traps.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/bug.h>
  17. #include <linux/compiler.h>
  18. #include <linux/context_tracking.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/kexec.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/sched.h>
  26. #include <linux/smp.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/bootmem.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/kgdb.h>
  33. #include <linux/kdebug.h>
  34. #include <linux/kprobes.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kdb.h>
  37. #include <linux/irq.h>
  38. #include <linux/perf_event.h>
  39. #include <asm/addrspace.h>
  40. #include <asm/bootinfo.h>
  41. #include <asm/branch.h>
  42. #include <asm/break.h>
  43. #include <asm/cop2.h>
  44. #include <asm/cpu.h>
  45. #include <asm/cpu-type.h>
  46. #include <asm/dsp.h>
  47. #include <asm/fpu.h>
  48. #include <asm/fpu_emulator.h>
  49. #include <asm/idle.h>
  50. #include <asm/mips-r2-to-r6-emul.h>
  51. #include <asm/mipsregs.h>
  52. #include <asm/mipsmtregs.h>
  53. #include <asm/module.h>
  54. #include <asm/msa.h>
  55. #include <asm/pgtable.h>
  56. #include <asm/ptrace.h>
  57. #include <asm/sections.h>
  58. #include <asm/siginfo.h>
  59. #include <asm/tlbdebug.h>
  60. #include <asm/traps.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/watch.h>
  63. #include <asm/mmu_context.h>
  64. #include <asm/types.h>
  65. #include <asm/stacktrace.h>
  66. #include <asm/uasm.h>
  67. extern void check_wait(void);
  68. extern asmlinkage void rollback_handle_int(void);
  69. extern asmlinkage void handle_int(void);
  70. extern u32 handle_tlbl[];
  71. extern u32 handle_tlbs[];
  72. extern u32 handle_tlbm[];
  73. extern asmlinkage void handle_adel(void);
  74. extern asmlinkage void handle_ades(void);
  75. extern asmlinkage void handle_ibe(void);
  76. extern asmlinkage void handle_dbe(void);
  77. extern asmlinkage void handle_sys(void);
  78. extern asmlinkage void handle_bp(void);
  79. extern asmlinkage void handle_ri(void);
  80. extern asmlinkage void handle_ri_rdhwr_vivt(void);
  81. extern asmlinkage void handle_ri_rdhwr(void);
  82. extern asmlinkage void handle_cpu(void);
  83. extern asmlinkage void handle_ov(void);
  84. extern asmlinkage void handle_tr(void);
  85. extern asmlinkage void handle_msa_fpe(void);
  86. extern asmlinkage void handle_fpe(void);
  87. extern asmlinkage void handle_ftlb(void);
  88. extern asmlinkage void handle_msa(void);
  89. extern asmlinkage void handle_mdmx(void);
  90. extern asmlinkage void handle_watch(void);
  91. extern asmlinkage void handle_mt(void);
  92. extern asmlinkage void handle_dsp(void);
  93. extern asmlinkage void handle_mcheck(void);
  94. extern asmlinkage void handle_reserved(void);
  95. extern void tlb_do_page_fault_0(void);
  96. void (*board_be_init)(void);
  97. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  98. void (*board_nmi_handler_setup)(void);
  99. void (*board_ejtag_handler_setup)(void);
  100. void (*board_bind_eic_interrupt)(int irq, int regset);
  101. void (*board_ebase_setup)(void);
  102. void(*board_cache_error_setup)(void);
  103. static void show_raw_backtrace(unsigned long reg29)
  104. {
  105. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  106. unsigned long addr;
  107. printk("Call Trace:");
  108. #ifdef CONFIG_KALLSYMS
  109. printk("\n");
  110. #endif
  111. while (!kstack_end(sp)) {
  112. unsigned long __user *p =
  113. (unsigned long __user *)(unsigned long)sp++;
  114. if (__get_user(addr, p)) {
  115. printk(" (Bad stack address)");
  116. break;
  117. }
  118. if (__kernel_text_address(addr))
  119. print_ip_sym(addr);
  120. }
  121. printk("\n");
  122. }
  123. #ifdef CONFIG_KALLSYMS
  124. int raw_show_trace;
  125. static int __init set_raw_show_trace(char *str)
  126. {
  127. raw_show_trace = 1;
  128. return 1;
  129. }
  130. __setup("raw_show_trace", set_raw_show_trace);
  131. #endif
  132. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  133. {
  134. unsigned long sp = regs->regs[29];
  135. unsigned long ra = regs->regs[31];
  136. unsigned long pc = regs->cp0_epc;
  137. if (!task)
  138. task = current;
  139. if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
  140. show_raw_backtrace(sp);
  141. return;
  142. }
  143. printk("Call Trace:\n");
  144. do {
  145. print_ip_sym(pc);
  146. pc = unwind_stack(task, &sp, pc, &ra);
  147. } while (pc);
  148. printk("\n");
  149. }
  150. /*
  151. * This routine abuses get_user()/put_user() to reference pointers
  152. * with at least a bit of error checking ...
  153. */
  154. static void show_stacktrace(struct task_struct *task,
  155. const struct pt_regs *regs)
  156. {
  157. const int field = 2 * sizeof(unsigned long);
  158. long stackdata;
  159. int i;
  160. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  161. printk("Stack :");
  162. i = 0;
  163. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  164. if (i && ((i % (64 / field)) == 0))
  165. printk("\n ");
  166. if (i > 39) {
  167. printk(" ...");
  168. break;
  169. }
  170. if (__get_user(stackdata, sp++)) {
  171. printk(" (Bad stack address)");
  172. break;
  173. }
  174. printk(" %0*lx", field, stackdata);
  175. i++;
  176. }
  177. printk("\n");
  178. show_backtrace(task, regs);
  179. }
  180. void show_stack(struct task_struct *task, unsigned long *sp)
  181. {
  182. struct pt_regs regs;
  183. mm_segment_t old_fs = get_fs();
  184. if (sp) {
  185. regs.regs[29] = (unsigned long)sp;
  186. regs.regs[31] = 0;
  187. regs.cp0_epc = 0;
  188. } else {
  189. if (task && task != current) {
  190. regs.regs[29] = task->thread.reg29;
  191. regs.regs[31] = 0;
  192. regs.cp0_epc = task->thread.reg31;
  193. #ifdef CONFIG_KGDB_KDB
  194. } else if (atomic_read(&kgdb_active) != -1 &&
  195. kdb_current_regs) {
  196. memcpy(&regs, kdb_current_regs, sizeof(regs));
  197. #endif /* CONFIG_KGDB_KDB */
  198. } else {
  199. prepare_frametrace(&regs);
  200. }
  201. }
  202. /*
  203. * show_stack() deals exclusively with kernel mode, so be sure to access
  204. * the stack in the kernel (not user) address space.
  205. */
  206. set_fs(KERNEL_DS);
  207. show_stacktrace(task, &regs);
  208. set_fs(old_fs);
  209. }
  210. static void show_code(unsigned int __user *pc)
  211. {
  212. long i;
  213. unsigned short __user *pc16 = NULL;
  214. printk("\nCode:");
  215. if ((unsigned long)pc & 1)
  216. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  217. for(i = -3 ; i < 6 ; i++) {
  218. unsigned int insn;
  219. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  220. printk(" (Bad address in epc)\n");
  221. break;
  222. }
  223. printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  224. }
  225. }
  226. static void __show_regs(const struct pt_regs *regs)
  227. {
  228. const int field = 2 * sizeof(unsigned long);
  229. unsigned int cause = regs->cp0_cause;
  230. unsigned int exccode;
  231. int i;
  232. show_regs_print_info(KERN_DEFAULT);
  233. /*
  234. * Saved main processor registers
  235. */
  236. for (i = 0; i < 32; ) {
  237. if ((i % 4) == 0)
  238. printk("$%2d :", i);
  239. if (i == 0)
  240. printk(" %0*lx", field, 0UL);
  241. else if (i == 26 || i == 27)
  242. printk(" %*s", field, "");
  243. else
  244. printk(" %0*lx", field, regs->regs[i]);
  245. i++;
  246. if ((i % 4) == 0)
  247. printk("\n");
  248. }
  249. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  250. printk("Acx : %0*lx\n", field, regs->acx);
  251. #endif
  252. printk("Hi : %0*lx\n", field, regs->hi);
  253. printk("Lo : %0*lx\n", field, regs->lo);
  254. /*
  255. * Saved cp0 registers
  256. */
  257. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  258. (void *) regs->cp0_epc);
  259. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  260. (void *) regs->regs[31]);
  261. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  262. if (cpu_has_3kex) {
  263. if (regs->cp0_status & ST0_KUO)
  264. printk("KUo ");
  265. if (regs->cp0_status & ST0_IEO)
  266. printk("IEo ");
  267. if (regs->cp0_status & ST0_KUP)
  268. printk("KUp ");
  269. if (regs->cp0_status & ST0_IEP)
  270. printk("IEp ");
  271. if (regs->cp0_status & ST0_KUC)
  272. printk("KUc ");
  273. if (regs->cp0_status & ST0_IEC)
  274. printk("IEc ");
  275. } else if (cpu_has_4kex) {
  276. if (regs->cp0_status & ST0_KX)
  277. printk("KX ");
  278. if (regs->cp0_status & ST0_SX)
  279. printk("SX ");
  280. if (regs->cp0_status & ST0_UX)
  281. printk("UX ");
  282. switch (regs->cp0_status & ST0_KSU) {
  283. case KSU_USER:
  284. printk("USER ");
  285. break;
  286. case KSU_SUPERVISOR:
  287. printk("SUPERVISOR ");
  288. break;
  289. case KSU_KERNEL:
  290. printk("KERNEL ");
  291. break;
  292. default:
  293. printk("BAD_MODE ");
  294. break;
  295. }
  296. if (regs->cp0_status & ST0_ERL)
  297. printk("ERL ");
  298. if (regs->cp0_status & ST0_EXL)
  299. printk("EXL ");
  300. if (regs->cp0_status & ST0_IE)
  301. printk("IE ");
  302. }
  303. printk("\n");
  304. exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  305. printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
  306. if (1 <= exccode && exccode <= 5)
  307. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  308. printk("PrId : %08x (%s)\n", read_c0_prid(),
  309. cpu_name_string());
  310. }
  311. /*
  312. * FIXME: really the generic show_regs should take a const pointer argument.
