ipv6.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098
  1. /*
  2. * Linux INET6 implementation
  3. *
  4. * Authors:
  5. * Pedro Roque <roque@di.fc.ul.pt>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _NET_IPV6_H
  13. #define _NET_IPV6_H
  14. #include <linux/ipv6.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/jhash.h>
  17. #include <linux/refcount.h>
  18. #include <net/if_inet6.h>
  19. #include <net/ndisc.h>
  20. #include <net/flow.h>
  21. #include <net/flow_dissector.h>
  22. #include <net/snmp.h>
  23. #define SIN6_LEN_RFC2133 24
  24. #define IPV6_MAXPLEN 65535
  25. /*
  26. * NextHeader field of IPv6 header
  27. */
  28. #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
  29. #define NEXTHDR_TCP 6 /* TCP segment. */
  30. #define NEXTHDR_UDP 17 /* UDP message. */
  31. #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
  32. #define NEXTHDR_ROUTING 43 /* Routing header. */
  33. #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
  34. #define NEXTHDR_GRE 47 /* GRE header. */
  35. #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
  36. #define NEXTHDR_AUTH 51 /* Authentication header. */
  37. #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
  38. #define NEXTHDR_NONE 59 /* No next header */
  39. #define NEXTHDR_DEST 60 /* Destination options header. */
  40. #define NEXTHDR_SCTP 132 /* SCTP message. */
  41. #define NEXTHDR_MOBILITY 135 /* Mobility header. */
  42. #define NEXTHDR_MAX 255
  43. #define IPV6_DEFAULT_HOPLIMIT 64
  44. #define IPV6_DEFAULT_MCASTHOPS 1
  45. /* Limits on Hop-by-Hop and Destination options.
  46. *
  47. * Per RFC8200 there is no limit on the maximum number or lengths of options in
  48. * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
  49. * We allow configurable limits in order to mitigate potential denial of
  50. * service attacks.
  51. *
  52. * There are three limits that may be set:
  53. * - Limit the number of options in a Hop-by-Hop or Destination options
  54. * extension header
  55. * - Limit the byte length of a Hop-by-Hop or Destination options extension
  56. * header
  57. * - Disallow unknown options
  58. *
  59. * The limits are expressed in corresponding sysctls:
  60. *
  61. * ipv6.sysctl.max_dst_opts_cnt
  62. * ipv6.sysctl.max_hbh_opts_cnt
  63. * ipv6.sysctl.max_dst_opts_len
  64. * ipv6.sysctl.max_hbh_opts_len
  65. *
  66. * max_*_opts_cnt is the number of TLVs that are allowed for Destination
  67. * options or Hop-by-Hop options. If the number is less than zero then unknown
  68. * TLVs are disallowed and the number of known options that are allowed is the
  69. * absolute value. Setting the value to INT_MAX indicates no limit.
  70. *
  71. * max_*_opts_len is the length limit in bytes of a Destination or
  72. * Hop-by-Hop options extension header. Setting the value to INT_MAX
  73. * indicates no length limit.
  74. *
  75. * If a limit is exceeded when processing an extension header the packet is
  76. * silently discarded.
