init.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <linux/swapfile.h>
  8. #include <linux/swapops.h>
  9. #include <asm/set_memory.h>
  10. #include <asm/e820/api.h>
  11. #include <asm/init.h>
  12. #include <asm/page.h>
  13. #include <asm/page_types.h>
  14. #include <asm/sections.h>
  15. #include <asm/setup.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/tlb.h>
  18. #include <asm/proto.h>
  19. #include <asm/dma.h> /* for MAX_DMA_PFN */
  20. #include <asm/microcode.h>
  21. #include <asm/kaslr.h>
  22. #include <asm/hypervisor.h>
  23. #include <asm/cpufeature.h>
  24. #include <asm/pti.h>
  25. /*
  26. * We need to define the tracepoints somewhere, and tlb.c
  27. * is only compied when SMP=y.
  28. */
  29. #define CREATE_TRACE_POINTS
  30. #include <trace/events/tlb.h>
  31. #include "mm_internal.h"
  32. /*
  33. * Tables translating between page_cache_type_t and pte encoding.
  34. *
  35. * The default values are defined statically as minimal supported mode;
  36. * WC and WT fall back to UC-. pat_init() updates these values to support
  37. * more cache modes, WC and WT, when it is safe to do so. See pat_init()
  38. * for the details. Note, __early_ioremap() used during early boot-time
  39. * takes pgprot_t (pte encoding) and does not use these tables.
  40. *
  41. * Index into __cachemode2pte_tbl[] is the cachemode.
  42. *
  43. * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  44. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  45. */
  46. uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  47. [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
  48. [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
  49. [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
  50. [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
  51. [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
  52. [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
  53. };
  54. EXPORT_SYMBOL(__cachemode2pte_tbl);
  55. uint8_t __pte2cachemode_tbl[8] = {
  56. [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
  57. [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  58. [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  59. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
  60. [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  61. [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  62. [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  63. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  64. };
  65. EXPORT_SYMBOL(__pte2cachemode_tbl);
  66. static unsigned long __initdata pgt_buf_start;
  67. static unsigned long __initdata pgt_buf_end;
  68. static unsigned long __initdata pgt_buf_top;
  69. static unsigned long min_pfn_mapped;
  70. static bool __initdata can_use_brk_pgt = true;
  71. /*
  72. * Pages returned are already directly mapped.
  73. *
  74. * Changing that is likely to break Xen, see commit:
  75. *
  76. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  77. *
  78. * for detailed information.
  79. */
  80. __ref void *alloc_low_pages(unsigned int num)
  81. {
  82. unsigned long pfn;
  83. int i;
  84. if (after_bootmem) {
  85. unsigned int order;
  86. order = get_order((unsigned long)num << PAGE_SHIFT);
  87. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
  88. }
  89. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  90. unsigned long ret = 0;
  91. if (min_pfn_mapped < max_pfn_mapped) {
  92. ret = memblock_find_in_range(
  93. min_pfn_mapped << PAGE_SHIFT,
  94. max_pfn_mapped << PAGE_SHIFT,
  95. PAGE_SIZE * num , PAGE_SIZE);
  96. }
  97. if (ret)
  98. memblock_reserve(ret, PAGE_SIZE * num);
  99. else if (can_use_brk_pgt)
  100. ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
  101. if (!ret)
  102. panic("alloc_low_pages: can not alloc memory");
  103. pfn = ret >> PAGE_SHIFT;
  104. } else {
  105. pfn = pgt_buf_end;
  106. pgt_buf_end += num;
  107. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  108. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  109. }
  110. for (i = 0; i < num; i++) {
  111. void *adr;
  112. adr = __va((pfn + i) << PAGE_SHIFT);
  113. clear_page(adr);
  114. }
  115. return __va(pfn << PAGE_SHIFT);
  116. }
  117. /*
  118. * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
  119. * With KASLR memory randomization, depending on the machine e820 memory
  120. * and the PUD alignment. We may need twice more pages when KASLR memory
  121. * randomization is enabled.