  313. */
  314. void show_regs(struct pt_regs *regs)
  315. {
  316. __show_regs((struct pt_regs *)regs);
  317. }
  318. void show_registers(struct pt_regs *regs)
  319. {
  320. const int field = 2 * sizeof(unsigned long);
  321. mm_segment_t old_fs = get_fs();
  322. __show_regs(regs);
  323. print_modules();
  324. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  325. current->comm, current->pid, current_thread_info(), current,
  326. field, current_thread_info()->tp_value);
  327. if (cpu_has_userlocal) {
  328. unsigned long tls;
  329. tls = read_c0_userlocal();
  330. if (tls != current_thread_info()->tp_value)
  331. printk("*HwTLS: %0*lx\n", field, tls);
  332. }
  333. if (!user_mode(regs))
  334. /* Necessary for getting the correct stack content */
  335. set_fs(KERNEL_DS);
  336. show_stacktrace(current, regs);
  337. show_code((unsigned int __user *) regs->cp0_epc);
  338. printk("\n");
  339. set_fs(old_fs);
  340. }
  341. static DEFINE_RAW_SPINLOCK(die_lock);
  342. void __noreturn die(const char *str, struct pt_regs *regs)
  343. {
  344. static int die_counter;
  345. int sig = SIGSEGV;
  346. oops_enter();
  347. if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
  348. SIGSEGV) == NOTIFY_STOP)
  349. sig = 0;
  350. console_verbose();
  351. raw_spin_lock_irq(&die_lock);
  352. bust_spinlocks(1);
  353. printk("%s[#%d]:\n", str, ++die_counter);
  354. show_registers(regs);
  355. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  356. raw_spin_unlock_irq(&die_lock);
  357. oops_exit();
  358. if (in_interrupt())
  359. panic("Fatal exception in interrupt");
  360. if (panic_on_oops)
  361. panic("Fatal exception");
  362. if (regs && kexec_should_crash(current))
  363. crash_kexec(regs);
  364. do_exit(sig);
  365. }
  366. extern struct exception_table_entry __start___dbe_table[];
  367. extern struct exception_table_entry __stop___dbe_table[];
  368. __asm__(
  369. " .section __dbe_table, \"a\"\n"
  370. " .previous \n");
  371. /* Given an address, look for it in the exception tables. */
  372. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  373. {
  374. const struct exception_table_entry *e;
  375. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  376. if (!e)
  377. e = search_module_dbetables(addr);
  378. return e;
  379. }
  380. asmlinkage void do_be(struct pt_regs *regs)
  381. {
  382. const int field = 2 * sizeof(unsigned long);
  383. const struct exception_table_entry *fixup = NULL;
  384. int data = regs->cp0_cause & 4;
  385. int action = MIPS_BE_FATAL;
  386. enum ctx_state prev_state;
  387. prev_state = exception_enter();
  388. /* XXX For now. Fixme, this searches the wrong table ... */
  389. if (data && !user_mode(regs))
  390. fixup = search_dbe_tables(exception_epc(regs));
  391. if (fixup)
  392. action = MIPS_BE_FIXUP;
  393. if (board_be_handler)
  394. action = board_be_handler(regs, fixup != NULL);
  395. switch (action) {
  396. case MIPS_BE_DISCARD:
  397. goto out;
  398. case MIPS_BE_FIXUP:
  399. if (fixup) {
  400. regs->cp0_epc = fixup->nextinsn;
  401. goto out;
  402. }
  403. break;
  404. default:
  405. break;
  406. }
  407. /*
  408. * Assume it would be too dangerous to continue ...
  409. */
  410. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  411. data ? "Data" : "Instruction",
  412. field, regs->cp0_epc, field, regs->regs[31]);
  413. if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
  414. SIGBUS) == NOTIFY_STOP)
  415. goto out;
  416. die_if_kernel("Oops", regs);
  417. force_sig(SIGBUS, current);
  418. out:
  419. exception_exit(prev_state);
  420. }
  421. /*
  422. * ll/sc, rdhwr, sync emulation
  423. */
  424. #define OPCODE 0xfc000000
  425. #define BASE 0x03e00000
  426. #define RT 0x001f0000
  427. #define OFFSET 0x0000ffff
  428. #define LL 0xc0000000
  429. #define SC 0xe0000000
  430. #define SPEC0 0x00000000
  431. #define SPEC3 0x7c000000
  432. #define RD 0x0000f800
  433. #define FUNC 0x0000003f
  434. #define SYNC 0x0000000f
  435. #define RDHWR 0x0000003b
  436. /* microMIPS definitions */
  437. #define MM_POOL32A_FUNC 0xfc00ffff
  438. #define MM_RDHWR 0x00006b3c
  439. #define MM_RS 0x001f0000
  440. #define MM_RT 0x03e00000
  441. /*
  442. * The ll_bit is cleared by r*_switch.S
  443. */
  444. unsigned int ll_bit;
  445. struct task_struct *ll_task;
  446. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  447. {
  448. unsigned long value, __user *vaddr;
  449. long offset;
  450. /*
  451. * analyse the ll instruction that just caused a ri exception
  452. * and put the referenced address to addr.
  453. */
  454. /* sign extend offset */
  455. offset = opcode & OFFSET;
  456. offset <<= 16;
  457. offset >>= 16;
  458. vaddr = (unsigned long __user *)
  459. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  460. if ((unsigned long)vaddr & 3)
  461. return SIGBUS;
  462. if (get_user(value, vaddr))
  463. return SIGSEGV;
  464. preempt_disable();
  465. if (ll_task == NULL || ll_task == current) {
  466. ll_bit = 1;
  467. } else {
  468. ll_bit = 0;
  469. }
  470. ll_task = current;
  471. preempt_enable();
  472. regs->regs[(opcode & RT) >> 16] = value;
  473. return 0;
  474. }
  475. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  476. {
  477. unsigned long __user *vaddr;
  478. unsigned long reg;
  479. long offset;
  480. /*
  481. * analyse the sc instruction that just caused a ri exception
  482. * and put the referenced address to addr.
  483. */
  484. /* sign extend offset */
  485. offset = opcode & OFFSET;
  486. offset <<= 16;
  487. offset >>= 16;
  488. vaddr = (unsigned long __user *)
  489. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  490. reg = (opcode & RT) >> 16;
  491. if ((unsigned long)vaddr & 3)
  492. return SIGBUS;
  493. preempt_disable();
  494. if (ll_bit == 0 || ll_task != current) {
  495. regs->regs[reg] = 0;
  496. preempt_enable();
  497. return 0;
  498. }
  499. preempt_enable();
  500. if (put_user(regs->regs[reg], vaddr))
  501. return SIGSEGV;
  502. regs->regs[reg] = 1;
  503. return 0;
  504. }
  505. /*
  506. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  507. * opcodes are supposed to result in coprocessor unusable exceptions if
  508. * executed on ll/sc-less processors. That's the theory. In practice a
  509. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  510. * instead, so we're doing the emulation thing in both exception handlers.
  511. */
  512. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  513. {
  514. if ((opcode & OPCODE) == LL) {
  515. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  516. 1, regs, 0);
  517. return simulate_ll(regs, opcode);
  518. }
  519. if ((opcode & OPCODE) == SC) {
  520. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  521. 1, regs, 0);
  522. return simulate_sc(regs, opcode);
  523. }
  524. return -1; /* Must be something else ... */
  525. }
  526. /*
  527. * Simulate trapping 'rdhwr' instructions to provide user accessible
  528. * registers not implemented in hardware.