  77. */
  78. /* Default limits for Hop-by-Hop and Destination options */
  79. #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
  80. #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
  81. #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
  82. #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
  83. /*
  84. * Addr type
  85. *
  86. * type - unicast | multicast
  87. * scope - local | site | global
  88. * v4 - compat
  89. * v4mapped
  90. * any
  91. * loopback
  92. */
  93. #define IPV6_ADDR_ANY 0x0000U
  94. #define IPV6_ADDR_UNICAST 0x0001U
  95. #define IPV6_ADDR_MULTICAST 0x0002U
  96. #define IPV6_ADDR_LOOPBACK 0x0010U
  97. #define IPV6_ADDR_LINKLOCAL 0x0020U
  98. #define IPV6_ADDR_SITELOCAL 0x0040U
  99. #define IPV6_ADDR_COMPATv4 0x0080U
  100. #define IPV6_ADDR_SCOPE_MASK 0x00f0U
  101. #define IPV6_ADDR_MAPPED 0x1000U
  102. /*
  103. * Addr scopes
  104. */
  105. #define IPV6_ADDR_MC_SCOPE(a) \
  106. ((a)->s6_addr[1] & 0x0f) /* nonstandard */
  107. #define __IPV6_ADDR_SCOPE_INVALID -1
  108. #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
  109. #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
  110. #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
  111. #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
  112. #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
  113. /*
  114. * Addr flags
  115. */
  116. #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
  117. ((a)->s6_addr[1] & 0x10)
  118. #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
  119. ((a)->s6_addr[1] & 0x20)
  120. #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
  121. ((a)->s6_addr[1] & 0x40)
  122. /*
  123. * fragmentation header
  124. */
  125. struct frag_hdr {
  126. __u8 nexthdr;
  127. __u8 reserved;
  128. __be16 frag_off;
  129. __be32 identification;
  130. };
  131. #define IP6_MF 0x0001
  132. #define IP6_OFFSET 0xFFF8
  133. #define IP6_REPLY_MARK(net, mark) \
  134. ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
  135. #include <net/sock.h>
  136. /* sysctls */
  137. extern int sysctl_mld_max_msf;
  138. extern int sysctl_mld_qrv;
  139. #define _DEVINC(net, statname, mod, idev, field) \
  140. ({ \
  141. struct inet6_dev *_idev = (idev); \
  142. if (likely(_idev != NULL)) \
  143. mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
  144. mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
  145. })
  146. /* per device counters are atomic_long_t */
  147. #define _DEVINCATOMIC(net, statname, mod, idev, field) \
  148. ({ \
  149. struct inet6_dev *_idev = (idev); \
  150. if (likely(_idev != NULL)) \
  151. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  152. mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
  153. })
  154. /* per device and per net counters are atomic_long_t */
  155. #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
  156. ({ \
  157. struct inet6_dev *_idev = (idev); \
  158. if (likely(_idev != NULL)) \
  159. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  160. SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
  161. })
  162. #define _DEVADD(net, statname, mod, idev, field, val) \
  163. ({ \
  164. struct inet6_dev *_idev = (idev); \
  165. if (likely(_idev != NULL)) \
  166. mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
  167. mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
  168. })
  169. #define _DEVUPD(net, statname, mod, idev, field, val) \
  170. ({ \
  171. struct inet6_dev *_idev = (idev); \
  172. if (likely(_idev != NULL)) \
  173. mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
  174. mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
  175. })
  176. /* MIBs */
  177. #define IP6_INC_STATS(net, idev,field) \
  178. _DEVINC(net, ipv6, , idev, field)
  179. #define __IP6_INC_STATS(net, idev,field) \
  180. _DEVINC(net, ipv6, __, idev, field)
  181. #define IP6_ADD_STATS(net, idev,field,val) \
  182. _DEVADD(net, ipv6, , idev, field, val)
  183. #define __IP6_ADD_STATS(net, idev,field,val) \
  184. _DEVADD(net, ipv6, __, idev, field, val)
  185. #define IP6_UPD_PO_STATS(net, idev,field,val) \
  186. _DEVUPD(net, ipv6, , idev, field, val)
  187. #define __IP6_UPD_PO_STATS(net, idev,field,val) \
  188. _DEVUPD(net, ipv6, __, idev, field, val)
  189. #define ICMP6_INC_STATS(net, idev, field) \
  190. _DEVINCATOMIC(net, icmpv6, , idev, field)
  191. #define __ICMP6_INC_STATS(net, idev, field) \
  192. _DEVINCATOMIC(net, icmpv6, __, idev, field)
  193. #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
  194. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  195. #define ICMP6MSGIN_INC_STATS(net, idev, field) \
  196. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
  197. struct ip6_ra_chain {
  198. struct ip6_ra_chain *next;
  199. struct sock *sk;
  200. int sel;
  201. void (*destructor)(struct sock *);
  202. };
  203. extern struct ip6_ra_chain *ip6_ra_chain;
  204. extern rwlock_t ip6_ra_lock;
  205. /*
  206. This structure is prepared by protocol, when parsing
  207. ancillary data and passed to IPv6.
