ipmr.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  69. #define CONFIG_IP_PIMSM 1
  70. #endif
  71. struct mr_table {
  72. struct list_head list;
  73. #ifdef CONFIG_NET_NS
  74. struct net *net;
  75. #endif
  76. u32 id;
  77. struct sock __rcu *mroute_sk;
  78. struct timer_list ipmr_expire_timer;
  79. struct list_head mfc_unres_queue;
  80. struct list_head mfc_cache_array[MFC_LINES];
  81. struct vif_device vif_table[MAXVIFS];
  82. int maxvif;
  83. atomic_t cache_resolve_queue_len;
  84. bool mroute_do_assert;
  85. bool mroute_do_pim;
  86. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  87. int mroute_reg_vif_num;
  88. #endif
  89. };
  90. struct ipmr_rule {
  91. struct fib_rule common;
  92. };
  93. struct ipmr_result {
  94. struct mr_table *mrt;
  95. };
  96. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  97. * Note that the changes are semaphored via rtnl_lock.
  98. */
  99. static DEFINE_RWLOCK(mrt_lock);
  100. /*
  101. * Multicast router control variables
  102. */
  103. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  104. /* Special spinlock for queue of unresolved entries */
  105. static DEFINE_SPINLOCK(mfc_unres_lock);
  106. /* We return to original Alan's scheme. Hash table of resolved
  107. * entries is changed only in process context and protected
  108. * with weak lock mrt_lock. Queue of unresolved entries is protected
  109. * with strong spinlock mfc_unres_lock.
  110. *
  111. * In this case data path is free of exclusive locks at all.
  112. */
  113. static struct kmem_cache *mrt_cachep __read_mostly;
  114. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  115. static void ipmr_free_table(struct mr_table *mrt);
  116. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  117. struct sk_buff *skb, struct mfc_cache *cache,
  118. int local);
  119. static int ipmr_cache_report(struct mr_table *mrt,
  120. struct sk_buff *pkt, vifi_t vifi, int assert);
  121. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  122. struct mfc_cache *c, struct rtmsg *rtm);
  123. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  124. int cmd);
  125. static void mroute_clean_tables(struct mr_table *mrt);
  126. static void ipmr_expire_process(unsigned long arg);
  127. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  128. #define ipmr_for_each_table(mrt, net) \
  129. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  130. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  131. {
  132. struct mr_table *mrt;
  133. ipmr_for_each_table(mrt, net) {
  134. if (mrt->id == id)
  135. return mrt;
  136. }
  137. return NULL;
  138. }
  139. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  140. struct mr_table **mrt)
  141. {
  142. struct ipmr_result res;
  143. struct fib_lookup_arg arg = { .result = &res, };
  144. int err;
  145. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  146. flowi4_to_flowi(flp4), 0, &arg);
  147. if (err < 0)
  148. return err;
  149. *mrt = res.mrt;
  150. return 0;
  151. }
  152. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  153. int flags, struct fib_lookup_arg *arg)
  154. {
  155. struct ipmr_result *res = arg->result;
  156. struct mr_table *mrt;
  157. switch (rule->action) {
  158. case FR_ACT_TO_TBL:
  159. break;
  160. case FR_ACT_UNREACHABLE:
  161. return -ENETUNREACH;
  162. case FR_ACT_PROHIBIT:
  163. return -EACCES;
  164. case FR_ACT_BLACKHOLE:
  165. default:
  166. return -EINVAL;
  167. }
  168. mrt = ipmr_get_table(rule->fr_net, rule->table);
  169. if (mrt == NULL)
  170. return -EAGAIN;
  171. res->mrt = mrt;
  172. return 0;
  173. }
  174. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  175. {
  176. return 1;
  177. }
  178. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  179. FRA_GENERIC_POLICY,
  180. };
  181. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  182. struct fib_rule_hdr *frh, struct nlattr **tb)
  183. {
  184. return 0;
  185. }
  186. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  187. struct nlattr **tb)
  188. {
  189. return 1;
  190. }
  191. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  192. struct fib_rule_hdr *frh)
  193. {
  194. frh->dst_len = 0;
  195. frh->src_len = 0;
  196. frh->tos = 0;
  197. return 0;
  198. }
  199. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  200. .family = RTNL_FAMILY_IPMR,
  201. .rule_size = sizeof(struct ipmr_rule),
  202. .addr_size = sizeof(u32),
  203. .action = ipmr_rule_action,
  204. .match = ipmr_rule_match,
  205. .configure = ipmr_rule_configure,
  206. .compare = ipmr_rule_compare,
  207. .default_pref = fib_default_rule_pref,
  208. .fill = ipmr_rule_fill,
  209. .nlgroup = RTNLGRP_IPV4_RULE,
  210. .policy = ipmr_rule_policy,
  211. .owner = THIS_MODULE,
  212. };
  213. static int __net_init ipmr_rules_init(struct net *net)
  214. {
  215. struct fib_rules_ops *ops;
  216. struct mr_table *mrt;
  217. int err;
  218. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  219. if (IS_ERR(ops))
  220. return PTR_ERR(ops);
  221. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  222. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  223. if (mrt == NULL) {
  224. err = -ENOMEM;
  225. goto err1;
  226. }
  227. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  228. if (err < 0)
  229. goto err2;
  230. net->ipv4.mr_rules_ops = ops;
  231. return 0;
  232. err2:
  233. kfree(mrt);
  234. err1:
  235. fib_rules_unregister(ops);
  236. return err;
  237. }
  238. static void __net_exit ipmr_rules_exit(struct net *net)
  239. {
  240. struct mr_table *mrt, *next;
  241. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  242. list_del(&mrt->list);
  243. ipmr_free_table(mrt);
  244. }
  245. fib_rules_unregister(net->ipv4.mr_rules_ops);
  246. }
  247. #else
  248. #define ipmr_for_each_table(mrt, net) \
  249. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  250. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  251. {
  252. return net->ipv4.mrt;
  253. }
  254. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  255. struct mr_table **mrt)
  256. {
  257. *mrt = net->ipv4.mrt;
  258. return 0;
  259. }
  260. static int __net_init ipmr_rules_init(struct net *net)
  261. {
  262. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  263. return net->ipv4.mrt ? 0 : -ENOMEM;
  264. }
  265. static void __net_exit ipmr_rules_exit(struct net *net)
  266. {
  267. ipmr_free_table(net->ipv4.mrt);
  268. }
  269. #endif
  270. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  271. {
  272. struct mr_table *mrt;
  273. unsigned int i;
  274. mrt = ipmr_get_table(net, id);
  275. if (mrt != NULL)
  276. return mrt;
  277. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  278. if (mrt == NULL)
  279. return NULL;
  280. write_pnet(&mrt->net, net);
  281. mrt->id = id;
  282. /* Forwarding cache */
  283. for (i = 0; i < MFC_LINES; i++)
  284. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  285. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  286. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  287. (unsigned long)mrt);
  288. #ifdef CONFIG_IP_PIMSM
  289. mrt->mroute_reg_vif_num = -1;
  290. #endif
  291. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  292. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  293. #endif
  294. return mrt;
  295. }
  296. static void ipmr_free_table(struct mr_table *mrt)
  297. {
  298. del_timer_sync(&mrt->ipmr_expire_timer);
  299. mroute_clean_tables(mrt);
  300. kfree(mrt);
  301. }
  302. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  303. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  304. {
  305. struct net *net = dev_net(dev);
  306. dev_close(dev);
  307. dev = __dev_get_by_name(net, "tunl0");
  308. if (dev) {
  309. const struct net_device_ops *ops = dev->netdev_ops;
  310. struct ifreq ifr;
  311. struct ip_tunnel_parm p;
  312. memset(&p, 0, sizeof(p));
  313. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  314. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  315. p.iph.version = 4;
  316. p.iph.ihl = 5;
  317. p.iph.protocol = IPPROTO_IPIP;
  318. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  319. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  320. if (ops->ndo_do_ioctl) {
  321. mm_segment_t oldfs = get_fs();
  322. set_fs(KERNEL_DS);
  323. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  324. set_fs(oldfs);
  325. }
  326. }
  327. }
  328. static
  329. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  330. {
  331. struct net_device *dev;
  332. dev = __dev_get_by_name(net, "tunl0");
  333. if (dev) {
  334. const struct net_device_ops *ops = dev->netdev_ops;
  335. int err;
  336. struct ifreq ifr;
  337. struct ip_tunnel_parm p;
  338. struct in_device *in_dev;
  339. memset(&p, 0, sizeof(p));
  340. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  341. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  342. p.iph.version = 4;
  343. p.iph.ihl = 5;
  344. p.iph.protocol = IPPROTO_IPIP;
  345. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  346. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  347. if (ops->ndo_do_ioctl) {
  348. mm_segment_t oldfs = get_fs();
  349. set_fs(KERNEL_DS);
  350. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  351. set_fs(oldfs);
  352. } else {
  353. err = -EOPNOTSUPP;
  354. }
  355. dev = NULL;
  356. if (err == 0 &&
  357. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  358. dev->flags |= IFF_MULTICAST;
  359. in_dev = __in_dev_get_rtnl(dev);
  360. if (in_dev == NULL)
  361. goto failure;
  362. ipv4_devconf_setall(in_dev);
  363. neigh_parms_data_state_setall(in_dev->arp_parms);
  364. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  365. if (dev_open(dev))
  366. goto failure;
  367. dev_hold(dev);
  368. }
  369. }