  529. */
  530. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  531. {
  532. struct thread_info *ti = task_thread_info(current);
  533. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  534. 1, regs, 0);
  535. switch (rd) {
  536. case 0: /* CPU number */
  537. regs->regs[rt] = smp_processor_id();
  538. return 0;
  539. case 1: /* SYNCI length */
  540. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  541. current_cpu_data.icache.linesz);
  542. return 0;
  543. case 2: /* Read count register */
  544. regs->regs[rt] = read_c0_count();
  545. return 0;
  546. case 3: /* Count register resolution */
  547. switch (current_cpu_type()) {
  548. case CPU_20KC:
  549. case CPU_25KF:
  550. regs->regs[rt] = 1;
  551. break;
  552. default:
  553. regs->regs[rt] = 2;
  554. }
  555. return 0;
  556. case 29:
  557. regs->regs[rt] = ti->tp_value;
  558. return 0;
  559. default:
  560. return -1;
  561. }
  562. }
  563. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  564. {
  565. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  566. int rd = (opcode & RD) >> 11;
  567. int rt = (opcode & RT) >> 16;
  568. simulate_rdhwr(regs, rd, rt);
  569. return 0;
  570. }
  571. /* Not ours. */
  572. return -1;
  573. }
  574. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
  575. {
  576. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  577. int rd = (opcode & MM_RS) >> 16;
  578. int rt = (opcode & MM_RT) >> 21;
  579. simulate_rdhwr(regs, rd, rt);
  580. return 0;
  581. }
  582. /* Not ours. */
  583. return -1;
  584. }
  585. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  586. {
  587. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  588. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  589. 1, regs, 0);
  590. return 0;
  591. }
  592. return -1; /* Must be something else ... */
  593. }
  594. asmlinkage void do_ov(struct pt_regs *regs)
  595. {
  596. enum ctx_state prev_state;
  597. siginfo_t info = {
  598. .si_signo = SIGFPE,
  599. .si_code = FPE_INTOVF,
  600. .si_addr = (void __user *)regs->cp0_epc,
  601. };
  602. prev_state = exception_enter();
  603. die_if_kernel("Integer overflow", regs);
  604. force_sig_info(SIGFPE, &info, current);
  605. exception_exit(prev_state);
  606. }
  607. int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
  608. {
  609. struct siginfo si = { 0 };
  610. switch (sig) {
  611. case 0:
  612. return 0;
  613. case SIGFPE:
  614. si.si_addr = fault_addr;
  615. si.si_signo = sig;
  616. /*
  617. * Inexact can happen together with Overflow or Underflow.
  618. * Respect the mask to deliver the correct exception.
  619. */
  620. fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
  621. (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
  622. if (fcr31 & FPU_CSR_INV_X)
  623. si.si_code = FPE_FLTINV;
  624. else if (fcr31 & FPU_CSR_DIV_X)
  625. si.si_code = FPE_FLTDIV;
  626. else if (fcr31 & FPU_CSR_OVF_X)
  627. si.si_code = FPE_FLTOVF;
  628. else if (fcr31 & FPU_CSR_UDF_X)
  629. si.si_code = FPE_FLTUND;
  630. else if (fcr31 & FPU_CSR_INE_X)
  631. si.si_code = FPE_FLTRES;
  632. else
  633. si.si_code = __SI_FAULT;
  634. force_sig_info(sig, &si, current);
  635. return 1;
  636. case SIGBUS:
  637. si.si_addr = fault_addr;
  638. si.si_signo = sig;
  639. si.si_code = BUS_ADRERR;
  640. force_sig_info(sig, &si, current);
  641. return 1;
  642. case SIGSEGV:
  643. si.si_addr = fault_addr;
  644. si.si_signo = sig;
  645. down_read(&current->mm->mmap_sem);
  646. if (find_vma(current->mm, (unsigned long)fault_addr))
  647. si.si_code = SEGV_ACCERR;
  648. else
  649. si.si_code = SEGV_MAPERR;
  650. up_read(&current->mm->mmap_sem);
  651. force_sig_info(sig, &si, current);
  652. return 1;
  653. default:
  654. force_sig(sig, current);
  655. return 1;
  656. }
  657. }
  658. static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
  659. unsigned long old_epc, unsigned long old_ra)
  660. {
  661. union mips_instruction inst = { .word = opcode };
  662. void __user *fault_addr;
  663. unsigned long fcr31;
  664. int sig;
  665. /* If it's obviously not an FP instruction, skip it */
  666. switch (inst.i_format.opcode) {
  667. case cop1_op:
  668. case cop1x_op:
  669. case lwc1_op:
  670. case ldc1_op:
  671. case swc1_op:
  672. case sdc1_op:
  673. break;
  674. default:
  675. return -1;
  676. }
  677. /*
  678. * do_ri skipped over the instruction via compute_return_epc, undo
  679. * that for the FPU emulator.
  680. */
  681. regs->cp0_epc = old_epc;
  682. regs->regs[31] = old_ra;
  683. /* Save the FP context to struct thread_struct */
  684. lose_fpu(1);
  685. /* Run the emulator */
  686. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  687. &fault_addr);
  688. fcr31 = current->thread.fpu.fcr31;
  689. /*
  690. * We can't allow the emulated instruction to leave any of
  691. * the cause bits set in $fcr31.
  692. */
  693. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  694. /* Restore the hardware register state */
  695. own_fpu(1);
  696. /* Send a signal if required. */
  697. process_fpemu_return(sig, fault_addr, fcr31);
  698. return 0;
  699. }
  700. /*
  701. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  702. */
  703. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  704. {
  705. enum ctx_state prev_state;
  706. void __user *fault_addr;
  707. int sig;
  708. prev_state = exception_enter();
  709. if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
  710. SIGFPE) == NOTIFY_STOP)
  711. goto out;
  712. /* Clear FCSR.Cause before enabling interrupts */
  713. write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
  714. local_irq_enable();
  715. die_if_kernel("FP exception in kernel code", regs);
  716. if (fcr31 & FPU_CSR_UNI_X) {
  717. /*
  718. * Unimplemented operation exception. If we've got the full
  719. * software emulator on-board, let's use it...
  720. *
  721. * Force FPU to dump state into task/thread context. We're
  722. * moving a lot of data here for what is probably a single
  723. * instruction, but the alternative is to pre-decode the FP
  724. * register operands before invoking the emulator, which seems
  725. * a bit extreme for what should be an infrequent event.
  726. */
  727. /* Ensure 'resume' not overwrite saved fp context again. */
  728. lose_fpu(1);
  729. /* Run the emulator */
  730. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  731. &fault_addr);
  732. fcr31 = current->thread.fpu.fcr31;
  733. /*
  734. * We can't allow the emulated instruction to leave any of
  735. * the cause bits set in $fcr31.
  736. */
  737. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  738. /* Restore the hardware register state */
  739. own_fpu(1); /* Using the FPU again. */
  740. } else {
  741. sig = SIGFPE;
  742. fault_addr = (void __user *) regs->cp0_epc;
  743. }
  744. /* Send a signal if required. */
  745. process_fpemu_return(sig, fault_addr, fcr31);
  746. out:
  747. exception_exit(prev_state);
  748. }
  749. void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
  750. const char *str)
  751. {
  752. siginfo_t info = { 0 };
  753. char b[40];
  754. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  755. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  756. SIGTRAP) == NOTIFY_STOP)
  757. return;
  758. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  759. if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  760. SIGTRAP) == NOTIFY_STOP)
  761. return;
  762. /*
  763. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  764. * insns, even for trap and break codes that indicate arithmetic
  765. * failures. Weird ...
  766. * But should we continue the brokenness??? --macro
  767. */
  768. switch (code) {
  769. case BRK_OVERFLOW:
  770. case BRK_DIVZERO:
  771. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  772. die_if_kernel(b, regs);
  773. if (code == BRK_DIVZERO)
  774. info.si_code = FPE_INTDIV;
  775. else
  776. info.si_code = FPE_INTOVF;
  777. info.si_signo = SIGFPE;
  778. info.si_addr = (void __user *) regs->cp0_epc;
  779. force_sig_info(SIGFPE, &info, current);
  780. break;
  781. case BRK_BUG:
  782. die_if_kernel("Kernel bug detected", regs);
  783. force_sig(SIGTRAP, current);
  784. break;
  785. case BRK_MEMU:
  786. /*
  787. * This breakpoint code is used by the FPU emulator to retake
  788. * control of the CPU after executing the instruction from the
  789. * delay slot of an emulated branch.
  790. *
  791. * Terminate if exception was recognized as a delay slot return
  792. * otherwise handle as normal.