  208. */
  209. struct ipv6_txoptions {
  210. refcount_t refcnt;
  211. /* Length of this structure */
  212. int tot_len;
  213. /* length of extension headers */
  214. __u16 opt_flen; /* after fragment hdr */
  215. __u16 opt_nflen; /* before fragment hdr */
  216. struct ipv6_opt_hdr *hopopt;
  217. struct ipv6_opt_hdr *dst0opt;
  218. struct ipv6_rt_hdr *srcrt; /* Routing Header */
  219. struct ipv6_opt_hdr *dst1opt;
  220. struct rcu_head rcu;
  221. /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
  222. };
  223. struct ip6_flowlabel {
  224. struct ip6_flowlabel __rcu *next;
  225. __be32 label;
  226. atomic_t users;
  227. struct in6_addr dst;
  228. struct ipv6_txoptions *opt;
  229. unsigned long linger;
  230. struct rcu_head rcu;
  231. u8 share;
  232. union {
  233. struct pid *pid;
  234. kuid_t uid;
  235. } owner;
  236. unsigned long lastuse;
  237. unsigned long expires;
  238. struct net *fl_net;
  239. };
  240. #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
  241. #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
  242. #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
  243. #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
  244. #define IPV6_TCLASS_SHIFT 20
  245. struct ipv6_fl_socklist {
  246. struct ipv6_fl_socklist __rcu *next;
  247. struct ip6_flowlabel *fl;
  248. struct rcu_head rcu;
  249. };
  250. struct ipcm6_cookie {
  251. __s16 hlimit;
  252. __s16 tclass;
  253. __s8 dontfrag;
  254. struct ipv6_txoptions *opt;
  255. };
  256. static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
  257. {
  258. struct ipv6_txoptions *opt;
  259. rcu_read_lock();
  260. opt = rcu_dereference(np->opt);
  261. if (opt) {
  262. if (!refcount_inc_not_zero(&opt->refcnt))
  263. opt = NULL;
  264. else
  265. opt = rcu_pointer_handoff(opt);
  266. }
  267. rcu_read_unlock();
  268. return opt;
  269. }
  270. static inline void txopt_put(struct ipv6_txoptions *opt)
  271. {
  272. if (opt && refcount_dec_and_test(&opt->refcnt))
  273. kfree_rcu(opt, rcu);
  274. }
  275. struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
  276. struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
  277. struct ip6_flowlabel *fl,
  278. struct ipv6_txoptions *fopt);
  279. void fl6_free_socklist(struct sock *sk);
  280. int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
  281. int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
  282. int flags);
  283. int ip6_flowlabel_init(void);
  284. void ip6_flowlabel_cleanup(void);
  285. static inline void fl6_sock_release(struct ip6_flowlabel *fl)
  286. {
  287. if (fl)
  288. atomic_dec(&fl->users);
  289. }
  290. void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
  291. void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
  292. struct icmp6hdr *thdr, int len);
  293. int ip6_ra_control(struct sock *sk, int sel);
  294. int ipv6_parse_hopopts(struct sk_buff *skb);
  295. struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
  296. struct ipv6_txoptions *opt);
  297. struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
  298. struct ipv6_txoptions *opt,
  299. int newtype,
  300. struct ipv6_opt_hdr __user *newopt,
  301. int newoptlen);
  302. struct ipv6_txoptions *
  303. ipv6_renew_options_kern(struct sock *sk,
  304. struct ipv6_txoptions *opt,
  305. int newtype,
  306. struct ipv6_opt_hdr *newopt,
  307. int newoptlen);
  308. struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
  309. struct ipv6_txoptions *opt);
  310. bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
  311. const struct inet6_skb_parm *opt);
  312. struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
  313. struct ipv6_txoptions *opt);
  314. static inline bool ipv6_accept_ra(struct inet6_dev *idev)
  315. {
  316. /* If forwarding is enabled, RA are not accepted unless the special
  317. * hybrid mode (accept_ra=2) is enabled.