  370. return dev;
  371. failure:
  372. /* allow the register to be completed before unregistering. */
  373. rtnl_unlock();
  374. rtnl_lock();
  375. unregister_netdevice(dev);
  376. return NULL;
  377. }
  378. #ifdef CONFIG_IP_PIMSM
  379. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  380. {
  381. struct net *net = dev_net(dev);
  382. struct mr_table *mrt;
  383. struct flowi4 fl4 = {
  384. .flowi4_oif = dev->ifindex,
  385. .flowi4_iif = skb->skb_iif,
  386. .flowi4_mark = skb->mark,
  387. };
  388. int err;
  389. err = ipmr_fib_lookup(net, &fl4, &mrt);
  390. if (err < 0) {
  391. kfree_skb(skb);
  392. return err;
  393. }
  394. read_lock(&mrt_lock);
  395. dev->stats.tx_bytes += skb->len;
  396. dev->stats.tx_packets++;
  397. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  398. read_unlock(&mrt_lock);
  399. kfree_skb(skb);
  400. return NETDEV_TX_OK;
  401. }
  402. static const struct net_device_ops reg_vif_netdev_ops = {
  403. .ndo_start_xmit = reg_vif_xmit,
  404. };
  405. static void reg_vif_setup(struct net_device *dev)
  406. {
  407. dev->type = ARPHRD_PIMREG;
  408. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  409. dev->flags = IFF_NOARP;
  410. dev->netdev_ops = &reg_vif_netdev_ops,
  411. dev->destructor = free_netdev;
  412. dev->features |= NETIF_F_NETNS_LOCAL;
  413. }
  414. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  415. {
  416. struct net_device *dev;
  417. struct in_device *in_dev;
  418. char name[IFNAMSIZ];
  419. if (mrt->id == RT_TABLE_DEFAULT)
  420. sprintf(name, "pimreg");
  421. else
  422. sprintf(name, "pimreg%u", mrt->id);
  423. dev = alloc_netdev(0, name, reg_vif_setup);
  424. if (dev == NULL)
  425. return NULL;
  426. dev_net_set(dev, net);
  427. if (register_netdevice(dev)) {
  428. free_netdev(dev);
  429. return NULL;
  430. }
  431. dev->iflink = 0;
  432. rcu_read_lock();
  433. in_dev = __in_dev_get_rcu(dev);
  434. if (!in_dev) {
  435. rcu_read_unlock();
  436. goto failure;
  437. }
  438. ipv4_devconf_setall(in_dev);
  439. neigh_parms_data_state_setall(in_dev->arp_parms);
  440. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  441. rcu_read_unlock();
  442. if (dev_open(dev))
  443. goto failure;
  444. dev_hold(dev);
  445. return dev;
  446. failure:
  447. /* allow the register to be completed before unregistering. */
  448. rtnl_unlock();
  449. rtnl_lock();
  450. unregister_netdevice(dev);
  451. return NULL;
  452. }
  453. #endif
  454. /**
  455. * vif_delete - Delete a VIF entry
  456. * @notify: Set to 1, if the caller is a notifier_call
  457. */
  458. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  459. struct list_head *head)
  460. {
  461. struct vif_device *v;
  462. struct net_device *dev;
  463. struct in_device *in_dev;
  464. if (vifi < 0 || vifi >= mrt->maxvif)
  465. return -EADDRNOTAVAIL;
  466. v = &mrt->vif_table[vifi];
  467. write_lock_bh(&mrt_lock);
  468. dev = v->dev;
  469. v->dev = NULL;
  470. if (!dev) {
  471. write_unlock_bh(&mrt_lock);
  472. return -EADDRNOTAVAIL;
  473. }
  474. #ifdef CONFIG_IP_PIMSM
  475. if (vifi == mrt->mroute_reg_vif_num)
  476. mrt->mroute_reg_vif_num = -1;
  477. #endif
  478. if (vifi + 1 == mrt->maxvif) {
  479. int tmp;
  480. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  481. if (VIF_EXISTS(mrt, tmp))
  482. break;
  483. }
  484. mrt->maxvif = tmp+1;
  485. }
  486. write_unlock_bh(&mrt_lock);
  487. dev_set_allmulti(dev, -1);
  488. in_dev = __in_dev_get_rtnl(dev);
  489. if (in_dev) {
  490. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  491. inet_netconf_notify_devconf(dev_net(dev),
  492. NETCONFA_MC_FORWARDING,
  493. dev->ifindex, &in_dev->cnf);
  494. ip_rt_multicast_event(in_dev);
  495. }
  496. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  497. unregister_netdevice_queue(dev, head);
  498. dev_put(dev);
  499. return 0;
  500. }
  501. static void ipmr_cache_free_rcu(struct rcu_head *head)
  502. {
  503. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  504. kmem_cache_free(mrt_cachep, c);
  505. }
  506. static inline void ipmr_cache_free(struct mfc_cache *c)
  507. {
  508. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  509. }
  510. /* Destroy an unresolved cache entry, killing queued skbs
  511. * and reporting error to netlink readers.
  512. */
  513. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  514. {
  515. struct net *net = read_pnet(&mrt->net);
  516. struct sk_buff *skb;
  517. struct nlmsgerr *e;
  518. atomic_dec(&mrt->cache_resolve_queue_len);
  519. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  520. if (ip_hdr(skb)->version == 0) {
  521. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  522. nlh->nlmsg_type = NLMSG_ERROR;
  523. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  524. skb_trim(skb, nlh->nlmsg_len);
  525. e = nlmsg_data(nlh);
  526. e->error = -ETIMEDOUT;
  527. memset(&e->msg, 0, sizeof(e->msg));
  528. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  529. } else {
  530. kfree_skb(skb);
  531. }
  532. }
  533. ipmr_cache_free(c);
  534. }
  535. /* Timer process for the unresolved queue. */
  536. static void ipmr_expire_process(unsigned long arg)
  537. {
  538. struct mr_table *mrt = (struct mr_table *)arg;
  539. unsigned long now;
  540. unsigned long expires;
  541. struct mfc_cache *c, *next;
  542. if (!spin_trylock(&mfc_unres_lock)) {
  543. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  544. return;
  545. }
  546. if (list_empty(&mrt->mfc_unres_queue))
  547. goto out;
  548. now = jiffies;
  549. expires = 10*HZ;
  550. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  551. if (time_after(c->mfc_un.unres.expires, now)) {
  552. unsigned long interval = c->mfc_un.unres.expires - now;
  553. if (interval < expires)
  554. expires = interval;
  555. continue;
  556. }
  557. list_del(&c->list);
  558. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  559. ipmr_destroy_unres(mrt, c);
  560. }
  561. if (!list_empty(&mrt->mfc_unres_queue))
  562. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  563. out:
  564. spin_unlock(&mfc_unres_lock);
  565. }
  566. /* Fill oifs list. It is called under write locked mrt_lock. */
  567. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  568. unsigned char *ttls)
  569. {
  570. int vifi;
  571. cache->mfc_un.res.minvif = MAXVIFS;
  572. cache->mfc_un.res.maxvif = 0;
  573. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  574. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  575. if (VIF_EXISTS(mrt, vifi) &&
  576. ttls[vifi] && ttls[vifi] < 255) {
  577. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  578. if (cache->mfc_un.res.minvif > vifi)
  579. cache->mfc_un.res.minvif = vifi;
  580. if (cache->mfc_un.res.maxvif <= vifi)
  581. cache->mfc_un.res.maxvif = vifi + 1;
  582. }
  583. }
  584. }
  585. static int vif_add(struct net *net, struct mr_table *mrt,
  586. struct vifctl *vifc, int mrtsock)
  587. {
  588. int vifi = vifc->vifc_vifi;
  589. struct vif_device *v = &mrt->vif_table[vifi];
  590. struct net_device *dev;
  591. struct in_device *in_dev;
  592. int err;
  593. /* Is vif busy ? */
  594. if (VIF_EXISTS(mrt, vifi))
  595. return -EADDRINUSE;
  596. switch (vifc->vifc_flags) {
  597. #ifdef CONFIG_IP_PIMSM
  598. case VIFF_REGISTER:
  599. /*
  600. * Special Purpose VIF in PIM
  601. * All the packets will be sent to the daemon
  602. */
  603. if (mrt->mroute_reg_vif_num >= 0)
  604. return -EADDRINUSE;
  605. dev = ipmr_reg_vif(net, mrt);
  606. if (!dev)
  607. return -ENOBUFS;
  608. err = dev_set_allmulti(dev, 1);
  609. if (err) {
  610. unregister_netdevice(dev);
  611. dev_put(dev);
  612. return err;
  613. }
  614. break;
  615. #endif
  616. case VIFF_TUNNEL:
  617. dev = ipmr_new_tunnel(net, vifc);
  618. if (!dev)
  619. return -ENOBUFS;
  620. err = dev_set_allmulti(dev, 1);
  621. if (err) {
  622. ipmr_del_tunnel(dev, vifc);
  623. dev_put(dev);
  624. return err;
  625. }
  626. break;
  627. case VIFF_USE_IFINDEX:
  628. case 0:
  629. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  630. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  631. if (dev && __in_dev_get_rtnl(dev) == NULL) {
  632. dev_put(dev);
  633. return -EADDRNOTAVAIL;
  634. }
  635. } else {
  636. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  637. }
  638. if (!dev)
  639. return -EADDRNOTAVAIL;
  640. err = dev_set_allmulti(dev, 1);
  641. if (err) {
  642. dev_put(dev);
  643. return err;
  644. }
  645. break;
  646. default:
  647. return -EINVAL;
  648. }
  649. in_dev = __in_dev_get_rtnl(dev);
  650. if (!in_dev) {
  651. dev_put(dev);
  652. return -EADDRNOTAVAIL;
  653. }
  654. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  655. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
  656. &in_dev->cnf);
  657. ip_rt_multicast_event(in_dev);
  658. /* Fill in the VIF structures */
  659. v->rate_limit = vifc->vifc_rate_limit;
  660. v->local = vifc->vifc_lcl_addr.s_addr;
  661. v->remote = vifc->vifc_rmt_addr.s_addr;
  662. v->flags = vifc->vifc_flags;
  663. if (!mrtsock)
  664. v->flags |= VIFF_STATIC;
  665. v->threshold = vifc->vifc_threshold;
  666. v->bytes_in = 0;
  667. v->bytes_out = 0;
  668. v->pkt_in = 0;
  669. v->pkt_out = 0;
  670. v->link = dev->ifindex;
  671. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  672. v->link = dev->iflink;
  673. /* And finish update writing critical data */
  674. write_lock_bh(&mrt_lock);
  675. v->dev = dev;
  676. #ifdef CONFIG_IP_PIMSM
  677. if (v->flags & VIFF_REGISTER)
  678. mrt->mroute_reg_vif_num = vifi;
  679. #endif
  680. if (vifi+1 > mrt->maxvif)
  681. mrt->maxvif = vifi+1;
  682. write_unlock_bh(&mrt_lock);
  683. return 0;
  684. }
  685. /* called with rcu_read_lock() */