  122. */
  123. #ifndef CONFIG_RANDOMIZE_MEMORY
  124. #define INIT_PGD_PAGE_COUNT 6
  125. #else
  126. #define INIT_PGD_PAGE_COUNT 12
  127. #endif
  128. #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
  129. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  130. void __init early_alloc_pgt_buf(void)
  131. {
  132. unsigned long tables = INIT_PGT_BUF_SIZE;
  133. phys_addr_t base;
  134. base = __pa(extend_brk(tables, PAGE_SIZE));
  135. pgt_buf_start = base >> PAGE_SHIFT;
  136. pgt_buf_end = pgt_buf_start;
  137. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  138. }
  139. int after_bootmem;
  140. early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
  141. struct map_range {
  142. unsigned long start;
  143. unsigned long end;
  144. unsigned page_size_mask;
  145. };
  146. static int page_size_mask;
  147. static void __init probe_page_size_mask(void)
  148. {
  149. /*
  150. * For pagealloc debugging, identity mapping will use small pages.
  151. * This will simplify cpa(), which otherwise needs to support splitting
  152. * large pages into small in interrupt context, etc.
  153. */
  154. if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
  155. page_size_mask |= 1 << PG_LEVEL_2M;
  156. else
  157. direct_gbpages = 0;
  158. /* Enable PSE if available */
  159. if (boot_cpu_has(X86_FEATURE_PSE))
  160. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  161. /* Enable PGE if available */
  162. __supported_pte_mask &= ~_PAGE_GLOBAL;
  163. if (boot_cpu_has(X86_FEATURE_PGE)) {
  164. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  165. __supported_pte_mask |= _PAGE_GLOBAL;
  166. }
  167. /* By the default is everything supported: */
  168. __default_kernel_pte_mask = __supported_pte_mask;
  169. /* Except when with PTI where the kernel is mostly non-Global: */
  170. if (cpu_feature_enabled(X86_FEATURE_PTI))
  171. __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
  172. /* Enable 1 GB linear kernel mappings if available: */
  173. if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
  174. printk(KERN_INFO "Using GB pages for direct mapping\n");
  175. page_size_mask |= 1 << PG_LEVEL_1G;
  176. } else {
  177. direct_gbpages = 0;
  178. }
  179. }
  180. static void setup_pcid(void)
  181. {
  182. if (!IS_ENABLED(CONFIG_X86_64))
  183. return;
  184. if (!boot_cpu_has(X86_FEATURE_PCID))
  185. return;
  186. if (boot_cpu_has(X86_FEATURE_PGE)) {
  187. /*
  188. * This can't be cr4_set_bits_and_update_boot() -- the
  189. * trampoline code can't handle CR4.PCIDE and it wouldn't
  190. * do any good anyway. Despite the name,
  191. * cr4_set_bits_and_update_boot() doesn't actually cause
  192. * the bits in question to remain set all the way through
  193. * the secondary boot asm.
  194. *
  195. * Instead, we brute-force it and set CR4.PCIDE manually in
  196. * start_secondary().
  197. */
  198. cr4_set_bits(X86_CR4_PCIDE);
  199. /*
  200. * INVPCID's single-context modes (2/3) only work if we set
  201. * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
  202. * on systems that have X86_CR4_PCIDE clear, or that have
  203. * no INVPCID support at all.
  204. */
  205. if (boot_cpu_has(X86_FEATURE_INVPCID))
  206. setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
  207. } else {
  208. /*
  209. * flush_tlb_all(), as currently implemented, won't work if
  210. * PCID is on but PGE is not. Since that combination
  211. * doesn't exist on real hardware, there's no reason to try
  212. * to fully support it, but it's polite to avoid corrupting
  213. * data if we're on an improperly configured VM.
  214. */
  215. setup_clear_cpu_cap(X86_FEATURE_PCID);
  216. }
  217. }
  218. #ifdef CONFIG_X86_32
  219. #define NR_RANGE_MR 3
  220. #else /* CONFIG_X86_64 */
  221. #define NR_RANGE_MR 5
  222. #endif
  223. static int __meminit save_mr(struct map_range *mr, int nr_range,
  224. unsigned long start_pfn, unsigned long end_pfn,
  225. unsigned long page_size_mask)
  226. {
  227. if (start_pfn < end_pfn) {
  228. if (nr_range >= NR_RANGE_MR)
  229. panic("run out of range for init_memory_mapping\n");
  230. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  231. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  232. mr[nr_range].page_size_mask = page_size_mask;
  233. nr_range++;
  234. }
  235. return nr_range;
  236. }
  237. /*
  238. * adjust the page_size_mask for small range to go with
  239. * big page size instead small one if nearby are ram too.