  318. */
  319. return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
  320. idev->cnf.accept_ra;
  321. }
  322. #if IS_ENABLED(CONFIG_IPV6)
  323. static inline int ip6_frag_mem(struct net *net)
  324. {
  325. return sum_frag_mem_limit(&net->ipv6.frags);
  326. }
  327. #endif
  328. #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
  329. #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
  330. #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
  331. int __ipv6_addr_type(const struct in6_addr *addr);
  332. static inline int ipv6_addr_type(const struct in6_addr *addr)
  333. {
  334. return __ipv6_addr_type(addr) & 0xffff;
  335. }
  336. static inline int ipv6_addr_scope(const struct in6_addr *addr)
  337. {
  338. return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
  339. }
  340. static inline int __ipv6_addr_src_scope(int type)
  341. {
  342. return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
  343. }
  344. static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
  345. {
  346. return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
  347. }
  348. static inline bool __ipv6_addr_needs_scope_id(int type)
  349. {
  350. return type & IPV6_ADDR_LINKLOCAL ||
  351. (type & IPV6_ADDR_MULTICAST &&
  352. (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
  353. }
  354. static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
  355. {
  356. return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
  357. }
  358. static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
  359. {
  360. return memcmp(a1, a2, sizeof(struct in6_addr));
  361. }
  362. static inline bool
  363. ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
  364. const struct in6_addr *a2)
  365. {
  366. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  367. const unsigned long *ul1 = (const unsigned long *)a1;
  368. const unsigned long *ulm = (const unsigned long *)m;
  369. const unsigned long *ul2 = (const unsigned long *)a2;
  370. return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
  371. ((ul1[1] ^ ul2[1]) & ulm[1]));
  372. #else
  373. return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
  374. ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
  375. ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
  376. ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
  377. #endif
  378. }
  379. static inline void ipv6_addr_prefix(struct in6_addr *pfx,
  380. const struct in6_addr *addr,
  381. int plen)
  382. {
  383. /* caller must guarantee 0 <= plen <= 128 */
  384. int o = plen >> 3,
  385. b = plen & 0x7;
  386. memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
  387. memcpy(pfx->s6_addr, addr, o);
  388. if (b != 0)
  389. pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
  390. }
  391. static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
  392. const struct in6_addr *pfx,
  393. int plen)
  394. {
  395. /* caller must guarantee 0 <= plen <= 128 */
  396. int o = plen >> 3,
  397. b = plen & 0x7;
  398. memcpy(addr->s6_addr, pfx, o);
  399. if (b != 0) {
  400. addr->s6_addr[o] &= ~(0xff00 >> b);
  401. addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
  402. }
  403. }
  404. static inline void __ipv6_addr_set_half(__be32 *addr,
  405. __be32 wh, __be32 wl)
  406. {
  407. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  408. #if defined(__BIG_ENDIAN)
  409. if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
  410. *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
  411. return;
  412. }
  413. #elif defined(__LITTLE_ENDIAN)
  414. if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
  415. *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
  416. return;
  417. }
  418. #endif
  419. #endif
  420. addr[0] = wh;
  421. addr[1] = wl;
  422. }
  423. static inline void ipv6_addr_set(struct in6_addr *addr,
  424. __be32 w1, __be32 w2,
  425. __be32 w3, __be32 w4)
  426. {
  427. __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
  428. __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
  429. }
  430. static inline bool ipv6_addr_equal(const struct in6_addr *a1,
  431. const struct in6_addr *a2)
  432. {
  433. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  434. const unsigned long *ul1 = (const unsigned long *)a1;
  435. const unsigned long *ul2 = (const unsigned long *)a2;
  436. return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
  437. #else