  686. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  687. __be32 origin,
  688. __be32 mcastgrp)
  689. {
  690. int line = MFC_HASH(mcastgrp, origin);
  691. struct mfc_cache *c;
  692. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  693. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  694. return c;
  695. }
  696. return NULL;
  697. }
  698. /* Look for a (*,*,oif) entry */
  699. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  700. int vifi)
  701. {
  702. int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
  703. struct mfc_cache *c;
  704. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  705. if (c->mfc_origin == htonl(INADDR_ANY) &&
  706. c->mfc_mcastgrp == htonl(INADDR_ANY) &&
  707. c->mfc_un.res.ttls[vifi] < 255)
  708. return c;
  709. return NULL;
  710. }
  711. /* Look for a (*,G) entry */
  712. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  713. __be32 mcastgrp, int vifi)
  714. {
  715. int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
  716. struct mfc_cache *c, *proxy;
  717. if (mcastgrp == htonl(INADDR_ANY))
  718. goto skip;
  719. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  720. if (c->mfc_origin == htonl(INADDR_ANY) &&
  721. c->mfc_mcastgrp == mcastgrp) {
  722. if (c->mfc_un.res.ttls[vifi] < 255)
  723. return c;
  724. /* It's ok if the vifi is part of the static tree */
  725. proxy = ipmr_cache_find_any_parent(mrt,
  726. c->mfc_parent);
  727. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  728. return c;
  729. }
  730. skip:
  731. return ipmr_cache_find_any_parent(mrt, vifi);
  732. }
  733. /*
  734. * Allocate a multicast cache entry
  735. */
  736. static struct mfc_cache *ipmr_cache_alloc(void)
  737. {
  738. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  739. if (c)
  740. c->mfc_un.res.minvif = MAXVIFS;
  741. return c;
  742. }
  743. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  744. {
  745. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  746. if (c) {
  747. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  748. c->mfc_un.unres.expires = jiffies + 10*HZ;
  749. }
  750. return c;
  751. }
  752. /*
  753. * A cache entry has gone into a resolved state from queued
  754. */
  755. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  756. struct mfc_cache *uc, struct mfc_cache *c)
  757. {
  758. struct sk_buff *skb;
  759. struct nlmsgerr *e;
  760. /* Play the pending entries through our router */
  761. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  762. if (ip_hdr(skb)->version == 0) {
  763. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  764. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  765. nlh->nlmsg_len = skb_tail_pointer(skb) -
  766. (u8 *)nlh;
  767. } else {
  768. nlh->nlmsg_type = NLMSG_ERROR;
  769. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  770. skb_trim(skb, nlh->nlmsg_len);
  771. e = nlmsg_data(nlh);
  772. e->error = -EMSGSIZE;
  773. memset(&e->msg, 0, sizeof(e->msg));
  774. }
  775. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  776. } else {
  777. ip_mr_forward(net, mrt, skb, c, 0);
  778. }
  779. }
  780. }
  781. /*
  782. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  783. * expects the following bizarre scheme.
  784. *
  785. * Called under mrt_lock.
  786. */
  787. static int ipmr_cache_report(struct mr_table *mrt,
  788. struct sk_buff *pkt, vifi_t vifi, int assert)
  789. {
  790. struct sk_buff *skb;
  791. const int ihl = ip_hdrlen(pkt);
  792. struct igmphdr *igmp;
  793. struct igmpmsg *msg;
  794. struct sock *mroute_sk;
  795. int ret;
  796. #ifdef CONFIG_IP_PIMSM
  797. if (assert == IGMPMSG_WHOLEPKT)
  798. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  799. else
  800. #endif
  801. skb = alloc_skb(128, GFP_ATOMIC);
  802. if (!skb)
  803. return -ENOBUFS;
  804. #ifdef CONFIG_IP_PIMSM
  805. if (assert == IGMPMSG_WHOLEPKT) {
  806. /* Ugly, but we have no choice with this interface.
  807. * Duplicate old header, fix ihl, length etc.
  808. * And all this only to mangle msg->im_msgtype and
  809. * to set msg->im_mbz to "mbz" :-)
  810. */
  811. skb_push(skb, sizeof(struct iphdr));
  812. skb_reset_network_header(skb);
  813. skb_reset_transport_header(skb);
  814. msg = (struct igmpmsg *)skb_network_header(skb);
  815. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  816. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  817. msg->im_mbz = 0;
  818. msg->im_vif = mrt->mroute_reg_vif_num;
  819. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  820. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  821. sizeof(struct iphdr));
  822. } else
  823. #endif
  824. {
  825. /* Copy the IP header */
  826. skb_set_network_header(skb, skb->len);
  827. skb_put(skb, ihl);
  828. skb_copy_to_linear_data(skb, pkt->data, ihl);
  829. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  830. msg = (struct igmpmsg *)skb_network_header(skb);
  831. msg->im_vif = vifi;
  832. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  833. /* Add our header */
  834. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  835. igmp->type =
  836. msg->im_msgtype = assert;
  837. igmp->code = 0;
  838. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  839. skb->transport_header = skb->network_header;
  840. }
  841. rcu_read_lock();
  842. mroute_sk = rcu_dereference(mrt->mroute_sk);
  843. if (mroute_sk == NULL) {
  844. rcu_read_unlock();
  845. kfree_skb(skb);
  846. return -EINVAL;
  847. }
  848. /* Deliver to mrouted */
  849. ret = sock_queue_rcv_skb(mroute_sk, skb);
  850. rcu_read_unlock();
  851. if (ret < 0) {
  852. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  853. kfree_skb(skb);
  854. }
  855. return ret;
  856. }
  857. /*
  858. * Queue a packet for resolution. It gets locked cache entry!
  859. */
  860. static int
  861. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  862. {
  863. bool found = false;
  864. int err;
  865. struct mfc_cache *c;
  866. const struct iphdr *iph = ip_hdr(skb);
  867. spin_lock_bh(&mfc_unres_lock);
  868. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  869. if (c->mfc_mcastgrp == iph->daddr &&
  870. c->mfc_origin == iph->saddr) {
  871. found = true;
  872. break;
  873. }
  874. }
  875. if (!found) {
  876. /* Create a new entry if allowable */
  877. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  878. (c = ipmr_cache_alloc_unres()) == NULL) {
  879. spin_unlock_bh(&mfc_unres_lock);
  880. kfree_skb(skb);
  881. return -ENOBUFS;
  882. }
  883. /* Fill in the new cache entry */
  884. c->mfc_parent = -1;
  885. c->mfc_origin = iph->saddr;
  886. c->mfc_mcastgrp = iph->daddr;
  887. /* Reflect first query at mrouted. */
  888. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  889. if (err < 0) {
  890. /* If the report failed throw the cache entry
  891. out - Brad Parker
  892. */
  893. spin_unlock_bh(&mfc_unres_lock);
  894. ipmr_cache_free(c);
  895. kfree_skb(skb);
  896. return err;
  897. }
  898. atomic_inc(&mrt->cache_resolve_queue_len);
  899. list_add(&c->list, &mrt->mfc_unres_queue);
  900. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  901. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  902. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  903. }
  904. /* See if we can append the packet */
  905. if (c->mfc_un.unres.unresolved.qlen > 3) {
  906. kfree_skb(skb);
  907. err = -ENOBUFS;
  908. } else {
  909. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  910. err = 0;
  911. }
  912. spin_unlock_bh(&mfc_unres_lock);
  913. return err;
  914. }
  915. /*
  916. * MFC cache manipulation by user space mroute daemon
  917. */
  918. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  919. {
  920. int line;
  921. struct mfc_cache *c, *next;
  922. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  923. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  924. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  925. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  926. (parent == -1 || parent == c->mfc_parent)) {
  927. list_del_rcu(&c->list);
  928. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  929. ipmr_cache_free(c);
  930. return 0;
  931. }
  932. }
  933. return -ENOENT;
  934. }
  935. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  936. struct mfcctl *mfc, int mrtsock, int parent)
  937. {
  938. bool found = false;
  939. int line;
  940. struct mfc_cache *uc, *c;
  941. if (mfc->mfcc_parent >= MAXVIFS)
  942. return -ENFILE;
  943. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  944. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  945. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  946. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  947. (parent == -1 || parent == c->mfc_parent)) {
  948. found = true;
  949. break;
  950. }
  951. }
  952. if (found) {
  953. write_lock_bh(&mrt_lock);
  954. c->mfc_parent = mfc->mfcc_parent;
  955. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  956. if (!mrtsock)
  957. c->mfc_flags |= MFC_STATIC;
  958. write_unlock_bh(&mrt_lock);
  959. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  960. return 0;
  961. }
  962. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  963. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  964. return -EINVAL;
  965. c = ipmr_cache_alloc();
  966. if (c == NULL)
  967. return -ENOMEM;
  968. c->mfc_origin = mfc->mfcc_origin.s_addr;
  969. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  970. c->mfc_parent = mfc->mfcc_parent;
  971. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  972. if (!mrtsock)
  973. c->mfc_flags |= MFC_STATIC;
  974. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  975. /*
  976. * Check to see if we resolved a queued list. If so we
  977. * need to send on the frames and tidy up.
