ordered-data.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/slab.h>
  6. #include <linux/blkdev.h>
  7. #include <linux/writeback.h>
  8. #include <linux/pagevec.h>
  9. #include "ctree.h"
  10. #include "transaction.h"
  11. #include "btrfs_inode.h"
  12. #include "extent_io.h"
  13. #include "disk-io.h"
  14. #include "compression.h"
  15. static struct kmem_cache *btrfs_ordered_extent_cache;
  16. static u64 entry_end(struct btrfs_ordered_extent *entry)
  17. {
  18. if (entry->file_offset + entry->len < entry->file_offset)
  19. return (u64)-1;
  20. return entry->file_offset + entry->len;
  21. }
  22. /* returns NULL if the insertion worked, or it returns the node it did find
  23. * in the tree
  24. */
  25. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  26. struct rb_node *node)
  27. {
  28. struct rb_node **p = &root->rb_node;
  29. struct rb_node *parent = NULL;
  30. struct btrfs_ordered_extent *entry;
  31. while (*p) {
  32. parent = *p;
  33. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  34. if (file_offset < entry->file_offset)
  35. p = &(*p)->rb_left;
  36. else if (file_offset >= entry_end(entry))
  37. p = &(*p)->rb_right;
  38. else
  39. return parent;
  40. }
  41. rb_link_node(node, parent, p);
  42. rb_insert_color(node, root);
  43. return NULL;
  44. }
  45. static void ordered_data_tree_panic(struct inode *inode, int errno,
  46. u64 offset)
  47. {
  48. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  49. btrfs_panic(fs_info, errno,
  50. "Inconsistency in ordered tree at offset %llu", offset);
  51. }
  52. /*
  53. * look for a given offset in the tree, and if it can't be found return the
  54. * first lesser offset
  55. */
  56. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  57. struct rb_node **prev_ret)
  58. {
  59. struct rb_node *n = root->rb_node;
  60. struct rb_node *prev = NULL;
  61. struct rb_node *test;
  62. struct btrfs_ordered_extent *entry;
  63. struct btrfs_ordered_extent *prev_entry = NULL;
  64. while (n) {
  65. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  66. prev = n;
  67. prev_entry = entry;
  68. if (file_offset < entry->file_offset)
  69. n = n->rb_left;
  70. else if (file_offset >= entry_end(entry))
  71. n = n->rb_right;
  72. else
  73. return n;
  74. }
  75. if (!prev_ret)
  76. return NULL;
  77. while (prev && file_offset >= entry_end(prev_entry)) {
  78. test = rb_next(prev);
  79. if (!test)
  80. break;
  81. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  82. rb_node);
  83. if (file_offset < entry_end(prev_entry))
  84. break;
  85. prev = test;
  86. }
  87. if (prev)
  88. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  89. rb_node);
  90. while (prev && file_offset < entry_end(prev_entry)) {
  91. test = rb_prev(prev);
  92. if (!test)
  93. break;
  94. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  95. rb_node);
  96. prev = test;
  97. }
  98. *prev_ret = prev;
  99. return NULL;
  100. }
  101. /*
  102. * helper to check if a given offset is inside a given entry
  103. */
  104. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  105. {
  106. if (file_offset < entry->file_offset ||
  107. entry->file_offset + entry->len <= file_offset)
  108. return 0;
  109. return 1;
  110. }
  111. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  112. u64 len)
  113. {
  114. if (file_offset + len <= entry->file_offset ||
  115. entry->file_offset + entry->len <= file_offset)
  116. return 0;
  117. return 1;
  118. }
  119. /*
  120. * look find the first ordered struct that has this offset, otherwise
  121. * the first one less than this offset
  122. */
  123. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  124. u64 file_offset)
  125. {
  126. struct rb_root *root = &tree->tree;
  127. struct rb_node *prev = NULL;
  128. struct rb_node *ret;
  129. struct btrfs_ordered_extent *entry;
  130. if (tree->last) {
  131. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  132. rb_node);
  133. if (offset_in_entry(entry, file_offset))
  134. return tree->last;
  135. }
  136. ret = __tree_search(root, file_offset, &prev);
  137. if (!ret)
  138. ret = prev;
  139. if (ret)
  140. tree->last = ret;
  141. return ret;
  142. }
  143. /* allocate and add a new ordered_extent into the per-inode tree.
  144. * file_offset is the logical offset in the file
  145. *
  146. * start is the disk block number of an extent already reserved in the
  147. * extent allocation tree
  148. *
  149. * len is the length of the extent
  150. *
  151. * The tree is given a single reference on the ordered extent that was
  152. * inserted.