  438. return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
  439. (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
  440. (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
  441. (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
  442. #endif
  443. }
  444. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  445. static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
  446. const __be64 *a2,
  447. unsigned int len)
  448. {
  449. if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
  450. return false;
  451. return true;
  452. }
  453. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  454. const struct in6_addr *addr2,
  455. unsigned int prefixlen)
  456. {
  457. const __be64 *a1 = (const __be64 *)addr1;
  458. const __be64 *a2 = (const __be64 *)addr2;
  459. if (prefixlen >= 64) {
  460. if (a1[0] ^ a2[0])
  461. return false;
  462. return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
  463. }
  464. return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
  465. }
  466. #else
  467. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  468. const struct in6_addr *addr2,
  469. unsigned int prefixlen)
  470. {
  471. const __be32 *a1 = addr1->s6_addr32;
  472. const __be32 *a2 = addr2->s6_addr32;
  473. unsigned int pdw, pbi;
  474. /* check complete u32 in prefix */
  475. pdw = prefixlen >> 5;
  476. if (pdw && memcmp(a1, a2, pdw << 2))
  477. return false;
  478. /* check incomplete u32 in prefix */
  479. pbi = prefixlen & 0x1f;
  480. if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
  481. return false;
  482. return true;
  483. }
  484. #endif
  485. struct inet_frag_queue;
  486. enum ip6_defrag_users {
  487. IP6_DEFRAG_LOCAL_DELIVER,
  488. IP6_DEFRAG_CONNTRACK_IN,
  489. __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
  490. IP6_DEFRAG_CONNTRACK_OUT,
  491. __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
  492. IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
  493. __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
  494. };
  495. struct ip6_create_arg {
  496. __be32 id;
  497. u32 user;
  498. const struct in6_addr *src;
  499. const struct in6_addr *dst;
  500. int iif;
  501. u8 ecn;
  502. };
  503. void ip6_frag_init(struct inet_frag_queue *q, const void *a);
  504. bool ip6_frag_match(const struct inet_frag_queue *q, const void *a);
  505. /*
  506. * Equivalent of ipv4 struct ip
  507. */
  508. struct frag_queue {
  509. struct inet_frag_queue q;
  510. __be32 id; /* fragment id */
  511. u32 user;
  512. struct in6_addr saddr;
  513. struct in6_addr daddr;
  514. int iif;
  515. unsigned int csum;
  516. __u16 nhoffset;
  517. u8 ecn;
  518. };
  519. void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
  520. struct inet_frags *frags);
  521. static inline bool ipv6_addr_any(const struct in6_addr *a)
  522. {
  523. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  524. const unsigned long *ul = (const unsigned long *)a;
  525. return (ul[0] | ul[1]) == 0UL;
  526. #else
  527. return (a->s6_addr32[0] | a->s6_addr32[1] |
  528. a->s6_addr32[2] | a->s6_addr32[3]) == 0;
  529. #endif
  530. }
  531. static inline u32 ipv6_addr_hash(const struct in6_addr *a)
  532. {
  533. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  534. const unsigned long *ul = (const unsigned long *)a;
  535. unsigned long x = ul[0] ^ ul[1];
  536. return (u32)(x ^ (x >> 32));
  537. #else
  538. return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
  539. a->s6_addr32[2] ^ a->s6_addr32[3]);
  540. #endif
  541. }
  542. /* more secured version of ipv6_addr_hash() */
  543. static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
  544. {
  545. u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
  546. return jhash_3words(v,
  547. (__force u32)a->s6_addr32[2],
  548. (__force u32)a->s6_addr32[3],
  549. initval);
  550. }
  551. static inline bool ipv6_addr_loopback(const struct in6_addr *a)
  552. {
  553. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  554. const __be64 *be = (const __be64 *)a;
  555. return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
  556. #else
  557. return (a->s6_addr32[0] | a->s6_addr32[1] |
  558. a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
  559. #endif
  560. }
  561. /*
  562. * Note that we must __force cast these to unsigned long to make sparse happy,
  563. * since all of the endian-annotated types are fixed size regardless of arch.