  240. */
  241. static void __ref adjust_range_page_size_mask(struct map_range *mr,
  242. int nr_range)
  243. {
  244. int i;
  245. for (i = 0; i < nr_range; i++) {
  246. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  247. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  248. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  249. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  250. #ifdef CONFIG_X86_32
  251. if ((end >> PAGE_SHIFT) > max_low_pfn)
  252. continue;
  253. #endif
  254. if (memblock_is_region_memory(start, end - start))
  255. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  256. }
  257. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  258. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  259. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  260. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  261. if (memblock_is_region_memory(start, end - start))
  262. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  263. }
  264. }
  265. }
  266. static const char *page_size_string(struct map_range *mr)
  267. {
  268. static const char str_1g[] = "1G";
  269. static const char str_2m[] = "2M";
  270. static const char str_4m[] = "4M";
  271. static const char str_4k[] = "4k";
  272. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  273. return str_1g;
  274. /*
  275. * 32-bit without PAE has a 4M large page size.
  276. * PG_LEVEL_2M is misnamed, but we can at least
  277. * print out the right size in the string.
  278. */
  279. if (IS_ENABLED(CONFIG_X86_32) &&
  280. !IS_ENABLED(CONFIG_X86_PAE) &&
  281. mr->page_size_mask & (1<<PG_LEVEL_2M))
  282. return str_4m;
  283. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  284. return str_2m;
  285. return str_4k;
  286. }
  287. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  288. unsigned long start,
  289. unsigned long end)
  290. {
  291. unsigned long start_pfn, end_pfn, limit_pfn;
  292. unsigned long pfn;
  293. int i;
  294. limit_pfn = PFN_DOWN(end);
  295. /* head if not big page alignment ? */
  296. pfn = start_pfn = PFN_DOWN(start);
  297. #ifdef CONFIG_X86_32
  298. /*
  299. * Don't use a large page for the first 2/4MB of memory
  300. * because there are often fixed size MTRRs in there
  301. * and overlapping MTRRs into large pages can cause
  302. * slowdowns.
  303. */
  304. if (pfn == 0)
  305. end_pfn = PFN_DOWN(PMD_SIZE);
  306. else
  307. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  308. #else /* CONFIG_X86_64 */
  309. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  310. #endif
  311. if (end_pfn > limit_pfn)
  312. end_pfn = limit_pfn;
  313. if (start_pfn < end_pfn) {
  314. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  315. pfn = end_pfn;
  316. }
  317. /* big page (2M) range */
  318. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  319. #ifdef CONFIG_X86_32
  320. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  321. #else /* CONFIG_X86_64 */
  322. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  323. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  324. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  325. #endif
  326. if (start_pfn < end_pfn) {
  327. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  328. page_size_mask & (1<<PG_LEVEL_2M));
  329. pfn = end_pfn;
  330. }
  331. #ifdef CONFIG_X86_64
  332. /* big page (1G) range */
  333. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  334. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  335. if (start_pfn < end_pfn) {
  336. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  337. page_size_mask &
  338. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  339. pfn = end_pfn;
  340. }
  341. /* tail is not big page (1G) alignment */
  342. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  343. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  344. if (start_pfn < end_pfn) {
  345. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  346. page_size_mask & (1<<PG_LEVEL_2M));
  347. pfn = end_pfn;
  348. }
  349. #endif
  350. /* tail is not big page (2M) alignment */
  351. start_pfn = pfn;
  352. end_pfn = limit_pfn;
  353. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  354. if (!after_bootmem)
  355. adjust_range_page_size_mask(mr, nr_range);
  356. /* try to merge same page size and continuous */
  357. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  358. unsigned long old_start;
  359. if (mr[i].end != mr[i+1].start ||
  360. mr[i].page_size_mask != mr[i+1].page_size_mask)
  361. continue;
  362. /* move it */
  363. old_start = mr[i].start;
  364. memmove(&mr[i], &mr[i+1],
  365. (nr_range - 1 - i) * sizeof(struct map_range));