  153. */
  154. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  155. u64 start, u64 len, u64 disk_len,
  156. int type, int dio, int compress_type)
  157. {
  158. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  159. struct btrfs_root *root = BTRFS_I(inode)->root;
  160. struct btrfs_ordered_inode_tree *tree;
  161. struct rb_node *node;
  162. struct btrfs_ordered_extent *entry;
  163. tree = &BTRFS_I(inode)->ordered_tree;
  164. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  165. if (!entry)
  166. return -ENOMEM;
  167. entry->file_offset = file_offset;
  168. entry->start = start;
  169. entry->len = len;
  170. entry->disk_len = disk_len;
  171. entry->bytes_left = len;
  172. entry->inode = igrab(inode);
  173. entry->compress_type = compress_type;
  174. entry->truncated_len = (u64)-1;
  175. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  176. set_bit(type, &entry->flags);
  177. if (dio)
  178. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  179. /* one ref for the tree */
  180. refcount_set(&entry->refs, 1);
  181. init_waitqueue_head(&entry->wait);
  182. INIT_LIST_HEAD(&entry->list);
  183. INIT_LIST_HEAD(&entry->root_extent_list);
  184. INIT_LIST_HEAD(&entry->work_list);
  185. init_completion(&entry->completion);
  186. INIT_LIST_HEAD(&entry->log_list);
  187. INIT_LIST_HEAD(&entry->trans_list);
  188. trace_btrfs_ordered_extent_add(inode, entry);
  189. spin_lock_irq(&tree->lock);
  190. node = tree_insert(&tree->tree, file_offset,
  191. &entry->rb_node);
  192. if (node)
  193. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  194. spin_unlock_irq(&tree->lock);
  195. spin_lock(&root->ordered_extent_lock);
  196. list_add_tail(&entry->root_extent_list,
  197. &root->ordered_extents);
  198. root->nr_ordered_extents++;
  199. if (root->nr_ordered_extents == 1) {
  200. spin_lock(&fs_info->ordered_root_lock);
  201. BUG_ON(!list_empty(&root->ordered_root));
  202. list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
  203. spin_unlock(&fs_info->ordered_root_lock);
  204. }
  205. spin_unlock(&root->ordered_extent_lock);
  206. /*
  207. * We don't need the count_max_extents here, we can assume that all of
  208. * that work has been done at higher layers, so this is truly the
  209. * smallest the extent is going to get.
  210. */
  211. spin_lock(&BTRFS_I(inode)->lock);
  212. btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
  213. spin_unlock(&BTRFS_I(inode)->lock);
  214. return 0;
  215. }
  216. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  217. u64 start, u64 len, u64 disk_len, int type)
  218. {
  219. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  220. disk_len, type, 0,
  221. BTRFS_COMPRESS_NONE);
  222. }
  223. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  224. u64 start, u64 len, u64 disk_len, int type)
  225. {
  226. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  227. disk_len, type, 1,
  228. BTRFS_COMPRESS_NONE);
  229. }
  230. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  231. u64 start, u64 len, u64 disk_len,
  232. int type, int compress_type)
  233. {
  234. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  235. disk_len, type, 0,
  236. compress_type);
  237. }
  238. /*
  239. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  240. * when an ordered extent is finished. If the list covers more than one
  241. * ordered extent, it is split across multiples.
  242. */
  243. void btrfs_add_ordered_sum(struct inode *inode,
  244. struct btrfs_ordered_extent *entry,
  245. struct btrfs_ordered_sum *sum)
  246. {
  247. struct btrfs_ordered_inode_tree *tree;
  248. tree = &BTRFS_I(inode)->ordered_tree;
  249. spin_lock_irq(&tree->lock);
  250. list_add_tail(&sum->list, &entry->list);
  251. spin_unlock_irq(&tree->lock);
  252. }
  253. /*
  254. * this is used to account for finished IO across a given range
  255. * of the file. The IO may span ordered extents. If
  256. * a given ordered_extent is completely done, 1 is returned, otherwise
  257. * 0.
  258. *
  259. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  260. * to make sure this function only returns 1 once for a given ordered extent.
  261. *
  262. * file_offset is updated to one byte past the range that is recorded as
  263. * complete. This allows you to walk forward in the file.
