. victim = list_entry(anchor->urb_list.next, struct urb,
  869. anchor_list);
  870. usb_get_urb(victim);
  871. __usb_unanchor_urb(victim, anchor);
  872. } else {
  873. victim = NULL;
  874. }
  875. spin_unlock_irqrestore(&anchor->lock, flags);
  876. return victim;
  877. }
  878. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  879. /**
  880. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  881. * @anchor: the anchor whose urbs you want to unanchor
  882. *
  883. * use this to get rid of all an anchor's urbs
  884. */
  885. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  886. {
  887. struct urb *victim;
  888. unsigned long flags;
  889. spin_lock_irqsave(&anchor->lock, flags);
  890. while (!list_empty(&anchor->urb_list)) {
  891. victim = list_entry(anchor->urb_list.prev, struct urb,
  892. anchor_list);
  893. __usb_unanchor_urb(victim, anchor);
  894. }
  895. spin_unlock_irqrestore(&anchor->lock, flags);
  896. }
  897. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  898. /**
  899. * usb_anchor_empty - is an anchor empty
  900. * @anchor: the anchor you want to query
  901. *
  902. * Return: 1 if the anchor has no urbs associated with it.
  903. */
  904. int usb_anchor_empty(struct usb_anchor *anchor)
  905. {
  906. return list_empty(&anchor->urb_list);
  907. }
  908. EXPORT_SYMBOL_GPL(usb_anchor_empty);