  366. mr[i--].start = old_start;
  367. nr_range--;
  368. }
  369. for (i = 0; i < nr_range; i++)
  370. pr_debug(" [mem %#010lx-%#010lx] page %s\n",
  371. mr[i].start, mr[i].end - 1,
  372. page_size_string(&mr[i]));
  373. return nr_range;
  374. }
  375. struct range pfn_mapped[E820_MAX_ENTRIES];
  376. int nr_pfn_mapped;
  377. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  378. {
  379. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
  380. nr_pfn_mapped, start_pfn, end_pfn);
  381. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
  382. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  383. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  384. max_low_pfn_mapped = max(max_low_pfn_mapped,
  385. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  386. }
  387. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  388. {
  389. int i;
  390. for (i = 0; i < nr_pfn_mapped; i++)
  391. if ((start_pfn >= pfn_mapped[i].start) &&
  392. (end_pfn <= pfn_mapped[i].end))
  393. return true;
  394. return false;
  395. }
  396. /*
  397. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  398. * This runs before bootmem is initialized and gets pages directly from
  399. * the physical memory. To access them they are temporarily mapped.
  400. */
  401. unsigned long __ref init_memory_mapping(unsigned long start,
  402. unsigned long end)
  403. {
  404. struct map_range mr[NR_RANGE_MR];
  405. unsigned long ret = 0;
  406. int nr_range, i;
  407. pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  408. start, end - 1);
  409. memset(mr, 0, sizeof(mr));
  410. nr_range = split_mem_range(mr, 0, start, end);
  411. for (i = 0; i < nr_range; i++)
  412. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  413. mr[i].page_size_mask);
  414. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  415. return ret >> PAGE_SHIFT;
  416. }
  417. /*
  418. * We need to iterate through the E820 memory map and create direct mappings
  419. * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
  420. * create direct mappings for all pfns from [0 to max_low_pfn) and
  421. * [4GB to max_pfn) because of possible memory holes in high addresses
  422. * that cannot be marked as UC by fixed/variable range MTRRs.
  423. * Depending on the alignment of E820 ranges, this may possibly result
  424. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  425. *
  426. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  427. * That range would have hole in the middle or ends, and only ram parts
  428. * will be mapped in init_range_memory_mapping().
  429. */
  430. static unsigned long __init init_range_memory_mapping(
  431. unsigned long r_start,
  432. unsigned long r_end)
  433. {
  434. unsigned long start_pfn, end_pfn;
  435. unsigned long mapped_ram_size = 0;
  436. int i;
  437. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  438. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  439. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  440. if (start >= end)
  441. continue;
  442. /*
  443. * if it is overlapping with brk pgt, we need to
  444. * alloc pgt buf from memblock instead.
  445. */
  446. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  447. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  448. init_memory_mapping(start, end);
  449. mapped_ram_size += end - start;
  450. can_use_brk_pgt = true;
  451. }
  452. return mapped_ram_size;
  453. }
  454. static unsigned long __init get_new_step_size(unsigned long step_size)
  455. {
  456. /*
  457. * Initial mapped size is PMD_SIZE (2M).
  458. * We can not set step_size to be PUD_SIZE (1G) yet.
  459. * In worse case, when we cross the 1G boundary, and
  460. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  461. * to map 1G range with PTE. Hence we use one less than the
  462. * difference of page table level shifts.
  463. *
  464. * Don't need to worry about overflow in the top-down case, on 32bit,
  465. * when step_size is 0, round_down() returns 0 for start, and that
  466. * turns it into 0x100000000ULL.
  467. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  468. * needs to be taken into consideration by the code below.
  469. */
  470. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  471. }
  472. /**
  473. * memory_map_top_down - Map [map_start, map_end) top down
  474. * @map_start: start address of the target memory range
  475. * @map_end: end address of the target memory range
  476. *
  477. * This function will setup direct mapping for memory range
  478. * [map_start, map_end) in top-down. That said, the page tables
  479. * will be allocated at the end of the memory, and we map the
  480. * memory in top-down.