  264. */
  265. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  266. struct btrfs_ordered_extent **cached,
  267. u64 *file_offset, u64 io_size, int uptodate)
  268. {
  269. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  270. struct btrfs_ordered_inode_tree *tree;
  271. struct rb_node *node;
  272. struct btrfs_ordered_extent *entry = NULL;
  273. int ret;
  274. unsigned long flags;
  275. u64 dec_end;
  276. u64 dec_start;
  277. u64 to_dec;
  278. tree = &BTRFS_I(inode)->ordered_tree;
  279. spin_lock_irqsave(&tree->lock, flags);
  280. node = tree_search(tree, *file_offset);
  281. if (!node) {
  282. ret = 1;
  283. goto out;
  284. }
  285. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  286. if (!offset_in_entry(entry, *file_offset)) {
  287. ret = 1;
  288. goto out;
  289. }
  290. dec_start = max(*file_offset, entry->file_offset);
  291. dec_end = min(*file_offset + io_size, entry->file_offset +
  292. entry->len);
  293. *file_offset = dec_end;
  294. if (dec_start > dec_end) {
  295. btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
  296. dec_start, dec_end);
  297. }
  298. to_dec = dec_end - dec_start;
  299. if (to_dec > entry->bytes_left) {
  300. btrfs_crit(fs_info,
  301. "bad ordered accounting left %llu size %llu",
  302. entry->bytes_left, to_dec);
  303. }
  304. entry->bytes_left -= to_dec;
  305. if (!uptodate)
  306. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  307. if (entry->bytes_left == 0) {
  308. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  309. /*
  310. * Implicit memory barrier after test_and_set_bit
  311. */
  312. if (waitqueue_active(&entry->wait))
  313. wake_up(&entry->wait);
  314. } else {
  315. ret = 1;
  316. }
  317. out:
  318. if (!ret && cached && entry) {
  319. *cached = entry;
  320. refcount_inc(&entry->refs);
  321. }
  322. spin_unlock_irqrestore(&tree->lock, flags);
  323. return ret == 0;
  324. }
  325. /*
  326. * this is used to account for finished IO across a given range
  327. * of the file. The IO should not span ordered extents. If
  328. * a given ordered_extent is completely done, 1 is returned, otherwise
  329. * 0.
  330. *
  331. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  332. * to make sure this function only returns 1 once for a given ordered extent.
  333. */
  334. int btrfs_dec_test_ordered_pending(struct inode *inode,
  335. struct btrfs_ordered_extent **cached,
  336. u64 file_offset, u64 io_size, int uptodate)
  337. {
  338. struct btrfs_ordered_inode_tree *tree;
  339. struct rb_node *node;
  340. struct btrfs_ordered_extent *entry = NULL;
  341. unsigned long flags;
  342. int ret;
  343. tree = &BTRFS_I(inode)->ordered_tree;
  344. spin_lock_irqsave(&tree->lock, flags);
  345. if (cached && *cached) {
  346. entry = *cached;
  347. goto have_entry;
  348. }
  349. node = tree_search(tree, file_offset);
  350. if (!node) {
  351. ret = 1;
  352. goto out;
  353. }
  354. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  355. have_entry:
  356. if (!offset_in_entry(entry, file_offset)) {
  357. ret = 1;
  358. goto out;
  359. }
  360. if (io_size > entry->bytes_left) {
  361. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  362. "bad ordered accounting left %llu size %llu",
  363. entry->bytes_left, io_size);
  364. }
  365. entry->bytes_left -= io_size;
  366. if (!uptodate)
  367. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  368. if (entry->bytes_left == 0) {
  369. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  370. /*
  371. * Implicit memory barrier after test_and_set_bit
  372. */
  373. if (waitqueue_active(&entry->wait))
  374. wake_up(&entry->wait);
  375. } else {
  376. ret = 1;
  377. }
  378. out:
  379. if (!ret && cached && entry) {
  380. *cached = entry;
  381. refcount_inc(&entry->refs);
  382. }
  383. spin_unlock_irqrestore(&tree->lock, flags);
  384. return ret == 0;
  385. }
  386. /* Needs to either be called under a log transaction or the log_mutex */
  387. void btrfs_get_logged_extents(struct btrfs_inode *inode,
  388. struct list_head *logged_list,
  389. const loff_t start,
  390. const loff_t end)
  391. {
  392. struct btrfs_ordered_inode_tree *tree;
  393. struct btrfs_ordered_extent *ordered;
  394. struct rb_node *n;
  395. struct rb_node *prev;
  396. tree = &inode->ordered_tree;
  397. spin_lock_irq(&tree->lock);
  398. n = __tree_search(&tree->tree, end, &prev);
  399. if (!n)
  400. n = prev;
  401. for (; n; n = rb_prev(n)) {
  402. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  403. if (ordered->file_offset > end)
  404. continue;