  564. */
  565. static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
  566. {
  567. return (
  568. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  569. *(unsigned long *)a |
  570. #else
  571. (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
  572. #endif
  573. (__force unsigned long)(a->s6_addr32[2] ^
  574. cpu_to_be32(0x0000ffff))) == 0UL;
  575. }
  576. /*
  577. * Check for a RFC 4843 ORCHID address
  578. * (Overlay Routable Cryptographic Hash Identifiers)
  579. */
  580. static inline bool ipv6_addr_orchid(const struct in6_addr *a)
  581. {
  582. return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
  583. }
  584. static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
  585. {
  586. return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
  587. }
  588. static inline void ipv6_addr_set_v4mapped(const __be32 addr,
  589. struct in6_addr *v4mapped)
  590. {
  591. ipv6_addr_set(v4mapped,
  592. 0, 0,
  593. htonl(0x0000FFFF),
  594. addr);
  595. }
  596. /*
  597. * find the first different bit between two addresses
  598. * length of address must be a multiple of 32bits
  599. */
  600. static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
  601. {
  602. const __be32 *a1 = token1, *a2 = token2;
  603. int i;
  604. addrlen >>= 2;
  605. for (i = 0; i < addrlen; i++) {
  606. __be32 xb = a1[i] ^ a2[i];
  607. if (xb)
  608. return i * 32 + 31 - __fls(ntohl(xb));
  609. }
  610. /*
  611. * we should *never* get to this point since that
  612. * would mean the addrs are equal
  613. *
  614. * However, we do get to it 8) And exacly, when
  615. * addresses are equal 8)
  616. *
  617. * ip route add 1111::/128 via ...
  618. * ip route add 1111::/64 via ...
  619. * and we are here.
  620. *
  621. * Ideally, this function should stop comparison
  622. * at prefix length. It does not, but it is still OK,
  623. * if returned value is greater than prefix length.
  624. * --ANK (980803)
  625. */
  626. return addrlen << 5;
  627. }
  628. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  629. static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
  630. {
  631. const __be64 *a1 = token1, *a2 = token2;
  632. int i;
  633. addrlen >>= 3;
  634. for (i = 0; i < addrlen; i++) {
  635. __be64 xb = a1[i] ^ a2[i];
  636. if (xb)
  637. return i * 64 + 63 - __fls(be64_to_cpu(xb));
  638. }
  639. return addrlen << 6;
  640. }
  641. #endif
  642. static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
  643. {
  644. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  645. if (__builtin_constant_p(addrlen) && !(addrlen & 7))
  646. return __ipv6_addr_diff64(token1, token2, addrlen);
  647. #endif
  648. return __ipv6_addr_diff32(token1, token2, addrlen);
  649. }
  650. static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
  651. {
  652. return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
  653. }
  654. __be32 ipv6_select_ident(struct net *net,
  655. const struct in6_addr *daddr,
  656. const struct in6_addr *saddr);
  657. __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
  658. int ip6_dst_hoplimit(struct dst_entry *dst);
  659. static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
  660. struct dst_entry *dst)
  661. {
  662. int hlimit;
  663. if (ipv6_addr_is_multicast(&fl6->daddr))
  664. hlimit = np->mcast_hops;
  665. else
  666. hlimit = np->hop_limit;
  667. if (hlimit < 0)
  668. hlimit = ip6_dst_hoplimit(dst);
  669. return hlimit;
  670. }
  671. /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
  672. * Equivalent to : flow->v6addrs.src = iph->saddr;
  673. * flow->v6addrs.dst = iph->daddr;
  674. */
  675. static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
  676. const struct ipv6hdr *iph)
  677. {
  678. BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
  679. offsetof(typeof(flow->addrs), v6addrs.src) +
  680. sizeof(flow->addrs.v6addrs.src));
  681. memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
  682. flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  683. }
  684. #if IS_ENABLED(CONFIG_IPV6)
  685. /* Sysctl settings for net ipv6.auto_flowlabels */
  686. #define IP6_AUTO_FLOW_LABEL_OFF 0
  687. #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
  688. #define IP6_AUTO_FLOW_LABEL_OPTIN 2
  689. #define IP6_AUTO_FLOW_LABEL_FORCED 3
  690. #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
  691. #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
  692. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  693. __be32 flowlabel, bool autolabel,
  694. struct flowi6 *fl6)
  695. {
  696. u32 hash;
  697. /* @flowlabel may include more than a flow label, eg, the traffic class.