  481. */
  482. static void __init memory_map_top_down(unsigned long map_start,
  483. unsigned long map_end)
  484. {
  485. unsigned long real_end, start, last_start;
  486. unsigned long step_size;
  487. unsigned long addr;
  488. unsigned long mapped_ram_size = 0;
  489. /* xen has big range in reserved near end of ram, skip it at first.*/
  490. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  491. real_end = addr + PMD_SIZE;
  492. /* step_size need to be small so pgt_buf from BRK could cover it */
  493. step_size = PMD_SIZE;
  494. max_pfn_mapped = 0; /* will get exact value next */
  495. min_pfn_mapped = real_end >> PAGE_SHIFT;
  496. last_start = start = real_end;
  497. /*
  498. * We start from the top (end of memory) and go to the bottom.
  499. * The memblock_find_in_range() gets us a block of RAM from the
  500. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  501. * for page table.
  502. */
  503. while (last_start > map_start) {
  504. if (last_start > step_size) {
  505. start = round_down(last_start - 1, step_size);
  506. if (start < map_start)
  507. start = map_start;
  508. } else
  509. start = map_start;
  510. mapped_ram_size += init_range_memory_mapping(start,
  511. last_start);
  512. last_start = start;
  513. min_pfn_mapped = last_start >> PAGE_SHIFT;
  514. if (mapped_ram_size >= step_size)
  515. step_size = get_new_step_size(step_size);
  516. }
  517. if (real_end < map_end)
  518. init_range_memory_mapping(real_end, map_end);
  519. }
  520. /**
  521. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  522. * @map_start: start address of the target memory range
  523. * @map_end: end address of the target memory range
  524. *
  525. * This function will setup direct mapping for memory range
  526. * [map_start, map_end) in bottom-up. Since we have limited the
  527. * bottom-up allocation above the kernel, the page tables will
  528. * be allocated just above the kernel and we map the memory
  529. * in [map_start, map_end) in bottom-up.
  530. */
  531. static void __init memory_map_bottom_up(unsigned long map_start,
  532. unsigned long map_end)
  533. {
  534. unsigned long next, start;
  535. unsigned long mapped_ram_size = 0;
  536. /* step_size need to be small so pgt_buf from BRK could cover it */
  537. unsigned long step_size = PMD_SIZE;
  538. start = map_start;
  539. min_pfn_mapped = start >> PAGE_SHIFT;
  540. /*
  541. * We start from the bottom (@map_start) and go to the top (@map_end).
  542. * The memblock_find_in_range() gets us a block of RAM from the
  543. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  544. * for page table.
  545. */
  546. while (start < map_end) {
  547. if (step_size && map_end - start > step_size) {
  548. next = round_up(start + 1, step_size);
  549. if (next > map_end)
  550. next = map_end;
  551. } else {
  552. next = map_end;
  553. }
  554. mapped_ram_size += init_range_memory_mapping(start, next);
  555. start = next;
  556. if (mapped_ram_size >= step_size)
  557. step_size = get_new_step_size(step_size);
  558. }
  559. }
  560. void __init init_mem_mapping(void)
  561. {
  562. unsigned long end;
  563. pti_check_boottime_disable();
  564. probe_page_size_mask();
  565. setup_pcid();
  566. #ifdef CONFIG_X86_64
  567. end = max_pfn << PAGE_SHIFT;
  568. #else
  569. end = max_low_pfn << PAGE_SHIFT;
  570. #endif
  571. /* the ISA range is always mapped regardless of memory holes */
  572. init_memory_mapping(0, ISA_END_ADDRESS);
  573. /* Init the trampoline, possibly with KASLR memory offset */
  574. init_trampoline();
  575. /*
  576. * If the allocation is in bottom-up direction, we setup direct mapping
  577. * in bottom-up, otherwise we setup direct mapping in top-down.