  405. if (entry_end(ordered) <= start)
  406. break;
  407. if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
  408. continue;
  409. list_add(&ordered->log_list, logged_list);
  410. refcount_inc(&ordered->refs);
  411. }
  412. spin_unlock_irq(&tree->lock);
  413. }
  414. void btrfs_put_logged_extents(struct list_head *logged_list)
  415. {
  416. struct btrfs_ordered_extent *ordered;
  417. while (!list_empty(logged_list)) {
  418. ordered = list_first_entry(logged_list,
  419. struct btrfs_ordered_extent,
  420. log_list);
  421. list_del_init(&ordered->log_list);
  422. btrfs_put_ordered_extent(ordered);
  423. }
  424. }
  425. void btrfs_submit_logged_extents(struct list_head *logged_list,
  426. struct btrfs_root *log)
  427. {
  428. int index = log->log_transid % 2;
  429. spin_lock_irq(&log->log_extents_lock[index]);
  430. list_splice_tail(logged_list, &log->logged_list[index]);
  431. spin_unlock_irq(&log->log_extents_lock[index]);
  432. }
  433. void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
  434. struct btrfs_root *log, u64 transid)
  435. {
  436. struct btrfs_ordered_extent *ordered;
  437. int index = transid % 2;
  438. spin_lock_irq(&log->log_extents_lock[index]);
  439. while (!list_empty(&log->logged_list[index])) {
  440. struct inode *inode;
  441. ordered = list_first_entry(&log->logged_list[index],
  442. struct btrfs_ordered_extent,
  443. log_list);
  444. list_del_init(&ordered->log_list);
  445. inode = ordered->inode;
  446. spin_unlock_irq(&log->log_extents_lock[index]);
  447. if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
  448. !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
  449. u64 start = ordered->file_offset;
  450. u64 end = ordered->file_offset + ordered->len - 1;
  451. WARN_ON(!inode);
  452. filemap_fdatawrite_range(inode->i_mapping, start, end);
  453. }
  454. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  455. &ordered->flags));
  456. /*
  457. * In order to keep us from losing our ordered extent
  458. * information when committing the transaction we have to make
  459. * sure that any logged extents are completed when we go to
  460. * commit the transaction. To do this we simply increase the
  461. * current transactions pending_ordered counter and decrement it
  462. * when the ordered extent completes.
  463. */
  464. if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
  465. struct btrfs_ordered_inode_tree *tree;
  466. tree = &BTRFS_I(inode)->ordered_tree;
  467. spin_lock_irq(&tree->lock);
  468. if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
  469. set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
  470. atomic_inc(&trans->transaction->pending_ordered);
  471. }
  472. spin_unlock_irq(&tree->lock);
  473. }
  474. btrfs_put_ordered_extent(ordered);
  475. spin_lock_irq(&log->log_extents_lock[index]);
  476. }
  477. spin_unlock_irq(&log->log_extents_lock[index]);
  478. }
  479. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  480. {
  481. struct btrfs_ordered_extent *ordered;
  482. int index = transid % 2;
  483. spin_lock_irq(&log->log_extents_lock[index]);
  484. while (!list_empty(&log->logged_list[index])) {
  485. ordered = list_first_entry(&log->logged_list[index],
  486. struct btrfs_ordered_extent,
  487. log_list);
  488. list_del_init(&ordered->log_list);
  489. spin_unlock_irq(&log->log_extents_lock[index]);
  490. btrfs_put_ordered_extent(ordered);
  491. spin_lock_irq(&log->log_extents_lock[index]);
  492. }
  493. spin_unlock_irq(&log->log_extents_lock[index]);
  494. }
  495. /*
  496. * used to drop a reference on an ordered extent. This will free
  497. * the extent if the last reference is dropped
  498. */
  499. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  500. {
  501. struct list_head *cur;
  502. struct btrfs_ordered_sum *sum;
  503. trace_btrfs_ordered_extent_put(entry->inode, entry);
  504. if (refcount_dec_and_test(&entry->refs)) {
  505. ASSERT(list_empty(&entry->log_list));
  506. ASSERT(list_empty(&entry->trans_list));
  507. ASSERT(list_empty(&entry->root_extent_list));
  508. ASSERT(RB_EMPTY_NODE(&entry->rb_node));
  509. if (entry->inode)
  510. btrfs_add_delayed_iput(entry->inode);
  511. while (!list_empty(&entry->list)) {
  512. cur = entry->list.next;
  513. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  514. list_del(&sum->list);
  515. kfree(sum);
  516. }
  517. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  518. }
  519. }
  520. /*
  521. * remove an ordered extent from the tree. No references are dropped
  522. * and waiters are woken up.