  698. * Here we want only the flow label value.
  699. */
  700. flowlabel &= IPV6_FLOWLABEL_MASK;
  701. if (flowlabel ||
  702. net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
  703. (!autolabel &&
  704. net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
  705. return flowlabel;
  706. hash = skb_get_hash_flowi6(skb, fl6);
  707. /* Since this is being sent on the wire obfuscate hash a bit
  708. * to minimize possbility that any useful information to an
  709. * attacker is leaked. Only lower 20 bits are relevant.
  710. */
  711. rol32(hash, 16);
  712. flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
  713. if (net->ipv6.sysctl.flowlabel_state_ranges)
  714. flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
  715. return flowlabel;
  716. }
  717. static inline int ip6_default_np_autolabel(struct net *net)
  718. {
  719. switch (net->ipv6.sysctl.auto_flowlabels) {
  720. case IP6_AUTO_FLOW_LABEL_OFF:
  721. case IP6_AUTO_FLOW_LABEL_OPTIN:
  722. default:
  723. return 0;
  724. case IP6_AUTO_FLOW_LABEL_OPTOUT:
  725. case IP6_AUTO_FLOW_LABEL_FORCED:
  726. return 1;
  727. }
  728. }
  729. #else
  730. static inline void ip6_set_txhash(struct sock *sk) { }
  731. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  732. __be32 flowlabel, bool autolabel,
  733. struct flowi6 *fl6)
  734. {
  735. return flowlabel;
  736. }
  737. static inline int ip6_default_np_autolabel(struct net *net)
  738. {
  739. return 0;
  740. }
  741. #endif
  742. /*
  743. * Header manipulation
  744. */
  745. static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
  746. __be32 flowlabel)
  747. {
  748. *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
  749. }
  750. static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
  751. {
  752. return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
  753. }
  754. static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
  755. {
  756. return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
  757. }
  758. static inline u8 ip6_tclass(__be32 flowinfo)
  759. {
  760. return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
  761. }
  762. static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
  763. {
  764. return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
  765. }
  766. /*
  767. * Prototypes exported by ipv6
  768. */
  769. /*
  770. * rcv function (called from netdevice level)
  771. */
  772. int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
  773. struct packet_type *pt, struct net_device *orig_dev);
  774. int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
  775. /*
  776. * upper-layer output functions
  777. */
  778. int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
  779. __u32 mark, struct ipv6_txoptions *opt, int tclass);
  780. int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
  781. int ip6_append_data(struct sock *sk,
  782. int getfrag(void *from, char *to, int offset, int len,
  783. int odd, struct sk_buff *skb),
  784. void *from, int length, int transhdrlen,
  785. struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
  786. struct rt6_info *rt, unsigned int flags,
  787. const struct sockcm_cookie *sockc);
  788. int ip6_push_pending_frames(struct sock *sk);
  789. void ip6_flush_pending_frames(struct sock *sk);
  790. int ip6_send_skb(struct sk_buff *skb);
  791. struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
  792. struct inet_cork_full *cork,
  793. struct inet6_cork *v6_cork);
  794. struct sk_buff *ip6_make_skb(struct sock *sk,
  795. int getfrag(void *from, char *to, int offset,
  796. int len, int odd, struct sk_buff *skb),
  797. void *from, int length, int transhdrlen,
  798. struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
  799. struct rt6_info *rt, unsigned int flags,
  800. const struct sockcm_cookie *sockc);
  801. static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
  802. {
  803. return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
  804. &inet6_sk(sk)->cork);
  805. }
  806. int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
  807. struct flowi6 *fl6);
  808. struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
  809. const struct in6_addr *final_dst);
  810. struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
  811. const struct in6_addr *final_dst);
  812. struct dst_entry *ip6_blackhole_route(struct net *net,
  813. struct dst_entry *orig_dst);
  814. /*
  815. * skb processing functions
  816. */
  817. int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
  818. int ip6_forward(struct sk_buff *skb);
  819. int ip6_input(struct sk_buff *skb);
  820. int ip6_mc_input(struct sk_buff *skb);