  978. */
  979. found = false;
  980. spin_lock_bh(&mfc_unres_lock);
  981. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  982. if (uc->mfc_origin == c->mfc_origin &&
  983. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  984. list_del(&uc->list);
  985. atomic_dec(&mrt->cache_resolve_queue_len);
  986. found = true;
  987. break;
  988. }
  989. }
  990. if (list_empty(&mrt->mfc_unres_queue))
  991. del_timer(&mrt->ipmr_expire_timer);
  992. spin_unlock_bh(&mfc_unres_lock);
  993. if (found) {
  994. ipmr_cache_resolve(net, mrt, uc, c);
  995. ipmr_cache_free(uc);
  996. }
  997. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  998. return 0;
  999. }
  1000. /*
  1001. * Close the multicast socket, and clear the vif tables etc
  1002. */
  1003. static void mroute_clean_tables(struct mr_table *mrt)
  1004. {
  1005. int i;
  1006. LIST_HEAD(list);
  1007. struct mfc_cache *c, *next;
  1008. /* Shut down all active vif entries */
  1009. for (i = 0; i < mrt->maxvif; i++) {
  1010. if (!(mrt->vif_table[i].flags & VIFF_STATIC))
  1011. vif_delete(mrt, i, 0, &list);
  1012. }
  1013. unregister_netdevice_many(&list);
  1014. /* Wipe the cache */
  1015. for (i = 0; i < MFC_LINES; i++) {
  1016. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  1017. if (c->mfc_flags & MFC_STATIC)
  1018. continue;
  1019. list_del_rcu(&c->list);
  1020. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1021. ipmr_cache_free(c);
  1022. }
  1023. }
  1024. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1025. spin_lock_bh(&mfc_unres_lock);
  1026. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  1027. list_del(&c->list);
  1028. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1029. ipmr_destroy_unres(mrt, c);
  1030. }
  1031. spin_unlock_bh(&mfc_unres_lock);
  1032. }
  1033. }
  1034. /* called from ip_ra_control(), before an RCU grace period,
  1035. * we dont need to call synchronize_rcu() here
  1036. */
  1037. static void mrtsock_destruct(struct sock *sk)
  1038. {
  1039. struct net *net = sock_net(sk);
  1040. struct mr_table *mrt;
  1041. rtnl_lock();
  1042. ipmr_for_each_table(mrt, net) {
  1043. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1044. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1045. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1046. NETCONFA_IFINDEX_ALL,
  1047. net->ipv4.devconf_all);
  1048. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1049. mroute_clean_tables(mrt);
  1050. }
  1051. }
  1052. rtnl_unlock();
  1053. }
  1054. /*
  1055. * Socket options and virtual interface manipulation. The whole
  1056. * virtual interface system is a complete heap, but unfortunately
  1057. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1058. * MOSPF/PIM router set up we can clean this up.
  1059. */
  1060. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  1061. {
  1062. int ret, parent = 0;
  1063. struct vifctl vif;
  1064. struct mfcctl mfc;
  1065. struct net *net = sock_net(sk);
  1066. struct mr_table *mrt;
  1067. if (sk->sk_type != SOCK_RAW ||
  1068. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1069. return -EOPNOTSUPP;
  1070. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1071. if (mrt == NULL)
  1072. return -ENOENT;
  1073. if (optname != MRT_INIT) {
  1074. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1075. !ns_capable(net->user_ns, CAP_NET_ADMIN))
  1076. return -EACCES;
  1077. }
  1078. switch (optname) {
  1079. case MRT_INIT:
  1080. if (optlen != sizeof(int))
  1081. return -EINVAL;
  1082. rtnl_lock();
  1083. if (rtnl_dereference(mrt->mroute_sk)) {
  1084. rtnl_unlock();
  1085. return -EADDRINUSE;
  1086. }
  1087. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1088. if (ret == 0) {
  1089. rcu_assign_pointer(mrt->mroute_sk, sk);
  1090. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1091. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1092. NETCONFA_IFINDEX_ALL,
  1093. net->ipv4.devconf_all);
  1094. }
  1095. rtnl_unlock();
  1096. return ret;
  1097. case MRT_DONE:
  1098. if (sk != rcu_access_pointer(mrt->mroute_sk))
  1099. return -EACCES;
  1100. return ip_ra_control(sk, 0, NULL);
  1101. case MRT_ADD_VIF:
  1102. case MRT_DEL_VIF:
  1103. if (optlen != sizeof(vif))
  1104. return -EINVAL;
  1105. if (copy_from_user(&vif, optval, sizeof(vif)))
  1106. return -EFAULT;
  1107. if (vif.vifc_vifi >= MAXVIFS)
  1108. return -ENFILE;
  1109. rtnl_lock();
  1110. if (optname == MRT_ADD_VIF) {
  1111. ret = vif_add(net, mrt, &vif,
  1112. sk == rtnl_dereference(mrt->mroute_sk));
  1113. } else {
  1114. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1115. }
  1116. rtnl_unlock();
  1117. return ret;
  1118. /*
  1119. * Manipulate the forwarding caches. These live
  1120. * in a sort of kernel/user symbiosis.
  1121. */
  1122. case MRT_ADD_MFC:
  1123. case MRT_DEL_MFC:
  1124. parent = -1;
  1125. case MRT_ADD_MFC_PROXY:
  1126. case MRT_DEL_MFC_PROXY:
  1127. if (optlen != sizeof(mfc))
  1128. return -EINVAL;
  1129. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1130. return -EFAULT;
  1131. if (parent == 0)
  1132. parent = mfc.mfcc_parent;
  1133. rtnl_lock();
  1134. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1135. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1136. else
  1137. ret = ipmr_mfc_add(net, mrt, &mfc,
  1138. sk == rtnl_dereference(mrt->mroute_sk),
  1139. parent);
  1140. rtnl_unlock();
  1141. return ret;
  1142. /*
  1143. * Control PIM assert.
  1144. */
  1145. case MRT_ASSERT:
  1146. {
  1147. int v;
  1148. if (optlen != sizeof(v))
  1149. return -EINVAL;
  1150. if (get_user(v, (int __user *)optval))
  1151. return -EFAULT;
  1152. mrt->mroute_do_assert = v;
  1153. return 0;
  1154. }
  1155. #ifdef CONFIG_IP_PIMSM
  1156. case MRT_PIM:
  1157. {
  1158. int v;
  1159. if (optlen != sizeof(v))
  1160. return -EINVAL;
  1161. if (get_user(v, (int __user *)optval))
  1162. return -EFAULT;
  1163. v = !!v;
  1164. rtnl_lock();
  1165. ret = 0;
  1166. if (v != mrt->mroute_do_pim) {
  1167. mrt->mroute_do_pim = v;
  1168. mrt->mroute_do_assert = v;
  1169. }
  1170. rtnl_unlock();
  1171. return ret;
  1172. }
  1173. #endif
  1174. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1175. case MRT_TABLE:
  1176. {
  1177. u32 v;
  1178. if (optlen != sizeof(u32))
  1179. return -EINVAL;
  1180. if (get_user(v, (u32 __user *)optval))
  1181. return -EFAULT;
  1182. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  1183. if (v != RT_TABLE_DEFAULT && v >= 1000000000)
  1184. return -EINVAL;
  1185. rtnl_lock();
  1186. ret = 0;
  1187. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1188. ret = -EBUSY;
  1189. } else {
  1190. if (!ipmr_new_table(net, v))
  1191. ret = -ENOMEM;
  1192. else
  1193. raw_sk(sk)->ipmr_table = v;
  1194. }
  1195. rtnl_unlock();
  1196. return ret;
  1197. }
  1198. #endif
  1199. /*
  1200. * Spurious command, or MRT_VERSION which you cannot
  1201. * set.
  1202. */
  1203. default:
  1204. return -ENOPROTOOPT;
  1205. }
  1206. }
  1207. /*
  1208. * Getsock opt support for the multicast routing system.
  1209. */
  1210. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1211. {
  1212. int olr;
  1213. int val;
  1214. struct net *net = sock_net(sk);
  1215. struct mr_table *mrt;
  1216. if (sk->sk_type != SOCK_RAW ||
  1217. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1218. return -EOPNOTSUPP;
  1219. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1220. if (mrt == NULL)
  1221. return -ENOENT;
  1222. if (optname != MRT_VERSION &&
  1223. #ifdef CONFIG_IP_PIMSM
  1224. optname != MRT_PIM &&
  1225. #endif
  1226. optname != MRT_ASSERT)
  1227. return -ENOPROTOOPT;
  1228. if (get_user(olr, optlen))
  1229. return -EFAULT;
  1230. olr = min_t(unsigned int, olr, sizeof(int));
  1231. if (olr < 0)
  1232. return -EINVAL;
  1233. if (put_user(olr, optlen))
  1234. return -EFAULT;
  1235. if (optname == MRT_VERSION)
  1236. val = 0x0305;
  1237. #ifdef CONFIG_IP_PIMSM
  1238. else if (optname == MRT_PIM)
  1239. val = mrt->mroute_do_pim;
  1240. #endif
  1241. else
  1242. val = mrt->mroute_do_assert;
  1243. if (copy_to_user(optval, &val, olr))
  1244. return -EFAULT;
  1245. return 0;
  1246. }
  1247. /*
  1248. * The IP multicast ioctl support routines.