  523. */
  524. void btrfs_remove_ordered_extent(struct inode *inode,
  525. struct btrfs_ordered_extent *entry)
  526. {
  527. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  528. struct btrfs_ordered_inode_tree *tree;
  529. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  530. struct btrfs_root *root = btrfs_inode->root;
  531. struct rb_node *node;
  532. bool dec_pending_ordered = false;
  533. /* This is paired with btrfs_add_ordered_extent. */
  534. spin_lock(&btrfs_inode->lock);
  535. btrfs_mod_outstanding_extents(btrfs_inode, -1);
  536. spin_unlock(&btrfs_inode->lock);
  537. if (root != fs_info->tree_root)
  538. btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
  539. tree = &btrfs_inode->ordered_tree;
  540. spin_lock_irq(&tree->lock);
  541. node = &entry->rb_node;
  542. rb_erase(node, &tree->tree);
  543. RB_CLEAR_NODE(node);
  544. if (tree->last == node)
  545. tree->last = NULL;
  546. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  547. if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
  548. dec_pending_ordered = true;
  549. spin_unlock_irq(&tree->lock);
  550. /*
  551. * The current running transaction is waiting on us, we need to let it
  552. * know that we're complete and wake it up.
  553. */
  554. if (dec_pending_ordered) {
  555. struct btrfs_transaction *trans;
  556. /*
  557. * The checks for trans are just a formality, it should be set,
  558. * but if it isn't we don't want to deref/assert under the spin
  559. * lock, so be nice and check if trans is set, but ASSERT() so
  560. * if it isn't set a developer will notice.
  561. */
  562. spin_lock(&fs_info->trans_lock);
  563. trans = fs_info->running_transaction;
  564. if (trans)
  565. refcount_inc(&trans->use_count);
  566. spin_unlock(&fs_info->trans_lock);
  567. ASSERT(trans);
  568. if (trans) {
  569. if (atomic_dec_and_test(&trans->pending_ordered))
  570. wake_up(&trans->pending_wait);
  571. btrfs_put_transaction(trans);
  572. }
  573. }
  574. spin_lock(&root->ordered_extent_lock);
  575. list_del_init(&entry->root_extent_list);
  576. root->nr_ordered_extents--;
  577. trace_btrfs_ordered_extent_remove(inode, entry);
  578. if (!root->nr_ordered_extents) {
  579. spin_lock(&fs_info->ordered_root_lock);
  580. BUG_ON(list_empty(&root->ordered_root));
  581. list_del_init(&root->ordered_root);
  582. spin_unlock(&fs_info->ordered_root_lock);
  583. }
  584. spin_unlock(&root->ordered_extent_lock);
  585. wake_up(&entry->wait);
  586. }
  587. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  588. {
  589. struct btrfs_ordered_extent *ordered;
  590. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  591. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  592. complete(&ordered->completion);
  593. }
  594. /*
  595. * wait for all the ordered extents in a root. This is done when balancing
  596. * space between drives.
  597. */
  598. u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
  599. const u64 range_start, const u64 range_len)
  600. {
  601. struct btrfs_fs_info *fs_info = root->fs_info;
  602. LIST_HEAD(splice);
  603. LIST_HEAD(skipped);
  604. LIST_HEAD(works);
  605. struct btrfs_ordered_extent *ordered, *next;
  606. u64 count = 0;
  607. const u64 range_end = range_start + range_len;
  608. mutex_lock(&root->ordered_extent_mutex);
  609. spin_lock(&root->ordered_extent_lock);
  610. list_splice_init(&root->ordered_extents, &splice);
  611. while (!list_empty(&splice) && nr) {
  612. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  613. root_extent_list);
  614. if (range_end <= ordered->start ||
  615. ordered->start + ordered->disk_len <= range_start) {
  616. list_move_tail(&ordered->root_extent_list, &skipped);
  617. cond_resched_lock(&root->ordered_extent_lock);
  618. continue;
  619. }
  620. list_move_tail(&ordered->root_extent_list,
  621. &root->ordered_extents);
  622. refcount_inc(&ordered->refs);
  623. spin_unlock(&root->ordered_extent_lock);
  624. btrfs_init_work(&ordered->flush_work,
  625. btrfs_flush_delalloc_helper,
