tcp_memcontrol.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. #include <net/tcp.h>
  2. #include <net/tcp_memcontrol.h>
  3. #include <net/sock.h>
  4. #include <net/ip.h>
  5. #include <linux/nsproxy.h>
  6. #include <linux/memcontrol.h>
  7. #include <linux/module.h>
  8. int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  9. {
  10. /*
  11. * The root cgroup does not use res_counters, but rather,
  12. * rely on the data already collected by the network
  13. * subsystem
  14. */
  15. struct res_counter *res_parent = NULL;
  16. struct cg_proto *cg_proto, *parent_cg;
  17. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  18. cg_proto = tcp_prot.proto_cgroup(memcg);
  19. if (!cg_proto)
  20. return 0;
  21. cg_proto->sysctl_mem[0] = sysctl_tcp_mem[0];
  22. cg_proto->sysctl_mem[1] = sysctl_tcp_mem[1];
  23. cg_proto->sysctl_mem[2] = sysctl_tcp_mem[2];
  24. cg_proto->memory_pressure = 0;
  25. cg_proto->memcg = memcg;
  26. parent_cg = tcp_prot.proto_cgroup(parent);
  27. if (parent_cg)
  28. res_parent = &parent_cg->memory_allocated;
  29. res_counter_init(&cg_proto->memory_allocated, res_parent);
  30. percpu_counter_init(&cg_proto->sockets_allocated, 0);
  31. return 0;
  32. }
  33. EXPORT_SYMBOL(tcp_init_cgroup);
  34. void tcp_destroy_cgroup(struct mem_cgroup *memcg)
  35. {
  36. struct cg_proto *cg_proto;
  37. cg_proto = tcp_prot.proto_cgroup(memcg);
  38. if (!cg_proto)
  39. return;
  40. percpu_counter_destroy(&cg_proto->sockets_allocated);
  41. }
  42. EXPORT_SYMBOL(tcp_destroy_cgroup);
  43. static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
  44. {
  45. struct cg_proto *cg_proto;
  46. int i;
  47. int ret;
  48. cg_proto = tcp_prot.proto_cgroup(memcg);
  49. if (!cg_proto)
  50. return -EINVAL;
  51. if (val > RES_COUNTER_MAX)
  52. val = RES_COUNTER_MAX;
  53. ret = res_counter_set_limit(&cg_proto->memory_allocated, val);
  54. if (ret)
  55. return ret;
  56. for (i = 0; i < 3; i++)
  57. cg_proto->sysctl_mem[i] = min_t(long, val >> PAGE_SHIFT,
  58. sysctl_tcp_mem[i]);
  59. if (val == RES_COUNTER_MAX)
  60. clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
  61. else if (val != RES_COUNTER_MAX) {
  62. /*
  63. * The active bit needs to be written after the static_key
  64. * update. This is what guarantees that the socket activation
  65. * function is the last one to run. See sock_update_memcg() for
  66. * details, and note that we don't mark any socket as belonging
  67. * to this memcg until that flag is up.
  68. *
  69. * We need to do this, because static_keys will span multiple
  70. * sites, but we can't control their order. If we mark a socket
  71. * as accounted, but the accounting functions are not patched in
  72. * yet, we'll lose accounting.
  73. *
  74. * We never race with the readers in sock_update_memcg(),
  75. * because when this value change, the code to process it is not
  76. * patched in yet.
  77. *
  78. * The activated bit is used to guarantee that no two writers
  79. * will do the update in the same memcg. Without that, we can't
  80. * properly shutdown the static key.
  81. */
  82. if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))
  83. static_key_slow_inc(&memcg_socket_limit_enabled);
  84. set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
  85. }
  86. return 0;
  87. }
  88. static int tcp_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
  89. const char *buffer)
  90. {
  91. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  92. unsigned long long val;
  93. int ret = 0;
  94. switch (cft->private) {
  95. case RES_LIMIT:
  96. /* see memcontrol.c */
  97. ret = res_counter_memparse_write_strategy(buffer, &val);
  98. if (ret)
  99. break;
  100. ret = tcp_update_limit(memcg, val);
  101. break;
  102. default:
  103. ret = -EINVAL;
  104. break;
  105. }
  106. return ret;
  107. }
  108. static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
  109. {
  110. struct cg_proto *cg_proto;
  111. cg_proto = tcp_prot.proto_cgroup(memcg);
  112. if (!cg_proto)
  113. return default_val;
  114. return res_counter_read_u64(&cg_proto->memory_allocated, type);
  115. }
  116. static u64 tcp_read_usage(struct mem_cgroup *memcg)
  117. {
  118. struct cg_proto *cg_proto;
  119. cg_proto = tcp_prot.proto_cgroup(memcg);
  120. if (!cg_proto)
  121. return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
  122. return res_counter_read_u64(&cg_proto->memory_allocated, RES_USAGE);
  123. }
  124. static u64 tcp_cgroup_read(struct cgroup_subsys_state *css, struct cftype *cft)
  125. {
  126. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  127. u64 val;
  128. switch (cft->private) {
  129. case RES_LIMIT:
  130. val = tcp_read_stat(memcg, RES_LIMIT, RES_COUNTER_MAX);
  131. break;
  132. case RES_USAGE:
  133. val = tcp_read_usage(memcg);
  134. break;
  135. case RES_FAILCNT:
  136. case RES_MAX_USAGE:
  137. val = tcp_read_stat(memcg, cft->private, 0);
  138. break;
  139. default:
  140. BUG();
  141. }
  142. return val;
  143. }
  144. static int tcp_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
  145. {
  146. struct mem_cgroup *memcg;
  147. struct cg_proto *cg_proto;
  148. memcg = mem_cgroup_from_css(css);
  149. cg_proto = tcp_prot.proto_cgroup(memcg);
  150. if (!cg_proto)
  151. return 0;
  152. switch (event) {
  153. case RES_MAX_USAGE:
  154. res_counter_reset_max(&cg_proto->memory_allocated);
  155. break;
  156. case RES_FAILCNT:
  157. res_counter_reset_failcnt(&cg_proto->memory_allocated);
  158. break;
  159. }
  160. return 0;
  161. }
  162. static struct cftype tcp_files[] = {
  163. {
  164. .name = "kmem.tcp.limit_in_bytes",
  165. .write_string = tcp_cgroup_write,
  166. .read_u64 = tcp_cgroup_read,
  167. .private = RES_LIMIT,
  168. },
  169. {
  170. .name = "kmem.tcp.usage_in_bytes",
  171. .read_u64 = tcp_cgroup_read,
  172. .private = RES_USAGE,
  173. },
  174. {
  175. .name = "kmem.tcp.failcnt",
  176. .private = RES_FAILCNT,
  177. .trigger = tcp_cgroup_reset,
  178. .read_u64 = tcp_cgroup_read,
  179. },
  180. {
  181. .name = "kmem.tcp.max_usage_in_bytes",
  182. .private = RES_MAX_USAGE,
  183. .trigger = tcp_cgroup_reset,
  184. .read_u64 = tcp_cgroup_read,
  185. },
  186. { } /* terminate */
  187. };
  188. static int __init tcp_memcontrol_init(void)
  189. {
  190. WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
  191. return 0;
  192. }
  193. __initcall(tcp_memcontrol_init);