  578. */
  579. if (memblock_bottom_up()) {
  580. unsigned long kernel_end = __pa_symbol(_end);
  581. /*
  582. * we need two separate calls here. This is because we want to
  583. * allocate page tables above the kernel. So we first map
  584. * [kernel_end, end) to make memory above the kernel be mapped
  585. * as soon as possible. And then use page tables allocated above
  586. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  587. */
  588. memory_map_bottom_up(kernel_end, end);
  589. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  590. } else {
  591. memory_map_top_down(ISA_END_ADDRESS, end);
  592. }
  593. #ifdef CONFIG_X86_64
  594. if (max_pfn > max_low_pfn) {
  595. /* can we preseve max_low_pfn ?*/
  596. max_low_pfn = max_pfn;
  597. }
  598. #else
  599. early_ioremap_page_table_range_init();
  600. #endif
  601. load_cr3(swapper_pg_dir);
  602. __flush_tlb_all();
  603. x86_init.hyper.init_mem_mapping();
  604. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  605. }
  606. /*
  607. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  608. * is valid. The argument is a physical page number.
  609. *
  610. * On x86, access has to be given to the first megabyte of RAM because that
  611. * area traditionally contains BIOS code and data regions used by X, dosemu,
  612. * and similar apps. Since they map the entire memory range, the whole range
  613. * must be allowed (for mapping), but any areas that would otherwise be
  614. * disallowed are flagged as being "zero filled" instead of rejected.
  615. * Access has to be given to non-kernel-ram areas as well, these contain the
  616. * PCI mmio resources as well as potential bios/acpi data regions.
  617. */
  618. int devmem_is_allowed(unsigned long pagenr)
  619. {
  620. if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
  621. IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
  622. != REGION_DISJOINT) {
  623. /*
  624. * For disallowed memory regions in the low 1MB range,
  625. * request that the page be shown as all zeros.
  626. */
  627. if (pagenr < 256)
  628. return 2;
  629. return 0;
  630. }
  631. /*
  632. * This must follow RAM test, since System RAM is considered a
  633. * restricted resource under CONFIG_STRICT_IOMEM.
  634. */
  635. if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
  636. /* Low 1MB bypasses iomem restrictions. */
  637. if (pagenr < 256)
  638. return 1;
  639. return 0;
  640. }
  641. return 1;
  642. }
  643. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  644. {
  645. unsigned long begin_aligned, end_aligned;
  646. /* Make sure boundaries are page aligned */
  647. begin_aligned = PAGE_ALIGN(begin);
  648. end_aligned = end & PAGE_MASK;
  649. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  650. begin = begin_aligned;
  651. end = end_aligned;
  652. }
  653. if (begin >= end)
  654. return;
  655. /*
  656. * If debugging page accesses then do not free this memory but
  657. * mark them not present - any buggy init-section access will
  658. * create a kernel page fault:
  659. */
  660. if (debug_pagealloc_enabled()) {
  661. pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
  662. begin, end - 1);
  663. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  664. } else {
  665. /*
  666. * We just marked the kernel text read only above, now that
  667. * we are going to free part of that, we need to make that
  668. * writeable and non-executable first.
  669. */
  670. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  671. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  672. free_reserved_area((void *)begin, (void *)end,
  673. POISON_FREE_INITMEM, what);
  674. }
  675. }
  676. /*
  677. * begin/end can be in the direct map or the "high kernel mapping"
  678. * used for the kernel image only. free_init_pages() will do the
  679. * right thing for either kind of address.
  680. */
  681. void free_kernel_image_pages(void *begin, void *end)
  682. {
  683. unsigned long begin_ul = (unsigned long)begin;
  684. unsigned long end_ul = (unsigned long)end;
  685. unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
  686. free_init_pages("unused kernel image", begin_ul, end_ul);
  687. /*
  688. * PTI maps some of the kernel into userspace. For performance,
  689. * this includes some kernel areas that do not contain secrets.
  690. * Those areas might be adjacent to the parts of the kernel image
  691. * being freed, which may contain secrets. Remove the "high kernel
  692. * image mapping" for these freed areas, ensuring they are not even
  693. * potentially vulnerable to Meltdown regardless of the specific
  694. * optimizations PTI is currently using.
  695. *
  696. * The "noalias" prevents unmapping the direct map alias which is
  697. * needed to access the freed pages.