  793. */
  794. if (do_dsemulret(regs))
  795. return;
  796. die_if_kernel("Math emu break/trap", regs);
  797. force_sig(SIGTRAP, current);
  798. break;
  799. default:
  800. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  801. die_if_kernel(b, regs);
  802. if (si_code) {
  803. info.si_signo = SIGTRAP;
  804. info.si_code = si_code;
  805. force_sig_info(SIGTRAP, &info, current);
  806. } else {
  807. force_sig(SIGTRAP, current);
  808. }
  809. }
  810. }
  811. asmlinkage void do_bp(struct pt_regs *regs)
  812. {
  813. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  814. unsigned int opcode, bcode;
  815. enum ctx_state prev_state;
  816. mm_segment_t seg;
  817. seg = get_fs();
  818. if (!user_mode(regs))
  819. set_fs(KERNEL_DS);
  820. prev_state = exception_enter();
  821. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  822. if (get_isa16_mode(regs->cp0_epc)) {
  823. u16 instr[2];
  824. if (__get_user(instr[0], (u16 __user *)epc))
  825. goto out_sigsegv;
  826. if (!cpu_has_mmips) {
  827. /* MIPS16e mode */
  828. bcode = (instr[0] >> 5) & 0x3f;
  829. } else if (mm_insn_16bit(instr[0])) {
  830. /* 16-bit microMIPS BREAK */
  831. bcode = instr[0] & 0xf;
  832. } else {
  833. /* 32-bit microMIPS BREAK */
  834. if (__get_user(instr[1], (u16 __user *)(epc + 2)))
  835. goto out_sigsegv;
  836. opcode = (instr[0] << 16) | instr[1];
  837. bcode = (opcode >> 6) & ((1 << 20) - 1);
  838. }
  839. } else {
  840. if (__get_user(opcode, (unsigned int __user *)epc))
  841. goto out_sigsegv;
  842. bcode = (opcode >> 6) & ((1 << 20) - 1);
  843. }
  844. /*
  845. * There is the ancient bug in the MIPS assemblers that the break
  846. * code starts left to bit 16 instead to bit 6 in the opcode.
  847. * Gas is bug-compatible, but not always, grrr...
  848. * We handle both cases with a simple heuristics. --macro
  849. */
  850. if (bcode >= (1 << 10))
  851. bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
  852. /*
  853. * notify the kprobe handlers, if instruction is likely to
  854. * pertain to them.
  855. */
  856. switch (bcode) {
  857. case BRK_UPROBE:
  858. if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
  859. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  860. goto out;
  861. else
  862. break;
  863. case BRK_UPROBE_XOL:
  864. if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
  865. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  866. goto out;
  867. else
  868. break;
  869. case BRK_KPROBE_BP:
  870. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  871. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  872. goto out;
  873. else
  874. break;
  875. case BRK_KPROBE_SSTEPBP:
  876. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  877. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  878. goto out;
  879. else
  880. break;
  881. default:
  882. break;
  883. }
  884. do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
  885. out:
  886. set_fs(seg);
  887. exception_exit(prev_state);
  888. return;
  889. out_sigsegv:
  890. force_sig(SIGSEGV, current);
  891. goto out;
  892. }
  893. asmlinkage void do_tr(struct pt_regs *regs)
  894. {
  895. u32 opcode, tcode = 0;
  896. enum ctx_state prev_state;
  897. u16 instr[2];
  898. mm_segment_t seg;
  899. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  900. seg = get_fs();
  901. if (!user_mode(regs))
  902. set_fs(get_ds());
  903. prev_state = exception_enter();
  904. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  905. if (get_isa16_mode(regs->cp0_epc)) {
  906. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  907. __get_user(instr[1], (u16 __user *)(epc + 2)))
  908. goto out_sigsegv;
  909. opcode = (instr[0] << 16) | instr[1];
  910. /* Immediate versions don't provide a code. */
  911. if (!(opcode & OPCODE))
  912. tcode = (opcode >> 12) & ((1 << 4) - 1);
  913. } else {
  914. if (__get_user(opcode, (u32 __user *)epc))
  915. goto out_sigsegv;
  916. /* Immediate versions don't provide a code. */
  917. if (!(opcode & OPCODE))
  918. tcode = (opcode >> 6) & ((1 << 10) - 1);
  919. }
  920. do_trap_or_bp(regs, tcode, 0, "Trap");
  921. out:
  922. set_fs(seg);
  923. exception_exit(prev_state);
  924. return;
  925. out_sigsegv:
  926. force_sig(SIGSEGV, current);
  927. goto out;
  928. }
  929. asmlinkage void do_ri(struct pt_regs *regs)
  930. {
  931. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  932. unsigned long old_epc = regs->cp0_epc;
  933. unsigned long old31 = regs->regs[31];
  934. enum ctx_state prev_state;
  935. unsigned int opcode = 0;
  936. int status = -1;
  937. /*
  938. * Avoid any kernel code. Just emulate the R2 instruction
  939. * as quickly as possible.
  940. */
  941. if (mipsr2_emulation && cpu_has_mips_r6 &&
  942. likely(user_mode(regs)) &&
  943. likely(get_user(opcode, epc) >= 0)) {
  944. unsigned long fcr31 = 0;
  945. status = mipsr2_decoder(regs, opcode, &fcr31);
  946. switch (status) {
  947. case 0:
  948. case SIGEMT:
  949. task_thread_info(current)->r2_emul_return = 1;
  950. return;
  951. case SIGILL:
  952. goto no_r2_instr;
  953. default:
  954. process_fpemu_return(status,
  955. &current->thread.cp0_baduaddr,
  956. fcr31);
  957. task_thread_info(current)->r2_emul_return = 1;
  958. return;
  959. }
  960. }
  961. no_r2_instr:
  962. prev_state = exception_enter();
  963. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  964. if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
  965. SIGILL) == NOTIFY_STOP)
  966. goto out;
  967. die_if_kernel("Reserved instruction in kernel code", regs);
  968. if (unlikely(compute_return_epc(regs) < 0))
  969. goto out;
  970. if (!get_isa16_mode(regs->cp0_epc)) {
  971. if (unlikely(get_user(opcode, epc) < 0))
  972. status = SIGSEGV;
  973. if (!cpu_has_llsc && status < 0)
  974. status = simulate_llsc(regs, opcode);
  975. if (status < 0)
  976. status = simulate_rdhwr_normal(regs, opcode);
  977. if (status < 0)
  978. status = simulate_sync(regs, opcode);
  979. if (status < 0)
  980. status = simulate_fp(regs, opcode, old_epc, old31);
  981. } else if (cpu_has_mmips) {
  982. unsigned short mmop[2] = { 0 };
  983. if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
  984. status = SIGSEGV;
  985. if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
  986. status = SIGSEGV;
  987. opcode = mmop[0];
  988. opcode = (opcode << 16) | mmop[1];
  989. if (status < 0)
  990. status = simulate_rdhwr_mm(regs, opcode);
  991. }
  992. if (status < 0)
  993. status = SIGILL;
  994. if (unlikely(status > 0)) {
  995. regs->cp0_epc = old_epc; /* Undo skip-over. */
  996. regs->regs[31] = old31;
  997. force_sig(status, current);
  998. }
  999. out:
  1000. exception_exit(prev_state);
  1001. }
  1002. /*
  1003. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  1004. * emulated more than some threshold number of instructions, force migration to
  1005. * a "CPU" that has FP support.
  1006. */
  1007. static void mt_ase_fp_affinity(void)
  1008. {
  1009. #ifdef CONFIG_MIPS_MT_FPAFF
  1010. if (mt_fpemul_threshold > 0 &&
  1011. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  1012. /*
  1013. * If there's no FPU present, or if the application has already
  1014. * restricted the allowed set to exclude any CPUs with FPUs,
  1015. * we'll skip the procedure.
  1016. */
  1017. if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
  1018. cpumask_t tmask;
  1019. current->thread.user_cpus_allowed
  1020. = current->cpus_allowed;
  1021. cpumask_and(&tmask, &current->cpus_allowed,
  1022. &mt_fpu_cpumask);
  1023. set_cpus_allowed_ptr(current, &tmask);
  1024. set_thread_flag(TIF_FPUBOUND);
  1025. }
  1026. }
  1027. #endif /* CONFIG_MIPS_MT_FPAFF */
  1028. }
  1029. /*
  1030. * No lock; only written during early bootup by CPU 0.
  1031. */
  1032. static RAW_NOTIFIER_HEAD(cu2_chain);
  1033. int __ref register_cu2_notifier(struct notifier_block *nb)
  1034. {
  1035. return raw_notifier_chain_register(&cu2_chain, nb);
  1036. }
  1037. int cu2_notifier_call_chain(unsigned long val, void *v)
  1038. {
  1039. return raw_notifier_call_chain(&cu2_chain, val, v);
  1040. }
  1041. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  1042. void *data)
  1043. {
  1044. struct pt_regs *regs = data;
  1045. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  1046. "instruction", regs);
  1047. force_sig(SIGILL, current);
  1048. return NOTIFY_OK;
  1049. }
  1050. static int wait_on_fp_mode_switch(atomic_t *p)
  1051. {
  1052. /*
  1053. * The FP mode for this task is currently being switched. That may
  1054. * involve modifications to the format of this tasks FP context which
  1055. * make it unsafe to proceed with execution for the moment. Instead,
  1056. * schedule some other task.
  1057. */
  1058. schedule();
  1059. return 0;
  1060. }
  1061. static int enable_restore_fp_context(int msa)
  1062. {
  1063. int err, was_fpu_owner, prior_msa;
  1064. /*
  1065. * If an FP mode switch is currently underway, wait for it to
  1066. * complete before proceeding.