  626. btrfs_run_ordered_extent_work, NULL, NULL);
  627. list_add_tail(&ordered->work_list, &works);
  628. btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
  629. cond_resched();
  630. spin_lock(&root->ordered_extent_lock);
  631. if (nr != U64_MAX)
  632. nr--;
  633. count++;
  634. }
  635. list_splice_tail(&skipped, &root->ordered_extents);
  636. list_splice_tail(&splice, &root->ordered_extents);
  637. spin_unlock(&root->ordered_extent_lock);
  638. list_for_each_entry_safe(ordered, next, &works, work_list) {
  639. list_del_init(&ordered->work_list);
  640. wait_for_completion(&ordered->completion);
  641. btrfs_put_ordered_extent(ordered);
  642. cond_resched();
  643. }
  644. mutex_unlock(&root->ordered_extent_mutex);
  645. return count;
  646. }
  647. u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
  648. const u64 range_start, const u64 range_len)
  649. {
  650. struct btrfs_root *root;
  651. struct list_head splice;
  652. u64 total_done = 0;
  653. u64 done;
  654. INIT_LIST_HEAD(&splice);
  655. mutex_lock(&fs_info->ordered_operations_mutex);
  656. spin_lock(&fs_info->ordered_root_lock);
  657. list_splice_init(&fs_info->ordered_roots, &splice);
  658. while (!list_empty(&splice) && nr) {
  659. root = list_first_entry(&splice, struct btrfs_root,
  660. ordered_root);
  661. root = btrfs_grab_fs_root(root);
  662. BUG_ON(!root);
  663. list_move_tail(&root->ordered_root,
  664. &fs_info->ordered_roots);
  665. spin_unlock(&fs_info->ordered_root_lock);
  666. done = btrfs_wait_ordered_extents(root, nr,
  667. range_start, range_len);
  668. btrfs_put_fs_root(root);
  669. total_done += done;
  670. spin_lock(&fs_info->ordered_root_lock);
  671. if (nr != U64_MAX) {
  672. nr -= done;
  673. }
  674. }
  675. list_splice_tail(&splice, &fs_info->ordered_roots);
  676. spin_unlock(&fs_info->ordered_root_lock);
  677. mutex_unlock(&fs_info->ordered_operations_mutex);
  678. return total_done;
  679. }
  680. /*
  681. * Used to start IO or wait for a given ordered extent to finish.
  682. *
  683. * If wait is one, this effectively waits on page writeback for all the pages
  684. * in the extent, and it waits on the io completion code to insert
  685. * metadata into the btree corresponding to the extent
  686. */
  687. void btrfs_start_ordered_extent(struct inode *inode,
  688. struct btrfs_ordered_extent *entry,
  689. int wait)
  690. {
  691. u64 start = entry->file_offset;
  692. u64 end = start + entry->len - 1;
  693. trace_btrfs_ordered_extent_start(inode, entry);
  694. /*
  695. * pages in the range can be dirty, clean or writeback. We
  696. * start IO on any dirty ones so the wait doesn't stall waiting
  697. * for the flusher thread to find them
  698. */
  699. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  700. filemap_fdatawrite_range(inode->i_mapping, start, end);
  701. if (wait) {
  702. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  703. &entry->flags));
  704. }
  705. }
  706. /*
  707. * Used to wait on ordered extents across a large range of bytes.
  708. */
  709. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  710. {
  711. int ret = 0;
  712. int ret_wb = 0;
  713. u64 end;
  714. u64 orig_end;
  715. struct btrfs_ordered_extent *ordered;
  716. if (start + len < start) {
  717. orig_end = INT_LIMIT(loff_t);
  718. } else {
  719. orig_end = start + len - 1;
  720. if (orig_end > INT_LIMIT(loff_t))
  721. orig_end = INT_LIMIT(loff_t);
  722. }
  723. /* start IO across the range first to instantiate any delalloc
  724. * extents
  725. */
  726. ret = btrfs_fdatawrite_range(inode, start, orig_end);
  727. if (ret)
  728. return ret;
  729. /*
  730. * If we have a writeback error don't return immediately. Wait first
  731. * for any ordered extents that haven't completed yet. This is to make
  732. * sure no one can dirty the same page ranges and call writepages()
  733. * before the ordered extents complete - to avoid failures (-EEXIST)
  734. * when adding the new ordered extents to the ordered tree.