  1249. */
  1250. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1251. {
  1252. struct sioc_sg_req sr;
  1253. struct sioc_vif_req vr;
  1254. struct vif_device *vif;
  1255. struct mfc_cache *c;
  1256. struct net *net = sock_net(sk);
  1257. struct mr_table *mrt;
  1258. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1259. if (mrt == NULL)
  1260. return -ENOENT;
  1261. switch (cmd) {
  1262. case SIOCGETVIFCNT:
  1263. if (copy_from_user(&vr, arg, sizeof(vr)))
  1264. return -EFAULT;
  1265. if (vr.vifi >= mrt->maxvif)
  1266. return -EINVAL;
  1267. read_lock(&mrt_lock);
  1268. vif = &mrt->vif_table[vr.vifi];
  1269. if (VIF_EXISTS(mrt, vr.vifi)) {
  1270. vr.icount = vif->pkt_in;
  1271. vr.ocount = vif->pkt_out;
  1272. vr.ibytes = vif->bytes_in;
  1273. vr.obytes = vif->bytes_out;
  1274. read_unlock(&mrt_lock);
  1275. if (copy_to_user(arg, &vr, sizeof(vr)))
  1276. return -EFAULT;
  1277. return 0;
  1278. }
  1279. read_unlock(&mrt_lock);
  1280. return -EADDRNOTAVAIL;
  1281. case SIOCGETSGCNT:
  1282. if (copy_from_user(&sr, arg, sizeof(sr)))
  1283. return -EFAULT;
  1284. rcu_read_lock();
  1285. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1286. if (c) {
  1287. sr.pktcnt = c->mfc_un.res.pkt;
  1288. sr.bytecnt = c->mfc_un.res.bytes;
  1289. sr.wrong_if = c->mfc_un.res.wrong_if;
  1290. rcu_read_unlock();
  1291. if (copy_to_user(arg, &sr, sizeof(sr)))
  1292. return -EFAULT;
  1293. return 0;
  1294. }
  1295. rcu_read_unlock();
  1296. return -EADDRNOTAVAIL;
  1297. default:
  1298. return -ENOIOCTLCMD;
  1299. }
  1300. }
  1301. #ifdef CONFIG_COMPAT
  1302. struct compat_sioc_sg_req {
  1303. struct in_addr src;
  1304. struct in_addr grp;
  1305. compat_ulong_t pktcnt;
  1306. compat_ulong_t bytecnt;
  1307. compat_ulong_t wrong_if;
  1308. };
  1309. struct compat_sioc_vif_req {
  1310. vifi_t vifi; /* Which iface */
  1311. compat_ulong_t icount;
  1312. compat_ulong_t ocount;
  1313. compat_ulong_t ibytes;
  1314. compat_ulong_t obytes;
  1315. };
  1316. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1317. {
  1318. struct compat_sioc_sg_req sr;
  1319. struct compat_sioc_vif_req vr;
  1320. struct vif_device *vif;
  1321. struct mfc_cache *c;
  1322. struct net *net = sock_net(sk);
  1323. struct mr_table *mrt;
  1324. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1325. if (mrt == NULL)
  1326. return -ENOENT;
  1327. switch (cmd) {
  1328. case SIOCGETVIFCNT:
  1329. if (copy_from_user(&vr, arg, sizeof(vr)))
  1330. return -EFAULT;
  1331. if (vr.vifi >= mrt->maxvif)
  1332. return -EINVAL;
  1333. read_lock(&mrt_lock);
  1334. vif = &mrt->vif_table[vr.vifi];
  1335. if (VIF_EXISTS(mrt, vr.vifi)) {
  1336. vr.icount = vif->pkt_in;
  1337. vr.ocount = vif->pkt_out;
  1338. vr.ibytes = vif->bytes_in;
  1339. vr.obytes = vif->bytes_out;
  1340. read_unlock(&mrt_lock);
  1341. if (copy_to_user(arg, &vr, sizeof(vr)))
  1342. return -EFAULT;
  1343. return 0;
  1344. }
  1345. read_unlock(&mrt_lock);
  1346. return -EADDRNOTAVAIL;
  1347. case SIOCGETSGCNT:
  1348. if (copy_from_user(&sr, arg, sizeof(sr)))
  1349. return -EFAULT;
  1350. rcu_read_lock();
  1351. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1352. if (c) {
  1353. sr.pktcnt = c->mfc_un.res.pkt;
  1354. sr.bytecnt = c->mfc_un.res.bytes;
  1355. sr.wrong_if = c->mfc_un.res.wrong_if;
  1356. rcu_read_unlock();
  1357. if (copy_to_user(arg, &sr, sizeof(sr)))
  1358. return -EFAULT;
  1359. return 0;
  1360. }
  1361. rcu_read_unlock();
  1362. return -EADDRNOTAVAIL;
  1363. default:
  1364. return -ENOIOCTLCMD;
  1365. }
  1366. }
  1367. #endif
  1368. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1369. {
  1370. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1371. struct net *net = dev_net(dev);
  1372. struct mr_table *mrt;
  1373. struct vif_device *v;
  1374. int ct;
  1375. if (event != NETDEV_UNREGISTER)
  1376. return NOTIFY_DONE;
  1377. ipmr_for_each_table(mrt, net) {
  1378. v = &mrt->vif_table[0];
  1379. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1380. if (v->dev == dev)
  1381. vif_delete(mrt, ct, 1, NULL);
  1382. }
  1383. }
  1384. return NOTIFY_DONE;
  1385. }
  1386. static struct notifier_block ip_mr_notifier = {
  1387. .notifier_call = ipmr_device_event,
  1388. };
  1389. /*
  1390. * Encapsulate a packet by attaching a valid IPIP header to it.
  1391. * This avoids tunnel drivers and other mess and gives us the speed so
  1392. * important for multicast video.
  1393. */
  1394. static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
  1395. {
  1396. struct iphdr *iph;
  1397. const struct iphdr *old_iph = ip_hdr(skb);
  1398. skb_push(skb, sizeof(struct iphdr));
  1399. skb->transport_header = skb->network_header;
  1400. skb_reset_network_header(skb);
  1401. iph = ip_hdr(skb);
  1402. iph->version = 4;
  1403. iph->tos = old_iph->tos;
  1404. iph->ttl = old_iph->ttl;
  1405. iph->frag_off = 0;
  1406. iph->daddr = daddr;
  1407. iph->saddr = saddr;
  1408. iph->protocol = IPPROTO_IPIP;
  1409. iph->ihl = 5;
  1410. iph->tot_len = htons(skb->len);
  1411. ip_select_ident(skb, skb_dst(skb), NULL);
  1412. ip_send_check(iph);
  1413. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1414. nf_reset(skb);
  1415. }
  1416. static inline int ipmr_forward_finish(struct sk_buff *skb)
  1417. {
  1418. struct ip_options *opt = &(IPCB(skb)->opt);
  1419. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1420. IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
  1421. if (unlikely(opt->optlen))
  1422. ip_forward_options(skb);
  1423. return dst_output(skb);
  1424. }
  1425. /*
  1426. * Processing handlers for ipmr_forward
  1427. */
  1428. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1429. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1430. {
  1431. const struct iphdr *iph = ip_hdr(skb);
  1432. struct vif_device *vif = &mrt->vif_table[vifi];
  1433. struct net_device *dev;
  1434. struct rtable *rt;
  1435. struct flowi4 fl4;
  1436. int encap = 0;
  1437. if (vif->dev == NULL)
  1438. goto out_free;
  1439. #ifdef CONFIG_IP_PIMSM
  1440. if (vif->flags & VIFF_REGISTER) {
  1441. vif->pkt_out++;
  1442. vif->bytes_out += skb->len;
  1443. vif->dev->stats.tx_bytes += skb->len;
  1444. vif->dev->stats.tx_packets++;
  1445. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1446. goto out_free;
  1447. }
  1448. #endif
  1449. if (vif->flags & VIFF_TUNNEL) {
  1450. rt = ip_route_output_ports(net, &fl4, NULL,
  1451. vif->remote, vif->local,
  1452. 0, 0,
  1453. IPPROTO_IPIP,
  1454. RT_TOS(iph->tos), vif->link);
  1455. if (IS_ERR(rt))
  1456. goto out_free;
  1457. encap = sizeof(struct iphdr);
  1458. } else {
  1459. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1460. 0, 0,
  1461. IPPROTO_IPIP,
  1462. RT_TOS(iph->tos), vif->link);
  1463. if (IS_ERR(rt))
  1464. goto out_free;
  1465. }
  1466. dev = rt->dst.dev;
  1467. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1468. /* Do not fragment multicasts. Alas, IPv4 does not
  1469. * allow to send ICMP, so that packets will disappear
  1470. * to blackhole.
  1471. */
  1472. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1473. ip_rt_put(rt);
  1474. goto out_free;
  1475. }
  1476. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1477. if (skb_cow(skb, encap)) {
  1478. ip_rt_put(rt);
  1479. goto out_free;
  1480. }
  1481. vif->pkt_out++;
  1482. vif->bytes_out += skb->len;
  1483. skb_dst_drop(skb);
  1484. skb_dst_set(skb, &rt->dst);
  1485. ip_decrease_ttl(ip_hdr(skb));
  1486. /* FIXME: forward and output firewalls used to be called here.
  1487. * What do we do with netfilter? -- RR
  1488. */
  1489. if (vif->flags & VIFF_TUNNEL) {
  1490. ip_encap(skb, vif->local, vif->remote);
  1491. /* FIXME: extra output firewall step used to be here. --RR */
  1492. vif->dev->stats.tx_packets++;
  1493. vif->dev->stats.tx_bytes += skb->len;
  1494. }
  1495. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1496. /*
  1497. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1498. * not only before forwarding, but after forwarding on all output
  1499. * interfaces. It is clear, if mrouter runs a multicasting
  1500. * program, it should receive packets not depending to what interface
  1501. * program is joined.
  1502. * If we will not make it, the program will have to join on all
  1503. * interfaces. On the other hand, multihoming host (or router, but
  1504. * not mrouter) cannot join to more than one interface - it will
  1505. * result in receiving multiple packets.