  1067. */
  1068. wait_on_atomic_t(&current->mm->context.fp_mode_switching,
  1069. wait_on_fp_mode_switch, TASK_KILLABLE);
  1070. if (!used_math()) {
  1071. /* First time FP context user. */
  1072. preempt_disable();
  1073. err = init_fpu();
  1074. if (msa && !err) {
  1075. enable_msa();
  1076. init_msa_upper();
  1077. set_thread_flag(TIF_USEDMSA);
  1078. set_thread_flag(TIF_MSA_CTX_LIVE);
  1079. }
  1080. preempt_enable();
  1081. if (!err)
  1082. set_used_math();
  1083. return err;
  1084. }
  1085. /*
  1086. * This task has formerly used the FP context.
  1087. *
  1088. * If this thread has no live MSA vector context then we can simply
  1089. * restore the scalar FP context. If it has live MSA vector context
  1090. * (that is, it has or may have used MSA since last performing a
  1091. * function call) then we'll need to restore the vector context. This
  1092. * applies even if we're currently only executing a scalar FP
  1093. * instruction. This is because if we were to later execute an MSA
  1094. * instruction then we'd either have to:
  1095. *
  1096. * - Restore the vector context & clobber any registers modified by
  1097. * scalar FP instructions between now & then.
  1098. *
  1099. * or
  1100. *
  1101. * - Not restore the vector context & lose the most significant bits
  1102. * of all vector registers.
  1103. *
  1104. * Neither of those options is acceptable. We cannot restore the least
  1105. * significant bits of the registers now & only restore the most
  1106. * significant bits later because the most significant bits of any
  1107. * vector registers whose aliased FP register is modified now will have
  1108. * been zeroed. We'd have no way to know that when restoring the vector
  1109. * context & thus may load an outdated value for the most significant
  1110. * bits of a vector register.
  1111. */
  1112. if (!msa && !thread_msa_context_live())
  1113. return own_fpu(1);
  1114. /*
  1115. * This task is using or has previously used MSA. Thus we require
  1116. * that Status.FR == 1.
  1117. */
  1118. preempt_disable();
  1119. was_fpu_owner = is_fpu_owner();
  1120. err = own_fpu_inatomic(0);
  1121. if (err)
  1122. goto out;
  1123. enable_msa();
  1124. write_msa_csr(current->thread.fpu.msacsr);
  1125. set_thread_flag(TIF_USEDMSA);
  1126. /*
  1127. * If this is the first time that the task is using MSA and it has
  1128. * previously used scalar FP in this time slice then we already nave
  1129. * FP context which we shouldn't clobber. We do however need to clear
  1130. * the upper 64b of each vector register so that this task has no
  1131. * opportunity to see data left behind by another.
  1132. */
  1133. prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
  1134. if (!prior_msa && was_fpu_owner) {
  1135. init_msa_upper();
  1136. goto out;
  1137. }
  1138. if (!prior_msa) {
  1139. /*
  1140. * Restore the least significant 64b of each vector register
  1141. * from the existing scalar FP context.
  1142. */
  1143. _restore_fp(current);
  1144. /*
  1145. * The task has not formerly used MSA, so clear the upper 64b
  1146. * of each vector register such that it cannot see data left
  1147. * behind by another task.
  1148. */
  1149. init_msa_upper();
  1150. } else {
  1151. /* We need to restore the vector context. */
  1152. restore_msa(current);
  1153. /* Restore the scalar FP control & status register */
  1154. if (!was_fpu_owner)
  1155. write_32bit_cp1_register(CP1_STATUS,
  1156. current->thread.fpu.fcr31);
  1157. }
  1158. out:
  1159. preempt_enable();
  1160. return 0;
  1161. }
  1162. asmlinkage void do_cpu(struct pt_regs *regs)
  1163. {
  1164. enum ctx_state prev_state;
  1165. unsigned int __user *epc;
  1166. unsigned long old_epc, old31;
  1167. void __user *fault_addr;
  1168. unsigned int opcode;
  1169. unsigned long fcr31;
  1170. unsigned int cpid;
  1171. int status, err;
  1172. int sig;
  1173. prev_state = exception_enter();
  1174. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1175. if (cpid != 2)
  1176. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1177. switch (cpid) {
  1178. case 0:
  1179. epc = (unsigned int __user *)exception_epc(regs);
  1180. old_epc = regs->cp0_epc;
  1181. old31 = regs->regs[31];
  1182. opcode = 0;
  1183. status = -1;
  1184. if (unlikely(compute_return_epc(regs) < 0))
  1185. break;
  1186. if (!get_isa16_mode(regs->cp0_epc)) {
  1187. if (unlikely(get_user(opcode, epc) < 0))
  1188. status = SIGSEGV;
  1189. if (!cpu_has_llsc && status < 0)
  1190. status = simulate_llsc(regs, opcode);
  1191. }
  1192. if (status < 0)
  1193. status = SIGILL;
  1194. if (unlikely(status > 0)) {
  1195. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1196. regs->regs[31] = old31;
  1197. force_sig(status, current);
  1198. }
  1199. break;
  1200. case 3:
  1201. /*
  1202. * The COP3 opcode space and consequently the CP0.Status.CU3
  1203. * bit and the CP0.Cause.CE=3 encoding have been removed as
  1204. * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
  1205. * up the space has been reused for COP1X instructions, that
  1206. * are enabled by the CP0.Status.CU1 bit and consequently
  1207. * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
  1208. * exceptions. Some FPU-less processors that implement one
  1209. * of these ISAs however use this code erroneously for COP1X
  1210. * instructions. Therefore we redirect this trap to the FP
  1211. * emulator too.
  1212. */
  1213. if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
  1214. force_sig(SIGILL, current);
  1215. break;
  1216. }
  1217. /* Fall through. */
  1218. case 1:
  1219. err = enable_restore_fp_context(0);
  1220. if (raw_cpu_has_fpu && !err)
  1221. break;
  1222. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
  1223. &fault_addr);
  1224. fcr31 = current->thread.fpu.fcr31;
  1225. /*
  1226. * We can't allow the emulated instruction to leave
  1227. * any of the cause bits set in $fcr31.
  1228. */
  1229. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  1230. /* Send a signal if required. */
  1231. if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
  1232. mt_ase_fp_affinity();
  1233. break;
  1234. case 2:
  1235. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1236. break;
  1237. }
  1238. exception_exit(prev_state);
  1239. }
  1240. asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
  1241. {
  1242. enum ctx_state prev_state;
  1243. prev_state = exception_enter();
  1244. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  1245. if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
  1246. current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
  1247. goto out;
  1248. /* Clear MSACSR.Cause before enabling interrupts */
  1249. write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
  1250. local_irq_enable();
  1251. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1252. force_sig(SIGFPE, current);
  1253. out:
  1254. exception_exit(prev_state);
  1255. }
  1256. asmlinkage void do_msa(struct pt_regs *regs)
  1257. {
  1258. enum ctx_state prev_state;
  1259. int err;
  1260. prev_state = exception_enter();
  1261. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1262. force_sig(SIGILL, current);
  1263. goto out;
  1264. }
  1265. die_if_kernel("do_msa invoked from kernel context!", regs);
  1266. err = enable_restore_fp_context(1);
  1267. if (err)
  1268. force_sig(SIGILL, current);
  1269. out:
  1270. exception_exit(prev_state);
  1271. }
  1272. asmlinkage void do_mdmx(struct pt_regs *regs)
  1273. {
  1274. enum ctx_state prev_state;
  1275. prev_state = exception_enter();
  1276. force_sig(SIGILL, current);
  1277. exception_exit(prev_state);
  1278. }
  1279. /*
  1280. * Called with interrupts disabled.
  1281. */
  1282. asmlinkage void do_watch(struct pt_regs *regs)
  1283. {
  1284. siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
  1285. enum ctx_state prev_state;
  1286. prev_state = exception_enter();
  1287. /*
  1288. * Clear WP (bit 22) bit of cause register so we don't loop
  1289. * forever.
  1290. */
  1291. clear_c0_cause(CAUSEF_WP);
  1292. /*
  1293. * If the current thread has the watch registers loaded, save
  1294. * their values and send SIGTRAP. Otherwise another thread
  1295. * left the registers set, clear them and continue.