  735. */
  736. ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  737. end = orig_end;
  738. while (1) {
  739. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  740. if (!ordered)
  741. break;
  742. if (ordered->file_offset > orig_end) {
  743. btrfs_put_ordered_extent(ordered);
  744. break;
  745. }
  746. if (ordered->file_offset + ordered->len <= start) {
  747. btrfs_put_ordered_extent(ordered);
  748. break;
  749. }
  750. btrfs_start_ordered_extent(inode, ordered, 1);
  751. end = ordered->file_offset;
  752. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  753. ret = -EIO;
  754. btrfs_put_ordered_extent(ordered);
  755. if (ret || end == 0 || end == start)
  756. break;
  757. end--;
  758. }
  759. return ret_wb ? ret_wb : ret;
  760. }
  761. /*
  762. * find an ordered extent corresponding to file_offset. return NULL if
  763. * nothing is found, otherwise take a reference on the extent and return it
  764. */
  765. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  766. u64 file_offset)
  767. {
  768. struct btrfs_ordered_inode_tree *tree;
  769. struct rb_node *node;
  770. struct btrfs_ordered_extent *entry = NULL;
  771. tree = &BTRFS_I(inode)->ordered_tree;
  772. spin_lock_irq(&tree->lock);
  773. node = tree_search(tree, file_offset);
  774. if (!node)
  775. goto out;
  776. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  777. if (!offset_in_entry(entry, file_offset))
  778. entry = NULL;
  779. if (entry)
  780. refcount_inc(&entry->refs);
  781. out:
  782. spin_unlock_irq(&tree->lock);
  783. return entry;
  784. }
  785. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  786. * extents that exist in the range, rather than just the start of the range.
  787. */
  788. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
  789. struct btrfs_inode *inode, u64 file_offset, u64 len)
  790. {
  791. struct btrfs_ordered_inode_tree *tree;
  792. struct rb_node *node;
  793. struct btrfs_ordered_extent *entry = NULL;
  794. tree = &inode->ordered_tree;
  795. spin_lock_irq(&tree->lock);
  796. node = tree_search(tree, file_offset);
  797. if (!node) {
  798. node = tree_search(tree, file_offset + len);
  799. if (!node)
  800. goto out;
  801. }
  802. while (1) {
  803. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  804. if (range_overlaps(entry, file_offset, len))
  805. break;
  806. if (entry->file_offset >= file_offset + len) {
  807. entry = NULL;
  808. break;
  809. }
  810. entry = NULL;
  811. node = rb_next(node);
  812. if (!node)
  813. break;
  814. }
  815. out:
  816. if (entry)
  817. refcount_inc(&entry->refs);
  818. spin_unlock_irq(&tree->lock);
  819. return entry;
  820. }
  821. bool btrfs_have_ordered_extents_in_range(struct inode *inode,
  822. u64 file_offset,
  823. u64 len)
  824. {
  825. struct btrfs_ordered_extent *oe;
  826. oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
  827. if (oe) {
  828. btrfs_put_ordered_extent(oe);
  829. return true;
  830. }
  831. return false;
  832. }
  833. /*
  834. * lookup and return any extent before 'file_offset'. NULL is returned
  835. * if none is found
  836. */
  837. struct btrfs_ordered_extent *
  838. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  839. {
  840. struct btrfs_ordered_inode_tree *tree;
  841. struct rb_node *node;
  842. struct btrfs_ordered_extent *entry = NULL;
  843. tree = &BTRFS_I(inode)->ordered_tree;
  844. spin_lock_irq(&tree->lock);
  845. node = tree_search(tree, file_offset);
  846. if (!node)
  847. goto out;
  848. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  849. refcount_inc(&entry->refs);
  850. out:
  851. spin_unlock_irq(&tree->lock);
  852. return entry;
  853. }
  854. /*
  855. * After an extent is done, call this to conditionally update the on disk
  856. * i_size. i_size is updated to cover any fully written part of the file.
  857. */
  858. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  859. struct btrfs_ordered_extent *ordered)
  860. {
  861. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  862. u64 disk_i_size;
  863. u64 new_i_size;
  864. u64 i_size = i_size_read(inode);
  865. struct rb_node *node;
  866. struct rb_node *prev = NULL;
  867. struct btrfs_ordered_extent *test;
  868. int ret = 1;
  869. u64 orig_offset = offset;
  870. spin_lock_irq(&tree->lock);
  871. if (ordered) {
  872. offset = entry_end(ordered);
  873. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  874. offset = min(offset,
  875. ordered->file_offset +
  876. ordered->truncated_len);
  877. } else {
  878. offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
  879. }
  880. disk_i_size = BTRFS_I(inode)->disk_i_size;
  881. /*
  882. * truncate file.
  883. * If ordered is not NULL, then this is called from endio and
  884. * disk_i_size will be updated by either truncate itself or any
  885. * in-flight IOs which are inside the disk_i_size.
  886. *
  887. * Because btrfs_setsize() may set i_size with disk_i_size if truncate
  888. * fails somehow, we need to make sure we have a precise disk_i_size by
  889. * updating it as usual.
  890. *
  891. */
  892. if (!ordered && disk_i_size > i_size) {
  893. BTRFS_I(inode)->disk_i_size = orig_offset;
  894. ret = 0;
  895. goto out;
  896. }
  897. /*
  898. * if the disk i_size is already at the inode->i_size, or
  899. * this ordered extent is inside the disk i_size, we're done
  900. */
  901. if (disk_i_size == i_size)
  902. goto out;
  903. /*
  904. * We still need to update disk_i_size if outstanding_isize is greater
  905. * than disk_i_size.