  1506. */
  1507. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
  1508. ipmr_forward_finish);
  1509. return;
  1510. out_free:
  1511. kfree_skb(skb);
  1512. }
  1513. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1514. {
  1515. int ct;
  1516. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1517. if (mrt->vif_table[ct].dev == dev)
  1518. break;
  1519. }
  1520. return ct;
  1521. }
  1522. /* "local" means that we should preserve one skb (for local delivery) */
  1523. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1524. struct sk_buff *skb, struct mfc_cache *cache,
  1525. int local)
  1526. {
  1527. int psend = -1;
  1528. int vif, ct;
  1529. int true_vifi = ipmr_find_vif(mrt, skb->dev);
  1530. vif = cache->mfc_parent;
  1531. cache->mfc_un.res.pkt++;
  1532. cache->mfc_un.res.bytes += skb->len;
  1533. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1534. struct mfc_cache *cache_proxy;
  1535. /* For an (*,G) entry, we only check that the incomming
  1536. * interface is part of the static tree.
  1537. */
  1538. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1539. if (cache_proxy &&
  1540. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1541. goto forward;
  1542. }
  1543. /*
  1544. * Wrong interface: drop packet and (maybe) send PIM assert.
  1545. */
  1546. if (mrt->vif_table[vif].dev != skb->dev) {
  1547. if (rt_is_output_route(skb_rtable(skb))) {
  1548. /* It is our own packet, looped back.
  1549. * Very complicated situation...
  1550. *
  1551. * The best workaround until routing daemons will be
  1552. * fixed is not to redistribute packet, if it was
  1553. * send through wrong interface. It means, that
  1554. * multicast applications WILL NOT work for
  1555. * (S,G), which have default multicast route pointing
  1556. * to wrong oif. In any case, it is not a good
  1557. * idea to use multicasting applications on router.
  1558. */
  1559. goto dont_forward;
  1560. }
  1561. cache->mfc_un.res.wrong_if++;
  1562. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1563. /* pimsm uses asserts, when switching from RPT to SPT,
  1564. * so that we cannot check that packet arrived on an oif.
  1565. * It is bad, but otherwise we would need to move pretty
  1566. * large chunk of pimd to kernel. Ough... --ANK
  1567. */
  1568. (mrt->mroute_do_pim ||
  1569. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1570. time_after(jiffies,
  1571. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1572. cache->mfc_un.res.last_assert = jiffies;
  1573. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1574. }
  1575. goto dont_forward;
  1576. }
  1577. forward:
  1578. mrt->vif_table[vif].pkt_in++;
  1579. mrt->vif_table[vif].bytes_in += skb->len;
  1580. /*
  1581. * Forward the frame
  1582. */
  1583. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1584. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1585. if (true_vifi >= 0 &&
  1586. true_vifi != cache->mfc_parent &&
  1587. ip_hdr(skb)->ttl >
  1588. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1589. /* It's an (*,*) entry and the packet is not coming from
  1590. * the upstream: forward the packet to the upstream
  1591. * only.
  1592. */
  1593. psend = cache->mfc_parent;
  1594. goto last_forward;
  1595. }
  1596. goto dont_forward;
  1597. }
  1598. for (ct = cache->mfc_un.res.maxvif - 1;
  1599. ct >= cache->mfc_un.res.minvif; ct--) {
  1600. /* For (*,G) entry, don't forward to the incoming interface */
  1601. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1602. ct != true_vifi) &&
  1603. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1604. if (psend != -1) {
  1605. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1606. if (skb2)
  1607. ipmr_queue_xmit(net, mrt, skb2, cache,
  1608. psend);
  1609. }
  1610. psend = ct;
  1611. }
  1612. }
  1613. last_forward:
  1614. if (psend != -1) {
  1615. if (local) {
  1616. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1617. if (skb2)
  1618. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1619. } else {
  1620. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1621. return;
  1622. }
  1623. }
  1624. dont_forward:
  1625. if (!local)
  1626. kfree_skb(skb);
  1627. }
  1628. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1629. {
  1630. struct rtable *rt = skb_rtable(skb);
  1631. struct iphdr *iph = ip_hdr(skb);
  1632. struct flowi4 fl4 = {
  1633. .daddr = iph->daddr,
  1634. .saddr = iph->saddr,
  1635. .flowi4_tos = RT_TOS(iph->tos),
  1636. .flowi4_oif = (rt_is_output_route(rt) ?
  1637. skb->dev->ifindex : 0),
  1638. .flowi4_iif = (rt_is_output_route(rt) ?
  1639. LOOPBACK_IFINDEX :
  1640. skb->dev->ifindex),
  1641. .flowi4_mark = skb->mark,
  1642. };
  1643. struct mr_table *mrt;
  1644. int err;
  1645. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1646. if (err)
  1647. return ERR_PTR(err);
  1648. return mrt;
  1649. }
  1650. /*
  1651. * Multicast packets for forwarding arrive here
  1652. * Called with rcu_read_lock();
  1653. */
  1654. int ip_mr_input(struct sk_buff *skb)
  1655. {
  1656. struct mfc_cache *cache;
  1657. struct net *net = dev_net(skb->dev);
  1658. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1659. struct mr_table *mrt;
  1660. /* Packet is looped back after forward, it should not be
  1661. * forwarded second time, but still can be delivered locally.
  1662. */
  1663. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1664. goto dont_forward;
  1665. mrt = ipmr_rt_fib_lookup(net, skb);
  1666. if (IS_ERR(mrt)) {
  1667. kfree_skb(skb);
  1668. return PTR_ERR(mrt);
  1669. }
  1670. if (!local) {
  1671. if (IPCB(skb)->opt.router_alert) {
  1672. if (ip_call_ra_chain(skb))
  1673. return 0;
  1674. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1675. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1676. * Cisco IOS <= 11.2(8)) do not put router alert
  1677. * option to IGMP packets destined to routable
  1678. * groups. It is very bad, because it means
  1679. * that we can forward NO IGMP messages.
  1680. */
  1681. struct sock *mroute_sk;
  1682. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1683. if (mroute_sk) {
  1684. nf_reset(skb);
  1685. raw_rcv(mroute_sk, skb);
  1686. return 0;
  1687. }
  1688. }
  1689. }
  1690. /* already under rcu_read_lock() */
  1691. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1692. if (cache == NULL) {
  1693. int vif = ipmr_find_vif(mrt, skb->dev);
  1694. if (vif >= 0)
  1695. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1696. vif);
  1697. }
  1698. /*
  1699. * No usable cache entry
  1700. */
  1701. if (cache == NULL) {
  1702. int vif;
  1703. if (local) {
  1704. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1705. ip_local_deliver(skb);
  1706. if (skb2 == NULL)
  1707. return -ENOBUFS;
  1708. skb = skb2;
  1709. }
  1710. read_lock(&mrt_lock);
  1711. vif = ipmr_find_vif(mrt, skb->dev);
  1712. if (vif >= 0) {
  1713. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1714. read_unlock(&mrt_lock);
  1715. return err2;
  1716. }
  1717. read_unlock(&mrt_lock);
  1718. kfree_skb(skb);
  1719. return -ENODEV;
  1720. }
  1721. read_lock(&mrt_lock);
  1722. ip_mr_forward(net, mrt, skb, cache, local);
  1723. read_unlock(&mrt_lock);
  1724. if (local)
  1725. return ip_local_deliver(skb);
  1726. return 0;
  1727. dont_forward:
  1728. if (local)
  1729. return ip_local_deliver(skb);
  1730. kfree_skb(skb);
  1731. return 0;
  1732. }
  1733. #ifdef CONFIG_IP_PIMSM
  1734. /* called with rcu_read_lock() */
  1735. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1736. unsigned int pimlen)
  1737. {
  1738. struct net_device *reg_dev = NULL;
  1739. struct iphdr *encap;
  1740. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1741. /*
  1742. * Check that:
  1743. * a. packet is really sent to a multicast group
  1744. * b. packet is not a NULL-REGISTER
  1745. * c. packet is not truncated
  1746. */
  1747. if (!ipv4_is_multicast(encap->daddr) ||
  1748. encap->tot_len == 0 ||
  1749. ntohs(encap->tot_len) + pimlen > skb->len)
  1750. return 1;
  1751. read_lock(&mrt_lock);
  1752. if (mrt->mroute_reg_vif_num >= 0)
  1753. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1754. read_unlock(&mrt_lock);
  1755. if (reg_dev == NULL)
  1756. return 1;
  1757. skb->mac_header = skb->network_header;
  1758. skb_pull(skb, (u8 *)encap - skb->data);
  1759. skb_reset_network_header(skb);
  1760. skb->protocol = htons(ETH_P_IP);
  1761. skb->ip_summed = CHECKSUM_NONE;
  1762. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  1763. netif_rx(skb);
  1764. return NET_RX_SUCCESS;
  1765. }
  1766. #endif
  1767. #ifdef CONFIG_IP_PIMSM_V1
  1768. /*
  1769. * Handle IGMP messages of PIMv1
  1770. */
  1771. int pim_rcv_v1(struct sk_buff *skb)
  1772. {
  1773. struct igmphdr *pim;
  1774. struct net *net = dev_net(skb->dev);
  1775. struct mr_table *mrt;
  1776. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1777. goto drop;
  1778. pim = igmp_hdr(skb);
  1779. mrt = ipmr_rt_fib_lookup(net, skb);
  1780. if (IS_ERR(mrt))
  1781. goto drop;
  1782. if (!mrt->mroute_do_pim ||
  1783. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1784. goto drop;