  1296. */
  1297. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1298. mips_read_watch_registers();
  1299. local_irq_enable();
  1300. force_sig_info(SIGTRAP, &info, current);
  1301. } else {
  1302. mips_clear_watch_registers();
  1303. local_irq_enable();
  1304. }
  1305. exception_exit(prev_state);
  1306. }
  1307. asmlinkage void do_mcheck(struct pt_regs *regs)
  1308. {
  1309. int multi_match = regs->cp0_status & ST0_TS;
  1310. enum ctx_state prev_state;
  1311. mm_segment_t old_fs = get_fs();
  1312. prev_state = exception_enter();
  1313. show_regs(regs);
  1314. if (multi_match) {
  1315. dump_tlb_regs();
  1316. pr_info("\n");
  1317. dump_tlb_all();
  1318. }
  1319. if (!user_mode(regs))
  1320. set_fs(KERNEL_DS);
  1321. show_code((unsigned int __user *) regs->cp0_epc);
  1322. set_fs(old_fs);
  1323. /*
  1324. * Some chips may have other causes of machine check (e.g. SB1
  1325. * graduation timer)
  1326. */
  1327. panic("Caught Machine Check exception - %scaused by multiple "
  1328. "matching entries in the TLB.",
  1329. (multi_match) ? "" : "not ");
  1330. }
  1331. asmlinkage void do_mt(struct pt_regs *regs)
  1332. {
  1333. int subcode;
  1334. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1335. >> VPECONTROL_EXCPT_SHIFT;
  1336. switch (subcode) {
  1337. case 0:
  1338. printk(KERN_DEBUG "Thread Underflow\n");
  1339. break;
  1340. case 1:
  1341. printk(KERN_DEBUG "Thread Overflow\n");
  1342. break;
  1343. case 2:
  1344. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1345. break;
  1346. case 3:
  1347. printk(KERN_DEBUG "Gating Storage Exception\n");
  1348. break;
  1349. case 4:
  1350. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1351. break;
  1352. case 5:
  1353. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1354. break;
  1355. default:
  1356. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1357. subcode);
  1358. break;
  1359. }
  1360. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1361. force_sig(SIGILL, current);
  1362. }
  1363. asmlinkage void do_dsp(struct pt_regs *regs)
  1364. {
  1365. if (cpu_has_dsp)
  1366. panic("Unexpected DSP exception");
  1367. force_sig(SIGILL, current);
  1368. }
  1369. asmlinkage void do_reserved(struct pt_regs *regs)
  1370. {
  1371. /*
  1372. * Game over - no way to handle this if it ever occurs. Most probably
  1373. * caused by a new unknown cpu type or after another deadly
  1374. * hard/software error.
  1375. */
  1376. show_regs(regs);
  1377. panic("Caught reserved exception %ld - should not happen.",
  1378. (regs->cp0_cause & 0x7f) >> 2);
  1379. }
  1380. static int __initdata l1parity = 1;
  1381. static int __init nol1parity(char *s)
  1382. {
  1383. l1parity = 0;
  1384. return 1;
  1385. }
  1386. __setup("nol1par", nol1parity);
  1387. static int __initdata l2parity = 1;
  1388. static int __init nol2parity(char *s)
  1389. {
  1390. l2parity = 0;
  1391. return 1;
  1392. }
  1393. __setup("nol2par", nol2parity);
  1394. /*
  1395. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1396. * it different ways.
  1397. */
  1398. static inline void parity_protection_init(void)
  1399. {
  1400. switch (current_cpu_type()) {
  1401. case CPU_24K:
  1402. case CPU_34K:
  1403. case CPU_74K:
  1404. case CPU_1004K:
  1405. case CPU_1074K:
  1406. case CPU_INTERAPTIV:
  1407. case CPU_PROAPTIV:
  1408. case CPU_P5600:
  1409. case CPU_QEMU_GENERIC:
  1410. case CPU_I6400:
  1411. case CPU_P6600:
  1412. {
  1413. #define ERRCTL_PE 0x80000000
  1414. #define ERRCTL_L2P 0x00800000
  1415. unsigned long errctl;
  1416. unsigned int l1parity_present, l2parity_present;
  1417. errctl = read_c0_ecc();
  1418. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1419. /* probe L1 parity support */
  1420. write_c0_ecc(errctl | ERRCTL_PE);
  1421. back_to_back_c0_hazard();
  1422. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1423. /* probe L2 parity support */
  1424. write_c0_ecc(errctl|ERRCTL_L2P);
  1425. back_to_back_c0_hazard();
  1426. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1427. if (l1parity_present && l2parity_present) {
  1428. if (l1parity)
  1429. errctl |= ERRCTL_PE;
  1430. if (l1parity ^ l2parity)
  1431. errctl |= ERRCTL_L2P;
  1432. } else if (l1parity_present) {
  1433. if (l1parity)
  1434. errctl |= ERRCTL_PE;
  1435. } else if (l2parity_present) {
  1436. if (l2parity)
  1437. errctl |= ERRCTL_L2P;
  1438. } else {
  1439. /* No parity available */
  1440. }
  1441. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1442. write_c0_ecc(errctl);
  1443. back_to_back_c0_hazard();
  1444. errctl = read_c0_ecc();
  1445. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1446. if (l1parity_present)
  1447. printk(KERN_INFO "Cache parity protection %sabled\n",
  1448. (errctl & ERRCTL_PE) ? "en" : "dis");
  1449. if (l2parity_present) {
  1450. if (l1parity_present && l1parity)
  1451. errctl ^= ERRCTL_L2P;
  1452. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1453. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1454. }
  1455. }
  1456. break;
  1457. case CPU_5KC:
  1458. case CPU_5KE:
  1459. case CPU_LOONGSON1:
  1460. write_c0_ecc(0x80000000);
  1461. back_to_back_c0_hazard();
  1462. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1463. printk(KERN_INFO "Cache parity protection %sabled\n",
  1464. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1465. break;
  1466. case CPU_20KC:
  1467. case CPU_25KF:
  1468. /* Clear the DE bit (bit 16) in the c0_status register. */
  1469. printk(KERN_INFO "Enable cache parity protection for "
  1470. "MIPS 20KC/25KF CPUs.\n");
  1471. clear_c0_status(ST0_DE);
  1472. break;
  1473. default:
  1474. break;
  1475. }
  1476. }
  1477. asmlinkage void cache_parity_error(void)
  1478. {
  1479. const int field = 2 * sizeof(unsigned long);
  1480. unsigned int reg_val;
  1481. /* For the moment, report the problem and hang. */
  1482. printk("Cache error exception:\n");
  1483. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1484. reg_val = read_c0_cacheerr();
  1485. printk("c0_cacheerr == %08x\n", reg_val);
  1486. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1487. reg_val & (1<<30) ? "secondary" : "primary",
  1488. reg_val & (1<<31) ? "data" : "insn");
  1489. if ((cpu_has_mips_r2_r6) &&
  1490. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1491. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1492. reg_val & (1<<29) ? "ED " : "",
  1493. reg_val & (1<<28) ? "ET " : "",
  1494. reg_val & (1<<27) ? "ES " : "",
  1495. reg_val & (1<<26) ? "EE " : "",
  1496. reg_val & (1<<25) ? "EB " : "",
  1497. reg_val & (1<<24) ? "EI " : "",
  1498. reg_val & (1<<23) ? "E1 " : "",
  1499. reg_val & (1<<22) ? "E0 " : "");
  1500. } else {
  1501. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1502. reg_val & (1<<29) ? "ED " : "",
  1503. reg_val & (1<<28) ? "ET " : "",
  1504. reg_val & (1<<26) ? "EE " : "",
  1505. reg_val & (1<<25) ? "EB " : "",
  1506. reg_val & (1<<24) ? "EI " : "",
  1507. reg_val & (1<<23) ? "E1 " : "",
  1508. reg_val & (1<<22) ? "E0 " : "");
  1509. }
  1510. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1511. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1512. if (reg_val & (1<<22))
  1513. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1514. if (reg_val & (1<<23))
  1515. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1516. #endif
  1517. panic("Can't handle the cache error!");
  1518. }
  1519. asmlinkage void do_ftlb(void)
  1520. {
  1521. const int field = 2 * sizeof(unsigned long);
  1522. unsigned int reg_val;
  1523. /* For the moment, report the problem and hang. */
  1524. if ((cpu_has_mips_r2_r6) &&
  1525. (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
  1526. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
  1527. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1528. read_c0_ecc());
  1529. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1530. reg_val = read_c0_cacheerr();
  1531. pr_err("c0_cacheerr == %08x\n", reg_val);
  1532. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1533. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1534. } else {
  1535. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1536. reg_val & (1<<30) ? "secondary" : "primary",
  1537. reg_val & (1<<31) ? "data" : "insn");
  1538. }
  1539. } else {
  1540. pr_err("FTLB error exception\n");
  1541. }
  1542. /* Just print the cacheerr bits for now */
  1543. cache_parity_error();
  1544. }
  1545. /*
  1546. * SDBBP EJTAG debug exception handler.
  1547. * We skip the instruction and return to the next instruction.
  1548. */
  1549. void ejtag_exception_handler(struct pt_regs *regs)
  1550. {
  1551. const int field = 2 * sizeof(unsigned long);
  1552. unsigned long depc, old_epc, old_ra;
  1553. unsigned int debug;
  1554. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1555. depc = read_c0_depc();
  1556. debug = read_c0_debug();
  1557. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1558. if (debug & 0x80000000) {
  1559. /*
  1560. * In branch delay slot.
  1561. * We cheat a little bit here and use EPC to calculate the
  1562. * debug return address (DEPC). EPC is restored after the
  1563. * calculation.
  1564. */
  1565. old_epc = regs->cp0_epc;
  1566. old_ra = regs->regs[31];
  1567. regs->cp0_epc = depc;
  1568. compute_return_epc(regs);
  1569. depc = regs->cp0_epc;
  1570. regs->cp0_epc = old_epc;
  1571. regs->regs[31] = old_ra;
  1572. } else
  1573. depc += 4;
  1574. write_c0_depc(depc);
  1575. #if 0
  1576. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1577. write_c0_debug(debug | 0x100);
  1578. #endif
  1579. }
  1580. /*
  1581. * NMI exception handler.