  698. *
  699. * This is only valid for 64bit kernels. 32bit has only one mapping
  700. * which can't be treated in this way for obvious reasons.
  701. */
  702. if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
  703. set_memory_np_noalias(begin_ul, len_pages);
  704. }
  705. void __weak mem_encrypt_free_decrypted_mem(void) { }
  706. void __ref free_initmem(void)
  707. {
  708. e820__reallocate_tables();
  709. mem_encrypt_free_decrypted_mem();
  710. free_kernel_image_pages(&__init_begin, &__init_end);
  711. }
  712. #ifdef CONFIG_BLK_DEV_INITRD
  713. void __init free_initrd_mem(unsigned long start, unsigned long end)
  714. {
  715. /*
  716. * end could be not aligned, and We can not align that,
  717. * decompresser could be confused by aligned initrd_end
  718. * We already reserve the end partial page before in
  719. * - i386_start_kernel()
  720. * - x86_64_start_kernel()
  721. * - relocate_initrd()
  722. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  723. */
  724. free_init_pages("initrd", start, PAGE_ALIGN(end));
  725. }
  726. #endif
  727. /*
  728. * Calculate the precise size of the DMA zone (first 16 MB of RAM),
  729. * and pass it to the MM layer - to help it set zone watermarks more
  730. * accurately.
  731. *
  732. * Done on 64-bit systems only for the time being, although 32-bit systems
  733. * might benefit from this as well.
  734. */
  735. void __init memblock_find_dma_reserve(void)
  736. {
  737. #ifdef CONFIG_X86_64
  738. u64 nr_pages = 0, nr_free_pages = 0;
  739. unsigned long start_pfn, end_pfn;
  740. phys_addr_t start_addr, end_addr;
  741. int i;
  742. u64 u;
  743. /*
  744. * Iterate over all memory ranges (free and reserved ones alike),
  745. * to calculate the total number of pages in the first 16 MB of RAM:
  746. */
  747. nr_pages = 0;
  748. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  749. start_pfn = min(start_pfn, MAX_DMA_PFN);
  750. end_pfn = min(end_pfn, MAX_DMA_PFN);
  751. nr_pages += end_pfn - start_pfn;
  752. }
  753. /*
  754. * Iterate over free memory ranges to calculate the number of free
  755. * pages in the DMA zone, while not counting potential partial
  756. * pages at the beginning or the end of the range:
  757. */
  758. nr_free_pages = 0;
  759. for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
  760. start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
  761. end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
  762. if (start_pfn < end_pfn)
  763. nr_free_pages += end_pfn - start_pfn;
  764. }
  765. set_dma_reserve(nr_pages - nr_free_pages);
  766. #endif
  767. }
  768. void __init zone_sizes_init(void)
  769. {
  770. unsigned long max_zone_pfns[MAX_NR_ZONES];
  771. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  772. #ifdef CONFIG_ZONE_DMA
  773. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  774. #endif
  775. #ifdef CONFIG_ZONE_DMA32
  776. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  777. #endif
  778. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  779. #ifdef CONFIG_HIGHMEM
  780. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  781. #endif
  782. free_area_init_nodes(max_zone_pfns);
  783. }
  784. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  785. .loaded_mm = &init_mm,
  786. .next_asid = 1,
  787. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  788. };
  789. EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
  790. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  791. {
  792. /* entry 0 MUST be WB (hardwired to speed up translations) */
  793. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  794. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  795. __pte2cachemode_tbl[entry] = cache;
  796. }
  797. #ifdef CONFIG_SWAP
  798. unsigned long max_swapfile_size(void)
  799. {
  800. unsigned long pages;
  801. pages = generic_max_swapfile_size();
  802. if (boot_cpu_has_bug(X86_BUG_L1TF)) {
  803. /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
  804. unsigned long long l1tf_limit = l1tf_pfn_limit();
  805. /*
  806. * We encode swap offsets also with 3 bits below those for pfn
  807. * which makes the usable limit higher.
  808. */
  809. #if CONFIG_PGTABLE_LEVELS > 2
  810. l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
  811. #endif
  812. pages = min_t(unsigned long long, l1tf_limit, pages);
  813. }
  814. return pages;
  815. }
  816. #endif