  906. */
  907. if (offset <= disk_i_size &&
  908. (!ordered || ordered->outstanding_isize <= disk_i_size))
  909. goto out;
  910. /*
  911. * walk backward from this ordered extent to disk_i_size.
  912. * if we find an ordered extent then we can't update disk i_size
  913. * yet
  914. */
  915. if (ordered) {
  916. node = rb_prev(&ordered->rb_node);
  917. } else {
  918. prev = tree_search(tree, offset);
  919. /*
  920. * we insert file extents without involving ordered struct,
  921. * so there should be no ordered struct cover this offset
  922. */
  923. if (prev) {
  924. test = rb_entry(prev, struct btrfs_ordered_extent,
  925. rb_node);
  926. BUG_ON(offset_in_entry(test, offset));
  927. }
  928. node = prev;
  929. }
  930. for (; node; node = rb_prev(node)) {
  931. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  932. /* We treat this entry as if it doesn't exist */
  933. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  934. continue;
  935. if (entry_end(test) <= disk_i_size)
  936. break;
  937. if (test->file_offset >= i_size)
  938. break;
  939. /*
  940. * We don't update disk_i_size now, so record this undealt
  941. * i_size. Or we will not know the real i_size.
  942. */
  943. if (test->outstanding_isize < offset)
  944. test->outstanding_isize = offset;
  945. if (ordered &&
  946. ordered->outstanding_isize > test->outstanding_isize)
  947. test->outstanding_isize = ordered->outstanding_isize;
  948. goto out;
  949. }
  950. new_i_size = min_t(u64, offset, i_size);
  951. /*
  952. * Some ordered extents may completed before the current one, and
  953. * we hold the real i_size in ->outstanding_isize.
  954. */
  955. if (ordered && ordered->outstanding_isize > new_i_size)
  956. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  957. BTRFS_I(inode)->disk_i_size = new_i_size;
  958. ret = 0;
  959. out:
  960. /*
  961. * We need to do this because we can't remove ordered extents until
  962. * after the i_disk_size has been updated and then the inode has been
  963. * updated to reflect the change, so we need to tell anybody who finds
  964. * this ordered extent that we've already done all the real work, we
  965. * just haven't completed all the other work.
  966. */
  967. if (ordered)
  968. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  969. spin_unlock_irq(&tree->lock);
  970. return ret;
  971. }
  972. /*
  973. * search the ordered extents for one corresponding to 'offset' and
  974. * try to find a checksum. This is used because we allow pages to
  975. * be reclaimed before their checksum is actually put into the btree
  976. */
  977. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  978. u32 *sum, int len)
  979. {
  980. struct btrfs_ordered_sum *ordered_sum;
  981. struct btrfs_ordered_extent *ordered;
  982. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  983. unsigned long num_sectors;
  984. unsigned long i;
  985. u32 sectorsize = btrfs_inode_sectorsize(inode);
  986. int index = 0;
  987. ordered = btrfs_lookup_ordered_extent(inode, offset);
  988. if (!ordered)
  989. return 0;
  990. spin_lock_irq(&tree->lock);
  991. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  992. if (disk_bytenr >= ordered_sum->bytenr &&
  993. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  994. i = (disk_bytenr - ordered_sum->bytenr) >>
  995. inode->i_sb->s_blocksize_bits;
  996. num_sectors = ordered_sum->len >>
  997. inode->i_sb->s_blocksize_bits;
  998. num_sectors = min_t(int, len - index, num_sectors - i);
  999. memcpy(sum + index, ordered_sum->sums + i,
  1000. num_sectors);
  1001. index += (int)num_sectors;
  1002. if (index == len)
  1003. goto out;
  1004. disk_bytenr += num_sectors * sectorsize;
  1005. }
  1006. }
  1007. out:
  1008. spin_unlock_irq(&tree->lock);
  1009. btrfs_put_ordered_extent(ordered);
  1010. return index;
  1011. }
  1012. int __init ordered_data_init(void)
  1013. {
  1014. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  1015. sizeof(struct btrfs_ordered_extent), 0,
  1016. SLAB_MEM_SPREAD,
  1017. NULL);
  1018. if (!btrfs_ordered_extent_cache)
  1019. return -ENOMEM;
  1020. return 0;
  1021. }
  1022. void __cold ordered_data_exit(void)
  1023. {
  1024. kmem_cache_destroy(btrfs_ordered_extent_cache);
  1025. }