  1582. * No lock; only written during early bootup by CPU 0.
  1583. */
  1584. static RAW_NOTIFIER_HEAD(nmi_chain);
  1585. int register_nmi_notifier(struct notifier_block *nb)
  1586. {
  1587. return raw_notifier_chain_register(&nmi_chain, nb);
  1588. }
  1589. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1590. {
  1591. char str[100];
  1592. nmi_enter();
  1593. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1594. bust_spinlocks(1);
  1595. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1596. smp_processor_id(), regs->cp0_epc);
  1597. regs->cp0_epc = read_c0_errorepc();
  1598. die(str, regs);
  1599. nmi_exit();
  1600. }
  1601. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1602. unsigned long ebase;
  1603. unsigned long exception_handlers[32];
  1604. unsigned long vi_handlers[64];
  1605. void __init *set_except_vector(int n, void *addr)
  1606. {
  1607. unsigned long handler = (unsigned long) addr;
  1608. unsigned long old_handler;
  1609. #ifdef CONFIG_CPU_MICROMIPS
  1610. /*
  1611. * Only the TLB handlers are cache aligned with an even
  1612. * address. All other handlers are on an odd address and
  1613. * require no modification. Otherwise, MIPS32 mode will
  1614. * be entered when handling any TLB exceptions. That
  1615. * would be bad...since we must stay in microMIPS mode.
  1616. */
  1617. if (!(handler & 0x1))
  1618. handler |= 1;
  1619. #endif
  1620. old_handler = xchg(&exception_handlers[n], handler);
  1621. if (n == 0 && cpu_has_divec) {
  1622. #ifdef CONFIG_CPU_MICROMIPS
  1623. unsigned long jump_mask = ~((1 << 27) - 1);
  1624. #else
  1625. unsigned long jump_mask = ~((1 << 28) - 1);
  1626. #endif
  1627. u32 *buf = (u32 *)(ebase + 0x200);
  1628. unsigned int k0 = 26;
  1629. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1630. uasm_i_j(&buf, handler & ~jump_mask);
  1631. uasm_i_nop(&buf);
  1632. } else {
  1633. UASM_i_LA(&buf, k0, handler);
  1634. uasm_i_jr(&buf, k0);
  1635. uasm_i_nop(&buf);
  1636. }
  1637. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1638. }
  1639. return (void *)old_handler;
  1640. }
  1641. static void do_default_vi(void)
  1642. {
  1643. show_regs(get_irq_regs());
  1644. panic("Caught unexpected vectored interrupt.");
  1645. }
  1646. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1647. {
  1648. unsigned long handler;
  1649. unsigned long old_handler = vi_handlers[n];
  1650. int srssets = current_cpu_data.srsets;
  1651. u16 *h;
  1652. unsigned char *b;
  1653. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1654. if (addr == NULL) {
  1655. handler = (unsigned long) do_default_vi;
  1656. srs = 0;
  1657. } else
  1658. handler = (unsigned long) addr;
  1659. vi_handlers[n] = handler;
  1660. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1661. if (srs >= srssets)
  1662. panic("Shadow register set %d not supported", srs);
  1663. if (cpu_has_veic) {
  1664. if (board_bind_eic_interrupt)
  1665. board_bind_eic_interrupt(n, srs);
  1666. } else if (cpu_has_vint) {
  1667. /* SRSMap is only defined if shadow sets are implemented */
  1668. if (srssets > 1)
  1669. change_c0_srsmap(0xf << n*4, srs << n*4);
  1670. }
  1671. if (srs == 0) {
  1672. /*
  1673. * If no shadow set is selected then use the default handler
  1674. * that does normal register saving and standard interrupt exit
  1675. */
  1676. extern char except_vec_vi, except_vec_vi_lui;
  1677. extern char except_vec_vi_ori, except_vec_vi_end;
  1678. extern char rollback_except_vec_vi;
  1679. char *vec_start = using_rollback_handler() ?
  1680. &rollback_except_vec_vi : &except_vec_vi;
  1681. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1682. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1683. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1684. #else
  1685. const int lui_offset = &except_vec_vi_lui - vec_start;
  1686. const int ori_offset = &except_vec_vi_ori - vec_start;
  1687. #endif
  1688. const int handler_len = &except_vec_vi_end - vec_start;
  1689. if (handler_len > VECTORSPACING) {
  1690. /*
  1691. * Sigh... panicing won't help as the console
  1692. * is probably not configured :(
  1693. */
  1694. panic("VECTORSPACING too small");
  1695. }
  1696. set_handler(((unsigned long)b - ebase), vec_start,
  1697. #ifdef CONFIG_CPU_MICROMIPS
  1698. (handler_len - 1));
  1699. #else
  1700. handler_len);
  1701. #endif
  1702. h = (u16 *)(b + lui_offset);
  1703. *h = (handler >> 16) & 0xffff;
  1704. h = (u16 *)(b + ori_offset);
  1705. *h = (handler & 0xffff);
  1706. local_flush_icache_range((unsigned long)b,
  1707. (unsigned long)(b+handler_len));
  1708. }
  1709. else {
  1710. /*
  1711. * In other cases jump directly to the interrupt handler. It
  1712. * is the handler's responsibility to save registers if required
  1713. * (eg hi/lo) and return from the exception using "eret".
  1714. */
  1715. u32 insn;
  1716. h = (u16 *)b;
  1717. /* j handler */
  1718. #ifdef CONFIG_CPU_MICROMIPS
  1719. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1720. #else
  1721. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1722. #endif
  1723. h[0] = (insn >> 16) & 0xffff;
  1724. h[1] = insn & 0xffff;
  1725. h[2] = 0;
  1726. h[3] = 0;
  1727. local_flush_icache_range((unsigned long)b,
  1728. (unsigned long)(b+8));
  1729. }
  1730. return (void *)old_handler;
  1731. }
  1732. void *set_vi_handler(int n, vi_handler_t addr)
  1733. {
  1734. return set_vi_srs_handler(n, addr, 0);
  1735. }
  1736. extern void tlb_init(void);
  1737. /*
  1738. * Timer interrupt
  1739. */
  1740. int cp0_compare_irq;
  1741. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1742. int cp0_compare_irq_shift;
  1743. /*
  1744. * Performance counter IRQ or -1 if shared with timer
  1745. */
  1746. int cp0_perfcount_irq;
  1747. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1748. /*
  1749. * Fast debug channel IRQ or -1 if not present
  1750. */
  1751. int cp0_fdc_irq;
  1752. EXPORT_SYMBOL_GPL(cp0_fdc_irq);
  1753. static int noulri;
  1754. static int __init ulri_disable(char *s)
  1755. {
  1756. pr_info("Disabling ulri\n");
  1757. noulri = 1;
  1758. return 1;
  1759. }
  1760. __setup("noulri", ulri_disable);
  1761. /* configure STATUS register */
  1762. static void configure_status(void)
  1763. {
  1764. /*
  1765. * Disable coprocessors and select 32-bit or 64-bit addressing
  1766. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1767. * flag that some firmware may have left set and the TS bit (for
  1768. * IP27). Set XX for ISA IV code to work.
  1769. */
  1770. unsigned int status_set = ST0_CU0;
  1771. #ifdef CONFIG_64BIT
  1772. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1773. #endif
  1774. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1775. status_set |= ST0_XX;
  1776. if (cpu_has_dsp)
  1777. status_set |= ST0_MX;
  1778. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1779. status_set);
  1780. }
  1781. /* configure HWRENA register */
  1782. static void configure_hwrena(void)
  1783. {
  1784. unsigned int hwrena = cpu_hwrena_impl_bits;
  1785. if (cpu_has_mips_r2_r6)
  1786. hwrena |= 0x0000000f;
  1787. if (!noulri && cpu_has_userlocal)
  1788. hwrena |= (1 << 29);
  1789. if (hwrena)
  1790. write_c0_hwrena(hwrena);
  1791. }
  1792. static void configure_exception_vector(void)
  1793. {
  1794. if (cpu_has_veic || cpu_has_vint) {
  1795. unsigned long sr = set_c0_status(ST0_BEV);
  1796. write_c0_ebase(ebase);
  1797. write_c0_status(sr);
  1798. /* Setting vector spacing enables EI/VI mode */
  1799. change_c0_intctl(0x3e0, VECTORSPACING);
  1800. }
  1801. if (cpu_has_divec) {
  1802. if (cpu_has_mipsmt) {
  1803. unsigned int vpflags = dvpe();
  1804. set_c0_cause(CAUSEF_IV);
  1805. evpe(vpflags);
  1806. } else
  1807. set_c0_cause(CAUSEF_IV);
  1808. }
  1809. }
  1810. void per_cpu_trap_init(bool is_boot_cpu)
  1811. {
  1812. unsigned int cpu = smp_processor_id();
  1813. configure_status();
  1814. configure_hwrena();
  1815. configure_exception_vector();
  1816. /*
  1817. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1818. *
  1819. * o read IntCtl.IPTI to determine the timer interrupt
  1820. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1821. * o read IntCtl.IPFDC to determine the fast debug channel interrupt
  1822. */
  1823. if (cpu_has_mips_r2_r6) {
  1824. /*
  1825. * We shouldn't trust a secondary core has a sane EBASE register
  1826. * so use the one calculated by the boot CPU.