  1785. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1786. drop:
  1787. kfree_skb(skb);
  1788. }
  1789. return 0;
  1790. }
  1791. #endif
  1792. #ifdef CONFIG_IP_PIMSM_V2
  1793. static int pim_rcv(struct sk_buff *skb)
  1794. {
  1795. struct pimreghdr *pim;
  1796. struct net *net = dev_net(skb->dev);
  1797. struct mr_table *mrt;
  1798. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1799. goto drop;
  1800. pim = (struct pimreghdr *)skb_transport_header(skb);
  1801. if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
  1802. (pim->flags & PIM_NULL_REGISTER) ||
  1803. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1804. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1805. goto drop;
  1806. mrt = ipmr_rt_fib_lookup(net, skb);
  1807. if (IS_ERR(mrt))
  1808. goto drop;
  1809. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1810. drop:
  1811. kfree_skb(skb);
  1812. }
  1813. return 0;
  1814. }
  1815. #endif
  1816. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1817. struct mfc_cache *c, struct rtmsg *rtm)
  1818. {
  1819. int ct;
  1820. struct rtnexthop *nhp;
  1821. struct nlattr *mp_attr;
  1822. struct rta_mfc_stats mfcs;
  1823. /* If cache is unresolved, don't try to parse IIF and OIF */
  1824. if (c->mfc_parent >= MAXVIFS)
  1825. return -ENOENT;
  1826. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1827. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1828. return -EMSGSIZE;
  1829. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1830. return -EMSGSIZE;
  1831. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1832. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1833. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1834. nla_nest_cancel(skb, mp_attr);
  1835. return -EMSGSIZE;
  1836. }
  1837. nhp->rtnh_flags = 0;
  1838. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1839. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1840. nhp->rtnh_len = sizeof(*nhp);
  1841. }
  1842. }
  1843. nla_nest_end(skb, mp_attr);
  1844. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1845. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1846. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1847. if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
  1848. return -EMSGSIZE;
  1849. rtm->rtm_type = RTN_MULTICAST;
  1850. return 1;
  1851. }
  1852. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1853. __be32 saddr, __be32 daddr,
  1854. struct rtmsg *rtm, int nowait)
  1855. {
  1856. struct mfc_cache *cache;
  1857. struct mr_table *mrt;
  1858. int err;
  1859. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1860. if (mrt == NULL)
  1861. return -ENOENT;
  1862. rcu_read_lock();
  1863. cache = ipmr_cache_find(mrt, saddr, daddr);
  1864. if (cache == NULL && skb->dev) {
  1865. int vif = ipmr_find_vif(mrt, skb->dev);
  1866. if (vif >= 0)
  1867. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1868. }
  1869. if (cache == NULL) {
  1870. struct sk_buff *skb2;
  1871. struct iphdr *iph;
  1872. struct net_device *dev;
  1873. int vif = -1;
  1874. if (nowait) {
  1875. rcu_read_unlock();
  1876. return -EAGAIN;
  1877. }
  1878. dev = skb->dev;
  1879. read_lock(&mrt_lock);
  1880. if (dev)
  1881. vif = ipmr_find_vif(mrt, dev);
  1882. if (vif < 0) {
  1883. read_unlock(&mrt_lock);
  1884. rcu_read_unlock();
  1885. return -ENODEV;
  1886. }
  1887. skb2 = skb_clone(skb, GFP_ATOMIC);
  1888. if (!skb2) {
  1889. read_unlock(&mrt_lock);
  1890. rcu_read_unlock();
  1891. return -ENOMEM;
  1892. }
  1893. skb_push(skb2, sizeof(struct iphdr));
  1894. skb_reset_network_header(skb2);
  1895. iph = ip_hdr(skb2);
  1896. iph->ihl = sizeof(struct iphdr) >> 2;
  1897. iph->saddr = saddr;
  1898. iph->daddr = daddr;
  1899. iph->version = 0;
  1900. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1901. read_unlock(&mrt_lock);
  1902. rcu_read_unlock();
  1903. return err;
  1904. }
  1905. read_lock(&mrt_lock);
  1906. if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
  1907. cache->mfc_flags |= MFC_NOTIFY;
  1908. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1909. read_unlock(&mrt_lock);
  1910. rcu_read_unlock();
  1911. return err;
  1912. }
  1913. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1914. u32 portid, u32 seq, struct mfc_cache *c, int cmd)
  1915. {
  1916. struct nlmsghdr *nlh;
  1917. struct rtmsg *rtm;
  1918. int err;
  1919. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), NLM_F_MULTI);
  1920. if (nlh == NULL)
  1921. return -EMSGSIZE;
  1922. rtm = nlmsg_data(nlh);
  1923. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1924. rtm->rtm_dst_len = 32;
  1925. rtm->rtm_src_len = 32;
  1926. rtm->rtm_tos = 0;
  1927. rtm->rtm_table = mrt->id;
  1928. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1929. goto nla_put_failure;
  1930. rtm->rtm_type = RTN_MULTICAST;
  1931. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1932. if (c->mfc_flags & MFC_STATIC)
  1933. rtm->rtm_protocol = RTPROT_STATIC;
  1934. else
  1935. rtm->rtm_protocol = RTPROT_MROUTED;
  1936. rtm->rtm_flags = 0;
  1937. if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
  1938. nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
  1939. goto nla_put_failure;
  1940. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1941. /* do not break the dump if cache is unresolved */
  1942. if (err < 0 && err != -ENOENT)
  1943. goto nla_put_failure;
  1944. return nlmsg_end(skb, nlh);
  1945. nla_put_failure:
  1946. nlmsg_cancel(skb, nlh);
  1947. return -EMSGSIZE;
  1948. }
  1949. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1950. {
  1951. size_t len =
  1952. NLMSG_ALIGN(sizeof(struct rtmsg))
  1953. + nla_total_size(4) /* RTA_TABLE */
  1954. + nla_total_size(4) /* RTA_SRC */
  1955. + nla_total_size(4) /* RTA_DST */
  1956. ;
  1957. if (!unresolved)
  1958. len = len
  1959. + nla_total_size(4) /* RTA_IIF */
  1960. + nla_total_size(0) /* RTA_MULTIPATH */
  1961. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  1962. /* RTA_MFC_STATS */
  1963. + nla_total_size(sizeof(struct rta_mfc_stats))
  1964. ;
  1965. return len;
  1966. }
  1967. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  1968. int cmd)
  1969. {
  1970. struct net *net = read_pnet(&mrt->net);
  1971. struct sk_buff *skb;
  1972. int err = -ENOBUFS;
  1973. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  1974. GFP_ATOMIC);
  1975. if (skb == NULL)
  1976. goto errout;
  1977. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd);
  1978. if (err < 0)
  1979. goto errout;
  1980. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  1981. return;
  1982. errout:
  1983. kfree_skb(skb);
  1984. if (err < 0)
  1985. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  1986. }
  1987. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  1988. {
  1989. struct net *net = sock_net(skb->sk);
  1990. struct mr_table *mrt;
  1991. struct mfc_cache *mfc;
  1992. unsigned int t = 0, s_t;
  1993. unsigned int h = 0, s_h;
  1994. unsigned int e = 0, s_e;
  1995. s_t = cb->args[0];
  1996. s_h = cb->args[1];
  1997. s_e = cb->args[2];
  1998. rcu_read_lock();
  1999. ipmr_for_each_table(mrt, net) {
  2000. if (t < s_t)
  2001. goto next_table;
  2002. if (t > s_t)
  2003. s_h = 0;
  2004. for (h = s_h; h < MFC_LINES; h++) {
  2005. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  2006. if (e < s_e)
  2007. goto next_entry;
  2008. if (ipmr_fill_mroute(mrt, skb,
  2009. NETLINK_CB(cb->skb).portid,
  2010. cb->nlh->nlmsg_seq,
  2011. mfc, RTM_NEWROUTE) < 0)
  2012. goto done;
  2013. next_entry:
  2014. e++;
  2015. }
  2016. e = s_e = 0;
  2017. }
  2018. spin_lock_bh(&mfc_unres_lock);
  2019. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2020. if (e < s_e)
  2021. goto next_entry2;
  2022. if (ipmr_fill_mroute(mrt, skb,
  2023. NETLINK_CB(cb->skb).portid,
  2024. cb->nlh->nlmsg_seq,
  2025. mfc, RTM_NEWROUTE) < 0) {
  2026. spin_unlock_bh(&mfc_unres_lock);
  2027. goto done;
  2028. }
  2029. next_entry2:
  2030. e++;
  2031. }
  2032. spin_unlock_bh(&mfc_unres_lock);
  2033. e = s_e = 0;
  2034. s_h = 0;
  2035. next_table:
  2036. t++;
  2037. }
  2038. done:
  2039. rcu_read_unlock();
  2040. cb->args[2] = e;
  2041. cb->args[1] = h;
  2042. cb->args[0] = t;
  2043. return skb->len;
  2044. }
  2045. #ifdef CONFIG_PROC_FS
  2046. /*
  2047. * The /proc interfaces to multicast routing :
  2048. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2049. */
  2050. struct ipmr_vif_iter {
  2051. struct seq_net_private p;
  2052. struct mr_table *mrt;
  2053. int ct;
  2054. };
  2055. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2056. struct ipmr_vif_iter *iter,
  2057. loff_t pos)
  2058. {
  2059. struct mr_table *mrt = iter->mrt;
  2060. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2061. if (!VIF_EXISTS(mrt, iter->ct))
  2062. continue;
  2063. if (pos-- == 0)
  2064. return &mrt->vif_table[iter->ct];
  2065. }
  2066. return NULL;
  2067. }
  2068. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2069. __acquires(mrt_lock)
  2070. {
  2071. struct ipmr_vif_iter *iter = seq->private;
  2072. struct net *net = seq_file_net(seq);
  2073. struct mr_table *mrt;