  821. int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  822. int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  823. /*
  824. * Extension header (options) processing
  825. */
  826. void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  827. u8 *proto, struct in6_addr **daddr_p,
  828. struct in6_addr *saddr);
  829. void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  830. u8 *proto);
  831. int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
  832. __be16 *frag_offp);
  833. bool ipv6_ext_hdr(u8 nexthdr);
  834. enum {
  835. IP6_FH_F_FRAG = (1 << 0),
  836. IP6_FH_F_AUTH = (1 << 1),
  837. IP6_FH_F_SKIP_RH = (1 << 2),
  838. };
  839. /* find specified header and get offset to it */
  840. int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
  841. unsigned short *fragoff, int *fragflg);
  842. int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
  843. struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
  844. const struct ipv6_txoptions *opt,
  845. struct in6_addr *orig);
  846. /*
  847. * socket options (ipv6_sockglue.c)
  848. */
  849. int ipv6_setsockopt(struct sock *sk, int level, int optname,
  850. char __user *optval, unsigned int optlen);
  851. int ipv6_getsockopt(struct sock *sk, int level, int optname,
  852. char __user *optval, int __user *optlen);
  853. int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
  854. char __user *optval, unsigned int optlen);
  855. int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
  856. char __user *optval, int __user *optlen);
  857. int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
  858. int addr_len);
  859. int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
  860. int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
  861. int addr_len);
  862. int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
  863. void ip6_datagram_release_cb(struct sock *sk);
  864. int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
  865. int *addr_len);
  866. int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
  867. int *addr_len);
  868. void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
  869. u32 info, u8 *payload);
  870. void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
  871. void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
  872. int inet6_release(struct socket *sock);
  873. int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
  874. int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len,
  875. int peer);
  876. int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
  877. int inet6_hash_connect(struct inet_timewait_death_row *death_row,
  878. struct sock *sk);
  879. /*
  880. * reassembly.c
  881. */
  882. extern const struct proto_ops inet6_stream_ops;
  883. extern const struct proto_ops inet6_dgram_ops;
  884. extern const struct proto_ops inet6_sockraw_ops;
  885. struct group_source_req;
  886. struct group_filter;
  887. int ip6_mc_source(int add, int omode, struct sock *sk,
  888. struct group_source_req *pgsr);
  889. int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
  890. int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
  891. struct group_filter __user *optval, int __user *optlen);
  892. #ifdef CONFIG_PROC_FS
  893. int ac6_proc_init(struct net *net);
  894. void ac6_proc_exit(struct net *net);
  895. int raw6_proc_init(void);
  896. void raw6_proc_exit(void);
  897. int tcp6_proc_init(struct net *net);
  898. void tcp6_proc_exit(struct net *net);
  899. int udp6_proc_init(struct net *net);
  900. void udp6_proc_exit(struct net *net);
  901. int udplite6_proc_init(void);
  902. void udplite6_proc_exit(void);
  903. int ipv6_misc_proc_init(void);
  904. void ipv6_misc_proc_exit(void);
  905. int snmp6_register_dev(struct inet6_dev *idev);
  906. int snmp6_unregister_dev(struct inet6_dev *idev);
  907. #else
  908. static inline int ac6_proc_init(struct net *net) { return 0; }
  909. static inline void ac6_proc_exit(struct net *net) { }
  910. static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
  911. static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
  912. #endif
  913. #ifdef CONFIG_SYSCTL
  914. extern struct ctl_table ipv6_route_table_template[];
  915. struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
  916. struct ctl_table *ipv6_route_sysctl_init(struct net *net);
  917. int ipv6_sysctl_register(void);
  918. void ipv6_sysctl_unregister(void);
  919. #endif
  920. int ipv6_sock_mc_join(struct sock *sk, int ifindex,
  921. const struct in6_addr *addr);
  922. int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
  923. const struct in6_addr *addr);
  924. #endif /* _NET_IPV6_H */