  1827. */
  1828. if (!is_boot_cpu)
  1829. write_c0_ebase(ebase);
  1830. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1831. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1832. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1833. cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
  1834. if (!cp0_fdc_irq)
  1835. cp0_fdc_irq = -1;
  1836. } else {
  1837. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1838. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1839. cp0_perfcount_irq = -1;
  1840. cp0_fdc_irq = -1;
  1841. }
  1842. if (!cpu_data[cpu].asid_cache)
  1843. cpu_data[cpu].asid_cache = asid_first_version(cpu);
  1844. atomic_inc(&init_mm.mm_count);
  1845. current->active_mm = &init_mm;
  1846. BUG_ON(current->mm);
  1847. enter_lazy_tlb(&init_mm, current);
  1848. /* Boot CPU's cache setup in setup_arch(). */
  1849. if (!is_boot_cpu)
  1850. cpu_cache_init();
  1851. tlb_init();
  1852. TLBMISS_HANDLER_SETUP();
  1853. }
  1854. /* Install CPU exception handler */
  1855. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1856. {
  1857. #ifdef CONFIG_CPU_MICROMIPS
  1858. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1859. #else
  1860. memcpy((void *)(ebase + offset), addr, size);
  1861. #endif
  1862. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1863. }
  1864. static char panic_null_cerr[] =
  1865. "Trying to set NULL cache error exception handler";
  1866. /*
  1867. * Install uncached CPU exception handler.
  1868. * This is suitable only for the cache error exception which is the only
  1869. * exception handler that is being run uncached.
  1870. */
  1871. void set_uncached_handler(unsigned long offset, void *addr,
  1872. unsigned long size)
  1873. {
  1874. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1875. if (!addr)
  1876. panic(panic_null_cerr);
  1877. memcpy((void *)(uncached_ebase + offset), addr, size);
  1878. }
  1879. static int __initdata rdhwr_noopt;
  1880. static int __init set_rdhwr_noopt(char *str)
  1881. {
  1882. rdhwr_noopt = 1;
  1883. return 1;
  1884. }
  1885. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1886. void __init trap_init(void)
  1887. {
  1888. extern char except_vec3_generic;
  1889. extern char except_vec4;
  1890. extern char except_vec3_r4000;
  1891. unsigned long i;
  1892. check_wait();
  1893. if (cpu_has_veic || cpu_has_vint) {
  1894. unsigned long size = 0x200 + VECTORSPACING*64;
  1895. ebase = (unsigned long)
  1896. __alloc_bootmem(size, 1 << fls(size), 0);
  1897. } else {
  1898. ebase = CAC_BASE;
  1899. if (cpu_has_mips_r2_r6)
  1900. ebase += (read_c0_ebase() & 0x3ffff000);
  1901. }
  1902. if (cpu_has_mmips) {
  1903. unsigned int config3 = read_c0_config3();
  1904. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  1905. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  1906. else
  1907. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  1908. }
  1909. if (board_ebase_setup)
  1910. board_ebase_setup();
  1911. per_cpu_trap_init(true);
  1912. /*
  1913. * Copy the generic exception handlers to their final destination.
  1914. * This will be overridden later as suitable for a particular
  1915. * configuration.
  1916. */
  1917. set_handler(0x180, &except_vec3_generic, 0x80);
  1918. /*
  1919. * Setup default vectors
  1920. */
  1921. for (i = 0; i <= 31; i++)
  1922. set_except_vector(i, handle_reserved);
  1923. /*
  1924. * Copy the EJTAG debug exception vector handler code to it's final
  1925. * destination.
  1926. */
  1927. if (cpu_has_ejtag && board_ejtag_handler_setup)
  1928. board_ejtag_handler_setup();
  1929. /*
  1930. * Only some CPUs have the watch exceptions.
  1931. */
  1932. if (cpu_has_watch)
  1933. set_except_vector(EXCCODE_WATCH, handle_watch);
  1934. /*
  1935. * Initialise interrupt handlers
  1936. */
  1937. if (cpu_has_veic || cpu_has_vint) {
  1938. int nvec = cpu_has_veic ? 64 : 8;
  1939. for (i = 0; i < nvec; i++)
  1940. set_vi_handler(i, NULL);
  1941. }
  1942. else if (cpu_has_divec)
  1943. set_handler(0x200, &except_vec4, 0x8);
  1944. /*
  1945. * Some CPUs can enable/disable for cache parity detection, but does
  1946. * it different ways.
  1947. */
  1948. parity_protection_init();
  1949. /*
  1950. * The Data Bus Errors / Instruction Bus Errors are signaled
  1951. * by external hardware. Therefore these two exceptions
  1952. * may have board specific handlers.
  1953. */
  1954. if (board_be_init)
  1955. board_be_init();
  1956. set_except_vector(EXCCODE_INT, using_rollback_handler() ?
  1957. rollback_handle_int : handle_int);
  1958. set_except_vector(EXCCODE_MOD, handle_tlbm);
  1959. set_except_vector(EXCCODE_TLBL, handle_tlbl);
  1960. set_except_vector(EXCCODE_TLBS, handle_tlbs);
  1961. set_except_vector(EXCCODE_ADEL, handle_adel);
  1962. set_except_vector(EXCCODE_ADES, handle_ades);
  1963. set_except_vector(EXCCODE_IBE, handle_ibe);
  1964. set_except_vector(EXCCODE_DBE, handle_dbe);
  1965. set_except_vector(EXCCODE_SYS, handle_sys);
  1966. set_except_vector(EXCCODE_BP, handle_bp);
  1967. set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
  1968. (cpu_has_vtag_icache ?
  1969. handle_ri_rdhwr_vivt : handle_ri_rdhwr));
  1970. set_except_vector(EXCCODE_CPU, handle_cpu);
  1971. set_except_vector(EXCCODE_OV, handle_ov);
  1972. set_except_vector(EXCCODE_TR, handle_tr);
  1973. set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
  1974. if (current_cpu_type() == CPU_R6000 ||
  1975. current_cpu_type() == CPU_R6000A) {
  1976. /*
  1977. * The R6000 is the only R-series CPU that features a machine
  1978. * check exception (similar to the R4000 cache error) and
  1979. * unaligned ldc1/sdc1 exception. The handlers have not been
  1980. * written yet. Well, anyway there is no R6000 machine on the
  1981. * current list of targets for Linux/MIPS.
  1982. * (Duh, crap, there is someone with a triple R6k machine)
  1983. */
  1984. //set_except_vector(14, handle_mc);
  1985. //set_except_vector(15, handle_ndc);
  1986. }
  1987. if (board_nmi_handler_setup)
  1988. board_nmi_handler_setup();
  1989. if (cpu_has_fpu && !cpu_has_nofpuex)
  1990. set_except_vector(EXCCODE_FPE, handle_fpe);
  1991. set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
  1992. if (cpu_has_rixiex) {
  1993. set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
  1994. set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
  1995. }
  1996. set_except_vector(EXCCODE_MSADIS, handle_msa);
  1997. set_except_vector(EXCCODE_MDMX, handle_mdmx);
  1998. if (cpu_has_mcheck)
  1999. set_except_vector(EXCCODE_MCHECK, handle_mcheck);
  2000. if (cpu_has_mipsmt)
  2001. set_except_vector(EXCCODE_THREAD, handle_mt);
  2002. set_except_vector(EXCCODE_DSPDIS, handle_dsp);
  2003. if (board_cache_error_setup)
  2004. board_cache_error_setup();
  2005. if (cpu_has_vce)
  2006. /* Special exception: R4[04]00 uses also the divec space. */
  2007. set_handler(0x180, &except_vec3_r4000, 0x100);
  2008. else if (cpu_has_4kex)
  2009. set_handler(0x180, &except_vec3_generic, 0x80);
  2010. else
  2011. set_handler(0x080, &except_vec3_generic, 0x80);
  2012. local_flush_icache_range(ebase, ebase + 0x400);
  2013. sort_extable(__start___dbe_table, __stop___dbe_table);
  2014. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  2015. }
  2016. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  2017. void *v)
  2018. {
  2019. switch (cmd) {
  2020. case CPU_PM_ENTER_FAILED:
  2021. case CPU_PM_EXIT:
  2022. configure_status();
  2023. configure_hwrena();
  2024. configure_exception_vector();
  2025. /* Restore register with CPU number for TLB handlers */
  2026. TLBMISS_HANDLER_RESTORE();
  2027. break;
  2028. }
  2029. return NOTIFY_OK;
  2030. }
  2031. static struct notifier_block trap_pm_notifier_block = {
  2032. .notifier_call = trap_pm_notifier,
  2033. };
  2034. static int __init trap_pm_init(void)
  2035. {
  2036. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  2037. }
  2038. arch_initcall(trap_pm_init);