  2074. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2075. if (mrt == NULL)
  2076. return ERR_PTR(-ENOENT);
  2077. iter->mrt = mrt;
  2078. read_lock(&mrt_lock);
  2079. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2080. : SEQ_START_TOKEN;
  2081. }
  2082. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2083. {
  2084. struct ipmr_vif_iter *iter = seq->private;
  2085. struct net *net = seq_file_net(seq);
  2086. struct mr_table *mrt = iter->mrt;
  2087. ++*pos;
  2088. if (v == SEQ_START_TOKEN)
  2089. return ipmr_vif_seq_idx(net, iter, 0);
  2090. while (++iter->ct < mrt->maxvif) {
  2091. if (!VIF_EXISTS(mrt, iter->ct))
  2092. continue;
  2093. return &mrt->vif_table[iter->ct];
  2094. }
  2095. return NULL;
  2096. }
  2097. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2098. __releases(mrt_lock)
  2099. {
  2100. read_unlock(&mrt_lock);
  2101. }
  2102. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2103. {
  2104. struct ipmr_vif_iter *iter = seq->private;
  2105. struct mr_table *mrt = iter->mrt;
  2106. if (v == SEQ_START_TOKEN) {
  2107. seq_puts(seq,
  2108. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2109. } else {
  2110. const struct vif_device *vif = v;
  2111. const char *name = vif->dev ? vif->dev->name : "none";
  2112. seq_printf(seq,
  2113. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2114. vif - mrt->vif_table,
  2115. name, vif->bytes_in, vif->pkt_in,
  2116. vif->bytes_out, vif->pkt_out,
  2117. vif->flags, vif->local, vif->remote);
  2118. }
  2119. return 0;
  2120. }
  2121. static const struct seq_operations ipmr_vif_seq_ops = {
  2122. .start = ipmr_vif_seq_start,
  2123. .next = ipmr_vif_seq_next,
  2124. .stop = ipmr_vif_seq_stop,
  2125. .show = ipmr_vif_seq_show,
  2126. };
  2127. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2128. {
  2129. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2130. sizeof(struct ipmr_vif_iter));
  2131. }
  2132. static const struct file_operations ipmr_vif_fops = {
  2133. .owner = THIS_MODULE,
  2134. .open = ipmr_vif_open,
  2135. .read = seq_read,
  2136. .llseek = seq_lseek,
  2137. .release = seq_release_net,
  2138. };
  2139. struct ipmr_mfc_iter {
  2140. struct seq_net_private p;
  2141. struct mr_table *mrt;
  2142. struct list_head *cache;
  2143. int ct;
  2144. };
  2145. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2146. struct ipmr_mfc_iter *it, loff_t pos)
  2147. {
  2148. struct mr_table *mrt = it->mrt;
  2149. struct mfc_cache *mfc;
  2150. rcu_read_lock();
  2151. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  2152. it->cache = &mrt->mfc_cache_array[it->ct];
  2153. list_for_each_entry_rcu(mfc, it->cache, list)
  2154. if (pos-- == 0)
  2155. return mfc;
  2156. }
  2157. rcu_read_unlock();
  2158. spin_lock_bh(&mfc_unres_lock);
  2159. it->cache = &mrt->mfc_unres_queue;
  2160. list_for_each_entry(mfc, it->cache, list)
  2161. if (pos-- == 0)
  2162. return mfc;
  2163. spin_unlock_bh(&mfc_unres_lock);
  2164. it->cache = NULL;
  2165. return NULL;
  2166. }
  2167. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2168. {
  2169. struct ipmr_mfc_iter *it = seq->private;
  2170. struct net *net = seq_file_net(seq);
  2171. struct mr_table *mrt;
  2172. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2173. if (mrt == NULL)
  2174. return ERR_PTR(-ENOENT);
  2175. it->mrt = mrt;
  2176. it->cache = NULL;
  2177. it->ct = 0;
  2178. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2179. : SEQ_START_TOKEN;
  2180. }
  2181. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2182. {
  2183. struct mfc_cache *mfc = v;
  2184. struct ipmr_mfc_iter *it = seq->private;
  2185. struct net *net = seq_file_net(seq);
  2186. struct mr_table *mrt = it->mrt;
  2187. ++*pos;
  2188. if (v == SEQ_START_TOKEN)
  2189. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2190. if (mfc->list.next != it->cache)
  2191. return list_entry(mfc->list.next, struct mfc_cache, list);
  2192. if (it->cache == &mrt->mfc_unres_queue)
  2193. goto end_of_list;
  2194. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  2195. while (++it->ct < MFC_LINES) {
  2196. it->cache = &mrt->mfc_cache_array[it->ct];
  2197. if (list_empty(it->cache))
  2198. continue;
  2199. return list_first_entry(it->cache, struct mfc_cache, list);
  2200. }
  2201. /* exhausted cache_array, show unresolved */
  2202. rcu_read_unlock();
  2203. it->cache = &mrt->mfc_unres_queue;
  2204. it->ct = 0;
  2205. spin_lock_bh(&mfc_unres_lock);
  2206. if (!list_empty(it->cache))
  2207. return list_first_entry(it->cache, struct mfc_cache, list);
  2208. end_of_list:
  2209. spin_unlock_bh(&mfc_unres_lock);
  2210. it->cache = NULL;
  2211. return NULL;
  2212. }
  2213. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2214. {
  2215. struct ipmr_mfc_iter *it = seq->private;
  2216. struct mr_table *mrt = it->mrt;
  2217. if (it->cache == &mrt->mfc_unres_queue)
  2218. spin_unlock_bh(&mfc_unres_lock);
  2219. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  2220. rcu_read_unlock();
  2221. }
  2222. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2223. {
  2224. int n;
  2225. if (v == SEQ_START_TOKEN) {
  2226. seq_puts(seq,
  2227. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2228. } else {
  2229. const struct mfc_cache *mfc = v;
  2230. const struct ipmr_mfc_iter *it = seq->private;
  2231. const struct mr_table *mrt = it->mrt;
  2232. seq_printf(seq, "%08X %08X %-3hd",
  2233. (__force u32) mfc->mfc_mcastgrp,
  2234. (__force u32) mfc->mfc_origin,
  2235. mfc->mfc_parent);
  2236. if (it->cache != &mrt->mfc_unres_queue) {
  2237. seq_printf(seq, " %8lu %8lu %8lu",
  2238. mfc->mfc_un.res.pkt,
  2239. mfc->mfc_un.res.bytes,
  2240. mfc->mfc_un.res.wrong_if);
  2241. for (n = mfc->mfc_un.res.minvif;
  2242. n < mfc->mfc_un.res.maxvif; n++) {
  2243. if (VIF_EXISTS(mrt, n) &&
  2244. mfc->mfc_un.res.ttls[n] < 255)
  2245. seq_printf(seq,
  2246. " %2d:%-3d",
  2247. n, mfc->mfc_un.res.ttls[n]);
  2248. }
  2249. } else {
  2250. /* unresolved mfc_caches don't contain
  2251. * pkt, bytes and wrong_if values
  2252. */
  2253. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2254. }
  2255. seq_putc(seq, '\n');
  2256. }
  2257. return 0;
  2258. }
  2259. static const struct seq_operations ipmr_mfc_seq_ops = {
  2260. .start = ipmr_mfc_seq_start,
  2261. .next = ipmr_mfc_seq_next,
  2262. .stop = ipmr_mfc_seq_stop,
  2263. .show = ipmr_mfc_seq_show,
  2264. };
  2265. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2266. {
  2267. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2268. sizeof(struct ipmr_mfc_iter));
  2269. }
  2270. static const struct file_operations ipmr_mfc_fops = {
  2271. .owner = THIS_MODULE,
  2272. .open = ipmr_mfc_open,
  2273. .read = seq_read,
  2274. .llseek = seq_lseek,
  2275. .release = seq_release_net,
  2276. };
  2277. #endif
  2278. #ifdef CONFIG_IP_PIMSM_V2
  2279. static const struct net_protocol pim_protocol = {
  2280. .handler = pim_rcv,
  2281. .netns_ok = 1,
  2282. };
  2283. #endif
  2284. /*
  2285. * Setup for IP multicast routing
  2286. */
  2287. static int __net_init ipmr_net_init(struct net *net)
  2288. {
  2289. int err;
  2290. err = ipmr_rules_init(net);
  2291. if (err < 0)
  2292. goto fail;
  2293. #ifdef CONFIG_PROC_FS
  2294. err = -ENOMEM;
  2295. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2296. goto proc_vif_fail;
  2297. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2298. goto proc_cache_fail;
  2299. #endif
  2300. return 0;
  2301. #ifdef CONFIG_PROC_FS
  2302. proc_cache_fail:
  2303. remove_proc_entry("ip_mr_vif", net->proc_net);
  2304. proc_vif_fail:
  2305. ipmr_rules_exit(net);
  2306. #endif
  2307. fail:
  2308. return err;
  2309. }
  2310. static void __net_exit ipmr_net_exit(struct net *net)
  2311. {
  2312. #ifdef CONFIG_PROC_FS
  2313. remove_proc_entry("ip_mr_cache", net->proc_net);
  2314. remove_proc_entry("ip_mr_vif", net->proc_net);
  2315. #endif
  2316. ipmr_rules_exit(net);
  2317. }
  2318. static struct pernet_operations ipmr_net_ops = {
  2319. .init = ipmr_net_init,
  2320. .exit = ipmr_net_exit,
  2321. };
  2322. int __init ip_mr_init(void)
  2323. {
  2324. int err;
  2325. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2326. sizeof(struct mfc_cache),
  2327. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2328. NULL);
  2329. if (!mrt_cachep)
  2330. return -ENOMEM;
  2331. err = register_pernet_subsys(&ipmr_net_ops);
  2332. if (err)
  2333. goto reg_pernet_fail;
  2334. err = register_netdevice_notifier(&ip_mr_notifier);
  2335. if (err)
  2336. goto reg_notif_fail;
  2337. #ifdef CONFIG_IP_PIMSM_V2
  2338. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2339. pr_err("%s: can't add PIM protocol\n", __func__);
  2340. err = -EAGAIN;
  2341. goto add_proto_fail;
  2342. }
  2343. #endif
  2344. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2345. NULL, ipmr_rtm_dumproute, NULL);
  2346. return 0;
  2347. #ifdef CONFIG_IP_PIMSM_V2
  2348. add_proto_fail:
  2349. unregister_netdevice_notifier(&ip_mr_notifier);
  2350. #endif
  2351. reg_notif_fail:
  2352. unregister_pernet_subsys(&ipmr_net_ops);
  2353. reg_pernet_fail:
  2354. kmem_cache_destroy(mrt_cachep);
  2355. return err;
  2356. }